1
|
Malinoski A, Yuan J, Wang C. Facilitating Energy and Charge Transfer from CsPbBr 3 Perovskite Nanocrystals via Ligand Shell Reconstruction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:31237-31247. [PMID: 40372799 PMCID: PMC12123618 DOI: 10.1021/acsami.5c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Efficiently extracting photon energy from colloidal lead halide perovskite nanocrystals (PNCs) as excitons and charge carriers is a crucial step in many applications of these materials. We herein report a functionalization strategy based on reconstructing the surface chemical environment of CsPbBr3 PNCs to strengthen the binding of acceptor motifs and, thereby, enhance energy and charge carrier transfer efficiency. A zwitterion ligand, 2-ammonium benzenesulfonate, was employed to protect the integrity of the PNC surface during a purification step for removing excess original synthetic ligands. Heterocyclic-carboxylate structures with strong chelating binding effects were utilized as the anchoring motifs to couple the acceptors to the PNC surface. Compared to directly applying the acceptors to as-synthesized PNCs, the new method achieved at least a 6-fold increase in transportation efficiency for both an oligothiophene triplet energy acceptor and a quinoline-derivative electron acceptor. NMR spectroscopy systematically analyzed the binding conditions of different surface ligands in each step of functionalization. The improved functionalization was attributed to the diminishment of competitive adsorption after the purification step. We identified the N-heterocyclic-carboxylate structure as the most effective anchoring group. Transient absorption spectroscopy was employed to monitor the triplet energy transfer and charge carrier migration processes in the PNC-acceptor complexes and evaluate their rate constants. Spectral and dynamic features for distinguishing the electron transfer process from triplet energy transfer were summarized. Our surface reconstruction strategy will benefit the development of PNC-based optoelectronics and promote the application of perovskite materials as photosensitizers in different photophysical and photochemical processes.
Collapse
Affiliation(s)
- Aaron Malinoski
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York11367, United States
- The
Graduate Center of CUNY, New York, New York10016, United States
| | - Jingheng Yuan
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York11367, United States
- The
Graduate Center of CUNY, New York, New York10016, United States
| | - Chen Wang
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York11367, United States
- The
Graduate Center of CUNY, New York, New York10016, United States
| |
Collapse
|
2
|
Xi L, Liu J, Zhang S, Liu T, Hou L. Combining Quantum Dots and Photochromic Molecular Switches: Next-Generation Light-Responsive Materials. SMALL METHODS 2025:e2500192. [PMID: 40357723 DOI: 10.1002/smtd.202500192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Quantum dots (QDs), with the unique merits of narrow and tunable photoluminescence (PL) wavelength, high PL quantum yield, have gained significant interest in fields such as display, solar energy conversion, bioimaging, and encrypted quantum communication. On the other hand, photochromic molecular switches (PMS) can undergo reversible interconversion between (at least) two distinct states at the molecular scale upon light irradiation. When combining QDs and PMS, the resulting hybrid systems exhibit synergistic functionalities and light responsiveness, enabling precise and reversible modulation over PL intensity/color, energy/electron transfer, and motion with high temporal and spatial resolution in a non-invasive manner. This perspective explores the recent advancements in the combination method, light-responsive mechanism, and functions of QD-PMS hybrids. The applications of QD-PMS hybrids are also highlighted as light-responsive materials in bioimaging, information processing, sensing, optoelectrical devices, and discuss future challenges, opportunities, and directions for enhancing performance and exploring applications in next-generation light-responsive materials and smart optoelectronic devices.
Collapse
Affiliation(s)
- Lin Xi
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiayi Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuai Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Tiegen Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Lili Hou
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Singh S, Hamid Z, Babu R, Gómez-Graña S, Hu X, McCulloch I, Hoye RLZ, Govind Rao V, Polavarapu L. Halide Perovskite Photocatalysts for Clean Fuel Production and Organic Synthesis: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419603. [PMID: 40345975 DOI: 10.1002/adma.202419603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/01/2025] [Indexed: 05/11/2025]
Abstract
The need to constrain the use of fossil fuels causing global warming is motivating the development of a variety of photocatalysts for solar-to-fuel generation and chemical synthesis. In particular, semiconductor-based photocatalysts have been extensively exploited in solar-driven organic synthesis, carbon dioxide (CO2) conversion into value-added products, and hydrogen (H2) generation from water (H2O) splitting. Recently, metal halide perovskites (MHPs) have emerged as an important class of semiconductors for heterogeneous photocatalysis owing to their interesting properties. Despite key issues with long-term stability and degradation in polar solvents due to their ionic character, there has been significant progress in halide perovskite-based photocatalysts with improving their stability and performance in the gas and liquid phases. This review discusses the state-of-the-art for using halide perovskite-based photocatalysts and photoelectrocatalysis in hydrogen production from water and halogen acid solutions, CO2 reduction into value-added chemicals, and various organic chemical transformations. The different types of halide perovskites used, design strategies to overcome the instability issues in polar solvents, and the efficiencies achieved are discussed. Furthermore, the outstanding challenges associated with the use of polar electrolytes and how the stability and performance can be improved are discussed.
