1
|
Han C, Yang T, Fang Y, Du Y, Jin S, Xiong L, Zhu M. Steering the Product Selectivity of CO 2 Electroreduction by Single Atom Switching in Isostructural Copper Nanocluster Catalysts. Angew Chem Int Ed Engl 2025; 64:e202503417. [PMID: 40044605 DOI: 10.1002/anie.202503417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
Even single atom manipulation can cause drastic changes in catalytic activity and selectivity, especially in atomic-level catalysts. However, it is challenging to accurately elucidate the influence of specific atoms on performance due to the intertwined factors in catalysts. Atomically precise isostructural nanoclusters (NCs) can serve as ideal platforms to uncover the impact of individual atoms on catalytic properties. Herein, a pair of isostructural Cu NCs ([Cu13(SC6H3F2)3(P(PhF)3)7H10]0 and [Cu14(SC6H3F2)3(P(PhF)3)8H10]+ namely as Cu13 and Cu14) were synthesized. In the electrochemical CO2 reduction reaction, Cu13 shows barely any activity toward only 2e product CO with a maximum 13% FE at -1.1 V. In contrast, Cu14 can promote CO2 deep reduction to hydrocarbons (CH4 and C2H4) with maximum FE of 54.3% at -1.2 V. Based on the crystallographic and computational analyses, the extra Cu at the top in Cu14 squeezes the H connected with three core Cu into the center of the same plane, optimizing the electronic structure and thereby promoting CO2 activation and H2O dissociation, which is further confirmed by comprehensive in situ characterizations, kinetic experiments, and theoretical calculations. This work provides a unique isostructural NCs system to gain fundamental insights into switching catalytic reactivity by single-atom manipulation.
Collapse
Affiliation(s)
- Chao Han
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P.R. China
| | - Tao Yang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P.R. China
| | - Youqiong Fang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000, P.R. China
| | - Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P.R. China
| | - Shan Jin
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P.R. China
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000, P.R. China
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P.R. China
| |
Collapse
|
2
|
Yan J, Lin Y, Lin M, Huang X, Dong W, Huang H, Zhuang Z, Yu Y. Defect-Driven Atomic Engineering: Oxygen Vacancy-Stabilized Co Single Atoms on Ordered Ultrathin TiO 2 Nanowires for Efficient CO 2-to-Syngas Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502118. [PMID: 40237225 DOI: 10.1002/smll.202502118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Single-atom catalysts (SACs) anchored on defective supports offer exceptional catalytic efficiency but face challenges in stabilizing isolated metal atoms and optimizing metal-support interactions. Here, a defect-driven strategy is reported to construct a 3D dendritic SAC comprising interwoven ultrathin TiO2 nanowires (NWs) with abundant oxygen vacancies (OVs) that stabilize atomically dispersed cobalt (Co) sites. Using hydrothermal synthesis followed by acid etching and calcination, Ti─Co─Ti motifs are engineered at OVs site. The 3D architecture provides multiscale porosity and charge transport, achieving syngas production rates of 28.4 mmol g-1·h-1 (CO) and 13.9 mmol g-1·h-1 (H2) with a high turnover frequency (TOF) of 10.6 min-1, surpassing many other state-of-the-art Co-based SACs. In situ Raman and electron paramagnetic resonance (EPR) analysis reveal OVs consumption during Co anchoring, while density functional theory (DFT) validates charge redistribution from Ti to Co, enabling efficient electron transfer and inducing strong electronic interactions that enhance CO2 adsorption and activation. The results highlight the interplay between atomic-scale coordination environments and macroscale architectural order in harnessing the catalytic potential of SACs and ultrathin 1D NWs.
Collapse
Affiliation(s)
- Jiawei Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yalan Lin
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Mingxiong Lin
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Xinlian Huang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Weilong Dong
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Haoyang Huang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
3
|
Liu J, Yang J, Dou Y, Liu X, Chen S, Wang D. Deactivation Mechanism and Mitigation Strategies of Single-Atom Site Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420383. [PMID: 40223412 DOI: 10.1002/adma.202420383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Indexed: 04/15/2025]
Abstract
Single-atom site electrocatalysts (SACs), with maximum atom efficiency, fine-tuned coordination structure, and exceptional reactivity toward catalysis, energy, and environmental purification, have become the emerging frontier in recent decade. Along with significant breakthroughs in activity and selectivity, the limited stability and durability of SACs are often underemphasized, posing a grand challenge in meeting the practical requirements. One pivotal obstacle to the construction of highly stable SACs is the heavy reliance on empirical rather than rational design methods. A comprehensive review is urgently needed to offer a concise overview of the recent progress in SACs stability/durability, encompassing both deactivation mechanism and mitigation strategies. Herein, this review first critically summarizes the SACs degradation mechanism and induction factors at the atomic-, meso- and nanoscale, mainly based on but not limited to oxygen reduction reaction. Subsequently, potential stability/durability improvement strategies by tuning catalyst composition, structure, morphology and surface are delineated, including construction of robust substrate and metal-support interaction, optimization of active site stability, fabrication of porosity and surface modification. Finally, the challenges and prospects for robust SACs are discussed. This review facilitates the fundamental understanding of catalyst degradation mechanism and provides efficient design principles aimed at overcoming deactivation difficulties for SACs and beyond.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Shenghua Chen
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Ding J, Liu L, Zhang J, Liu Y, Xu H, Shen Z, Yang HB, Feng X, Huang Y, Liu B. Unraveling Dynamic Structural Evolution of Single Atom Catalyst via In Situ Surface-Enhanced Infrared Absorption Spectroscopy. J Am Chem Soc 2025; 147:9601-9609. [PMID: 40054996 DOI: 10.1021/jacs.4c17565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) have been widely applied in catalyzing electrochemical redox reactions. However, their long-term catalytic stabilities greatly limit their practical applications. This work investigates the dynamic evolution of two model Cu-N-C SACs with different Cu-N coordinations, namely the Cu1/Npyri-C and Cu1/Npyrr-C, in electrochemical CO reduction reaction (CORR), based on a collection of in situ characterizations including in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy, in situ X-ray absorption spectroscopy, quasi-in situ electron paramagnetic resonance spectroscopy and in situ ultraviolet-visible spectroscopy, complemented by theoretical calculations. Our findings reveal that the Cu nanoparticle formation rate over Cu1/Npyrr-C is more than 6 times higher than that over Cu1/Npyri-C during the electrochemical CORR. Quasi-in situ electron paramagnetic resonance and in situ UV-vis spectroscopy measurements demonstrate that hydrogen radicals can be in situ produced during electrochemical CORR, which will attack the Cu-N bonds in the Cu-N-C SACs, causing leaching of Cu2+ followed by subsequent reduction to form Cu nanoparticles. Kinetic calculations show that Cu1/Npyri-C displays a better catalytic stability than Cu1/Npyrr-C resulting from the stronger Cu-Npyri bonds. This study deepens the understanding of the deactivation mechanism of SACs in electrochemical reactions and provides guidance for the design of next-generation SACs with enhanced durability.
Collapse
Affiliation(s)
- Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Lingyue Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 100872, China
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hao Xu
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Zheng Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Li Q, Liu J, Wu Z, Deng A, Liu J, Chen T, Wei J, Zhang Y, Liu H. Recent Advances in Electrocatalytic C-N Coupling for Urea Synthesis. CHEMSUSCHEM 2025; 18:e202401865. [PMID: 39440904 DOI: 10.1002/cssc.202401865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Urea, one of the most widely used nitrogen-containing fertilizers globally, is essential for sustainable agriculture. Improving its production is crucial for meeting the increasing demand for fertilizers. Electrocatalytic co-reduction of CO₂ and nitrogenous compounds (NO₂-/NO₃-) has emerged as a promising strategy for green and energy-efficient urea synthesis. However, challenges such as slow reaction kinetics and complex multi-step electron transfers have hindered the development of efficient urea synthesis methods. This review explores recent advances in the electrocatalytic C-N coupling process, focusing on bimetallic catalysts, metal oxide/hydroxide catalysts, and carbon-based catalysts. The review also discusses the future prospects of designing effective catalysts for electrocatalytic C-N coupling to improve urea synthesis.
Collapse
Affiliation(s)
- Qiuyue Li
- College of Materials Science and Engineering, Changsha University of Science &Technology, Changsha, Hunan, 410114, P. R. China
| | - Jingjing Liu
- College of Materials Science and Engineering, Changsha University of Science &Technology, Changsha, Hunan, 410114, P. R. China
| | - Ze Wu
- College of Materials Science and Engineering, Changsha University of Science &Technology, Changsha, Hunan, 410114, P. R. China
| | - Aomeng Deng
- College of Materials Science and Engineering, Changsha University of Science &Technology, Changsha, Hunan, 410114, P. R. China
| | - Jiani Liu
- College of Materials Science and Engineering, Changsha University of Science &Technology, Changsha, Hunan, 410114, P. R. China
| | - Tian Chen
- College of Materials Science and Engineering, Changsha University of Science &Technology, Changsha, Hunan, 410114, P. R. China
| | - Jianlong Wei
- College of Materials Science and Engineering, Changsha University of Science &Technology, Changsha, Hunan, 410114, P. R. China
| | - Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science &Technology, Changsha, Hunan, 410114, P. R. China
| | - Hanwen Liu
- WA School of Mines, Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
6
|
Yang Z, Lei X, Li Y, Jiang G, Zhuo Y, Yuan R. Fabricating Cu Single Atom Sites on Ce-BTC for Sensitive and Durable Detection of Multipollutions in Water. Anal Chem 2025; 97:5332-5341. [PMID: 40013762 DOI: 10.1021/acs.analchem.5c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Easy and mass preparation of highly efficient single atomic electrocatalysts (SAECs) for wide applications in constructing sensitive electrochemical sensing remains a great challenge. In this work, a heterogeneous SAEC was synthesized by dispersing the copper phthalocyanine (CuPc) molecular on porous Ce-BTC for sensitive, simultaneous detection of NO2- and Bisphenol A (BPA) in water. Herein, CuPc has a typical Cu-nitrogen-carbon (Cu-N4) conjugated structure and highly efficient single-atom catalytic sites with excellent catalytical efficiency and conductivity, while Ce-BTC exhibited adsorption and activation of NO2- and BPA, as well as provided matrix to better disperse CuPc to obtain Cu-N4/Ce-BTC heterogeneous catalysts. Thus, the synergistic effect of CuPc and Ce-BTC enables Cu-N4/Ce-BTC to have a highly efficient catalytic activity and stability. Impressively, the coordinated carbon and nitrogen atoms surrounding the Cu help in activating pollution molecules, which can further enhance the sensitivity. As a result, the Cu-N4/Ce-BTC sensor for detecting NO2- and BPA exhibited good stability, reproducibility, selectivity, and a wide linear range of 20-1000 μM and 10-1000 μM with a low detection limit of 0.5 and 0.15 μM, respectively. This research presents a simple and mass product synthesizing SAECs approach, which will promote the development of SAEC applications in electrochemical sensors.
