1
|
Jung J, Saito S. No Matter What Energy Input: Tetradentate PNNP-Ligated Iridium Complexes for CO 2 Reduction. Chemistry 2025; 31:e202500328. [PMID: 40071496 DOI: 10.1002/chem.202500328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Indexed: 04/25/2025]
Abstract
The efficient conversion of carbon dioxide (CO2) into valuable products remains a keystone of sustainable energy research. Achieving this goal requires catalytic methodologies that can adapt to diverse energy sources such as light, heat, or electricity. This concept highlights the remarkable versatility of tetradentate PNNP-ligated iridium complexes, (PNNP)Ir, as multifunctional catalysts, which demonstrate outstanding performance in CO2 reduction across photochemical, thermal, and electrochemical systems. By fine-tuning the ligand structure for each system, (PNNP)Ir complexes achieved remarkable efficiency, selectivity, and durability across all applications.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
2
|
Mondragón-Díaz A, Kelley SP, Hazari N, Bernskoetter WH. A highly active sulfur based pincer ruthenium catalyst for CO 2 hydrogenation. Chem Commun (Camb) 2025; 61:6957-6960. [PMID: 40230312 DOI: 10.1039/d5cc01194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The synthesis of a new air-stable SPS pincer ligand that supports a Ru catalyst for CO2 hydrogenation to formate is described. This rare S-donor based pincer system gives higher activity compared to related PNP supported Ru catalysts and is less dependent on Lewis acidic Li co-catalysts for achieving high turnover numbers. The SPS ligated Ru catalyst is also active for N-formylation of amines with CO2.
Collapse
Affiliation(s)
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, MO, USA.
| | - Nilay Hazari
- Department of Chemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
3
|
Peng Y, Alberico E, Junge H, Beller M. Homogeneous catalytic hydrogenation of CO 2 - amino acid-based capture and utilization. Chem Soc Rev 2025. [PMID: 40314240 DOI: 10.1039/d5cs00186b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
In this review, we provide an overview of research efforts to integrate carbon dioxide capture specifically using amino acid-based sorbents with its thermocatalytic hydrogenation promoted by homogeneous metal complexes. Carbon capture and utilization (CCU) is a promising strategy for the production of fuels, chemicals and materials using CO2 scrubbed from point sources and the atmosphere as a C1 feedstock while mitigating CO2 emissions. Compared to established (alkanol)amines, amino acids offer some advantages as CO2 capture agents due to their lower volatility, higher oxygen stability and lower regeneration energies. We report how the structural diversity of amino acids and the possibility of combining them with cations in salts and ionic liquids have been exploited in the design of absorbers for improved absorption kinetics and capacity. Furthermore, we discuss selected examples from the literature illustrating the use of 1°/2° (poly)amines, since the 1°/2° amino groups are mainly responsible for CO2 chemisorption in amino acid-based capture media, the nature of the corresponding adducts, and the most promising catalysts capable of converting the latter to formate and methanol while regenerating the scrubber. General trends regarding the influence of catalyst structure and reaction parameters on the efficiency, productivity, and selectivity of such processes will be highlighted. We will detail how this knowledge has informed the design of novel processes in which CO2 is chemisorbed by amino acid-based solvents and hydrogenated in situ to formate and methanol, or alternatively used as a fuel to implement a "hydrogen battery" where, after metal-catalyzed H2 release from formate, CO2 is retained by the amino acid-based solvent in the "spent battery" which can then be recharged by hydrogenation of the retained CO2 promoted by the same catalyst. The topic is still in its infancy, and several issues have emerged that will be critically discussed in the final section of this review. These issues need to be addressed in order to improve performance and provide a playground for researchers whose interest we hope to have aroused with this review.
Collapse
Affiliation(s)
- Yong Peng
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
- Istituto di Chimica Biomolecolare - CNR, tr. La Crucca 3, 07100 Sassari, Italy
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| |
Collapse
|
4
|
Gupta N, Chatterjee S. Integrated Capture and Electrocatalytic Conversion of CO 2: A Molecular Electrocatalysts Perspective. Chem Asian J 2025:e202401611. [PMID: 40256821 DOI: 10.1002/asia.202401611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
The ever-increasing concentration of atmospheric CO2, primarily driven by anthropogenic activities, has raised urgent environmental concerns, spurring the development of carbon capture and utilization (CCU) technologies. This review focuses on the integrated capture and electrochemical conversion of CO2 (ICECC), a promising approach that combines carbon capture with its direct electroreduction into value-added products. By eliminating energy-intensive steps such as CO2 release, compression, and transportation, ICECC offers a more energy-efficient and cost-effective alternative to conventional CCU methods. In this review, particular attention is given to molecular electrocatalysts, which offer high tunability and selectivity in electrochemical CO2 reduction reaction (eCO2RR). The role of capturing agents, including both external and dual-functional molecular systems, is critically examined to understand their influence on CO2 binding and catalytic efficiency. Whereas ICECC has significant potential, research in this area remains underexplored compared to conventional CO2 reduction methods. The review discusses the mechanistic insights into ICECC processes, highlighting key challenges and potential future research directions for improving catalyst design, enhancing capture efficiency, and scaling up ICECC technologies. These developments can make ICECC a critical component in achieving carbon neutrality and addressing climate change.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, Sancaole, Goa, 403726, India
| | - Sudipta Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, Sancaole, Goa, 403726, India
| |
Collapse
|
5
|
Moazezbarabadi A, Kammer A, Alberico E, Junge H, Beller M. Amino Acid-Based Ionic Liquids-Aided CO 2 Hydrogenation to Methanol. CHEMSUSCHEM 2025; 18:e202401813. [PMID: 39520398 PMCID: PMC11960586 DOI: 10.1002/cssc.202401813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
This study explored the use of amino acid-based ionic liquids to facilitate the conversion of carbon dioxide (CO2) into methanol through catalytic hydrogenation. Combining tetrabutylammonium L-argininate (TBA⋅Arg) with the ruthenium Ru-MACHO-BH complex allowed achieving significant yields of methanol under optimized conditions, with a turnover number (TON) up to 700. By systematically varying key reaction parameters, we demonstrated that the TBA⋅Arg ionic liquid promotes the efficient hydrogenation pathway leading to methanol formation, thus offering a sustainable approach to CO2 valorization. These findings underscore the potential of amino acid-based ionic liquids in catalyzing the transformation of CO2 into valuable chemicals, contributing to carbon mitigation efforts.