Collapse
Affiliation(s)
- Siddharth Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Zeinab Hamid
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Ramavath Babu
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas-Marcosende, Vigo, 36310, Spain
| | - Sergio Gómez-Graña
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas-Marcosende, Vigo, 36310, Spain
| | - Xiaowen Hu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- Andlinger Center for Energy and the Environment and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | | |
Collapse
|
4
|
Song M, Liu M, Zhang X, Qin H, Sun J, Wang J, Peng Q, Zhao Z, Zhao G, Yan X, Chang Y, Zhang Y, Wang D, Wang J, Zhao J, Qing G. An excitation-wavelength-dependent organic photoluminescent molecule with high quantum yield integrating both ESIPT and PCET mechanisms. Chem Sci 2025:d4sc08197h. [PMID: 40336988 PMCID: PMC12053778 DOI: 10.1039/d4sc08197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Excitation wavelength-dependent (Ex-De) chromophores, which exhibit changes in spectral composition with varying excitation wavelengths, have garnered significant interest. However, the pursuit of novel photoluminescence (PL) mechanisms and high luminescence quantum yields is facing huge challenges. Here, we discover that the introduction of a spinacine moiety to 2-(2-hydroxy-5-methylphenyl)benzothiazole, a traditional excited-state intramolecular proton transfer (ESIPT) fluorophore, results in a novel Ex-De PL molecule. The luminescent color of this compound can be effectively modulated from greenish-blue to yellow-green by adjusting either the excitation wavelength or temperature. Transient absorption and spectroelectrochemistry spectra elucidate the underlying mechanism, demonstrating the roles of ESIPT and proton-coupled electron transfer (PCET). When embedded in a poly(vinyl alcohol) film, the composite exhibits remarkable Ex-De PL behavior, achieving absolute fluorescence quantum yields of 55.6% (λ ex: 396 nm) and 69.6% (λ ex: 363 nm), as well as phosphorescence at room temperature. These properties highlight its potential for multiple encryption features, enhancing its application in anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Mengyuan Song
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Meng Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology Tianjin 300457 P. R. China
| | - Jinglu Sun
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Juanjuan Wang
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qian Peng
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiwei Zhao
- Laboratory of Advanced Spectroelectrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Xianchang Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yongxin Chang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yahui Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Dongdong Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
5
|
Amberg W, Lindner H, Sahin Y, Staudinger E, Morad V, Sabisch S, Feld LG, Li Y, Dirin DN, Kovalenko MV, Carreira EM. Ligand Influence on the Performance of Cesium Lead Bromide Perovskite Quantum Dots in Photocatalytic C(sp 3)-H Bromination Reactions. J Am Chem Soc 2025; 147:8548-8558. [PMID: 40019792 PMCID: PMC11912481 DOI: 10.1021/jacs.4c17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Lead halide perovskite quantum dots (LHP QDs) CsPbX3 generate immense interest as narrow-band emitters for displays, lasers, and quantum light sources. All QD applications rely on suited engineering of surface capping ligands. The first generation of LHP QDs employed oleic acid/oleyl amine capping and have found only a limited use in photoredox catalysis. These catalysts have been reported to be unstable and decompose over the course of the reaction, thus reducing turnover numbers (TONs) and limiting their synthetic ability. Herein, the impact of eight distinct surface ligands on monodisperse CsPbBr3 QDs is reported, affording a thorough comprehension of their performance in photocatalytic C-H brominations. These efforts yielded QDs operating at extremely low catalyst loadings (<100 ppb) with TONs over 9,000,000 per LHP QD. We emphasize that the optimal catalytic performance requires increased QD surface accessibility without compromising the QD structural and colloidal integrity. Control experiments indicated that well-known photoredox catalysts such as Ir(ppy)3, Ru(bpy)3Cl2, or 4CzlPN are ineffective in the same reaction. Mechanistic studies reveal that the C-Br bond reduction in CH2Br2 is the rate-limiting step and is likely facilitated through interaction with the CsPbBr3 QD surface. This work outlines a holistic approach toward the design of practically useful photocatalysts out of QDs comprising structurally soft QD cores and dynamically bound capping ligands.
Collapse
Affiliation(s)
- Willi
M. Amberg
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
| | - Henry Lindner
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
| | - Yesim Sahin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Erich Staudinger
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Sebastian Sabisch
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Leon G. Feld
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Yuxuan Li
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
| | - Dmitry N. Dirin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- NCCR
Catalysis, ETH Zürich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Erick M. Carreira
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zurich, Switzerland
- NCCR
Catalysis, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Liang G, Wang L, Wang Z, Zhang X, Zhou Z, Zhang R, Liang Y, He S, Wu K. Functionalized Violet-Emitting Cd, Pb-Free Quantum Dots with Thermally Activated Delayed Photoluminescence for Efficient Photochemical Reactions. J Am Chem Soc 2025; 147:7974-7982. [PMID: 39960654 DOI: 10.1021/jacs.5c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Colloidal quantum dots (QDs) are excellent luminescent materials, but their short exciton lifetime, typically in the nanosecond range, restricts their applications in photochemical reactions. By designing QD-molecule conjugates, the exciton energy can be cycled between the QD exciton state and the molecular triplet state through triplet energy transfer, thereby prolonging the exciton lifetime to hundreds of microseconds, which is similar to the mechanism of thermally activated delayed fluorescence in molecules. Currently, QD-molecule-based thermally activated delayed photoluminescence (TADPL) systems have covered the blue to near-infrared spectral range. Here, we extend the reach of TADPL to the violet band, including slight penetration into the ultraviolet, by using Cd, Pb-free ZnSe/ZnS core/shell QDs functionalized with biphenyl ligands, which exhibit the highest TADPL energy (up to 3.0 eV) reported to date for QD-molecule conjugates. The high exciton energy, long lifetime (80 μs), and high TADPL quantum yield (23.7%) of the ZnSe/ZnS-biphenyl system enable very high efficiency in a variety of QD-sensitized photochemical reactions.