Collapse
Affiliation(s)
- Zhehan Yang
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xin Lei
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuanfang Li
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guangming Jiang
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ying Zhuo
- Key Laboratory of Luminescence and Real-Time Analytic Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence and Real-Time Analytic Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
7
|
Shao W, Fan W, Guan H, Zu X, Jiao X. Fundamentals and Perspectives of Positively Charged Single-Metal Site Catalysts for CO 2 Electroreduction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10276-10291. [PMID: 39921625 DOI: 10.1021/acsami.4c21988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Single-atom catalysts (SACs) show superior efficiency in electrocatalytic carbon dioxide reduction, a key stage in achieving carbon neutrality. Atomically dispersed single-metal sites of SACs are invariably in a positive valence state; namely, they are positively charged single-metal sites (PCSSs). The PCSS catalysts generally possess a distinctive and asymmetric electronic structure, which enables the activation of linear carbon dioxide molecules and stabilizes miscellaneous intermediates during electrocatalysis. Herein, this review summarizes the manner in which the coordination environment, neighboring atoms or groups, and the interaction with the substrate modulate the distinctive electronic properties of PCSSs. Additionally, we overview the recently reported theoretical and experimental advances in terms of structure-performance relationship. Furthermore, we emphasize the previously underappreciated durability of positively charged single-metal sites in CO2 reduction. Finally, we discuss several pending issues and potential breakthroughs of PCSSs for CO2 reduction.
Collapse
Affiliation(s)
- Weiwei Shao
- School of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, P. R. China
| | - Wenya Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hangmin Guan
- School of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, P. R. China
| | - Xiaolong Zu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Li J, Wei M, Ji B, Hu S, Xue J, Zhao D, Wang H, Liu C, Ye Y, Xu J, Zeng J, Ye R, Zheng Y, Zheng T, Xia C. Copper-Catalysed Electrochemical CO 2 Methanation via the Alloying of Single Cobalt Atoms. Angew Chem Int Ed Engl 2025; 64:e202417008. [PMID: 39805742 DOI: 10.1002/anie.202417008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60 % with a partial current density of -482.7 mA cm-2. Mechanistic investigations revealed that the incorporation of single Co atoms enhances the activation and dissociation of H2O molecules, thereby lowering the energy barrier for the hydrogenation of *CO intermediates. In situ spectroscopic experiments and density functional theory simulations further demonstrated that the modulation of the *CO adsorption configuration, with stronger bridge-binding, favours deep reduction to CH4 over the C-C coupling or CO desorption pathways. Our findings underscore the potential of Co1Cu catalysts in overcoming the selectivity-activity trade-off, paving the way for efficient and scalable CO2-to-CH4 conversion technologies.
Collapse
Affiliation(s)
- Jiawei Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Miaojin Wei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bifa Ji
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Sunpei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jing Xue
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Donghao Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Haoyuan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yifan Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jilong Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yongping Zheng
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
9
|
Yang H, Duan P, Zhuang Z, Luo Y, Shen J, Xiong Y, Liu X, Wang D. Understanding the Dynamic Evolution of Active Sites among Single Atoms, Clusters, and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415265. [PMID: 39748626 DOI: 10.1002/adma.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Catalysis remains a cornerstone of chemical research, with the active sites of catalysts being crucial for their functionality. Identifying active sites, particularly during the reaction process, is crucial for elucidating the relationship between a catalyst's structure and its catalytic property. However, the dynamic evolution of active sites within heterogeneous metal catalysts presents a substantial challenge for accurately pinpointing the real active sites. The advent of in situ and operando characterization techniques has illuminated the path toward understanding the dynamic changes of active sites, offering robust scientific evidence to support the rational design of catalysts. There is a pressing need for a comprehensive review that systematically explores the dynamic evolution among single atoms, clusters, and nanoparticles as active sites during the reaction process, utilizing in situ and operando characterization techniques. This review aims to delineate the effects of various reaction factors on dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Moreover, several in situ and operando techniques are elaborated with emphases on tracking the dynamic evolution of active sites, linking them to catalytic properties. Finally, it discusses challenges and future perspectives in identifying active sites during the reaction process and advancing in situ and operando characterization techniques.
Collapse
Affiliation(s)
- Hongchen Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengfei Duan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaowu Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Ma X, Shao J, Mao B, Ye F, Wang Z, Mao J, Chen A, Wang D, Zhang L, Dong H, Lin H, Li N, Hu C. "Cu-N x" Site-Driven Selectivity Switch for Electrocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6326-6336. [PMID: 39832485 DOI: 10.1021/acsami.4c18450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The comprehensive understanding of the effect of the chemical environment surrounding active sites on the pathway for the electrochemical carbon dioxide reduction reaction (eCO2RR) is essential for the development of advanced catalysts for large-scale applications. Based on a series of model catalysts engineered by the coordination of copper ions with various isomers of phenylenediamine [i.e., o-phenylenediamine (oPD), m-phenylenediamine (mPD), and p-phenylenediamine (pPD)] featuring two amino groups in ortho-, meta-, and para-positions, the steric effects could significantly govern the selectivity of the "Cu-N" sites for eCO2RR. It was found the steric distance between adjacent copper and nitrogen active sites in Cu-oPD enhanced the C-C coupling of the *COOH intermediate, thereby resulting in increased selectivity for C2H4 production. In contrast, the weak van der Waals interactions arising from steric electrostatic effects surrounding the *CHO intermediate on Cu-pPD facilitated subsequent hydrogenation, leading to the preferential synthesis of CH4. However, Cu-mPD exhibited diminished eCO2RR activity due to a higher free energy associated with the rate-determining step, which primarily led to the formation of H2. This study underscores the significant role of a steric effect-driven selectivity switch for eCO2RR.
Collapse
Affiliation(s)
- Xinyue Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Shao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoguang Mao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fenghui Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zichun Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Aibing Chen
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lipeng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Husitu Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Li Y, Cao X, Chen Q, Pan R, Zhang J, Meng G, Yang Y, Li Y, Mao J, Chen W. Ni Cluster-Decorated Single-Atom Catalysts Achieve Near-Unity CO 2-to-CO Conversion with an Ultrawide Potential Window of ≈1.7 V. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405367. [PMID: 39324312 DOI: 10.1002/smll.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Developing efficient electrocatalysts for CO2 reduction to CO within a broad potential range is meaningful for cascade application integration. In this work, hydrogen spillover is created and utilized to cultivate a proton-rich environment via the simple thermolysis of a Ni-doped Zn coordination polymer (Zn CPs (Ni)) to create asymmetric Ni single atoms co-located with adjacent Ni nanoclusters on nitrogen-doped carbon, termed as NiNC&SA/N-C, which expedites the hydrogenation of adsorbed CO2. Therefore, the sample demonstrates near-unity CO2-to-CO conversion efficiency under pH-universal conditions in ultra-wide potential windows: -0.39 to -2.05 V versus RHE with the current densities ranging from 0.1 to 1.0 A cm-2 in alkaline conditions, -0.83 to -2.40 V versus RHE from 0.1 to 0.9 A cm-2 in neutral environments, and -0.98 to -2.25 V versus RHE across 0.1 to 0.8 A cm-2 in acid conditions. Corresponding in situ measurements and density functional theory (DFT) calculations suggest that the enhanced H2O dissociation and more efficient hydrogen spillover on NiNC&SA/N-C (compared to NiSA/N-C) accelerate the protonation of adsorbed CO2 to form *COOH intermediates. This work emphasizes the significant role of proton spillover in CO2RR, opening novel avenues for designing high-performance catalysts applicable to various electrocatalytic processes.
Collapse
Affiliation(s)
- Yaqian Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Xi Cao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Rongrong Pan
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yun Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yapeng Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
12
|
Woldu AR, Yohannes AG, Huang Z, Kennepohl P, Astruc D, Hu L, Huang XC. Experimental and Theoretical Insights into Single Atoms, Dual Atoms, and Sub-Nanocluster Catalysts for Electrochemical CO 2 Reduction (CO 2RR) to High-Value Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414169. [PMID: 39593251 DOI: 10.1002/adma.202414169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Electrocatalytic carbon dioxide (CO2) conversion into valuable chemicals paves the way for the realization of carbon recycling. Downsizing catalysts to single-atom catalysts (SACs), dual-atom catalysts (DACs), and sub-nanocluster catalysts (SNCCs) has generated highly active and selective CO2 transformation into highly reduced products. This is due to the introduction of numerous active sites, highly unsaturated coordination environments, efficient atom utilization, and confinement effect compared to their nanoparticle counterparts. Herein, recent Cu-based SACs are first reviewed and the newly emerged DACs and SNCCs expanding the catalysis of SACs to electrocatalytic CO2 reduction (CO2RR) to high-value products are discussed. Tandem Cu-based SAC-nanocatalysts (NCs) (SAC-NCs) are also discussed for the CO2RR to high-value products. Then, the non-Cu-based SACs, DACs, SAC-NCs, and SNCCs and theoretical calculations of various transition-metal catalysts for CO2RR to high-value products are summarized. Compared to previous achievements of less-reduced products, this review focuses on the double objective of achieving full CO2 reduction and increasing the selectivity and formation rate toward C-C coupled products with additional emphasis on the stability of the catalysts. Finally, through combined theoretical and experimental research, future outlooks are offered to further develop the CO2RR into high-value products over isolated atoms and sub-nanometal clusters.
