1
|
Ju X, Javorková E, Michalička J, Pumera M. Single-Atom Colloidal Nanorobotics Enhanced Stem Cell Therapy for Corneal Injury Repair. ACS NANO 2025; 19:19095-19115. [PMID: 40359418 PMCID: PMC12120985 DOI: 10.1021/acsnano.4c18874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Corneal repair using mesenchymal stem cell therapy faces challenges due to long-term cell survival issues. Here, we design cerium oxide with gold single-atom-based nanorobots (CeSAN-bots) for treating corneal damage in a synergistic combination with stem cells. Powered by glucose, CeSAN-bots exhibit enhanced diffusion and active motion due to the cascade reaction catalyzed by gold and cerium oxide. CeSAN-bots demonstrate a two-fold increase in cellular uptake efficiency into mesenchymal stem cells compared to passive uptake. CeSAN-bots possess intrinsic antioxidant and immunomodulatory properties, promoting corneal regeneration. Validation in a mouse corneal alkali burn model reveals an improvement in corneal clarity restoration when stem cells are incorporated with CeSAN-bots. This work presents a strategy for developing glucose-driven, enzyme-free, single-atom-based ultrasmall nanorobots with promising applications in targeted intracellular delivery in diverse biological environments.
Collapse
Affiliation(s)
- Xiaohui Ju
- Future Energy
and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno61200, Czech Republic
| | - Eliška Javorková
- Department
of Toxicology and Molecular Epidemiology, Institute of Experimental
Medicine, Academy of Sciences of the Czech
Republic, Vídeňská 1083, Prague14200, Czech Republic
- Department
of Cell Biology, Faculty of Science, Charles
University, Viničná
7, Prague12844, Czech Republic
| | - Jan Michalička
- Central European
Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno61200, Czech Republic
| | - Martin Pumera
- Future Energy
and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno61200, Czech Republic
- Advanced
Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical
Engineering and Computer Science, VSB-Technical
University of Ostrava, 17. listopadu 2172/15, Ostrava70800, Czech Republic
- Department
of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung40402, Taiwan
| |
Collapse
|
2
|
Zhao J, Wang B, Yan M, Liu Y, Zhao R, Wang X, Shao T, Li Y, Imran M, Ji M, Zhao H, Guimarães CF, Li G, Zhou Q, Reis RL. Progress in enzyme-powered micro/nanomotors in diagnostics and therapeutics. Bioact Mater 2025; 46:555-568. [PMID: 39896991 PMCID: PMC11782855 DOI: 10.1016/j.bioactmat.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/21/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Enzyme-powered micro/nanomotors (EMNMs) represent cutting-edge research taking advantage of enzymes as biocatalysts to provide a driving force for micro/nanomotors. Up to now, EMNMs have been designed to be powered by catalase, urease, lipase, collagenase, compound enzymes, etc. They not only have good biocompatibility and biosafety but also possess the unique ability to utilize physiologically relevant fuel to achieve autonomous propulsion through in vivo catalytic reactions. This innovation has opened exciting possibilities for medical applications of EMNMs. Given the fact that the human body is naturally abundant with substrates available for enzymatic reactions, EMNMs can effectively exploit the complex microenvironment associated with diseases, enabling the diagnosis and treatment of various medical conditions. In this review, we first introduce different kinds of EMNMs applied in specific environments for the diagnosis and treatment of diseases, while highlighting their advancements for revolutionizing healthcare practices. Then, we address the challenges faced in this rapidly evolving field, and at last, the potential future development directions are discussed. As the potential of EMNMs becomes increasingly evident, continued research and exploration are essential to unlock their full capabilities and to ensure their successful integration into clinical applications.