Collapse
Affiliation(s)
- Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Lei Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Zhaolong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Xin Zhang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Zixiang Zhou
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Rongxin Zhang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Ying Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Shan He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
7
|
Thanetchaiyakup A, Sadek M, Bati G, Xiao Y, Wang X, Yang J, Liu Z, Wang SY, Soo HS. Metal Halide Perovskites for Photocatalysis: Performance and Mechanistic Studies. Chem Asian J 2024; 19:e202400787. [PMID: 39261288 DOI: 10.1002/asia.202400787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Metal halide perovskites, both lead-based and lead-free variants, have emerged as highly versatile materials with widespread applications across various fields, including photovoltaics, optoelectronics, and photocatalysis. This review provides a succinct overview of the recent advancements in the utilization of lead and lead-free halide perovskites specifically in photocatalysis. We explore the diverse range of photocatalytic reactions enabled by metal halide perovskites, including organic transformations, carbon dioxide reduction, pollutant degradation, and hydrogen production. We highlight key developments, mechanistic insights, and challenges in the field, offering our perspectives on the future research directions and potential applications. By summarizing recent findings from the literature, this review aims to provide a timely resource for researchers interested in harnessing the full potential of metal halide perovskites for sustainable and efficient photocatalytic processes.
Collapse
Affiliation(s)
- Adisak Thanetchaiyakup
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Mansour Sadek
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Gabor Bati
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yonghao Xiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xingyu Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Jingcheng Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Zhenpeng Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Shun-Yi Wang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou, 215123, P. R. China
| | - Han Sen Soo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
8
|
Chen K, Liu J, Andréasson J, Albinsson B, Liu T, Hou L. An efficient all-visible light-activated photoswitch based on diarylethenes and CdS quantum dots. Chem Sci 2024; 15:20365-20370. [PMID: 39574538 PMCID: PMC11577264 DOI: 10.1039/d4sc06110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
All-visible light-activated diarylethene (DAE) photoswitches are highly attractive for applications in smart photoresponsive materials. The photocyclization of DAE via the low-lying excited triplet state through triplet energy transfer (TET) from a sensitizer has been proven to be an effective approach for the realization of this scheme. However, the TET process is sensitive to oxygen and typically requires more than one sensitizer per photoswitch to facilitate sensitized photocyclization. Herein, we present a bi-component system comprising carboxylic acid-functionalized DAEs and CdS quantum dots (QDs) to achieve all-visible light-activated photoswitching. Due to the large surface area-to-volume ratio of CdS QDs and surface anchored DAEs, one CdS QD can activate at least 18 DAE molecules in the solution without oxygen exclusion. The efficiency of photocyclization of DAEs under visible light irradiation through energy transfer from CdS QDs is nearly comparable to that of direct UV light irradiation. Moreover, our strategy is adaptable for solid-state applications in the presence of air, enabling reversible writing and erasing of color and patterns by adjusting irradiation wavelengths in the visible region.
Collapse
Affiliation(s)
- Kezhou Chen
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University Tianjin 300072 China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University) Tianjin 300072 China
| | - Jiayi Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University Tianjin 300072 China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University) Tianjin 300072 China
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 412 96 Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 412 96 Sweden
| | - Tiegen Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University Tianjin 300072 China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University) Tianjin 300072 China
| | - Lili Hou
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University Tianjin 300072 China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University) Tianjin 300072 China
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 412 96 Sweden
| |
Collapse
|
9
|
Li R, Ou T, Wen L, Yan Y, Li W, Qin X, Wang S. All-Visible-Light-Activated Diarylethene Photoswitches. Molecules 2024; 29:5202. [PMID: 39519843 PMCID: PMC11547923 DOI: 10.3390/molecules29215202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Photochromic compounds have attracted much attention for their potential applications in photo-actuators, optoelectronic devices and optical recording techniques. This interest is driven by their key photochemical and photophysical properties, which can be reversibly modulated by light irradiation. Among them, diarylethene compounds have garnered extensive investigation due to their excellent thermal stability of both open- and closed-form isomers, robust fatigue resistance, high photocyclization quantum yield and good photochromic performance in both solution and solid phases. However, a notable limitation in expanding the utility of diarylethene compounds is the necessity for ultraviolet light to induce their photochromism. This requirement poses challenges, as ultraviolet light can be detrimental to biological tissues, and its penetration is often restricted in various media. This review provides an overview of design strategies employed in the development of visible-light-responsive diarylethene compounds. These design strategies serve as a guideline for molecular design, with the potential to significantly broaden the applications of all-visible-light-activated diarylethene compounds in the realms of materials science and biomedical science.