Collapse
Affiliation(s)
- Abebe Reda Woldu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Asfaw G Yohannes
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Zanling Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Pierre Kennepohl
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Didier Astruc
- ISM, UMR CNRS 5255, University of Bordeaux, Talence, Cedex, 33405, France
| | - Liangsheng Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| |
Collapse
|
13
|
Bidikoudi M, Stathatos E. Chalcogenides in Perovskite Solar Cells with a Carbon Electrode: State of the Art and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1783. [PMID: 39591025 PMCID: PMC11597172 DOI: 10.3390/nano14221783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
Perovskite solar cells (PSCs) have been on the forefront of advanced research for over a decade, achieving constantly increasing power conversion efficiencies (PCEs), while their route towards commercialization is currently under intensive progress. Towards this target, there has been a turn to PSCs that employ a carbon electrode (C-PSCs) for the elimination of metal back contacts, which increase the cost of corresponding devices while at the same time have a severe impact on their stability. Chalcogenides are chemical compounds that contain at least one chalcogen element, typically sulfur (S), selenium (Se), or tellurium (Te), combined with one metallic element. They possess semiconducting properties and have been proven to have beneficial effects when incorporated in a variety of solar cell types, including dye sensitized solar cells (DSSCs), quantum dot sensitized solar cells (QDSSCs), and Organic Solar Cells (OSCs), either as interlayers or added in the active layers. Currently, an increasing number of studies have highlighted their potential for achieving high-performing and stable PSCs. In this review, the most promising results of the latest studies regarding the implementation of chalcogenides in PSCs with a carbon electrode are presented and discussed, merging two research trends that are currently on the spotlight of solar cell technology.
Collapse
Affiliation(s)
- Maria Bidikoudi
- Nanotechnology and Advanced Materials Laboratory, Department of Electrical and Computer Engineering, School of Engineering, University of the Peloponnese, 26334 Patras, Greece
| | - Elias Stathatos
- Nanotechnology and Advanced Materials Laboratory, Department of Electrical and Computer Engineering, School of Engineering, University of the Peloponnese, 26334 Patras, Greece
| |
Collapse
|
14
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
15
|
Song W, Xia C, Zaman S, Chen S, Xiao C. Advances in Stability of NiFe-Based Anodes toward Oxygen Evolution Reaction for Alkaline Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406075. [PMID: 39314014 DOI: 10.1002/smll.202406075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Alkaline electrolysis plays a crucial role in sustainable energy solutions by utilizing electrolytic cells to produce hydrogen gas, providing a clean and efficient method for energy storage and conversion. Efficient, stable, and low-cost electrocatalysts for the oxygen evolution reaction (OER) are essential to facilitate alkaline water electrolysis on a commercial scale. Nickel-iron-based (NiFe-based) transition metal electrocatalysts are considered the most promising non-precious metal catalysts for alkaline OER due to their low cost, abundance, and tunable catalytic properties. Nevertheless, the majority of existing NiFe-based catalysts suffer from limited activity and poor stability, posing a significant challenge in meeting industrial applications. This also highlights a common situation where the emphasis on material activity receives significant attention, while the equally critical stability aspect is often underemphasized. Initiating with a comprehensive exploration of the stability of NiFe-based OER materials, this article first summarizes the debate surrounding the determination of active sites in NiFe-based OER electrocatalysts. Subsequently, the degradation mechanisms of recently reported NiFe-based electrocatalysts are outlined, encompassing assessments of both chemical and mechanical endurance, along with essential approaches for enhancing their stability. Finally, suggestions are put forth regarding the essential considerations for the design of NiFe-based OER electrocatalysts, with a focus on heightened stability.
Collapse
Affiliation(s)
- Wenyu Song
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenfeng Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunhui Xiao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
16
|
Wang J, Wa Q, Diao Q, Liu F, Hao F, Xiong Y, Wang Y, Zhou J, Meng X, Guo L, Fan Z. Atomic Design of Copper Active Sites in Pristine Metal-Organic Coordination Compounds for Electrocatalytic Carbon Dioxide Reduction. SMALL METHODS 2024; 8:e2400432. [PMID: 38767183 PMCID: PMC11579559 DOI: 10.1002/smtd.202400432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/16/2024] [Indexed: 05/22/2024]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2RR) has emerged as a promising and sustainable approach to cut carbon emissions by converting greenhouse gas CO2 to value-added chemicals and fuels. Metal-organic coordination compounds, especially the copper (Cu)-based coordination compounds, which feature well-defined crystalline structures and designable metal active sites, have attracted much research attention in electrocatalytic CO2RR. Herein, the recent advances of electrochemical CO2RR on pristine Cu-based coordination compounds with different types of Cu active sites are reviewed. First, the general reaction pathways of electrocatalytic CO2RR on Cu-based coordination compounds are briefly introduced. Then the highly efficient conversion of CO2 on various kinds of Cu active sites (e.g., single-Cu site, dimeric-Cu site, multi-Cu site, and heterometallic site) is systematically discussed, along with the corresponding catalytic reaction mechanisms. Finally, some existing challenges and potential opportunities for this research direction are provided to guide the rational design of metal-organic coordination compounds for their practical application in electrochemical CO2RR.
Collapse
Affiliation(s)
- Juan Wang
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Qingbo Wa
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Qi Diao
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Fu Liu
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Fengkun Hao
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Yuecheng Xiong
- Department of ChemistryCity University of Hong KongHong Kong999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong Kong999077China
| | - Yunhao Wang
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Jingwen Zhou
- Department of ChemistryCity University of Hong KongHong Kong999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong Kong999077China
| | - Xiang Meng
- Department of ChemistryCity University of Hong KongHong Kong999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong Kong999077China
| | - Liang Guo
- Department of ChemistryCity University of Hong KongHong Kong999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong Kong999077China
| | - Zhanxi Fan
- Department of ChemistryCity University of Hong KongHong Kong999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongHong Kong999077China
- Hong Kong Institute for Clean Energy (HKICE)City University of Hong KongHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
| |
Collapse
|
17
|
Chen S, Zhu H, Li T, Liu P, Wu C, Jia S, Li Y, Suo B. Applications of metal nanoclusters supported on the two-dimensional material graphene in electrocatalytic carbon dioxide reduction. Phys Chem Chem Phys 2024; 26:26647-26676. [PMID: 39415712 DOI: 10.1039/d4cp03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metal nanoclusters (MNCs) have been demonstrated to exhibit superior catalytic performance compared to single nanoparticles. This is attributed to their quantized electronic structure, unique geometrical stacking and abundant active sites. While the exposed metal atoms can markedly enhance the efficiency of catalysis, unfortunately, MNCs are susceptible to agglomeration, which impairs their catalytic activity and stability. Graphene is a two-dimensional material consisting of a single atomic layer formed by the hybridization of the s and p orbitals of carbon atoms. It exhibits stable physical and chemical properties and has an easily controllable structure, making it an ideal carrier for MNCs. When metal nanoclusters (MNCs) are loaded on a graphene substrate, the MNCs can form a stable binding site on the graphene substrate. Furthermore, the construction of a defective structure on the graphene substrate enables the formation of robust interactions between the metal atoms of the MNCs and the substrate, facilitating the rapid establishment of electron conduction pathways and markedly enhancing the electrocatalytic performance. This paper presents a review of the applications of metal nanoclusters supported on graphene skeletons in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Firstly, we briefly introduce the reaction mechanism of the CO2RR, then we systematically discuss the synthesis strategies, properties and applications of metal nanoclusters in electrocatalytic carbon dioxide reduction from both experimental and theoretical perspectives, and lastly, we discuss the opportunities and challenges of metal nanocluster catalysts supported on carbon materials.
Collapse
Affiliation(s)
- Shanlin Chen
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Tingting Li
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shaobo Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Yawei Li
- School of Energy, Power and Mechanical Engineering, Institute of Energy and Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
18
|
Cai S, Tao S, Chong M, Shi Z, Liu X, Cheng D, Chen F. Ag Nanoparticles-Confined Doped within Triazine-Based Covalent Organic Frameworks for Syngas Production from Electrocatalytic Reduction of CO 2. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356972 DOI: 10.1021/acsami.4c10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) emerges as a promising avenue to mitigate carbon emissions, enabling the capture and conversion of CO2 into high-value products such as syngas with CO/H2. One of the crucial aspects lies in the tailored development of durable and efficient electrocatalysts for the CO2RR. Covalent organic frameworks (COFs) possess unique characteristics that render them attractive candidates for catalytic applications. However, the relationship between structure and performance still requires further exploration; especially, most COFs with such properties are limited to COFs containing specific groups such as phthalocyanine or porphyrin groups. Here, we custom-synthesize two azine-linked nitrogen-rich COFs constructed from triazine building blocks, which are doped with ultrafine and highly dispersed Ag nanoparticles (Ag@TFPT-HZ and Ag@TPT-HZ). Thus-obtained COFs can serve as electrocatalysts for the CO2RR, and a comprehensive investigation has been conducted to uncover the intricate structure-performance relationship within these materials. Notably, Ag@TFPT-HZ exhibits superior CO selectivity in the electrocatalytic CO2RR, achieving a FECO of 81% and a partial current density of 7.65 mA·cm-2 at the potential of -1.0 V (vs reversible hydrogen electrode (RHE)). In addition, Ag@TPT-HZ as an electrocatalyst can continuously produce syngas with a CO/H2 molar ratio of 1:1, an ideal condition for methanol synthesis. The observed distinct performance between these two COFs is attributed to the presence of O atoms in TFPT-HZ. These O atoms facilitate a higher loading capacity of Ag nanoparticles (11 wt %) and generate a greater number of active sites, thereby enhancing electrochemical activity and promoting faster reaction kinetics. Therefore, two tailor-made two-dimensional (2D) nitrogen-rich COFs with various active sites as electrocatalysts can exhibit different outstanding electrocatalytic performances for CO2RR and possess high cycling stability (>50 h). This work offers valuable insights into the design and synthesis of electrocatalysts, particularly in elucidating the intricate relationship between their structure and performance.