Collapse
Affiliation(s)
- Jinpeng Zhao
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Banghui Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Mingzhe Yan
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Yuxin Liu
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Ruizhe Zhao
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Xuezhe Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Tianyi Shao
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Yifei Li
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Muhammad Imran
- Department of Biosciences, COMSATS University, Islamabad Park Road, Islamabad, Pakistan
| | - Mingze Ji
- School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Hong Zhao
- Department of Bone, Huangdao District Central Hospital, Qingdao, 266555, China
| | - Carlos F. Guimarães
- 3B's Research Group-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, 4805-017, Portugal
- ICVS/3B's – Portuguese Government Associate Laboratory, University of Minho, Braga, Guimarães, Portugal
| | - Guotai Li
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Rui L. Reis
- 3B's Research Group-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, 4805-017, Portugal
- ICVS/3B's – Portuguese Government Associate Laboratory, University of Minho, Braga, Guimarães, Portugal
| |
Collapse
|
3
|
Bujalance-Fernández J, Carro E, Jurado-Sánchez B, Escarpa A. Biocatalytic ZIF-8 surface-functionalized micromotors navigating in the cerebrospinal fluid: toward Alzheimer management. NANOSCALE 2024; 16:20917-20924. [PMID: 39469769 DOI: 10.1039/d4nr02044h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Alzheimer's disease (AD) is the major cause of irreversible dementia in the elderly population worldwide and one of the major causes of the decrease in the quality of life. Efficient diagnosis and monitoring would allow a fast treatment to delay the appearance of symptoms. Herein, zeolitic imidazole framework (ZIF-8)@Au@catalase micromotors are described for motion-based sensing of copper as a marker of AD. The synthesis design was based on enzyme covalent immobilization instead of encapsulation to maximize the contact with the sample at the microscale for the potential use of extremely low AD-diagnosed sample volumes. The micromotors are prepared by asymmetric modification of ZIF-8 with a gold layer for functionalization of catalase as a compatible biocatalyst. The micromotors can propel at speeds of up to 287 ± 41 μm s-1 in cerebrospinal fluid (CSF) samples of healthy volunteers. Yet, in the presence of copper, catalase poisoning results in a decrease in the speed that can be monitored for motion-based sensing detection, as illustrated in the analysis of CSF samples from AD patients from mild to severe stages (Braak III to Braak VI). The copper-mediated modulation of catalase activity proposed here as an indicator of progression states in AD disease possesses distinct advantages such as ultrafast analysis (less than 1 min) and requiring only 1 μL of sample, holding considerable promise as a supporting prescreening tool for fast diagnosis of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- J Bujalance-Fernández
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
| | - E Carro
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
- CIBERNED, Madrid, Spain
| | - B Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
- Chemical Research Institute "Andres M. del Rio", Universidad de Alcala, E-28802, Madrid, Spain
| | - A Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
- Chemical Research Institute "Andres M. del Rio", Universidad de Alcala, E-28802, Madrid, Spain
| |
Collapse
|
4
|
Lu SM, Wang HW, Chen M, Xie BK, Long YT. Unlocking Single Particle Anisotropy in Real-Time for Photoelectrochemistry Processes at the Nanoscale. Angew Chem Int Ed Engl 2024; 63:e202404170. [PMID: 38781086 DOI: 10.1002/anie.202404170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The key to rationally and rapidly designing high-performance materials is the monitoring and comprehension of dynamic processes within individual particles in real-time, particularly to gain insight into the anisotropy of nanoparticles. The intrinsic property of nanoparticles typically varies from one crystal facet to the next under realistic working conditions. Here, we introduce the operando collision electrochemistry to resolve the single silver nanoprisms (Ag NPs) anisotropy in photoelectrochemistry. We directly identify the effect of anisotropy on the plasmonic-assisted electrochemistry at the single NP/electrolyte interface. The statistical collision frequency shows that heterogeneous diffusion coefficients among crystal facets facilitate Ag NPs to undergo direction-dependent mass transfer toward the gold ultramicroelectrode. Subsequently, the current amplitudes of transient events indicate that the anisotropy enables variations in dynamic interfacial electron transfer behaviors during photothermal processes. The results presented here demonstrate that the measurement precision of collision electrochemistry can be extended to the sub-nanoparticle level, highlighting the potential for high-throughput material screening with comprehensive kinetics information at the nanoscale.
Collapse
Affiliation(s)
- Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Hao-Wei Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Mengjie Chen
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R.China
| |
Collapse
|
5
|
Lu SM, Chen M, Wen H, Zhong CB, Wang HW, Yu Z, Long YT. Hydrodynamics-Controlled Single-Particle Electrocatalysis. J Am Chem Soc 2024; 146:15053-15060. [PMID: 38776531 DOI: 10.1021/jacs.3c14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Electrocatalysis is considered promising in renewable energy conversion and storage, yet numerous efforts rely on catalyst design to advance catalytic activity. Herein, a hydrodynamic single-particle electrocatalysis methodology is developed by integrating collision electrochemistry and microfluidics to improve the activity of an electrocatalysis system. As a proof-of-concept, hydrogen evolution reaction (HER) is electrocatalyzed by individual palladium nanoparticles (Pd NPs), with the development of microchannel-based ultramicroelectrodes. The controlled laminar flow enables the precise delivery of Pd NPs to the electrode-electrolyte interface one by one. Compared to the diffusion condition, hydrodynamic collision improves the number of active sites on a given electrode by 2 orders of magnitude. Furthermore, forced convection enables the enhancement of proton mass transport, thereby increasing the electrocatalytic activity of each single Pd NP. It turns out that the improvement in mass transport increases the reaction rate of HER at individual Pd NPs, thus a phase transition without requiring a high overpotential. This study provides new avenues for enhancing electrocatalytic activity by altering operating conditions, beyond material design limitations.