Collapse
Affiliation(s)
- Ayeshe Moazezbarabadi
- Leibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059RostockGermany
| | - Anja Kammer
- Leibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059RostockGermany
| | - Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059RostockGermany
- Istituto di Chimica Biomolecolare – CNRtr. La Crucca 307100SassariItaly
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. an der Universität RostockAlbert-Einstein-Str. 29a18059RostockGermany
| |
Collapse
|
6
|
Li J, Liu F, Jiang Y, Zhang S, Zeng Z, Yao L, Chen X, Tan Y, Chen X, Guo Q, Huang C, Zhong J, Yang X, Yang W. Temperature-Dependent Stepwise Dissociation of Methanol on Co(0001). J Phys Chem Lett 2025; 16:2529-2535. [PMID: 40028666 DOI: 10.1021/acs.jpclett.5c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
An atomic-level understanding of the elementary steps of catalytic reactions is crucial for a more molecularly driven catalyst design. Herein, we present a comprehensive study of temperature-dependent stepwise decomposition of methanol on a single-crystal Co(0001) surface using a series of surface science techniques and density functional theory calculation. Visualization of surface products was realized by scanning tunneling microscopy. The first step of methanol dissociation is cleavage of the OH bond to the methoxy group and H atom, showing clover-like and honeycomb structures, respectively. Further dissociation to CO through C-H cleavage was ascertained by infrared reflection absorption spectroscopy, and no intermediates, such as CH2O or CHO, were observed. The final product CO molecules showed versatile configurations with different periodicities on the surface under heating or tip-manipulation conditions.
Collapse
Affiliation(s)
- Junhao Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 311231, China
| | - Fangfang Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 311231, China
| | - Yalong Jiang
- School of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Sijia Zhang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 311231, China
| | - Ziling Zeng
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 311231, China
| | - Lanlan Yao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 311231, China
| | - Xiao Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, China
| | - Yuan Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 311231, China
| | - Xingkun Chen
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 311231, China
| | - Qing Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuanqi Huang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 311231, China
| | - Jianqiang Zhong
- School of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 311231, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenshao Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 311231, China
| |
Collapse
|
7
|
Hossain MJ, Shah BK, Dash SR, Kashish, Vanka K, Khan S. Ce[N(SiMe 3) 2] 3(THF) 3-Catalyzed Hydroboration of CO 2, Esters and Epoxides with Pinacolborane: Selective Synthesis of Methanol in Multigram Scale. Chemistry 2025; 31:e202403449. [PMID: 39780376 DOI: 10.1002/chem.202403449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
In this work, we have reduced CO2 with HBpin to afford borylated methanol product selectively in ~99 % yield using Ce[N(SiMe3)2]3(THF)3 as a catalyst. This led to multigram scale isolation of methanol obtained from CO2 reduction via the hydrolysis of borylated methanol, this establishes the potential of Ce[N(SiMe3)2]3(THF)3 as an efficient homogeneous catalyst for the bulk scale methanol synthesis. A practical application of this catalytic system was also shown by reducing CO2-containing motorbike exhaust efficiently and selectively. Further, C-O bond activation of esters and epoxides using HBpin and 1-2 mol % of Ce[N(SiMe3)2]3(THF)3 at 60 °C afforded the borylated alcohols in good to excellent yields, which can easily be hydrolysed to the eco-friendly corresponding alcohol. The stoichiometric experiments were performed to prove the formation of in-situ generated cerium hydride [Ce]-H as an active catalyst.