Collapse
Affiliation(s)
- Shiyu Cai
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Sizhe Tao
- Polytechnic Institute, Zhejiang University, Quzhou 324000, China
| | - Mingben Chong
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhekun Shi
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Xiaoling Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - DangGuo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Fengqiu Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
19
|
Song X, Pu P, Feng H, Ding H, Deng Y, Ge Z, Zhao S, Liu T, Yang Y, Wei M, Zhang X. Integrating Active Learning and DFT for Fast-Tracking Single-Atom Alloy Catalysts in CO 2-to-Fuel Conversion. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356248 DOI: 10.1021/acsami.4c11695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Electrocatalytic carbon dioxide reduction (CO2RR) technology enables the conversion of excessive CO2 into high-value fuels and chemicals, thereby mitigating atmospheric CO2 concentrations and addressing energy scarcity. Single-atom alloys (SAAs) possess the potential to enhance the CO2RR performance by full utilization of atoms and breaking linear scaling relationships. However, quickly screening high-performance metal portfolios of SAAs remains a formidable challenge. In this study, we proposed an active learning (AL) framework to screen high-performance catalysts for CO2RR to yield fuels such as CH4 and CH3OH. After four rounds of AL iterations, the ML model attained optimal prediction performance with the test set R2 of approximately 0.94 and successful prediction was achieved for the binding free energy of *CHO, *COH, *CO, and *H on 380 catalyst surfaces with an accuracy within 0.20 eV. Subsequent analysis of the SAA catalysts' activity, selectivity, and stability led to the discovery of eight previously unexplored SAA catalysts for CO2RR. Notably, the surface activity of Ti@Cu(100), Au@Pt(100), and Ag@Pt(100) shines prominently. Utilizing DFT calculations, we elucidated the complete reaction pathway of the CO2RR on the surfaces of these catalysts, confirming their high catalytic activity with limiting potentials of -0.11, -0.34, and -0.46 eV, respectively, which are significantly lower than those of pure Cu catalysts. The results showcase the exceptional predictive prowess of AL, providing a valuable reference for the design of CO2RR catalysts.
Collapse
Affiliation(s)
- Xin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Pengxin Pu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haisong Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hu Ding
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuan Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhen Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shiquan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tianyong Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
20
|
Pavel M, Anastasescu C, Atkinson I, Papa F, Balint I. Improved Photocatalytic Activity of Dion-Jacobson-Type Tantalate Perovskites Modified with FeCl 2. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4862. [PMID: 39410433 PMCID: PMC11477869 DOI: 10.3390/ma17194862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
A rapid and feasible approach was used to develop visible-light-driven-type Dion-Jacobson perovskites by the modification of the RbLaTa2O7 host (RbLTO) with FeCl2 through the molten salt route. X-ray diffraction (XRD) characterization showed that FeCl2-modified layered perovskite (e.g., Fe@RbLTO) preserved its lamellar structure. SEM micrographs confirmed the layered morphology of both RbLTO and Fe@RbLTO perovskite materials. The UV-Vis spectra illustrated a significant red shift of the absorption edge after Fe2+ modification, with the band gap energy reducing from 3.88 to 1.82 eV. H2-TPR measurements emphasized the anchorage of Fe2+ species located on the surface of the layered perovskite as well as in the interlayer space. The synthesized materials were valorized as photocatalysts for the degradation of phenol under both Xe lamp and simulated solar irradiation (SSL) conditions. The photocatalytic reaction follows first-order kinetics. By-product formations during phenol (Ph) degradation were identified and quantified using high-performance liquid chromatography (HPLC). Hydroquinone, 1,2-dihydroxi-benzene, benzoquinone, and pyrogallol were identified as the main Ph degradation intermediates. Pristine RbLaTa2O7 exhibited a phenol conversion value of about 17% using an Xe lamp, while a ≈ 11% conversion was achieved under SSL. A substantial increase in Ph conversion and selectivity was perceived after Fe2+ modification. Fe@RbLTO demonstrated superior photocatalytic performances (43% conversion of phenol under an Xe lamp, and 91% selectivity to aromatic intermediate compounds) at optimized reaction conditions. The stability of the Fe@RbLTO photocatalyst when exposed to an Xe lamp was also assessed. These results suggest that the existence of iron species on the layered perovskite's surface is responsible for the improved redox properties of Fe@RbLTO, resulting in a valuable material for environmental applications.
Collapse
Affiliation(s)
- Monica Pavel
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.A.); (I.A.); (F.P.)
| | | | | | | | - Ioan Balint
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.A.); (I.A.); (F.P.)
| |
Collapse
|
21
|
Wang H, Liu X, Zhao Y, Sun Z, Lin Y, Yao T, Jiang HL. Regulating interaction with surface ligands on Au 25 nanoclusters by multivariate metal-organic framework hosts for boosting catalysis. Natl Sci Rev 2024; 11:nwae252. [PMID: 39301064 PMCID: PMC11409874 DOI: 10.1093/nsr/nwae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 09/22/2024] Open
Abstract
While atomically precise metal nanoclusters (NCs) with unique structures and reactivity are very promising in catalysis, the spatial resistance caused by the surface ligands and structural instability poses significant challenges. In this work, Au25(Cys)18 NCs are encapsulated in multivariate metal-organic frameworks (MOFs) to afford Au25@M-MOF-74 (M = Zn, Ni, Co, Mg). By the MOF confinement, the Au25 NCs showcase highly enhanced activity and stability in the intramolecular cascade reaction of 2-nitrobenzonitrile. Notably, the interaction between the metal nodes in M-MOF-74 and Au25(Cys)18 is able to suppress the free vibration of the surface ligands on the Au25 NCs and thereby improve the accessibility of Au sites; meanwhile, the stronger interactions lead to higher electron density and core expansion within Au25(Cys)18. As a result, the activity exhibits the trend of Au25@Ni-MOF-74 > Au25@Co-MOF-74 > Au25@Zn-MOF-74 > Au25@Mg-MOF-74, highlighting the crucial roles of microenvironment modulation around the Au25 NCs by interaction between the surface ligands and MOF hosts.
Collapse
Affiliation(s)
- He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yulong Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Sun M, Cheng J, Anzai A, Kobayashi H, Yamauchi M. Modulating Electronic States of Cu in Metal-Organic Frameworks for Emerging Controllable CH 4/C 2H 4 Selectivity in CO 2 Electroreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404931. [PMID: 38976515 PMCID: PMC11425631 DOI: 10.1002/advs.202404931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Indexed: 07/10/2024]
Abstract
The intensive study of electrochemical CO2 reduction reaction (CO2RR) has resulted in numerous highly selective catalysts, however, most of these still exhibit uncontrollable selectivity. Here, it is reported for the first time the controllable CH4/C2H4 selectivity by modulating the electronic states of Cu incorporated in metal-organic frameworks with different functional ligands, achieving a Faradaic efficiency of 58% for CH4 on Cu-incorporated UiO-66-H (Ce) composite catalysts, Cu/UiO-66-H (Ce) and that of 44% for C2H4 on Cu/UiO-66-F (Ce). In situ measurements of Raman and X-ray absorption spectra revealed that the electron-withdrawing ability of the ligand side group controls the product selectivity on MOFs through the modulation of the electronic states of Cu. This work opens new prospects for the development of MOFs as a platform for the tailored tuning of selectivity in CO2RR.
Collapse
Affiliation(s)
- Mingxu Sun
- Institute for Materials Chemistry and Engineering (IMCE)Kyushu UniversityMotooka 744, Nishi‐kuFukuoka819‐0395Japan
| | - Jiamin Cheng
- Institute for Materials Chemistry and Engineering (IMCE)Kyushu UniversityMotooka 744, Nishi‐kuFukuoka819‐0395Japan
- Research Center for Negative Emissions Technologies (K‐NETs)Kyushu UniversityMotooka 744, Nishi‐kuFukuoka819‐0395Japan
| | - Akihiko Anzai
- Institute for Materials Chemistry and Engineering (IMCE)Kyushu UniversityMotooka 744, Nishi‐kuFukuoka819‐0395Japan
| | - Hirokazu Kobayashi
- Research Center for Negative Emissions Technologies (K‐NETs)Kyushu UniversityMotooka 744, Nishi‐kuFukuoka819‐0395Japan
| | - Miho Yamauchi
- Institute for Materials Chemistry and Engineering (IMCE)Kyushu UniversityMotooka 744, Nishi‐kuFukuoka819‐0395Japan
- Research Center for Negative Emissions Technologies (K‐NETs)Kyushu UniversityMotooka 744, Nishi‐kuFukuoka819‐0395Japan
- International Institute for Carbon‐Neutral Energy Research (WPI‐I2CNER)Kyushu UniversityMotooka 744, Nishi‐kuFukuoka819‐0395Japan
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku University2‐1‐1 Katahira, Aoba‐kuSendai980–8577Japan
| |
Collapse
|
23
|
Zhang C, Lin Z, Jiao L, Jiang HL. Metal-Organic Frameworks for Electrocatalytic CO 2 Reduction: From Catalytic Site Design to Microenvironment Modulation. Angew Chem Int Ed Engl 2024:e202414506. [PMID: 39214860 DOI: 10.1002/anie.202414506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical reduction of CO2 to high-value carbon-based chemicals provides a sustainable approach to achieving an artificial carbon cycle. In the decade, metal-organic frameworks (MOFs), a kind of porous crystalline porous materials featuring well-defined structures, large surface area, high porosity, diverse components, easy tailorability, and controllable morphology, have attracted considerable research attention, serving as electrocatalysts to drive CO2 reduction. In this review, the reaction mechanisms of electrochemical CO2 reduction and the structure/component advantages of MOFs meeting the requirements of electrocatalysts for CO2 reduction are analyzed. After that, the representative progress for the precise fabrication of MOF-based electrocatalysts for CO2 reduction, focusing on catalytic site design and microenvironment modulation, are systemically summarized. Furthermore, the emerging applications and promising research for more practical scenarios related to electrochemical CO2 conversion are specifically proposed. Finally, the remaining challenges and future outlook of MOFs for electrochemical CO2 reduction are further discussed.