Collapse
Affiliation(s)
- Ruiji Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Tao Ou
- School of Pharmacy, Binzhou Medical University, Yantai 256603, China;
| | - Li Wen
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining 272067, China;
| | - Wei Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Xulong Qin
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Shouxin Wang
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| |
Collapse
|
10
|
Zhu Y, Shen H, Ai Q, Feng Y, Shin B, Gonzales M, Yan Y, He Z, Huang X, Zhang X, Han Y, Ajayan PM, Li Q, Lou J. Double Layer SiO 2-Coated Water-Stable Halide Perovskite as a Promising Antimicrobial Photocatalyst under Visible Light. NANO LETTERS 2024; 24:13718-13726. [PMID: 39405436 DOI: 10.1021/acs.nanolett.4c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Halide perovskite nanocrystals (HPNCs) have emerged as promising materials for various light harvesting applications due to their exceptional optical and electronic properties. However, their inherent instability in water and biological fluids has limited their use as photocatalysts in the aqueous phase. In this study, we present highly water-stable SiO2-coated HPNCs as efficient photocatalysts for antimicrobial applications. The double SiO2 layer coating method confers long-term structural and optical stability to HPNCs in water, while the in situ synthesis of lead- and bismuth-based perovskite NCs into the SiO2 shell enhances their versatility and tunability. We demonstrate that the substantial generation of singlet oxygen via energy transfer from HPNCs enables efficient photoinduced antibacterial efficacy under aqueous conditions. More than 90% of Escherichia coli was inactivated under mild visible light irradiation for 6 h. The excellent photocatalytic antibacterial performance suggests that SiO2-coated HPNCs hold great potential for various aqueous phase photocatalytic applications.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Hongchen Shen
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Qing Ai
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Yuren Feng
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Bongki Shin
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Mateo Gonzales
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Yunrui Yan
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Ze He
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Xiaochuan Huang
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Xiang Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Yimo Han
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jun Lou
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Cao Q, Feng J, Chang KT, Liang W, Lu H. Emerging Opportunities of Colloidal Quantum Dots for Photocatalytic Organic Transformations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409096. [PMID: 39340294 DOI: 10.1002/adma.202409096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Colloidal quantum dots (QDs) have emerged as a versatile photocatalyst for a wide range of photocatalytic transformations owing to its high absorption coefficient, large surface-to-volume ratio, high stability, and efficient charge and energy transfer dynamics. The past decades have witnessed a rapid development of QDs for artificial photocatalysis. In this review, the unique characteristics of QDs are focused on, including quantum size effect, compositional and structural diversity, tunable surface chemistry, and photophysics, that can be utilized for photocatalytic transformations. The recent advancements in photocatalytic organic transformations enabled by QDs photocatalysts are summarized. The unique opportunities of QDs are highlighted to tackle organic reactions that are previously unattainable with small molecule photocatalysts. Lastly, an outlook is provided for future directions in this field.
Collapse
Affiliation(s)
- Qinxuan Cao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Jianning Feng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Kin Ting Chang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Wenfei Liang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
12
|
Yan C, Qian Y, Liao Z, Le Z, Fan Q, Zhu H, Xie Z. Recent progress of metal halide perovskite materials in heterogeneous photocatalytic organic reactions. Photochem Photobiol Sci 2024; 23:1393-1415. [PMID: 38850494 DOI: 10.1007/s43630-024-00599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Photocatalytic technology is widely regarded as an important way to utilize solar energy and achieve carbon neutrality, which has attracted considerable attentions in various fields over the past decades. Metal halide perovskites (MHPs) are recognized as "superstar" materials due to their exceptional photoelectric properties, readily accessible and tunable structure, which made them intensively studied in solar cells, light-emitting diodes, and solar energy conversion fields. Since 2018, increased attention has been focused on applying the MHPs as a heterogeneous visible light photocatalyst in catalyzing organic synthesis reactions. In this review, we present an overview of photocatalytic technology and principles of heterogeneous photocatalysis before delving into the structural characteristics, stability, and classifications of MHPs. We then focus on recent developments of MHPs in photocatalyzing various organic synthesis reactions, such as oxidation, cyclization, C-C coupling etc., based on their classifications and reported reaction types. Finally, we discuss the main limitations and prospects regarding the application of metal halide perovskites in organic synthesis.
Collapse
Affiliation(s)
- Chunpei Yan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Yan Qian
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhaohong Liao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China.
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
13
|
Cortés-Villena A, Bellezza D, Cunha C, Rosa-Pardo I, Seijas-Da Silva Á, Pina J, Abellán G, Seixas de Melo JS, Galian RE, Pérez-Prieto J. Engineering Metal Halide Perovskite Nanocrystals with BODIPY Dyes for Photosensitization and Photocatalytic Applications. J Am Chem Soc 2024; 146:14479-14492. [PMID: 38572736 PMCID: PMC11140745 DOI: 10.1021/jacs.3c14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
The sensitization of surface-anchored organic dyes on semiconductor nanocrystals through energy transfer mechanisms has received increasing attention owing to their potential applications in photodynamic therapy, photocatalysis, and photon upconversion. Here, we investigate the sensitization mechanisms through visible-light excitation of two nanohybrids based on CsPbBr3 perovskite nanocrystals (NC) functionalized with borondipyrromethene (BODIPY) dyes, specifically 8-(4-carboxyphenyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BDP) and 8-(4-carboxyphenyl)-2,6-diiodo-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (I2-BDP), named as NC@BDP and NC@I2-BDP, respectively. The ability of I2-BDP dyes to extract hot hole carriers from the perovskite nanocrystals is comprehensively investigated by combining steady-state and time-resolved fluorescence as well as femtosecond transient absorption spectroscopy with spectroelectrochemistry and quantum chemical theoretical calculations, which together provide a complete overview of the phenomena that take place in the nanohybrid. Förster resonance energy transfer (FRET) dominates (82%) the photosensitization of the singlet excited state of BDP in the NC@BDP nanohybrid with a rate constant of 3.8 ± 0.2 × 1010 s-1, while charge transfer (64%) mediated by an ultrafast charge transfer rate constant of 1.00 ± 0.08 × 1012 s-1 from hot states and hole transfer from the band edge is found to be mainly responsible for the photosensitization of the triplet excited state of I2-BDP in the NC@I2-BDP nanohybrid. These findings suggest that the NC@I2-BDP nanohybrid is a unique energy transfer photocatalyst for oxidizing α-terpinene to ascaridole through singlet oxygen formation.