Collapse
Affiliation(s)
- Md Jabed Hossain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Brij Kumar Shah
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Soumya Ranjan Dash
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Kashish
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
8
|
Paik J, Choe JH, Padmanaban S, Seo M, Yoo CJ, Lee HB, Lee Y. Thermodynamic Hydricity of a Ruthenium CO 2 Hydrogenation Catalyst Supported by a Rigid PNP Pincer. JACS AU 2025; 5:811-821. [PMID: 40017766 PMCID: PMC11862944 DOI: 10.1021/jacsau.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 03/01/2025]
Abstract
Ruthenium hydride complexes supported by pincer ligands play a crucial role in the catalytic hydrogenation of CO2 to reduced C1 chemicals such as formic acid and methanol. Toward a better understanding of their hydride transfer reactivity, knowledge of the underlying thermodynamic hydricity values is deemed critical, but relevant studies remain rare. Herein, we report the experimental thermodynamic hydricity of a new ruthenium CO2 hydrogenation catalyst (acriPNP)RuH(CO)(PPh3) (1) supported by a rigid, acridane-based PNP pincer ligand. We provide the synthesis, structure, and spectroscopic characterization of reaction intermediates involved in formate generation including the anionic dihydride (2), formate (3), five-coordinate purple species (4), and H2-bound species (5). Notably, the effective hydricity of complexes 1 and 2 in THF was determined by the H2 heterolysis method, revealing values of >52 and 32 kcal/mol, respectively. The corresponding hydricity values of 45-48 kcal/mol for related Ru dihydride complexes supported by neutral PNP pincer ligands highlight the effect of anionic complex charge in promoting stronger hydride donors. CO2 insertion into the Ru-H bond of the dihydride complex proceeds effectively under ambient conditions, suggesting that base-promoted H2 heterolysis is the rate-limiting step. Using 1 as a precatalyst, turnover frequencies in the order of 300 h-1 were obtained for formate generation. Broadly, our results provide valuable benchmark thermochemical data for the design of improved CO2 hydrogenation catalysts.
Collapse
Affiliation(s)
- Juwon Paik
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Hyeak Choe
- Clean
Energy Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
| | - Sudakar Padmanaban
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Misook Seo
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun-Jae Yoo
- Clean
Energy Research Center, Korea Institute
of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| | - Heui Beom Lee
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunho Lee
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Zhou SL, Dai Y, Song Q, Lu L, Yu X. Pd-Based Multi-Site Catalysts for Selective CO 2-to-Methanol Conversion. Inorg Chem 2024; 63:24601-24609. [PMID: 39688158 DOI: 10.1021/acs.inorgchem.4c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Developing a multi-site Pd-based electrocatalyst for CO2-to-C1 conversion with high performance and selectivity in the hydrogenation pathway for the CO2 electroreduction reaction is both desirable and challenging. Here, we develop triple-site metallene (Pd82Bi11In7), which can achieve an unprecedented Faraday efficiency of 72.6 ± 1% for methanol production. X-ray photoelectron spectroscopy analysis indicates that some electrons transfer from In and Bi to Pd inside Pd82Bi11In7, forming local electron-rich Pd-site, local primary electron-deficient center In-site, and local secondary electron-deficient center Bi-site. Meanwhile, Pd82Bi11In7 has stronger adsorption for *COOH and *CO, which avoids the generation of formic acid and CO. Moreover, Pd82Bi11In7 reduces the potential determining step energy barrier and controls the hydrogenation path for direct methanol production. The synergistic effect of the triple-sites enables efficient CO2 electroreduction to methanol.
Collapse
Affiliation(s)
- Shuang-Long Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yu Dai
- Qingdao City University, School of Foreign Languages, Qingdao 266042, China
| | - Qiang Song
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Lina Lu
- School of Business, Shandong University of Technology, Zibo 255000, China
| | - Xiao Yu
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
10
|
Klos N, Osterthun O, Mengers HG, Lanzerath P, Graf von Westarp W, Lim G, Gausmann M, Küsters-Spöring JD, Wiesenthal J, Guntermann N, Lauterbach L, Jupke A, Leitner W, Blank LM, Klankermayer J, Rother D. Concatenating Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources. JACS AU 2024; 4:4546-4570. [PMID: 39735920 PMCID: PMC11672146 DOI: 10.1021/jacsau.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/31/2024]
Abstract
The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO2, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages. While the different types of catalysts are often seen as competitive approaches, an increasing number of examples highlight, how combinations and concatenations of catalysts of the complete spectrum can open new roads to new products. Therefore, the second part focuses on the different catalysts either in one-step, one-pot transformations or in reaction cascades. In the former, the reaction conditions must be conflated but purification steps are minimized. In the latter, each catalyst can work under optimal conditions and the "hand-over points" should be chosen according to defined criteria like minimal energy usage during separation procedures. The examples are discussed in the context of the contributions of catalysis to the envisaged (bio)economy.