Collapse
Affiliation(s)
- Chengming Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Jiao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
24
|
Chen S, Zheng X, Zhu P, Li Y, Zhuang Z, Wu H, Zhu J, Xiao C, Chen M, Wang P, Wang D, He YL. Copper Atom Pairs Stabilize *OCCO Dipole Toward Highly Selective CO 2 Electroreduction to C 2H 4. Angew Chem Int Ed Engl 2024:e202411591. [PMID: 39136330 DOI: 10.1002/anie.202411591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 10/30/2024]
Abstract
Deeply electrolytic reduction of carbon dioxide (CO2) to high-value ethylene (C2H4) is very attractive. However, the sluggish kinetics of C-C coupling seriously results in the low selectivity of CO2 electroreduction to C2H4. Herein, we report a copper-based polyhedron (Cu2) that features uniformly distributed and atomically precise bi-Cu units, which can stabilize *OCCO dipole to facilitate the C-C coupling for high selective C2H4 production. The C2H4 faradaic efficiency (FE) reaches 51 % with a current density of 469.4 mA cm-2, much superior to the Cu single site catalyst (Cu SAC) (~0 %). Moreover, the Cu2 catalyst has a higher turnover frequency (TOF, ~520 h-1) compared to Cu nanoparticles (~9.42 h-1) and Cu SAC (~0.87 h-1). In situ characterizations and theoretical calculations revealed that the unique Cu2 structural configuration could optimize the dipole moments and stabilize the *OCCO adsorbate to promote the generation of C2H4.
Collapse
Affiliation(s)
- Shenghua Chen
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaobo Zheng
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Peng Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yapeng Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hangjuan Wu
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiexin Zhu
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chunhui Xiao
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 511436, P. R. China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 511436, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ya-Ling He
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
25
|
Tsai MD, Wu KC, Kung CW. Zirconium-based metal-organic frameworks and their roles in electrocatalysis. Chem Commun (Camb) 2024; 60:8360-8374. [PMID: 39034845 DOI: 10.1039/d4cc02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Due to their exceptional chemical stability in water and high structural tunability, zirconium(IV)-based MOFs (Zr-MOFs) have been considered attractive materials in the broad fields of electrocatalysis. Numerous studies published since 2015 have attempted to utilise Zr-MOFs in electrocatalysis, with the porous framework serving as either the active electrocatalyst or the scaffold or surface coating to further enhance the performance of the actual electrocatalyst. Herein, the roles of Zr-MOFs in electrocatalytic processes are discussed, and some selected examples reporting the applications of Zr-MOFs in various electrocatalytic reactions, including several studies from our group, are overviewed. Challenges, limitations and opportunities in using Zr-MOFs in electrocatalysis in future studies are discussed.
Collapse
Affiliation(s)
- Meng-Dian Tsai
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Kuan-Chu Wu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| |
Collapse
|
26
|
Buravets V, Gorin O, Burtsev V, Zabelina A, Zabelin D, Kosina J, Maixner J, Svorcik V, Kolganov AA, Pidko EA, Lyutakov O. Plasmon-Mediated Organic Photoelectrochemistry Applied to Amination Reactions. Chempluschem 2024; 89:e202400020. [PMID: 38747893 DOI: 10.1002/cplu.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Indexed: 08/15/2024]
Abstract
Organic electrochemistry is currently experiencing an era of renaissance, which is closely related to the possibility of carrying out organic transformations under mild conditions, with high selectivity, high yields, and without the use of toxic solvents. Combination of organic electrochemistry with alternative approaches, such as photo-chemistry was found to have great potential due to induced synergy effects. In this work, we propose for the first time utilization of plasmon triggering of enhanced and regio-controlled organic chemical transformation performed in photoelectrochemical regime. The advantages of the proposed route is demonstrated in the model amination reaction with formation of C-N bond between pyrazole and substituted benzene derivatives. Amination was performed in photo-electrochemical mode on the surface of plasmon active Au@Pt electrode with attention focused on the impact of plasmon triggering on the reaction efficiency and regio-selectivity. The ability to enhance the reaction rate significantly and to tune products regio-selectivity is demonstrated. We also performed density functional theory calculations to inquire about the reaction mechanism and potentially explain the plasmon contribution to electrochemical reaction rate and regioselectivity.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Oleg Gorin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Anna Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Denis Zabelin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jiri Kosina
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jaroslav Maixner
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Alexander A Kolganov
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
27
|
Wang T, Zong W, Yang J, Zhang L, Meng J, Ge J, Yang G, Ren J, He P, Debroye E, Gohy JF, Liu T, Lai F. Ultrathin NiO nanosheets anchored to a nitrogen-doped dodecahedral carbon framework for aqueous potassium-ion hybrid capacitors. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:18157-18166. [PMID: 39050272 PMCID: PMC11265313 DOI: 10.1039/d4ta01608d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Hierarchical porous structures and well-modulated interfacial interactions are essential for the performance of electrode materials. The energy storage performance can be promoted by regulating the diffusion behavior of the electrolyte and constructing a coupled interaction at heterogeneous interfaces. Herein, we have synthesized ultrathin NiO nanosheets anchored to nitrogen-doped hierarchical porous carbon (NiO/N-HPC) and applied it to construct aqueous potassium ion hybrid capacitors (APIHCs). The abundant and interconnected porous architecture promotes electrolyte penetration/diffusion and shortens the ion transport path, thereby accelerating storage reaction kinetics. The nitrogen-doped carbon support can achieve optimized metal oxides-carbon interaction and enhance the adsorption ability for the electrolyte ions, leading to earning higher storage capacity. Consequently, the prepared NiO/N-HPC exhibits a superior capacitance of 126.4 F g-1 at a current density of 0.5 A g-1, and the as-fabricated NiO/N-HPC//N-HPC APIHC achieves an ultra-high capacitance retention of 91.6% over 8000 cycles at a current density of 2 A g-1. Meanwhile, the APIHC device shows an excellent energy density of 21.95 W h kg-1 and a power density of 9000 W kg-1.
Collapse
Affiliation(s)
- Tianlu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University Wuxi 214122 P. R. China
| | - Wei Zong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University Wuxi 214122 P. R. China
| | - Jieru Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University Wuxi 214122 P. R. China
| | - Leiqian Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University Wuxi 214122 P. R. China
| | - Jian Meng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University Wuxi 214122 P. R. China
| | - Jiale Ge
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University Wuxi 214122 P. R. China
| | - Guozheng Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jianguo Ren
- BTR New Material Group Co., Ltd Shenzhen 518107 P. R. China
| | - Peng He
- BTR New Material Group Co., Ltd Shenzhen 518107 P. R. China
| | - Elke Debroye
- Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Jean-François Gohy
- Institute for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter (BSMA), Université Catholique de Louvain (UCL) Place Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University Wuxi 214122 P. R. China
| | - Feili Lai
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| |
Collapse
|
28
|
Kong Y, Yang H, Jia X, Wan D, Zhang Y, Hu Q, He C. Constructing Favorable Microenvironment on Copper Grain Boundaries for CO 2 Electro-conversion to Multicarbon Products. NANO LETTERS 2024. [PMID: 39011983 DOI: 10.1021/acs.nanolett.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon chemicals provides a promising avenue for storing renewable energy. Herein, we synthesized small Cu nanoparticles featuring enriched tiny grain boundaries (RGBs-Cu) through spatial confinement and in situ electroreduction. In-situ spectroscopy and theoretical calculations demonstrate that small-sized Cu grain boundaries significantly enhance the adsorption of the *CO intermediate, owing to the presence of abundant low-coordinated and disordered atoms. Furthermore, these grain boundaries, generated in situ under high current conditions, exhibit excellent stability during the eCO2RR process, thereby creating a stable *CO-rich microenvironment. This high local *CO concentration around the catalyst surface can reduce the energy barrier for C-C coupling and significantly increase the Faradaic efficiency (FE) for multicarbon products across both neutral and alkaline electrolytes. Specifically, the developed RGBs-Cu electrocatalyst achieved a peak FE of 77.3% for multicarbon products and maintained more than 134 h stability at a constant current density of -500 mA cm-2.
Collapse
Affiliation(s)
- Yan Kong
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xinmei Jia
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Da Wan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yilei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
29
|
Ai Y, Zhang K, Li J, Du X, Wang Y, Wu L, Zhang Z. Customizing pyridinic nitrogen coordination in Ni-N-C for electrocatalytic CO 2reduction towards CO. NANOTECHNOLOGY 2024; 35:395403. [PMID: 38959865 DOI: 10.1088/1361-6528/ad5e8b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Nickel anchored N-doped carbon electrocatalysts (Ni-N-C) are rapidly developed for the electrochemical reduction reaction of carbon dioxide (CO2RR). However, the high-performanced Ni-N-C analogues design for CO2RR remains bewilderment, for the reason lacking of definite guidance for its structure-activity relationship. Herein, the correlation between the proportion of nitrogen species derived from various nitrogen sources and the CO2RR activity of Ni-N-C is investigated. The x-ray photoelectron spectroscopy (XPS) spectrum combined with the CO2RR performance results show that pyridinic-N content has a positive correlation with CO2RR activity. Moreover, density functional theory (DFT) demonstrates that pyridinic-N coordinated Ni-N4sites offers optimized free energy and favorable selectivity towards CO2RR compared with pyrrolic-N. Accordingly, Ni-Na-C with highest pyridinic-N content (ammonia as nitrogen source) performs superior CO2RR activity, with the maximum carbon monoxide faradaic efficiency (FECO) of 99.8% at -0.88 V vs. RHE and the FECOsurpassing 95% within potential ranging of -0.88 to -1.38 V vs. RHE. The building of this parameter for CO2RR activity of Ni-N-C give instructive forecast for low-cost and highly active CO2RR electrocatalysts.
