1
|
Mo M, Wang F, Zhang H, Zhang Y, Yang C, Shang J, Zhu Z. Membrane-Bounded Intracellular E3 Ubiquitin Ligase-Targeting Chimeras (MembTACs) for Targeted Membrane Protein Degradation. Angew Chem Int Ed Engl 2025; 64:e202501857. [PMID: 40148237 DOI: 10.1002/anie.202501857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
Targeted protein degradation (TPD) represents a potent therapeutic strategy aimed at dismantling disease-associated target proteins. PROTAC is the most widely developed technique for intracellular protein degradation, while its degradation ability on membrane proteins has been hindered by the need for complex synthetic processes and limited permeability. In this study, we developed the membrane-bounded intracellular E3 ubiquitin ligase-targeting chimeras (MembTACs) that simultaneously recruit intracellular E3 ubiquitin ligase and bind to the desired membrane proteins for targeted degradation of membrane proteins. We demonstrate that the MembTACs can effectively utilize intracellular E3 ubiquitin ligase to degrade the therapeutically relevant membrane proteins of EpCAM and Met via the proteasome pathway. We anticipate that the new platform will expand the range of PROTAC applications and provide a new dimension for targeted membrane protein degradation.
Collapse
Affiliation(s)
- Mengwu Mo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Feiyu Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Huiming Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, China
| | - Ying Zhang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, China
| | - Jinbiao Shang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Li L, Xie S, Zhou J, Ran J. Utilizing aptamers in targeted protein degradation strategies for disease therapy. J Pathol 2025; 266:134-143. [PMID: 40207978 DOI: 10.1002/path.6422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/27/2025] [Accepted: 02/26/2025] [Indexed: 04/11/2025]
Abstract
Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy, offering the potential to reduce disease-causing proteins that have traditionally been challenging to target using conventional small molecules. Despite significant advances made with TPD technologies, challenges such as high molecular weight, difficulties in identifying suitable ligands, suboptimal absorption, and metabolic instability remain unresolved. Recently, aptamers - single-stranded DNA or RNA oligonucleotides known for their high specificity and affinity for protein targets - have introduced novel opportunities to expand the scope of TPD, a strategy now referred to as aptamer-based TPD. This approach has demonstrated considerable promise in treating various diseases, such as cancer and ocular disorders. For example, an aptamer-proteolysis-targeting chimera (PROTAC) conjugate (APC) improved tumor targeting and reduced toxicity in a breast cancer model, and a vascular endothelial growth factor-degrading (VED)-lysosome-targeting chimera (LYTAC) molecule effectively inhibited abnormal vascular growth in vascular retinal diseases. These examples highlight the practical relevance and potential in advancing drug discovery efforts. In this review we provide a comprehensive overview of the latest advances in aptamer-based TPD strategies, including proteolysis-targeting and lysosome-targeting chimeras, emphasizing their applications, potential therapeutic benefits, as well as the challenges that must be overcome to fully harness their clinical potential. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, PR China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
| |
Collapse
|
3
|
Liu Y, Ran X, Zhou G, Liu Y, Tan W. Multivalent Aptamer Assembly Enhances Tumor-Specific Degradation of Transforming Growth Factor-Beta to Remodel the Stromal and Immunosuppressive Cancer Microenvironment. ACS NANO 2025; 19:18164-18175. [PMID: 40326636 DOI: 10.1021/acsnano.4c16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Extracellular proteins like transforming growth factor-β (TGFβ) are crucial enforcers in the development of cancer stroma and the tumor immunosuppressive microenvironment. Lysosome-targeting chimera-mediated protein degradation appeared as a promising tool for extracellular signal interference but was limited by several lysosome-trafficking receptors and inadequate in vivo degradation efficiency. Here, we designed a multivalent aptamer assembly with a universal pattern to drag extracellular proteins (e.g., TGFβ1) for lysosome degradation with high tumor specificity. By accelerating cell recognition-internalization and lysosomal delivery, the assembly promoted TGFβ blockade and degradation in pancreatic cancer cells and pancreatic stellate cells (PSCs). In vivo, the assembly exhibited highly tumor-specific accumulation and prolonged retention, which resulted in efficient TGFβ inhibition, stromal remodeling, and reversed polarization of immunosuppressive cells in the tumor microenvironment, as well as synergic therapeutic effects when combined with gemcitabine or ovalbumin. Therefore, this study provides a feasible strategy to construct a multivalent aptamer assembly for tumor-specific extracellular protein degradation, after remodeling the tumor stromal and immunosuppressive microenvironment in a manner that enhances the effects of cancer chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyue Ran
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
4
|
Cui J, Zheng Q, Weng Y, Zhai X, Su Z, Du Y, Wei X, Yu Y, Qu Q, Pan M. Structure-Guided Development of Chemically Tailored Peptide Binders of RNF43/ZNRF3 to Enable Versatile Design of Membrane Protein-Targeting PROTACs. Angew Chem Int Ed Engl 2025; 64:e202501488. [PMID: 40000409 DOI: 10.1002/anie.202501488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
Targeted membrane protein degradation using cell surface E3 ligases RNF43/ZNRF3 via proteolysis targeting chimeras (PROTACs) represents an effective strategy for treating membrane drug targets that cannot be fully inhibited using traditional inhibitors. Several ingenious chimeras have been developed to tether RNF43/ZNRF3 to target membrane proteins, resulting in the degradation of targets at sub-nanomolar concentrations both in vitro and in vivo. However, currently available RNF43/ZNRF3 binders are genetically encoded and have poor plasticity, which limits the design and promotion of such PROTACs. Here, we exploited the AlphaFold-predicted complex structures of ligand-bound RNF43/ZNRF3 and developed a class of chemically tailored peptide binders for ZNRF3/RNF43. With these peptide binders that can be conveniently prepared by de novo peptide synthesis, we established a new membrane protein degradation platform that allows versatile modular design and targeted degradation of clinically relevant membrane proteins, i.e., PD-L1 and EGFR. This study presents a new subtype within the PROTAC field to develop therapeutic peptides targeting membrane proteins.