Collapse
Affiliation(s)
- Nina Klos
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Ole Osterthun
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Hendrik G. Mengers
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Patrick Lanzerath
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - William Graf von Westarp
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Guiyeoul Lim
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Marcel Gausmann
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jan-Dirk Küsters-Spöring
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jan Wiesenthal
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Nils Guntermann
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Lars Lauterbach
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Andreas Jupke
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
- Institute
of Bio- and Geosciences 2: Plant Science (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
| | - Walter Leitner
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Mülheim an der Ruhr, Nordrhein-Westfalen 45470, Germany
| | - Lars M. Blank
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jürgen Klankermayer
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Dörte Rother
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| |
Collapse
|
11
|
Onishi N, Himeda Y. Toward Methanol Production by CO 2 Hydrogenation beyond Formic Acid Formation. Acc Chem Res 2024; 57:2816-2825. [PMID: 39284577 PMCID: PMC11447816 DOI: 10.1021/acs.accounts.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
ConspectusThe Paradigm shift in considering CO2 as an alternative carbon feedstock as opposed to a waste product has recently prompted intense research activities. The implementation of CO2 utilization may be achieved by designing highly efficient catalysts, exploring processes that minimize energy consumption and simplifying product purification and separation. Among possible target products derived from CO2, methanol is highly valuable because it can be used in various chemical feedstocks and as a fuel. Although it is currently produced on a plant scale by heterogeneous catalysis using a Cu/ZnO-based catalyst, a limited theoretical conversion ratio at high reaction temperatures remains an issue. In addition, a catalytic system that can be adjusted to accommodate a variable renewable energy source for the synthesis of methanol is more desirable than current continuous-operation systems, which require a reliable energy supply. Recently, significant progress has been made in the field of homogeneous catalysis, which primarily relies on an indirect route to synthesize methanol via the hydrogenation of carbonate or formate derivatives in the presence of additives and solvents. However, homogeneous catalysis is inappropriate for industrial-scale methanol production because of the inefficient separation and purification processes involved.In this Account, we demonstrate a novel approach for methanol production under mild reaction conditions by CO2 hydrogenation catalyzed by multinuclear iridium complexes under heterogeneous gas-solid phase conditions without any additives and solvents. One of the aims of this Account provides insights for overcoming the barriers for efficient CO2 hydrogenation by focusing on catalyst design, specifically by incorporating varying functionalities into the ligand. The fundamental strategy entails activating hydrogen molecule and enhancing the hydricity of the resulting metal-hydride species, which is based on the following two concepts of catalyst design: (i) Activating a metal-hydride by electronic effects; and (ii) accelerating H2 heterolysis. We have elucidated the mechanism for accelerating H2 heterolysis using a state-of-the-art catalyst that contains an actor-ligand that responds to or participates in catalysis as opposed to a classical spectator-ligand.We have also demonstrated a novel heterogeneous catalysis using a molecular catalyst as a key step for the hydrogenation of CO2 to methanol beyond formic acid formation. The dehydrogenation of formic acid as a reverse reaction of formic acid hydrogenation is strongly favored in acidic aqueous solution. To circumvent the equilibrium limitation, we have envisioned an alternative route that both prevents the liberation of formic acid into the reaction medium, and develops a multinuclear complex to facilitate the transfer of multiple reactive hydrides. The unconventional gas-solid phase catalysis is capable of preventing the liberation of formate species and promoting further hydrogenation of formic acid through multihydride transfer.This novel catalytic system, which is the fusion of a molecular catalyst in heterogeneous catalysis, provides high performance for methanol synthesis through a sophisticated catalyst design and straightforward separation processes. A detailed mechanistic analysis of molecular catalysts in the gas phase would lead to significant progress in the field of Surface Organometallic Chemistry (SOMC).
Collapse
Affiliation(s)
- Naoya Onishi
- National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Yuichiro Himeda
- National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
12
|
Koch CJ, Goeppert A, Surya Prakash GK. Addition of Imidazolium-Based Ionic Liquid to Improve Methanol Production in Polyamine-Assisted CO 2 Capture and Conversion Systems Using Pincer Catalysts. CHEMSUSCHEM 2024; 17:e202301789. [PMID: 38594207 DOI: 10.1002/cssc.202301789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Ionic liquids have been studied as CO2 capture agents. However, they are rarely used in combined CO2 capture and conversion processes. Utilizing imidazolium-based ionic liquids, the conversion of CO2 to methanol was greatly improved in polyamine assisted systems catalyzed by homogeneous pincer catalysts with Ru and Mn metal centers. Among the ionic liquids tested, [BMIM]OAc was found to perform the best under the given reaction conditions. Among the polyamine tested, pentaethylenehexamine (PEHA) led to the highest conversion rates. Ru-Macho and Ru-Macho-BH were the most active catalysts. Direct air capture utilizing PEHA as the capture material was also demonstrated and produced an 86 % conversion of the captured CO2 to methanol in the presence of [BMIM]OAc.
Collapse
Affiliation(s)
- Christopher J Koch
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089-1661, USA
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089-1661, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089-1661, USA
| |
Collapse
|
13
|
Barakat M, Elhajj S, Yazji R, Miller AJM, Hasanayn F. Kinetic Isotope Effects and the Mechanism of CO 2 Insertion into the Metal-Hydride Bond of fac-(bpy)Re(CO) 3H. Inorg Chem 2024; 63:12133-12145. [PMID: 38901030 DOI: 10.1021/acs.inorgchem.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The 1,2-insertion reaction of CO2 into metal-hydride bonds of d6-octahedral complexes to give κ1-O-metal-formate products is the key step in various CO2 reduction schemes and as a result has attracted extensive mechanistic investigations. For many octahedral catalysts, CO2 insertion follows an associative mechanism in which CO2 interacts directly with the coordinated hydride ligand instead of the more classical dissociative mechanism that opens an empty coordination site to bind the substrate to the metal prior to a hydride migration step. To better understand the associative mechanism, we conducted a systematic quantum chemical investigation on the reaction between CO2 and fac-(bpy)Re(CO)3H (1-Re-H; bpy = 2,2'-bipyridine) starting with the gas phase and then moving to THF and other solvents with increased dielectric constants. Detailed analyses of the potential energy surfaces (PESs) and intrinsic reaction coordinates (IRCs) reveal that the reaction is enabled in all media by an initial stage of making a 3c-2e bond between the carbon of CO2 and the metal-hydride bond that is most consistent with an organometallic bridging hydride Re-H-CO2 species. Once CO2 is bent and anchored to the metal-hydride bond, the reaction proceeds by a rotation motion via a cyclic transition state TS2 that interchanges Re-H-CO2 and Re-O-CHO coordination. The combined stages provide an asynchronous-concerted pathway for CO2 insertion on the Gibbs free energy surface with TS2 as the highest energy point. Consideration of TS2 as a rate-determining TS gives activation barriers, inverse KIEs, substituent effects, and solvent effects that agree with the experimental data available in this system. An important new insight revealed by the analyses of the results is that the initial stage of the reaction is not a hydride transfer step as has been assumed in some studies. In fact, the loose vibration of the TS that can be identified for the first stage of the reaction in solution (TS1) does not involve the Re-H stretching vibrational mode. Accordingly, the imaginary frequency of TS1 is insensitive to deuteration, and therefore, TS1 leads to no significant KIE.