Collapse
Affiliation(s)
- Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjie Chen
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huilin Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng-Bing Zhong
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao-Wei Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Shukla AK, Bhandari S, Mitra S, Kim B, Dey KK. Buoyancy-Driven Micro/-Nanomotors: From Fundamentals to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308580. [PMID: 38225699 DOI: 10.1002/smll.202308580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/30/2023] [Indexed: 01/17/2024]
Abstract
The progression of self-powered micro/-nanomotors (MNMs) has rapidly evolved over the past few decades, showing applications in various fields such as nanotechnology, biomedical engineering, microfluidics, environmental science, and energy harvesting. Miniaturized MNMs transduce chemical/biochemical energies into mechanical motion for navigating through complex fluidic environments with directional control via external forces fields such as magnetic, photonic, and electric stimuli. Among various propulsion mechanisms, buoyancy-driven MNMs have received noteworthy recognition due to their simplicity, efficiency, and versatility. Buoyancy force-driven motors harness the principles of density variation-mediated force to overcome fluidic resistance to navigate through complex environments. Restricting the propulsion in one direction helps to control directional movement, making it more efficient in isotropic solutions. The changes in pH, ionic strength, chemical concentration, solute gradients, or the presence of specific molecules can influence the motion of buoyancy-driven MNMs as evidenced by earlier reports. This review aims to provide a fundamental and detailed analysis of the current state-of-the-art in buoyancy-driven MNMs, aiming to inspire further research and innovation in this promising field.
Collapse
Affiliation(s)
- Ashish Kumar Shukla
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat, 382055, India
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
| | - Satyapriya Bhandari
- Department of Chemistry, Kandi Raj College, University of Kalyani, Murshidabad, Kandi, West Bengal, 742137, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382007, India
| | - Byungki Kim
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
- Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
| | - Krishna Kanti Dey
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat, 382055, India
| |
Collapse
|
7
|
Fujita R, Matsuo M, Nakata S. Self-propelled object that generates a boundary with amphiphiles at an air/aqueous interface. J Colloid Interface Sci 2024; 663:329-335. [PMID: 38402826 DOI: 10.1016/j.jcis.2024.02.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
A benzoic acid (BA) disk was investigated as a novel self-propelled object whose driving force was the difference in surface tension. 4-Stearoyl amidobenzoic acid (SABA) was synthesized as an amphiphile to control the nature of motion based on intermolecular interactions between BA and SABA. The BA disk exhibited characteristic motion depending on the surface density of the SABA on the aqueous phase, that is, reciprocating motion as a one-dimensional motion and restricted and unrestricted motion as a two-dimensional motion. The trajectory of the reciprocating motion was determined by the initial direction of motion, and the boundary between an aqueous surface and the BA-SABA condensed molecular layer was used as the field's boundary. The presented results indicate that the characteristic nature of motion can be designed at the molecular level based on the intermolecular interactions between an energy-source molecule and an amphiphile.
Collapse
Affiliation(s)
- Risa Fujita
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Muneyuki Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
8
|
Wang N, Floriano Marcelino T, Ade C, Pendlmayr S, Ramos Docampo MA, Städler B. Collagenase motors in gelatine-based hydrogels. NANOSCALE 2024; 16:9935-9943. [PMID: 38690802 DOI: 10.1039/d3nr05712g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Nano/micromotors outperform Brownian motion due to their self-propulsive capabilities and hold promise as carriers for drug delivery across biological barriers such as the extracellular matrix. This study employs poly(2-(diethylamino)ethyl methacrylate) polymer brushes to enhance the collagenase-loading capacity of silica particle-based motors with the aim to systematically investigate the impact of gelatine viscosity, motors' size, and morphology on their propulsion velocity. Notably, 500 nm and 1 μm motors achieve similar speeds as high as ∼15 μm s-1 in stiff gelatine-based hydrogels when triggered with calcium. Taken together, our findings highlight the potential of collagenase-based motors for navigating the extracellular matrix, positioning them as promising candidates for efficient drug delivery.