Collapse
Affiliation(s)
- Alejandro Cortés-Villena
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Delia Bellezza
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Carla Cunha
- CQC-IMS,
Department of Chemistry, University of Coimbra, Coimbra P-3004-535, Portugal
| | - Ignacio Rosa-Pardo
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Álvaro Seijas-Da Silva
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - João Pina
- CQC-IMS,
Department of Chemistry, University of Coimbra, Coimbra P-3004-535, Portugal
| | - Gonzalo Abellán
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | | | - Raquel E. Galian
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
14
|
Li Q, Wu K, Zhu H, Yang Y, He S, Lian T. Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals. Chem Rev 2024; 124:5695-5763. [PMID: 38629390 PMCID: PMC11082908 DOI: 10.1021/acs.chemrev.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/09/2024]
Abstract
The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.
Collapse
Affiliation(s)
- Qiuyang Li
- Department
of Physics, University of Michigan, 450 Church St, Ann Arbor, Michigan 48109, United States
| | - Kaifeng Wu
- State
Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiming Zhu
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ye Yang
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM
(Collaborative Innovation Center of Chemistry for Energy Materials),
College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng He
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Zhu Y, Zhang J. Antimony-Based Halide Perovskite Nanoparticles as Lead-Free Photocatalysts for Controlled Radical Polymerization. Macromol Rapid Commun 2024; 45:e2300695. [PMID: 38350418 DOI: 10.1002/marc.202300695] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Metal halide perovskites have emerged as versatile photocatalysts to convert solar energy for chemical processes. Perovskite photocatalyzed polymerization draws special attention due to its straightforward synthesis process and the ability to create advanced perovskite-polymer nanocomposites. Herein, this work employs Cs3Sb2Br9 perovskite nanoparticles (NPs) as a lead-free photocatalyst for light-controlled atom transfer radical polymerization (ATRP). Cs3Sb2Br9 NPs exhibit high reduction potential and interact with electronegative bromide initiator with Lewis acid Sb sites, enabling efficient photoinduced reduction of initiators and controlled polymerization under blue light irradiation. Methacrylate monomers with various functional groups are successfully polymerized, and the resulting polymer showcased a dispersity (Đ) as small as 1.27. The living nature of polymerization is confirmed by high chain end fidelity and kinetic studies. Moreover, Cs3Sb2Br9 NPs serve as heterogeneous photocatalysts, demonstrating recyclability and reusability for up to four cycles. This work presents a promising approach to overcome the limitations of lead-based perovskites in photoinduced controlled radical polymerization, offering a sustainable and efficient alternative for the synthesis of well-defined polymeric materials.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas, 77005, USA
| | - Jiahui Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
16
|
Conelli D, Matuhina A, Dibenedetto CN, Grandhi GK, Margiotta N, Fanizza E, Striccoli M, Vivo P, Suranna GP, Grisorio R. Surface-Engineered Cesium Lead Bromide Perovskite Nanocrystals for Enabling Photoreduction Activity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38660951 DOI: 10.1021/acsami.4c02071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In recent years, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have exhibited such intriguing light absorption properties to be contemplated as promising candidates for photocatalytic conversions. However, for effective photocatalysis, the light harvesting system needs to be stable under the reaction conditions propaedeutic to a specific transformation. Unlike photoinduced oxidative reaction pathways, photoreductions with LHP NCs are challenging due to their scarce compatibility with common hole scavengers like amines and alcohols. In this contribution, it is investigated the potential of CsPbBr3 NCs protected by a suitably engineered bidentate ligand for the photoreduction of quinone species. Using an in situ approach for the construction of the passivating agent and a halide excess environment, quantum-confined nanocubes (average edge length = 6.0 ± 0.8 nm) are obtained with a low ligand density (1.73 ligand/nm2) at the NC surface. The bifunctional adhesion of the engineered ligand boosts the colloidal stability of the corresponding NCs, preserving their optical properties also in the presence of an amine excess. Despite their relatively short exciton lifetime (τAV = 3.7 ± 0.2 ns), these NCs show an efficient fluorescence quenching in the presence of the selected electron accepting quinones (1,4-naphthoquinone, 9,10-phenanthrenequinone, and 9,10-anthraquinone). All of these aspects demonstrate the suitability of the NCs for an efficient photoreduction of 1,4-naphthoquinone to 1,4-dihydroxynaphthalene in the presence of triethylamine as a hole scavenger. This chemical transformation is impracticable with conventionally passivated LHP NCs, thereby highlighting the potential of the surface functionalization in this class of nanomaterials for exploring new photoinduced reactivities.