Collapse
Affiliation(s)
- Jibin Cui
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingyun Zheng
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yicheng Weng
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Zhai
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Su
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunxiang Du
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxiong Wei
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Yu
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Qu
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center for Future Foods, Muyuan Laboratory, 110 Shangding, Road, Zhengzhou, Henan Province, 450016, China
| |
Collapse
|
5
|
Mamun MAA, Bakunts AG, Chernorudskiy AL. Targeted degradation of extracellular proteins: state of the art and diversity of degrader designs. J Hematol Oncol 2025; 18:52. [PMID: 40307925 PMCID: PMC12044797 DOI: 10.1186/s13045-025-01703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Selective elimination of proteins associated with the pathogenesis of diseases is an emerging therapeutic modality with distinct advantages over traditional inhibitor-based approaches. This strategy, called targeted protein degradation (TPD), is based on hijacking the cellular proteolytic machinery using chimeric degrader molecules that physically link the target protein of interest with the degradation effectors. The TPD era began with the development of PROteolysis TAtrgeting Chimeras (PROTACs) in 2001, with various methods and applications currently available. Classical PROTAC molecules are heterobifunctional chimeras linking target proteins with E3 ubiquitin ligases. This induced interaction leads to the ubiquitylation of the target protein, which is needed for its recognition and subsequent degradation by the cellular proteasomes. However, this technology is limited to intracellular proteins since the effectors involved (E3 ubiquitin ligases and proteasomes) are located in the cytosol. The related methods for selective destruction of proteins present in the extracellular space have only emerged recently and are collectively termed extracellular TPD (eTPD). The prototypic eTPD technology utilizes LYsosomal TArgeting Chimeras (LYTACs) that link extracellular target proteins (secreted or membrane-associated) to lysosome-targeting receptors (LTRs) on the cell surface. The resulting complex is then internalized by endocytosis and trafficked to lysosomes, where the target protein is degraded. The successful elimination of various extracellular proteins via LYTACs and related approaches has been reported, including several important targets in oncology that drive tumor growth and dissemination. This review summarizes current progress in the eTPD field and focuses primarily on the respective technological developments. It discusses the design principles and diversity of degrader molecules and the landscape of available targets and effectors that can be employed for eTPD. Finally, it emphasizes current open questions, challenges, and perspectives of this technological platform to promote the expansion of the eTPD toolkit and further development of its therapeutic applications.
Collapse
Affiliation(s)
- M A A Mamun
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Anush G Bakunts
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Alexander L Chernorudskiy
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China.
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, 20156, Italy.
| |
Collapse
|
6
|
Chang X, Qiu X, Tong X, Gan S, Yi W, Xie S, Liu X, Zuo C, Tan W. Sortilin-Mediated Rapid, Precise and Sustained Degradation of Membrane Proteins via mRNA-Encoded Lysosome-Targeting Chimera. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501222. [PMID: 40305781 DOI: 10.1002/advs.202501222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Recent advances in lysosome-targeting degradation technologies have introduced strategies to regulate therapeutic membrane proteins (MPs), potentially transforming treatment paradigms. However, challenges persist, including limited degradation precision due to the broad distribution of lysosome-targeting receptors (LTRs), as well as the high cost and complexity of recombinant protein production or chemical synthesis. Herein, it identifies sortilin as a promising LTR, highly expressed in malignancies but minimally present in healthy tissues outside the nervous system. Using AlphaFold-Multimer, it screened for a specific non-endogenous protein binder to sortilin and developed a modular, mRNA-encoded lysosomal targeting chimera (MedTAC) strategy, enabling rapid design and precise degradation of oncogenic MPs. In a breast cancer-bearing mouse model, a single low dose of MedTACPTK7 (0.5 mg kg-1) reduced protein tyrosine kinase-7 (PTK7) levels by up to 80% within 24 h, with sustained degradation of 44% at 72 h, demonstrating excellent pharmacokinetics. MedTACPTK7 significantly extended survival to over 50 days without systemic toxicity, compared to 20-30 days in controls. This MedTAC strategy establishes sortilin as a selective and efficient shuttle for targeted protein degradation, offering a scalable, rapidly producible platform for biochemical research and precise therapeutic applications.