Collapse
Affiliation(s)
- Nanying Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.
| | - Thaís Floriano Marcelino
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Carina Ade
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.
| | - Stefan Pendlmayr
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.
| |
Collapse
|
9
|
Liu X, Wang Y, Wang L, Chen W, Ma X. Enzymatic Nanomotors Surviving Harsh Conditions Enabled by Metal Organic Frameworks Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305800. [PMID: 37991255 DOI: 10.1002/smll.202305800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Enzyme-driven micro/nanomotors (MNMs) have demonstrated potentials in the biomedical field because of their excellent biocompatibility, versatility, and fuel bioavailability. However, the fragility of enzymes limits their practical application, because of their susceptibility to denaturation and degradation in realistic scenarios. Herein, a simple yet versatile and effective approach is reported to preserve the enzymatic activity and propulsion capability of enzymatic MNMs under various harsh conditions using metal organic frameworks (MOFs) as a protective shell. Urease can be encapsulated within the exoskeleton of zeolitic imidazolate framework-8 (ZIF-8) via biomimetic mineralization to form ZIF-8@urease (ZU-I) nanomotors that exhibit self-propulsion in the presence of urea. When exposed to harsh conditions, including high temperature, presence of proteases, and organic solvents, the ZU-I nanomotors still maintained their activity and mobility, whereas ZIF-8 with externally modified urease (ZU-O) nanomotors with externally modified urease as a control rapidly lost their motion capabilities owing to the inactivation of urease. Furthermore, ZU-I nanomotors exhibit effectively enhanced diffusion within the small intestine fluid, achieving a fourfold higher mucus penetration than the ZU-O nanomotors. The results highlight the effectiveness of using MOFs as protective shells for enzyme nano-engines, which can greatly advance the practical applications of enzymatic MNMs under realistic conditions, especially for biomedical purpose.
Collapse
Affiliation(s)
- Xiaoxia Liu
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Yong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liying Wang
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Wenjun Chen
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
10
|
Huang H, Yang S, Ying Y, Chen X, Puigmartí-Luis J, Zhang L, Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305925. [PMID: 37801654 DOI: 10.1002/adma.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Li Zhang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
11
|
Guo Z, Zhuang C, Song Y, Yong J, Li Y, Guo Z, Kong B, Whitelock JM, Wang J, Liang K. Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment. NANO-MICRO LETTERS 2023; 15:236. [PMID: 37874411 PMCID: PMC10597912 DOI: 10.1007/s40820-023-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
Autonomously self-propelled nanoswimmers represent the next-generation nano-devices for bio- and environmental technology. However, current nanoswimmers generate limited energy output and can only move in short distances and duration, thus are struggling to be applied in practical challenges, such as living cell transportation. Here, we describe the construction of biodegradable metal-organic framework based nanobots with chemically driven buoyancy to achieve highly efficient, long-distance, directional vertical motion to "find-and-fetch" target cells. Nanobots surface-functionalized with antibodies against the cell surface marker carcinoembryonic antigen are exploited to impart the nanobots with specific cell targeting capacity to recognize and separate cancer cells. We demonstrate that the self-propelled motility of the nanobots can sufficiently transport the recognized cells autonomously, and the separated cells can be easily collected with a customized glass column, and finally regain their full metabolic potential after the separation. The utilization of nanobots with easy synthetic pathway shows considerable promise in cell recognition, separation, and enrichment.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China
| | - Chenchen Zhuang
- General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yihang Song
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China
| | - Joel Yong
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yi Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Zhong Guo
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - John M Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Liang
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
12
|
Su T, Guo J, He ZK, Zhao J, Gao Z, Song YY. Single-Nanoparticle-Level Understanding of Oxidase-like Activity of Au Nanoparticles on Polymer Nanobrush-Based Proton Reservoirs. Anal Chem 2023; 95:11807-11814. [PMID: 37497564 DOI: 10.1021/acs.analchem.3c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Enzyme-mimicking nanoparticles play a key role in important catalytic processes, from biosensing to energy conversion. Therefore, understanding and tuning their performance is crucial for making further progress in biological applications. We developed an efficient and sensitive electrochemical method for the real-time monitoring of the glucose oxidase (GOD)-like activity of single nanoparticle through collision events. Using brush-like sulfonate (-SO3-)-doped polyaniline (PANI) decorated on TiO2 nanotube arrays (TiNTs-SPANI) as the electrode, we fabricated a proton reservoir with excellent response and high proton-storage capacity for evaluating the oxidase-like activity of individual Au nanoparticles (AuNPs) via instantaneous collision processes. Using glucose electrocatalysis as a model reaction system, the GOD-like activity of individual AuNPs could be directly monitored via electrochemical tests through the nanoparticle collision-induced proton generation. Furthermore, based on the perturbation of the electrical double layer of SPANI induced by proton injection, we investigated the relationship between the measured GOD-like activities of the plasmonic nanoparticles (NPs) and the localized surface plasmon resonance (LSPR) as well as the environment temperature. This work introduces an efficient platform for understanding and characterizing the catalytic activities of nanozymes at the single-nanoparticle level.