Collapse
Affiliation(s)
- Daniele Conelli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Anastasia Matuhina
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | | | - G Krishnamurthy Grandhi
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Nicola Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Elisabetta Fanizza
- CNR IPCF─Istituto per i Processi Chimico Fisici, UOS Bari, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Bari Research Unit, 70126, Bari, Italy
| | - Marinella Striccoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Bari Research Unit, 70126, Bari, Italy
| | - Paola Vivo
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Gian Paolo Suranna
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
- CNR-NANOTEC - Institute of Nanotechnology, c/o Campus Ecoteckne, Via Monteroni, 73100 Lecce, Italy
| | - Roberto Grisorio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
17
|
Wang W, Yang W, Zhang Z, Dai J, Xu Y, Zhang J. Amplifying dual-visible-light photoswitching in aqueous media via confinement promoted triplet-triplet energy transfer. Chem Sci 2024; 15:5539-5547. [PMID: 38638239 PMCID: PMC11023046 DOI: 10.1039/d4sc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Achieving visible-light photochromism is a long-term goal of chemists keen to exploit the opportunities of molecular photoswitches in multi-disciplinary research studies. Triplet-sensitization offers a flexible approach to building diverse visible-light photoswitches using existing photochromic scaffolds, circumventing the need for sophisticated molecular design and synthesis. Unfortunately, distance-dependence and environment-sensitivity of triplet-excited species remain as key challenges that severely impair sensitization efficiency and limit their practical availability. We present herein a nature-inspired nanoconfinement strategy in which a triplet-sensitized visible-light photoswitch/sensitizer system is assembled into nanoconfined micelles (d ∼ 40 nm). A ca. 10-fold efficiency increase of triplet-triplet energy transfer for photochromism as well as an amplified fluorescence on/off contrast upon bi-directional visible-light excitation (470/560 nm) was achieved in full aqueous media. By virtue of this, the hybrid photoswitchable system is successfully applied for both flash information encryption and multiple dynamic cell imaging assays, further proving its versatility in materials and life science.
Collapse
Affiliation(s)
- Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Weixin Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
18
|
Feld LG, Boehme SC, Morad V, Sahin Y, Kaul CJ, Dirin DN, Rainò G, Kovalenko MV. Quantifying Förster Resonance Energy Transfer from Single Perovskite Quantum Dots to Organic Dyes. ACS NANO 2024; 18:9997-10007. [PMID: 38547379 PMCID: PMC11008358 DOI: 10.1021/acsnano.3c11359] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Colloidal quantum dots (QDs) are promising regenerable photoredox catalysts offering broadly tunable redox potentials along with high absorption coefficients. QDs have thus far been examined for various organic transformations, water splitting, and CO2 reduction. Vast opportunities emerge from coupling QDs with other homogeneous catalysts, such as transition metal complexes or organic dyes, into hybrid nanoassemblies exploiting energy transfer (ET), leveraging a large absorption cross-section of QDs and long-lived triplet states of cocatalysts. However, a thorough understanding and further engineering of the complex operational mechanisms of hybrid nanoassemblies require simultaneously controlling the surface chemistry of the QDs and probing dynamics at sufficient spatiotemporal resolution. Here, we probe the ET from single lead halide perovskite QDs, capped by alkylphospholipid ligands, to organic dye molecules employing single-particle photoluminescence spectroscopy with single-photon resolution. We identify a Förster-type ET by spatial, temporal, and photon-photon correlations in the QD and dye emission. Discrete quenching steps in the acceptor emission reveal stochastic photobleaching events of individual organic dyes, allowing a precise quantification of the transfer efficiency, which is >70% for QD-dye complexes with strong donor-acceptor spectral overlap. Our work explores the processes occurring at the QD/molecule interface and demonstrates the feasibility of sensitizing organic photocatalysts with QDs.
Collapse
Affiliation(s)
- Leon G. Feld
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Simon C. Boehme
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Viktoriia Morad
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Yesim Sahin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Christoph J. Kaul
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Dmitry N. Dirin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
19
|
Feng J, Mak CH, Yu L, Han B, Shen HH, Santoso SP, Yuan M, Li FF, Song H, Colmenares JC, Hsu HY. Structural Modification Strategies, Interfacial Charge-Carrier Dynamics, and Solar Energy Conversion Applications of Organic-Inorganic Halide Perovskite Photocatalysts. SMALL METHODS 2024; 8:e2300429. [PMID: 37381684 DOI: 10.1002/smtd.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Over the past few decades, organic-inorganic halide perovskites (OIHPs) as novel photocatalyst materials have attracted intensive attention for an impressive variety of photocatalytic applications due to their excellent photophysical (chemical) properties. Regarding practical application and future commercialization, the air-water stability and photocatalytic performance of OIHPs need to be further improved. Accordingly, studying modification strategies and interfacial interaction mechanisms is crucial. In this review, the current progress in the development and photocatalytic fundamentals of OIHPs is summarized. Furthermore, the structural modification strategies of OIHPs, including dimensionality control, heterojunction design, encapsulation techniques, and so on for the enhancement of charge-carrier transfer and the enlargement of long-term stability, are elucidated. Subsequently, the interfacial mechanisms and charge-carrier dynamics of OIHPs during the photocatalytic process are systematically specified and classified via diverse photophysical and electrochemical characterization methods, such as time-resolved photoluminescence measurements, ultrafast transient absorption spectroscopy, electrochemical impedance spectroscopy measurements, transient photocurrent densities, and so forth. Eventually, various photocatalytic applications of OIHPs, including hydrogen evolution, CO2 reduction, pollutant degradation, and photocatalytic conversion of organic matter.