Collapse
Affiliation(s)
- Mariam Barakat
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Sarah Elhajj
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Riyad Yazji
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
14
|
Sun Y, Xiao L, Wu W. In Situ Carbon-Confined MoSe 2 Catalyst with Heterojunction for Highly Selective CO 2 Hydrogenation to Methanol. Molecules 2024; 29:2186. [PMID: 38792048 PMCID: PMC11123706 DOI: 10.3390/molecules29102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The synthesis of methanol from CO2 hydrogenation is an effective measure to deal with global climate change and an important route for the chemical fixation of CO2. In this work, carbon-confined MoSe2 (MoSe2@C) catalysts were prepared by in situ pyrolysis using glucose as a carbon source. The physico-chemical properties and catalytic performance of CO2 hydrogenation to yield methanol were compared with MoSe2 and MoSe2/C. The results of the structure characterization showed MoSe2 displayed few layers and a small particle size. Owing to the synergistic effect of the Mo2C-MoSe2 heterojunction and in situ carbon doping, MoSe2@C with a suitable C/Mo mole ratio in the precursor showed excellent catalytic performance in the synthesis of methanol from CO2 hydrogenation. Under the optimal catalyst MoSe2@C-55, the selectivity of methanol reached 93.7% at a 9.7% conversion of CO2 under optimized reaction conditions, and its catalytic performance was maintained without deactivation during a continuous reaction of 100 h. In situ diffuse infrared Fourier transform spectroscopy studies suggested that formate and CO were the key intermediates in CO2 hydrogenation to methanol.
Collapse
Affiliation(s)
| | - Linfei Xiao
- National Center for International Research on Catalytic Technology, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China;
| | - Wei Wu
- National Center for International Research on Catalytic Technology, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
15
|
Dong J, Zhang H, Ma J, Gao K, Liu F, Li Y, Liu M. Synergistic effects of core-shell poly(ionic liquids)@ZIF-8 nanocomposites for enhancing additive-free CO 2 conversion. J Colloid Interface Sci 2024; 661:1000-1010. [PMID: 38335785 DOI: 10.1016/j.jcis.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The present study, for the first time, reports the fabrication of core-shell poly(ionic liquids)@ZIF-8 nanocomposites through a facile in-situ polymerization strategy. These composites exhibited exceptional structural characteristics including high specific surface areas and the integration of high-density Lewis acid/base and nucleophilic active sites. The structure-activity relationship, reusability, and versatility of the poly(ionic liquids)@ZIF-8 composites were investigated for the cycloaddition reaction between CO2 and epoxide. By optimizing the composites structures and their catalytic performance, PIL-Br@ZIF-8(2:1) was identified as an exciting catalyst that exhibits high activity and selectivity in the synthesis of various cyclic carbonates under mild or even atmospheric pressure or simulated flue gas conditions. Moreover, the catalyst demonstrated excellent structural stability while maintaining its catalytic activity throughout multiple usage cycles. By combining DFT calculations, we investigated the transition states and intermediate geometries of the cycloaddition reaction in different coordination microenvironments, thereby proposing a synergistic catalytic mechanism involving multiple active sites.
Collapse
Affiliation(s)
- Jiqing Dong
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Han Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingjing Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Kunqi Gao
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, PR China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Yantao Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mengshuai Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
16
|
Zhang J, Li L, Xie X, Song XQ, Schaefer HF. Biomimetic Frustrated Lewis Pair Catalysts for Hydrogenation of CO to Methanol at Low Temperatures. ACS ORGANIC & INORGANIC AU 2024; 4:258-267. [PMID: 38585511 PMCID: PMC10996047 DOI: 10.1021/acsorginorgau.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024]
Abstract
The industrial production of methanol through CO hydrogenation using the Cu/ZnO/Al2O3 catalyst requires harsh conditions, and the development of new catalysts with low operating temperatures is highly desirable. In this study, organic biomimetic FLP catalysts with good tolerance to CO poison are theoretically designed. The base-free catalytic reaction contains the 1,1-addition of CO into a formic acid intermediate and the hydrogenation of the formic acid intermediate into methanol. Low-energy spans (25.6, 22.1, and 20.6 kcal/mol) are achieved, indicating that CO can be hydrogenated into methanol at low temperatures. The new extended aromatization-dearomatization effect involving multiple rings is proposed to effectively facilitate the rate-determining CO 1,1-addition step, and a new CO activation model is proposed for organic catalysts.