Collapse
Affiliation(s)
- Ying Ai
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Kai Zhang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Xiaohang Du
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Lanlan Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Zisheng Zhang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa ON K1N 6N5, Canada
| |
Collapse
|
30
|
Shi L, Zhang Q, Yang S, Ren P, Wu Y, Liu S. Optimizing the Activation Energy of Reactive Intermediates on Single-Atom Electrocatalysts: Challenges and Opportunities. SMALL METHODS 2024; 8:e2301219. [PMID: 38180156 DOI: 10.1002/smtd.202301219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Single-atom catalysts (SACs) have made great progress in recent years as potential catalysts for energy conversion and storage due to their unique properties, including maximum metal atoms utilization, high-quality activity, unique defined active sites, and sustained stability. Such advantages of single-atom catalysts significantly broaden their applications in various energy-conversion reactions. Given the extensive utilization of single-atom catalysts, methods and specific examples for improving the performance of single-atom catalysts in different reaction systems based on the Sabatier principle are highlighted and reactant binding energy volcano relationship curves are derived in non-homogeneous catalytic systems. The challenges and opportunities for single-atom catalysts in different reaction systems to improve their performance are also focused upon, including metal selection, coordination environments, and interaction with carriers. Finally, it is expected that this work may provide guidance for the design of high-performance single-atom catalysts in different reaction systems and thereby accelerate the rapid development of the targeted reaction.
Collapse
Affiliation(s)
- Lei Shi
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Qihan Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Shucheng Yang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Peidong Ren
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Song Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| |
Collapse
|
31
|
Duan L, Wang X, Lv S, Liu C, Sun X, Qi X, Wang L, Zhang J. Fabrication of Nickel Single Atoms with Ionic Liquids by Only One-Step Pyrolysis for CO 2 Electroreduction. Inorg Chem 2024; 63:12017-12026. [PMID: 38872237 DOI: 10.1021/acs.inorgchem.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Single-atom catalysts (SACs) are appealing for carbon dioxide (CO2) electroreduction with the utmost advantages; however, their preparation is still challenging because of the complicated procedure. Here, a novel Ni-based single-atom catalyst (Ni-BB-BD) is constructed from raw materials, [BMIM]BF4, [BMIM]DCN, and NiCl2·6H2O, directly without any precursor by only one-step pyrolysis. Ni-BB-BD achieves a maximum carbon monoxide Faradaic efficiency (FECO) of 96.5% at -0.8 V vs RHE, as well as long-term stability over 16 h. High current density up to -170.6 mA cm-2 at -1.0 V vs RHE is achieved in the flow cell along with a CO selectivity of 97.7%. It is identified that [BMIM]BF4 is the nitrogen source, while [BMIM]DCN is mainly taken as the carbon source. Theoretical studies have revealed that the rich nitrogen content, especially for the uncoordinated nitrogen, plays a critical role in lowering rate-limiting barrier height. This work develops a facile and effective strategy to prepare the SACs.
Collapse
Affiliation(s)
- Liangjing Duan
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xueke Wang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Shuai Lv
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Cong Liu
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xinyi Sun
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xinke Qi
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Li Wang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jinglai Zhang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, P. R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
32
|
Wang H, Aslam MK, Nie Z, Yang K, Li X, Chen S, Li Q, Chao D, Duan J. Dual-Anion Regulation for Reversible and Energetic Aqueous Zn-CO 2 Batteries. SMALL METHODS 2024; 8:e2300867. [PMID: 37904326 DOI: 10.1002/smtd.202300867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Indexed: 11/01/2023]
Abstract
Aqueous Zn-CO2 batteries can not only convert CO2 into high-value chemicals but also store/output electric energy for external use. However, their performance is limited by sluggish and complicated CO2 electroreduction at the cathode. Herein, a dual-anion regulated Bi electrocatalyst is developed to selectively reduce CO2 to formate with a Faradaic efficiency of up to 97% at a large current density of 250 mA cm-2. With O and/or F, the rate-determine step of CO2 electroreduction has been manipulated (from the first hydrogenation to *HCOOH desorption step) with a reduced energy barrier. Significantly, the fabricated Zn-CO2 battery exhibits a high discharge voltage of 1.2 V, optimal power density of 4.51 mW cm-2, remarkable energy density of 802 Wh kg-1, and energy-conversion efficiency of 70.74%, stability up to 200 cycles and 68 h. This study provides possible strategies to fabricate reversible and energetic aqueous Zn-CO2 batteries by addressing cathodic problems.
Collapse
Affiliation(s)
- Herui Wang
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Muhammad Kashif Aslam
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhihao Nie
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Kang Yang
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xinran Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Sheng Chen
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Qiang Li
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Jingjing Duan
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
33
|
Zhang X, Luo T, Wang Y, Li Y. Mechanistic Insights into the Discharge Processes of Li-CO 2 Batteries. Chemistry 2024; 30:e202400414. [PMID: 38454788 DOI: 10.1002/chem.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Li-CO2 batteries facilitate renewable energy storage in a cost-effective, eco-friendly manner. However, an inadequate understanding of their reaction mechanism severely impedes their development. Here we outline recent mechanistic advances in the discharge processes of Li-CO2 batteries, particularly in terms of the theoretical aspect. First, the vital factors affecting the formation of discharge intermediates are highlighted, and a surface lithiation mechanism predominantly applicable to catalysts with weak CO2 adsorption is proposed. Subsequently, the modeling of the chemical potential of Li++e-, which is crucial for the evaluation of the theoretical limiting voltage, is detailed. Finally, challenges and future directions pertaining to the further development of Li-CO2 are discussed. In essence, this concept article seeks to inspire future experimental and theoretical studies in advancing the development of Li-CO2 electrochemical technology.
Collapse
Affiliation(s)
- Xinxin Zhang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tingting Luo
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
34
|
Mukhopadhyay S, Naeem MS, Shiva Shanker G, Ghatak A, Kottaichamy AR, Shimoni R, Avram L, Liberman I, Balilty R, Ifraemov R, Rozenberg I, Shalom M, López N, Hod I. Local CO 2 reservoir layer promotes rapid and selective electrochemical CO 2 reduction. Nat Commun 2024; 15:3397. [PMID: 38649389 PMCID: PMC11035706 DOI: 10.1038/s41467-024-47498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Electrochemical CO2 reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO2 solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO2-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO2-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm2 (at -0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO2 reduction reaction, leading it closer to the requirements for practical implementation.
Collapse
Affiliation(s)
- Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Muhammad Saad Naeem
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Pl. Imperial Tarraco 1, 43005, Tarragona, Spain
| | - G Shiva Shanker
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Arnab Ghatak
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Alagar R Kottaichamy
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liat Avram
- Department of Chemical Research Support Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rotem Balilty
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Illya Rozenberg
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain.
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
35
|
Duan X, Ge F, Liu Y, Zheng H. Small-size and well-dispersed Fe nanoparticles embedded in carbon rods for efficient oxygen reduction reaction. Chem Commun (Camb) 2024; 60:3547-3550. [PMID: 38456231 DOI: 10.1039/d4cc00119b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The preparation of ultra-small and well-dispersed metal nanoparticles (NPs) is of great importance for promoting oxygen reduction. Here, a metal (Fe and Zn) NP (7 nm) based catalyst derived from a Zn-based metal-organic framework was obtained by a vapor adsorption strategy, demonstrating a high half-wave potential (0.868 V) and power density (196 mW cm-2).
Collapse
Affiliation(s)
- Xinde Duan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Fayuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Yang Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Hegen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
36
|
Liu T, Zhao Y, Zhai T. Does a Higher Density of Active Sites Indicate a Higher Reaction Rate? J Am Chem Soc 2024; 146:6461-6465. [PMID: 38415580 DOI: 10.1021/jacs.3c14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A consensus view in catalysis is that a higher density of catalytically active sites indicates a higher reaction rate. Using molecular dynamics simulations capable of mimicking the electrochemical formation of gas molecules, we herein demonstrate that this view is problematic for electrocatalytic gas production. Our simulation results show that a higher density of catalytic active sites does not necessarily indicate a higher reaction rate─a high density of active sites could lead to a reduction in the rate of reaction. Further analysis reveals that this abnormal phenomenon is ascribed to aggregation of the produced gas molecules near catalytic sites. This work challenges the consensus view and lays the groundwork for better developing gas-producing reaction electrocatalysts.
Collapse
Affiliation(s)
- Teng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Chen W, Jin X, Zhang L, Wang L, Shi J. Modulating the Structure and Composition of Single-Atom Electrocatalysts for CO 2 reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304424. [PMID: 38044311 PMCID: PMC10916602 DOI: 10.1002/advs.202304424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Indexed: 12/05/2023]
Abstract
Electrochemical CO2 reduction reaction (eCO2 RR) is a promising strategy to achieve carbon cycling by converting CO2 into value-added products under mild reaction conditions. Recently, single-atom catalysts (SACs) have shown enormous potential in eCO2 RR due to their high utilization of metal atoms and flexible coordination structures. In this work, the recent progress in SACs for eCO2 RR is outlined, with detailed discussions on the interaction between active sites and CO2 , especially the adsorption/activation behavior of CO2 and the effects of the electronic structure of SACs on eCO2 RR. Three perspectives form the starting point: 1) Important factors of SACs for eCO2 RR; 2) Typical SACs for eCO2 RR; 3) eCO2 RR toward valuable products. First, how different modification strategies can change the electronic structure of SACs to improve catalytic performance is discussed; Second, SACs with diverse supports and how supports assist active sites to undergo catalytic reaction are introduced; Finally, according to various valuable products from eCO2 RR, the reaction mechanism and measures which can be taken to improve the selectivity of eCO2 RR are discussed. Hopefully, this work can provide a comprehensive understanding of SACs for eCO2 RR and spark innovative design and modification ideas to develop highly efficient SACs for CO2 conversion to various valuable fuels/chemicals.