Collapse
Affiliation(s)
- Jianpei Feng
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Chun Hong Mak
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Li Yu
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Shella Permatasari Santoso
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya, East Java, 60114, Indonesia
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Fang-Fang Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Haisheng Song
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | | | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
20
|
Chakkamalayath J, Martin LE, Kamat PV. Extending Infrared Emission via Energy Transfer in a CsPbI 3-Cyanine Dye Hybrid. J Phys Chem Lett 2024; 15:401-407. [PMID: 38176062 DOI: 10.1021/acs.jpclett.3c03144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Directing energy flow in light harvesting assemblies of nanocrystal-chromophore hybrid systems requires a better understanding of factors that dictate excited-state processes. In this study, we explore excited-state interactions within the CsPbI3-cyanine dye (IR125) hybrid assembly through a comprehensive set of steady-state and time-resolved absorption and photoluminescence (PL) experiments. Our photoluminescence investigations reveal the quenching of CsPbI3 emission alongside the simultaneous enhancement of IR125 fluorescence, providing evidence for a singlet energy transfer. The evaluation of both photoluminescence (PL) quenching and PL decay measurements yield ∼94% energy transfer efficiency for the CsPbI3-IR125 hybrid assembly. Transient absorption spectroscopy further unveils that this singlet energy transfer process operates on an ultrafast time scale, occurring within 400 ps with a rate constant of energy transfer of 1.4 × 1010 s-1. Our findings highlight the potential of the CsPbI3-IR125 hybrid assembly to extend the emission of halide perovskites into the infrared region, paving the way for light energy harvesting and display applications.
Collapse
Affiliation(s)
- Jishnudas Chakkamalayath
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lauren E Martin
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
21
|
Jagadeeswararao M, Galian RE, Pérez-Prieto J. Photocatalysis Based on Metal Halide Perovskites for Organic Chemical Transformations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:94. [PMID: 38202549 PMCID: PMC10780689 DOI: 10.3390/nano14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Heterogeneous photocatalysts incorporating metal halide perovskites (MHPs) have garnered significant attention due to their remarkable attributes: strong visible-light absorption, tuneable band energy levels, rapid charge transfer, and defect tolerance. Additionally, the promising optical and electronic properties of MHP nanocrystals can be harnessed for photocatalytic applications through controlled crystal structure engineering, involving composition tuning via metal ion and halide ion variations, dimensional tuning, and surface chemistry modifications. Combination of perovskites with other materials can improve the photoinduced charge separation and charge transfer, building heterostructures with different band alignments, such as type-II, Z-scheme, and Schottky heterojunctions, which can fine-tune redox potentials of the perovskite for photocatalytic organic reactions. This review delves into the activation of organic molecules through charge and energy transfer mechanisms. The review further investigates the impact of crystal engineering on photocatalytic activity, spanning a diverse array of organic transformations, such as C-X bond formation (X = C, N, and O), [2 + 2] and [4 + 2] cycloadditions, substrate isomerization, and asymmetric catalysis. This study provides insights to propel the advancement of metal halide perovskite-based photocatalysts, thereby fostering innovation in organic chemical transformations.
Collapse
Affiliation(s)
| | - Raquel E. Galian
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| | - Julia Pérez-Prieto
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
22
|
Luo S, Zhang Y, Zhu Y, Wang XJ, Ran X, He Y, Kuang Y, Chi Z, Guo L. Size-Regulated Hole and Triplet Energy Transfer from CdSe Quantum Dots to Organic Acceptors for Enhancing Singlet Oxygen Generation. Inorg Chem 2023; 62:19087-19095. [PMID: 37934916 DOI: 10.1021/acs.inorgchem.3c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Triplet energy transfer (TET) from semiconductor quantum dots (QDs) is an emerging strategy for sensitizing molecular triplets that have great potential in many applications. Here, CdSe QDs with varying sizes and 1-pyrenecarboxylic acid (PCA) are selected as the triplet donor and acceptor, respectively, to study the TET and charge transfer dynamics as well as enhanced singlet oxygen (1O2) generation properties. The results from static and transient spectroscopy measurements demonstrate that both the TET and hole transfer occur at the QDs-PCA interface. The observed significant drop in TET efficiency from 52 to 8% with increasing QD size results from the reduced TET driving force between the QDs and PCA, which is further confirmed by the more efficient sensitization of the anthracene derivative with a large TET driving force. In contrast, the hole transfer efficiency displays a small decrease with an increasing QD size due to a slight change in the hole driving force. The sensitized PCA triplets show a good ability of 1O2 generation, and the 1O2 formation rate increases 10-fold as the QD size decreases from 3.3 to 2.4 nm. These findings provide a profound understanding of the TET and hole transfer mechanism from QDs to molecules and are significant in designing efficient 1O2 generation systems based on semiconductor QDs and triplet molecules.