Collapse
Affiliation(s)
- Jiejing Zhang
- College
of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei
Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Longfei Li
- College
of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei
Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Xiaofeng Xie
- College
of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei
Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Xue-Qing Song
- College
of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei
Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Henry F. Schaefer
- Center
for Computational Quantum Chemistry, University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
17
|
Suhail Z, Koch CJ, Goeppert A, Prakash GKS. Integrated Carbon Dioxide Capture and Conversion to Methanol Utilizing Tertiary Amines over a Heterogenous Cu/ZnO/Al 2O 3 Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5401-5408. [PMID: 38426862 DOI: 10.1021/acs.langmuir.3c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Increasing carbon dioxide emissions has sparked a growing interest in capturing these emissions at the source of their release. For such processes, amines can be used as carbon dioxide capture agents. Herein, CO2 was captured under ambient conditions using solutions of amines and polyamines in ethylene glycol. The captured solutions were then successfully hydrogenated to methanol under hydrogen pressure with a heterogeneous Cu/ZnO/Al2O3 industrial catalyst. An extensive amine scope found that tetramethyl-1,6-hexanediamine, with two tertiary amine sites, provided the highest methanol productivity. This reaction was then optimized to achieve up to 89% methanol yield under relatively mild conditions of 250 °C and 80 bar H2 pressure. The catalyst was shown to be recyclable over five reaction cycles.
Collapse
Affiliation(s)
- Zohaib Suhail
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - Christopher J Koch
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, California 90089-1661, United States
| |
Collapse
|
18
|
Morton M, Tay BY, Mah JJ, White AJ, Nobbs JD, van Meurs M, Britovsek GJ. Hydrogen Activation with Ru-PN 3P Pincer Complexes for the Conversion of C 1 Feedstocks. Inorg Chem 2024; 63:3393-3401. [PMID: 38330919 PMCID: PMC10880058 DOI: 10.1021/acs.inorgchem.3c04001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The hydrogenation of C1 feedstocks (CO and CO2) has been investigated using ruthenium complexes [RuHCl(CO)(PN3P)] as the catalyst. PN3P pincer ligands containing amines in the linker between the central pyridine donor and the phosphorus donors with bulky substituents (tert-butyl (1) or TMPhos (2)) are required to obtain mononuclear single-site catalysts that can be activated by the addition of KOtBu to generate stable five-coordinate complexes [RuH(CO)(PN3P-H)], whereby the pincer ligand has been deprotonated. Activation of hydrogen takes place via heterolytic cleavage to generate [RuH2(CO)(PN3P)], but in the presence of CO, coordination of CO occurs preferentially to give [RuH(CO)2(PN3P-H)]. This complex can be protonated to give the cationic complex [RuH(CO)2(PN3P)]+, but it is unable to activate H2 heterolytically. In the case of the less coordinating CO2, both ruthenium complexes 1 and 2 are highly efficient as CO2 hydrogenation catalysts in the presence of a base (DBU), which in the case of the TMPhos ligand results in a TON of 30,000 for the formation of formate.
Collapse
Affiliation(s)
- Matthew
D. Morton
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, 82 Wood Lane, London W12 0BZ, United
Kingdom
| | - Boon Ying Tay
- Institute
of Sustainability for Chemicals, Energy and Environment (ICSE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Justin J.Q. Mah
- Institute
of Sustainability for Chemicals, Energy and Environment (ICSE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Andrew J.P. White
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, 82 Wood Lane, London W12 0BZ, United
Kingdom
| | - James D. Nobbs
- Institute
of Sustainability for Chemicals, Energy and Environment (ICSE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Martin van Meurs
- Institute
of Sustainability for Chemicals, Energy and Environment (ICSE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - George J.P. Britovsek
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, 82 Wood Lane, London W12 0BZ, United
Kingdom
| |
Collapse
|
19
|
Tang Y, Pu M, Lei M. Cyclopentadienone Diphosphine Ruthenium Complex: A Designed Catalyst for the Hydrogenation of Carbon Dioxide to Methanol. J Org Chem 2024; 89:2431-2439. [PMID: 38306607 DOI: 10.1021/acs.joc.3c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The development of homogeneous metal catalysts for the efficient hydrogenation of carbon dioxide (CO2) into methanol (CH3OH) remains a significant challenge. In this study, a new cyclopentadienone diphosphine ligand (CPDDP ligand) was designed, which could coordinate with ruthenium to form a Ru-CPDDP complex to efficiently catalyze the CO2-to-methanol process using dihydrogen (H2) as the hydrogen resource based on density functional theory (DFT) mechanistic investigation. This process consists of three catalytic cycles, stage I (the hydrogenation of CO2 to HCOOH), stage II (the hydrogenation of HCOOH to HCHO), and stage III (the hydrogenation of HCHO to CH3OH). The calculated free energy barriers for the hydrogen transfer (HT) steps of stage I, stage II, and stage III are 7.5, 14.5, and 3.5 kcal/mol, respectively. The most favorable pathway of the dihydrogen activation (DA) steps of three stages to regenerate catalytic species is proposed to be the formate-assisted DA step with a free energy barrier of 10.4 kcal/mol. The calculated results indicate that the designed Ru-CPDDP and Ru-CPDDPEt complexes could catalyze hydrogenation of CO2 to CH3OH (HCM) under mild conditions and that the transition-metal owning designed CPDDP ligand framework be one kind of promising potential efficient catalysts for HCM.