Collapse
Affiliation(s)
- Weiren Chen
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Xixiong Jin
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Lingxia Zhang
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024P. R. China
| | - Lianzhou Wang
- Nanomaterials CentreSchool of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Jianlin Shi
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
38
|
Wang YJ, Qiu ZF, Zhang Y, Wang FF, Zhao Y, Sun WY. Silver frameworks based on a tetraphenylethylene-imidazole ligand for electrocatalytic reduction of CO 2 to CO. Dalton Trans 2024; 53:3685-3689. [PMID: 38293865 DOI: 10.1039/d3dt04056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Metal-organic frameworks (MOFs) can be used as electrocatalysts for the CO2 reduction reaction (CO2RR) because of their well-dispersed metal centers. Silver is a common electrocatalyst for reduction of CO2 to CO. In this study, two Ag-MOFs with different structures of [Ag8O2(TIPE)6](NO3)4 (Ag-MOF1) and [Ag(TIPE)0.5CF3SO3] (Ag-MOF2) [TIPE = 1,1,2,2-tetrakis(4-(imidazol-1-yl)phenyl)ethene] were synthesized and used for CO2 electroreduction. The results show that Ag-MOF2 is superior to Ag-MOF1 and exhibits high CO faradaic efficiency (FE) of 92.21% with partial current density of 29.51 mA cm-2 at -0.98 V versus reversible hydrogen electrode (RHE). The FECO is higher than 80% in the potential range of -0.78 to -1.18 V. The difference may be caused by different framework structures leading to different electrochemical active surface areas and charge transfer kinetics. This study provides a new strategy for designing and constructing CO2 electroreduction catalysts and provides potential ways for solving environmental and energy problems caused by excessive CO2 emission.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Zhao-Feng Qiu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Ya Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Fang-Fang Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
39
|
Tao H, Wang F, Zhang Z, Min S. An in situ exsolved Cu-based electrocatalyst from an intermetallic Cu 5Si compound for efficient CH 4 electrosynthesis. NANOSCALE 2024; 16:3430-3437. [PMID: 38265128 DOI: 10.1039/d3nr05847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A Cu-based electrocatalyst (e-Cu5Si) is developed by in situ exsolving ultrathin SiOx layer-coated CuO/Cu nanoparticles (<100 nm) on the surface of a conductive intermetallic Cu5Si parent. This specially designed e-Cu5Si catalyst exhibits high performance for the CO2 reduction reaction (CO2RR), which affords an excellent CH4 faradaic efficiency (FE) of 49.0% with partial current density of over 140.1 mA cm-2 at -1.2 V versus reversible hydrogen electrode (RHE) in a flow cell, with outstanding stability. The strongly coupled multiphase interfaces among the SiOx layer, CuO/Cu species, and substrate contribute to fast interfacial electron transfer for the CO2RR. Moreover, in situ Raman analysis suggests that the ultrathin SiOx layer simultaneously stabilizes the active Cu1+ species and promotes the protonation of *CO to form *CHxO, thereby greatly improving overall selectivity and activity of CH4 production.
Collapse
Affiliation(s)
- Huanhuan Tao
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| | - Fang Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| | - Shixiong Min
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China
| |
Collapse
|
40
|
Cui X, Wu M, Liu X, He B, Zhu Y, Jiang Y, Yang Y. Engineering organic polymers as emerging sustainable materials for powerful electrocatalysts. Chem Soc Rev 2024; 53:1447-1494. [PMID: 38164808 DOI: 10.1039/d3cs00727h] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cost-effective and high-efficiency catalysts play a central role in various sustainable electrochemical energy conversion technologies that are being developed to generate clean energy while reducing carbon emissions, such as fuel cells, metal-air batteries, water electrolyzers, and carbon dioxide conversion. In this context, a recent climax in the exploitation of advanced earth-abundant catalysts has been witnessed for diverse electrochemical reactions involved in the above mentioned sustainable pathways. In particular, polymer catalysts have garnered considerable interest and achieved substantial progress very recently, mainly owing to their pyrolysis-free synthesis, highly tunable molecular composition and microarchitecture, readily adjustable electrical conductivity, and high stability. In this review, we present a timely and comprehensive overview of the latest advances in organic polymers as emerging materials for powerful electrocatalysts. First, we present the general principles for the design of polymer catalysts in terms of catalytic activity, electrical conductivity, mass transfer, and stability. Then, the state-of-the-art engineering strategies to tailor the polymer catalysts at both molecular (i.e., heteroatom and metal atom engineering) and macromolecular (i.e., chain, topology, and composition engineering) levels are introduced. Particular attention is paid to the insightful understanding of structure-performance correlations and electrocatalytic mechanisms. The fundamentals behind these critical electrochemical reactions, including the oxygen reduction reaction, hydrogen evolution reaction, CO2 reduction reaction, oxygen evolution reaction, and hydrogen oxidation reaction, as well as breakthroughs in polymer catalysts, are outlined as well. Finally, we further discuss the current challenges and suggest new opportunities for the rational design of advanced polymer catalysts. By presenting the progress, engineering strategies, insightful understandings, challenges, and perspectives, we hope this review can provide valuable guidelines for the future development of polymer catalysts.
Collapse
Affiliation(s)
- Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Xueqin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Bing He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yunhai Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yalong Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
41
|
Wang B, Fu Y, Xu F, Lai C, Zhang M, Li L, Liu S, Yan H, Zhou X, Huo X, Ma D, Wang N, Hu X, Fan X, Sun H. Copper Single-Atom Catalysts-A Rising Star for Energy Conversion and Environmental Purification: Synthesis, Modification, and Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306621. [PMID: 37814375 DOI: 10.1002/smll.202306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.
Collapse
Affiliation(s)
- Biting Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Neng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiaorui Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xing Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Hao Sun
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
42
|
Li Q, Li Q, Wang Z, Zheng X, Cai S, Wu J. Recent Advances in Hierarchical Porous Engineering of MOFs and Their Derived Materials for Catalytic and Battery: Methods and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303473. [PMID: 37840383 DOI: 10.1002/smll.202303473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/05/2023] [Indexed: 10/17/2023]
Abstract
Hierarchical porous materials have attracted the attention of researchers due to their enormous specific surface area, maximized active site utilization efficiency, and unique structure and properties. In this context, metal-organic frameworks (MOFs) offer a unique mix of properties that make them particularly appealing as tunable porous substrates containing highly active sites. This review focuses on recent advances in the types and synthetic strategies of hierarchical porous MOFs and their derived materials. Furthermore, it highlights the relationship between the mass diffusion and transport of hierarchical porous structures and the pore size with examples and simulations, while identifying their potential and limitations. On this basis, how the synthesis conditions affect the structure and electrochemical properties of MOFs based hierarchical porous materials with different structures is discussed, highlighting the prospects and challenges for the synthetization, as well as further scientific research and practical applications. Finally, some insights into current research and future design ideas for advanced MOFs based hierarchical porous materials are presented.
Collapse
Affiliation(s)
- Qian Li
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha, 410081, China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qun Li
- National Center for Nanoscience and Technology, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Beijing, 100190, China
| | - Zhewei Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shichang Cai
- School of Material Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
43
|
Liu D, Ma H, Zhu C, Qiu F, Yu W, Ma LL, Wei XW, Han YF, Yuan G. Molecular Co-Catalyst Confined within a Metallacage for Enhanced Photocatalytic CO 2 Reduction. J Am Chem Soc 2024; 146:2275-2285. [PMID: 38215226 DOI: 10.1021/jacs.3c14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The construction of structurally well-defined supramolecular hosts to accommodate catalytically active species within a cavity is a promising way to address catalyst deactivation. The resulting supramolecular catalysts can significantly improve the utilization of catalytic sites, thereby achieving a highly efficient chemical conversion. In this study, the Co-metalated phthalocyanine (Pc-Co) was successfully confined within a tetragonal prismatic metallacage, leading to the formation of a distinctive type of supramolecular photocatalyst (Pc-Co@Cage). The host-guest architecture of Pc-Co@Cage was unambiguously elucidated by single-crystal X-ray diffraction (SCXRD), NMR, and ESI-TOF-MS, revealing that the single cobalt active site can be thoroughly isolated within the space-restricted microenvironment. In addition, we found that Pc-Co@Cage can serve as a homogeneous supramolecular photocatalyst that displays high CO2 to CO conversion in aqueous media under visible light irradiation. This supramolecular photocatalyst exhibits an obvious improvement in activity (TONCO = 4175) and selectivity (SelCO = 92%) relative to the nonconfined Pc-Co catalyst (TONCO = 500, SelCO = 54%). The present strategy provided a rare example for the construction of a highly active, selective, and stable photocatalyst for CO2 reduction through a cavity-confined molecular catalyst within a discrete metallacage.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Huirong Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Chao Zhu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Fengyi Qiu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Weibin Yu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Li-Li Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Xian-Wen Wei
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| |
Collapse
|
44
|
Wang M, Hu Y, Pu J, Zi Y, Huang W. Emerging Xene-Based Single-Atom Catalysts: Theory, Synthesis, and Catalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303492. [PMID: 37328779 DOI: 10.1002/adma.202303492] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the emergence of novel 2D monoelemental materials (Xenes), e.g., graphdiyne, borophene, phosphorene, antimonene, bismuthene, and stanene, has exhibited unprecedented potentials for their versatile applications as well as addressing new discoveries in fundamental science. Owing to their unique physicochemical, optical, and electronic properties, emerging Xenes have been regarded as promising candidates in the community of single-atom catalysts (SACs) as single-atom active sites or support matrixes for significant improvement in intrinsic activity and selectivity. In order to comprehensively understand the relationships between the structure and property of Xene-based SACs, this review represents a comprehensive summary from theoretical predictions to experimental investigations. Firstly, theoretical calculations regarding both the anchoring of Xene-based single-atom active sites on versatile support matrixes and doping/substituting heteroatoms at Xene-based support matrixes are briefly summarized. Secondly, controlled synthesis and precise characterization are presented for Xene-based SACs. Finally, current challenges and future opportunities for the development of Xene-based SACs are highlighted.