Collapse
Affiliation(s)
- Shida Luo
- School of Physics and Electronics, Academy for Advanced Interdisciplinary Studies, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yuting Zhang
- School of Physics and Electronics, Academy for Advanced Interdisciplinary Studies, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yanshen Zhu
- School of Physics and Electronics, Academy for Advanced Interdisciplinary Studies, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Xiao-Juan Wang
- School of Physics and Electronics, Academy for Advanced Interdisciplinary Studies, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Xia Ran
- School of Physics and Electronics, Academy for Advanced Interdisciplinary Studies, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yulu He
- School of Physics and Electronics, Academy for Advanced Interdisciplinary Studies, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yanmin Kuang
- School of Physics and Electronics, Academy for Advanced Interdisciplinary Studies, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Zhen Chi
- School of Physics and Electronics, Academy for Advanced Interdisciplinary Studies, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Lijun Guo
- School of Physics and Electronics, Academy for Advanced Interdisciplinary Studies, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| |
Collapse
|
23
|
Gollino L, Mercier N, Pauporté T. Exploring Solar Cells Based on Lead- and Iodide-Deficient Halide Perovskite (d-HP) Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1245. [PMID: 37049339 PMCID: PMC10096836 DOI: 10.3390/nano13071245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Perovskite solar cells have become more and more attractive and competitive. However, their toxicity induced by the presence of lead and their rather low stability hinders their potential and future commercialization. Reducing lead content while improving stability then appears as a major axis of development. In the last years, we have reported a new family of perovskite presenting PbI+ unit vacancies inside the lattice caused by the insertion of big organic cations that do not respect the Goldschmidt tolerance factor: hydroxyethylammonium HO-(CH2)2-NH3+ (HEA+) and thioethylammonium HS-(CH2)2-NH3+ (TEA+). These perovskites, named d-HPs for lead and halide-deficient perovskites, present a 3D perovskite corner-shared Pb1-xI3-x network that can be assimilated to a lead-iodide-deficient MAPbI3 or FAPbI3 network. Here, we propose the chemical engineering of both systems for solar cell optimization. For d-MAPbI3-HEA, the power conversion efficiency (PCE) reached 11.47% while displaying enhanced stability and reduced lead content of 13% compared to MAPbI3. On the other hand, d-FAPbI3-TEA delivered a PCE of 8.33% with astounding perovskite film stability compared to classic α-FAPI. The presence of TEA+ within the lattice impedes α-FAPI degradation into yellow δ-FAPbI3 by direct degradation into inactive Pb(OH)I, thus dramatically slowing the aging of d-FAPbI3-TEA perovskite.
Collapse
Affiliation(s)
- Liam Gollino
- Institut de Recherche de Chimie-Paris (IRCP), UMR8247, CNRS, Chimie-ParisTech, PSL Université, 11 rue Pierre et Marie Curie, CEDEX 5, 75231 Paris, France
| | - Nicolas Mercier
- MOLTECH-Anjou, UMR 6200, University of Angers, 2 boulevard de Lavoisier, 49045 Angers, France
| | - Thierry Pauporté
- Institut de Recherche de Chimie-Paris (IRCP), UMR8247, CNRS, Chimie-ParisTech, PSL Université, 11 rue Pierre et Marie Curie, CEDEX 5, 75231 Paris, France
| |
Collapse
|
24
|
He S, Du J, Liang W, Zhang B, Liang G, Wu K. Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202217287. [PMID: 36517417 DOI: 10.1002/anie.202217287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
As an analogue to thermally activated delayed fluorescence (TADF) of organic molecules, thermally activated delayed photoluminescence (TADPL) observed in molecule-functionalized semiconductor nanocrystals represents an exotic mechanism to harvest energy from dark molecular triplets and to obtain controllable, long-lived PL from nanocrystals. The reported TADPL systems have successfully covered the visible spectrum. However, TADF molecules already emit very efficiently in the visible, diminishing the technological impact of the less-efficient nanocrystal-molecule TADPL. Here we report bright, near-infrared TADPL in lead-free CuInSe2 nanocrystals functionalized with carboxylated tetracene ligands, which results from efficient triplet energy transfer from photoexcited nanocrystals to ligands, followed with thermally activated reverse energy transfer from ligand triplets back to nanocrystals. This strategy prolonged the nanocrystal exciton lifetime from 100 ns to 60 μs at room temperature.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jun Du
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenfei Liang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Boyu Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
25
|
Weiss R, VanOrman ZA, Sullivan CM, Nienhaus L. A Sensitizer of Purpose: Generating Triplet Excitons with Semiconductor Nanocrystals. ACS MATERIALS AU 2022; 2:641-654. [PMID: 36855545 PMCID: PMC9928406 DOI: 10.1021/acsmaterialsau.2c00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
The process of photon upconversion promises importance for many optoelectronic applications, as it can result in higher efficiencies and more effective photon management. Upconversion via triplet-triplet annihilation (TTA) occurs at low incident powers and at high efficiencies, requirements for integration into existing optoelectronic devices. Semiconductor nanocrystals are a diverse class of triplet sensitizers with advantages over traditional molecular sensitizers such as energetic tunability and minimal energy loss during the triplet sensitization process. In this Perspective, we review current progress in semiconductor nanocrystal triplet sensitization, specifically focusing on the nanocrystal, the ligand shell which surrounds the nanocrystal, and progress in solid-state sensitization. Finally, we discuss potential areas of improvement which could result in more efficient upconversion systems sensitized by semiconductor nanocrystals. Specifically, we focus on the development of solid-state TTA upconversion systems, elucidation of the energy transfer mechanisms from nanocrystal to transmitter ligand which underpin the upconversion process and propose novel configurations of nanocrystal-sensitized systems.
Collapse
|