Collapse
Affiliation(s)
- Yanhui Tang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P.R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
20
|
Khan MN, van Ingen Y, Boruah T, McLauchlan A, Wirth T, Melen RL. Advances in CO 2 activation by frustrated Lewis pairs: from stoichiometric to catalytic reactions. Chem Sci 2023; 14:13661-13695. [PMID: 38075657 PMCID: PMC10699552 DOI: 10.1039/d3sc03907b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2025] Open
Abstract
The rise of CO2 concentrations in the environment due to anthropogenic activities results in global warming and threatens the future of humanity and biodiversity. To address excessive CO2 emissions and its effects on climate change, efforts towards CO2 capture and conversion into value adduct products such as methane, methanol, acetic acid, and carbonates have grown. Frustrated Lewis pairs (FLPs) can activate small molecules, including CO2 and convert it into value added products. This review covers recent progress and mechanistic insights into intra- and inter-molecular FLPs comprised of varying Lewis acids and bases (from groups 13, 14, 15 of the periodic table as well as transition metals) that activate CO2 in stoichiometric and catalytic fashion towards reduced products.
Collapse
Affiliation(s)
- Md Nasim Khan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales UK
| | - Yara van Ingen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Tribani Boruah
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Adam McLauchlan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Thomas Wirth
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales UK
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| |
Collapse
|
21
|
Singh A, Kemper G, Weyhermüller T, Kaeffer N, Leitner W. Activated Mn-MACHO Complexes Form Stable CO 2 Adducts. Chemistry 2023:e202303438. [PMID: 38032321 DOI: 10.1002/chem.202303438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Manganese(I) carbonyl complexes bearing a MACHO-type ligand (HN(CH2 CH2 PR2 )2 ) readily react in their amido form with CO2 to generate 4-membered {Mn-N-C-O} metallacycles. The stability of the adducts decreases with the steric demand of the R groups at phosphorous (R=isopropyl>adamantyl). The CO2 -adducts display generally a lower reactivity as compared to the parent amido complexes. These adducts can thus be interpretated as masked forms of the active amido catalysts and potentially play important roles as off-loop species or branching points in catalytic transformations of carbon dioxide.
Collapse
Affiliation(s)
- Ajeet Singh
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Gregor Kemper
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Nicolas Kaeffer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
22
|
Gelman-Tropp S, Kirillov E, Hey-Hawkins E, Gelman D. Hydrogenation of CO 2 by a Bifunctional PC(sp 3 )P Iridium(III) Pincer Complex Equipped with Tertiary Amine as a Functional Group. Chemistry 2023; 29:e202301915. [PMID: 37602815 DOI: 10.1002/chem.202301915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Reversible hydrogen storage in the form of stable and mostly harmless chemical substances such as formic acid (FA) is a cornerstone of a fossil fuels-free economy. In the past, we have reported a primary amine-functionalized bifunctional iridium(III)-PC(sp3 )P pincer complex as a mild and chemoselective catalyst for the additive-free decomposition of neat formic acid. In this manuscript, we report on the successful application of a redesigned complex bearing tertiary amine functionality as a catalyst for mild hydrogenation of CO2 to formic acid. The catalyst demonstrates TON up to 6×104 and TOF up to 1.7×104 h-1 . In addition to the practical value of the catalyst, experimental and computational mechanistic studies provide the rationale for the design of improved next-generation catalysts.
Collapse
Affiliation(s)
- Stanislav Gelman-Tropp
- Institute of Chemistry, The Hebrew University, Edmond Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Evgueni Kirillov
- Université de Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, 35042, Rennes, France
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Dmitri Gelman
- Institute of Chemistry, The Hebrew University, Edmond Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| |
Collapse
|
23
|
Zanatta M. Materials for Direct Air Capture and Integrated CO 2 Conversion: Advancement, Challenges, and Prospects. ACS MATERIALS AU 2023; 3:576-583. [PMID: 38089655 PMCID: PMC10636785 DOI: 10.1021/acsmaterialsau.3c00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 04/02/2025]
Abstract
Direct air capture and integrated CO2 conversion (DACC) technologies have emerged as promising approaches to mitigate the increasing concentration of carbon dioxide (CO2) in the Earth's atmosphere. This Perspective provides a comprehensive overview of recent advancements in materials for capturing and converting atmospheric CO2. It highlights the crucial role of materials in achieving efficient and selective CO2 capture as well as catalysts for CO2 conversion. The paper discusses the performance, limitations, and prospects of various materials in the context of sustainable CO2 mitigation strategies. Furthermore, it explores the multiple roles DACC can play in stabilizing atmospheric CO2.