Collapse
Affiliation(s)
- Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
45
|
Li R, Zhao J, Liu B, Wang D. Atomic Distance Engineering in Metal Catalysts to Regulate Catalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308653. [PMID: 37779465 DOI: 10.1002/adma.202308653] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Indexed: 10/03/2023]
Abstract
It is very important to understand the structure-performance relationship of metal catalysts by adjusting the microstructure of catalysts at the atomic scale. The atomic distance has an essential influence on the composition of the environment of active metal atom, which is a key factor for the design of targeted catalysts with desired function. In this review, we discuss and summarize strategies for changing the atomic distance from three aspects and relate their effects on the reactivity of catalysts. First, the effects of regulating bond length between metal and coordination atom at one single-atom site on the catalytic performance are introduced. The bond lengths are affected by the strain effect of the support and high-shell doping and can evolve during the reaction. Next, the influence of the distance between single-atom sites on the catalytic performance is discussed. Due to the space matching of adsorption and electron transport, the catalytic performance can be adjusted with the shortening of site distance. In addition, the effect of the arrangement spacing of the surface metal active atoms on the catalytic performance of metal nanocatalysts is studied. Finally, a comprehensive summary and outlook of the relationship between atomic distance and catalytic performance is given.
Collapse
Affiliation(s)
- Runze Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry Tsinghua University, Beijing, 100084, China
| | - Jie Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Baozhong Liu
- Henan Polytechnic University, College of Chemistry and Chemical Engineering, 2001 Century Ave, Jiaozuo, Henan, 454000, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry Tsinghua University, Beijing, 100084, China
| |
Collapse
|
46
|
Huang L, Liu Z, Gao G, Chen C, Xue Y, Zhao J, Lei Q, Jin M, Zhu C, Han Y, Francisco JS, Lu X. Enhanced CO 2 Electroreduction Selectivity toward Ethylene on Pyrazolate-Stabilized Asymmetric Ni-Cu Hybrid Sites. J Am Chem Soc 2023; 145:26444-26451. [PMID: 37991477 DOI: 10.1021/jacs.3c10600] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Metal-organic frameworks (MOFs) possess well-defined, designable structures, holding great potential in enhancing product selectivity for electrochemical CO2 reduction (CO2R) through active site engineering. Here, we report a novel MOF catalyst featuring pyrazolate-stabilized asymmetric Ni/Cu sites, which not only maintains structural stability under harsh electrochemical conditions but also exhibits extraordinarily high ethylene (C2H4) selectivity during CO2R. At a cathode potential of -1.3 V versus RHE, our MOF catalyst, denoted as Cu1Ni-BDP, manifests a C2H4 Faradaic efficiency (FE) of 52.7% with an overall current density of 0.53 A cm-2 in 1.0 M KOH electrolyte, surpassing that on prevailing Cu-based catalysts. More remarkably, the Cu1Ni-BDP MOF exhibits a stable performance with only 4.5% reduction in C2H4 FE during 25 h of CO2 electrolysis. A suite of characterization tools─such as high-resolution transmission electron microscopy, X-ray absorption spectroscopy, operando X-ray diffraction, and infrared spectroscopy─and density functional theory calculations collectively reveal that the cubic pyrazolate-metal coordination structure and the asymmetric Ni-Cu sites in the MOF catalyst synergistically facilitate the stable formation of C2H4 from CO2.
Collapse
Affiliation(s)
- Liang Huang
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ziao Liu
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ge Gao
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center (AMPM), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yanrong Xue
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiwu Zhao
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Qiong Lei
- Advanced Membranes and Porous Materials Center (AMPM), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mengtian Jin
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center (AMPM), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xu Lu
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Bai J, Wang W, Liu J. Bioinspired Hydrophobicity for Enhancing Electrochemical CO 2 Reduction. Chemistry 2023; 29:e202302461. [PMID: 37702459 DOI: 10.1002/chem.202302461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 R) is a promising pathway for converting greenhouse gasses into valuable fuels and chemicals using intermittent renewable energy. Enormous efforts have been invested in developing and designing CO2 R electrocatalysts suitable for industrial applications at accelerated reaction rates. The microenvironment, specifically the local CO2 concentration (local [CO2 ]) as well as the water and ion transport at the CO2 -electrolyte-catalyst interface, also significantly impacts the current density, Faradaic efficiency (FE), and operation stability. In nature, hydrophobic surfaces of aquatic arachnids trap appreciable amounts of gases due to the "plastron effect", which could inspire the reliable design of CO2 R catalysts and devices to enrich gaseous CO2 . In this review, starting from the wettability modulation, we summarize CO2 enrichment strategies to enhance CO2 R. To begin, superwettability systems in nature and their inspiration for concentrating CO2 in CO2 R are described and discussed. Moreover, other CO2 enrichment strategies, compatible with the hydrophobicity modulation, are explored from the perspectives of catalysts, electrolytes, and electrolyzers, respectively. Finally, a perspective on the future development of CO2 enrichment strategies is provided. We envision that this review could provide new guidance for further developments of CO2 R toward practical applications.
Collapse
Affiliation(s)
- Jingwen Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| |
Collapse
|
48
|
Han Y, Xu H, Li Q, Du A, Yan X. DFT-assisted low-dimensional carbon-based electrocatalysts design and mechanism study: a review. Front Chem 2023; 11:1286257. [PMID: 37920412 PMCID: PMC10619919 DOI: 10.3389/fchem.2023.1286257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Low-dimensional carbon-based (LDC) materials have attracted extensive research attention in electrocatalysis because of their unique advantages such as structural diversity, low cost, and chemical tolerance. They have been widely used in a broad range of electrochemical reactions to relieve environmental pollution and energy crisis. Typical examples include hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Traditional "trial and error" strategies greatly slowed down the rational design of electrocatalysts for these important applications. Recent studies show that the combination of density functional theory (DFT) calculations and experimental research is capable of accurately predicting the structures of electrocatalysts, thus revealing the catalytic mechanisms. Herein, current well-recognized collaboration methods of theory and practice are reviewed. The commonly used calculation methods and the basic functionals are briefly summarized. Special attention is paid to descriptors that are widely accepted as a bridge linking the structure and activity and the breakthroughs for high-volume accurate prediction of electrocatalysts. Importantly, correlated multiple descriptors are used to systematically describe the complicated interfacial electrocatalytic processes of LDC catalysts. Furthermore, machine learning and high-throughput simulations are crucial in assisting the discovery of new multiple descriptors and reaction mechanisms. This review will guide the further development of LDC electrocatalysts for extended applications from the aspect of DFT computations.
Collapse
Affiliation(s)
- Yun Han
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD, Australia
- School of Engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, Australia
| | - Hongzhe Xu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD, Australia
- School of Engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD, Australia
- School of Engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, Australia
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, Australia
| | - Xuecheng Yan
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD, Australia
| |
Collapse
|
49
|
Wang J, Deng D, Wu Q, Liu M, Wang Y, Jiang J, Zheng X, Zheng H, Bai Y, Chen Y, Xiong X, Lei Y. Insight on Atomically Dispersed Cu Catalysts for Electrochemical CO 2 Reduction. ACS NANO 2023; 17:18688-18705. [PMID: 37725796 DOI: 10.1021/acsnano.3c07307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 reduction (ECO2R) with renewable electricity is an advanced carbon conversion technology. At present, copper is the only metal to selectively convert CO2 into multicarbon (C2+) products. Among them, atomically dispersed (AD) Cu catalysts have received great attention due to the relatively single chemical environment, which are able to minimize the negative impact of morphology, valence state, and crystallographic properties, etc. on product selectivity. Furthermore, the completely exposed atomic Cu sites not only provide space and bonding electrons for the adsorption of reactants in favor of better catalytic activity but also provide an ideal platform for studying its reaction mechanism. This review summarizes the recent progress of AD Cu catalysts as a chemically tunable platform for ECO2R, including the atomic Cu sites dynamic evolution, the catalytic performance, and mechanism. Furthermore, the prospects and challenges of AD Cu catalysts for ECO2R are carefully discussed. We sincerely hope that this review can contribute to the rational design of AD Cu catalysts with enhanced performance for ECO2R.
Collapse
Affiliation(s)
- Jinxian Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Qiumei Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xinran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Huanran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xiang Xiong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
50
|
Zhang S, Hou M, Zhai Y, Liu H, Zhai D, Zhu Y, Ma L, Wei B, Huang J. Dual-Active-Sites Single-Atom Catalysts for Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302739. [PMID: 37322318 DOI: 10.1002/smll.202302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Dual-Active-Sites Single-Atom catalysts (DASs SACs) are not only the improvement of SACs but also the expansion of dual-atom catalysts. The DASs SACs contains dual active sites, one of which is a single atomic active site, and the other active site can be a single atom or other type of active site, endowing DASs SACs with excellent catalytic performance and a wide range of applications. The DASs SACs are categorized into seven types, including the neighboring mono metallic DASs SACs, bonded DASs SACs, non-bonded DASs SACs, bridged DASs SACs, asymmetric DASs SACs, metal and nonmetal combined DASs SACs and space separated DASs SACs. Based on the above classification, the general methods for the preparation of DASs SACs are comprehensively described, especially their structural characteristics are discussed in detail. Meanwhile, the in-depth assessments of DASs SACs for variety applications including electrocatalysis, thermocatalysis and photocatalysis are provided, as well as their unique catalytic mechanism are addressed. Moreover, the prospects and challenges for DASs SACs and related applications are highlighted. The authors believe the great expectations for DASs SACs, and this review will provide novel conceptual and methodological perspectives and exciting opportunities for further development and application of DASs SACs.
Collapse
Affiliation(s)
- Shaolong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Minchen Hou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yanliang Zhai
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Ma
- Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, 530023, P. R. China
| | - Bin Wei
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Jing Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| |
Collapse
|