Collapse
Affiliation(s)
- Tiantian Su
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Junli Guo
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Zhen-Kun He
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| |
Collapse
|
13
|
Liang J, Liang K. Nanobiohybrids: Synthesis strategies and environmental applications from micropollutants sensing and removal to global warming mitigation. ENVIRONMENTAL RESEARCH 2023:116317. [PMID: 37290626 DOI: 10.1016/j.envres.2023.116317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Micropollutants contamination and global warming are critical environmental issues that require urgent attention due to natural and anthropogenic activities posing serious threats to human health and ecosystems. However, traditional technologies (such as adsorption, precipitation, biodegradation, and membrane separation et al.) are facing challenges of low utilization efficiency of oxidants, poor selectivity, and complex in-situ monitoring operations. To address these technical bottlenecks, nanobiohybrids, synthesized by interfacing the nanomaterials and biosystems, have recently emerged as eco-friendly technologies. In this review, we summarize the synthesis approaches of nanobiohybrids and their utilization as emerging environmental technologies for addressing environmental problems. Studies demonstrate that enzymes, cells, and living plants can be integrated with a wide range of nanomaterials including reticular frameworks, semiconductor nanoparticles and single-walled carbon nanotubes. Moreover, nanobiohybrids demonstrate excellent performance for micropollutant removal, carbon dioxide conversion, and sensing of toxic metal ions and organic micropollutants. Therefore, nanobiohybrids are expected to be environmental friendly, efficient, and cost-effective techniques for addressing environmental micropollutants issues and mitigating global warming, benefiting both humans and ecosystems alike.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
14
|
Liu J, Jiang Y, Wen W, Zhang X, Wu Z, Wang S. Enhanced Single-Particle Collision Electrochemistry at Polysulfide-Functionalized Microelectrodes for SARS-CoV-2 Detection. ACS Sens 2023; 8:2011-2020. [PMID: 37083364 PMCID: PMC10157629 DOI: 10.1021/acssensors.3c00181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Single-particle collision electrochemistry (SPCE) has shown great promise in biosensing applications due to its high sensitivity, high flux, and fast response. However, a low effective collision frequency and a large number of interfering substances in complex matrices limit its broad application in clinical samples. Herein, a novel and universal SPCE biosensor was proposed to realize sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on the collision and oxidation of single silver nanoparticles (Ag NPs) on polysulfide-functionalized gold ultramicroelectrodes (Ps-Au UMEs). Taking advantage of the strong interaction of the Ag-S bond, collision and oxidation of Ag NPs on the Ps-Au UME surface could be greatly promoted to generate enhanced Faraday currents. Compared with bare Au UMEs, the collision frequency of Ps-Au UMEs was increased by 15-fold, which vastly improved the detection sensitivity and practicability of SPCE in biosensing. By combining magnetic separation, liposome encapsulation release, and DNAzyme-assisted signal amplification, the SPCE biosensor provided a dynamic range of 5 orders of magnitude for spike proteins with a detection limit of 6.78 fg/mL and a detection limit of 21 TCID50/mL for SARS-CoV-2. Furthermore, SARS-CoV-2 detection in nasopharyngeal swab samples of infected patients was successfully conducted, indicating the potential of the SPCE biosensor for use in clinically relevant diagnosis.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease
Control and Prevention, Wuhan 430079, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced
Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and
Application of Organic Functional Molecules, College of Chemistry and Chemical
Engineering, Hubei University, Wuhan 430062, PR
China
| |
Collapse
|
15
|
Xie Z, Wang S, Shen Y. Roles of clusters in the migration of fines through porous media. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|