Collapse
Affiliation(s)
- Marcileia Zanatta
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
24
|
Xie J, Olsbye U. The Oxygenate-Mediated Conversion of CO x to Hydrocarbons─On the Role of Zeolites in Tandem Catalysis. Chem Rev 2023; 123:11775-11816. [PMID: 37769023 PMCID: PMC10603784 DOI: 10.1021/acs.chemrev.3c00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 09/30/2023]
Abstract
Decentralized chemical plants close to circular carbon sources will play an important role in shaping the postfossil society. This scenario calls for carbon technologies which valorize CO2 and CO with renewable H2 and utilize process intensification approaches. The single-reactor tandem reaction approach to convert COx to hydrocarbons via oxygenate intermediates offers clear benefits in terms of improved thermodynamics and energy efficiency. Simultaneously, challenges and complexity in terms of catalyst material and mechanism, reactor, and process gaps have to be addressed. While the separate processes, namely methanol synthesis and methanol to hydrocarbons, are commercialized and extensively discussed, this review focuses on the zeolite/zeotype function in the oxygenate-mediated conversion of COx to hydrocarbons. Use of shape-selective zeolite/zeotype catalysts enables the selective production of fuel components as well as key intermediates for the chemical industry, such as BTX, gasoline, light olefins, and C3+ alkanes. In contrast to the separate processes which use methanol as a platform, this review examines the potential of methanol, dimethyl ether, and ketene as possible oxygenate intermediates in separate chapters. We explore the connection between literature on the individual reactions for converting oxygenates and the tandem reaction, so as to identify transferable knowledge from the individual processes which could drive progress in the intensification of the tandem process. This encompasses a multiscale approach, from molecule (mechanism, oxygenate molecule), to catalyst, to reactor configuration, and finally to process level. Finally, we present our perspectives on related emerging technologies, outstanding challenges, and potential directions for future research.
Collapse
Affiliation(s)
- Jingxiu Xie
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
25
|
Grover J, Maji S, Teja C, Al Thabaiti SA, Mostafa MM, Lahiri GK, Maiti D. Base Metal Catalyst for Indirect Hydrogenation of CO 2. ACS ORGANIC & INORGANIC AU 2023; 3:299-304. [PMID: 37810409 PMCID: PMC10557122 DOI: 10.1021/acsorginorgau.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 10/10/2023]
Abstract
We herein report a novel Mn-SNS-based catalyst, which is capable of performing indirect hydrogenation of CO2 to methanol via formylation. In this domain of CO2 hydrogenation, pincer ligands have shown a clear predominance. Our catalyst is based on the SNS-type tridentate ligand, which is quite stable and cheap as compared to the pincer type ligands. The catalyst can also be recycled effectively after the formylation reaction without any significant change in efficiency. Various amines including both primary and secondary amines worked well under the protocol to provide the desired formylated product in good yields. The formed formylated amines can also be reduced further at higher pressures of hydrogen. As a whole, we have developed a protocol that involves indirect CO2 hydrogenation to methanol that proceeds via formylation of amines.
Collapse
Affiliation(s)
- Jagrit Grover
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Suman Maji
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Chitrala Teja
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Shaeel A. Al Thabaiti
- K.
A. CARE Energy Research and Innovation Center, King Abdulaziz University,
Jeddah 21589, Saudi Arabia, Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohamed Mokhtar
M. Mostafa
- K.
A. CARE Energy Research and Innovation Center, King Abdulaziz University,
Jeddah 21589, Saudi Arabia, Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Goutam K. Lahiri
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department
of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
26
|
Grømer B, Saito S. Hydrogenation of CO 2 to MeOH Catalyzed by Highly Robust (PNNP)Ir Complexes Activated by Alkali Bases in Alcohol. Inorg Chem 2023; 62:14116-14123. [PMID: 37589272 DOI: 10.1021/acs.inorgchem.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Despite receiving significant attention, well-defined homogeneous complexes for hydrogenation of carbon dioxide (CO2) to methanol (MeOH) are scarce and suffer issues of low catalyst turnover numbers (TONs) at high catalyst concentrations and deactivation in the presence of CO and at elevated temperatures. Herein, we disclose a system deploying sterically demanded (PNNP)Ir complexes for a sustained activity for hydrogenation of CO2 to MeOH at temperatures ∼200 °C in an alcohol solvent. Through reaction optimization, we achieved a TON of ∼9000 for MeOH formation, which exceeds most active homogeneous systems reported to date, and robustness on par with or exceeding most reactive systems utilizing amine additives was demonstrated. The key to achieving sustained catalyst turnover for the system was utilizing a catalytic amount of an alkali base additive, which serves the dual purpose of facilitating more efficient outer-sphere reduction of CO2 and HCO2Et and enhancing the selectivity of MeOH over in situ formed CO.
Collapse
Affiliation(s)
- Bendik Grømer
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
27
|
Qiu H, Yamamoto A, Yoshida H. Gallium Oxide Assisting Ag-Loaded Calcium Titanate Photocatalyst for Carbon Dioxide Reduction with Water. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Hongxuan Qiu
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Akira Yamamoto
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Hisao Yoshida
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
28
|
Kumar A, Bhardwaj R, Choudhury J. Integrated CO 2 Capture and Conversion to Methanol Leveraged by the Transfer Hydrogenation Approach. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abhishek Kumar
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Ritu Bhardwaj
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
29
|
Kuß DA, Hölscher M, Leitner W. Combined Computational and Experimental Investigation on the Mechanism of CO 2 Hydrogenation to Methanol with Mn-PNP-Pincer Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- David A. Kuß
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|