Collapse
Affiliation(s)
- Xin Chang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xinyu Qiu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Xiaoning Tong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Shaoju Gan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Weicheng Yi
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Sitao Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xiangsheng Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Chao Zuo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
7
|
Ning Y, Li B, Chen W, Feng L, Huang X, Liu B. DNA Framework-Based Lysosome-Targeting Chimeras: Intracellular ATP-Facilitated Extracellular Protein Degradation. ACS NANO 2025; 19:15853-15862. [PMID: 40237339 DOI: 10.1021/acsnano.5c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Targeted protein degradation (TPD) offered a riveting therapeutic paradigm to eradicate pathogenesis-relevant proteins, especially those belonging to the once-considered undruggable proteome. Considering that adenosine triphosphate (ATP) is the primary energy source for cell activities and lysosomes are important ATP storage sites, herein, the first example of dual-function tetrahedral DNA framework-based lysosome-targeting chimeras (TDF-LYTACs) is proposed for elucidating the correlation between extracellular protein degradation via the lysosome pathway and the fluctuations in intracellular ATP levels. In our study, platelet-derived growth factor (PDGF), a driver of cancer invasion and metastasis, was chosen as the protein of interest. To achieve multifunctionality, we employed a tetrahedral DNA framework formed by an aptamer of PDGF, human apurinic/apyrimidinic endonuclease 1 (APE1)-triggered ATP probes, and a ligand of the cell-surface lysosome-shuttling receptor (IGFIIR). TDF-LYTACs efficiently and quickly shuttled PDGF proteins to lysosomes, degraded them through the lysosomal pathway, and further visualized the intracellular ATP level synchronously. Furthermore, we found a significant correlation between the degradation efficiency of PDGF and intracellular ATP levels over time; that is, a higher ATP level corresponded to higher degradation efficiency and vice versa. We anticipate that our versatile TDF-LYTACs will offer a perspective for degrading multifunctional extracellular proteins.
Collapse
Affiliation(s)
- Yujun Ning
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Bin Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Weishuai Chen
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Langxia Feng
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
8
|
Shi Y, Yun Y, Wang R, Liu Z, Wu Z, Xiang Y, Zhang J. Engineering Covalent Aptamer Chimeras for Enhanced Autophagic Degradation of Membrane Proteins. Angew Chem Int Ed Engl 2025; 64:e202425123. [PMID: 39822078 DOI: 10.1002/anie.202425123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Targeted degradation of membrane proteins represents an attractive strategy for eliminating pathogenesis-related proteins. Aptamer-based chimeras hold great promise as membrane protein degraders, however, their degradation efficacy is often hindered by the limited structural stability and the risk of off-target effects due to the non-covalent interaction with target proteins. We here report the first design of a covalent aptamer-based autophagosome-tethering chimera (CApTEC) for the enhanced autophagic degradation of cell-surface proteins, including transferrin receptor 1 (TfR1) and nucleolin (NCL). This strategy relies on the site-specific incorporation of sulfonyl fluoride groups onto aptamers to enable the cross-linking with target proteins, coupled with the conjugation of an LC3 ligand to hijack the autophagy-lysosomal pathway for targeted protein degradation. The chemically engineered CApTECs exhibit enhanced on-target retention and improved structural stability. Our results also demonstrate that CApTECs achieve remarkably enhanced and prolonged degradation of membrane proteins compared to the non-covalent designs. Furthermore, the CApTEC targeting TfR1 is combined with 5-fluorouracil (5-FU) for synergistic tumor therapy in a mouse model, leading to substantial suppression of tumor growth. Our strategy may provide deep insights into the LC3-mdiated autophagic degradation, affording a modular and effective strategy for membrane protein degradation and precise therapeutic applications.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yangfang Yun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Rong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zheng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of BioorganicPhosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Hofmeister A, Jahn-Hofmann K, Brunner B, Helms M, Metz-Weidmann C, Poeverlein C, Zech G, Li Z, Hessler G, Schreuder H, Elshorst B, Krack A, Kurz M, Heubel C, Scheidler S. Trivalent siRNA-Conjugates with Guanosine as ASGPR-Binder Show Potent Knock-Down In Vivo. J Med Chem 2025; 68:6193-6209. [PMID: 40052708 DOI: 10.1021/acs.jmedchem.4c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
To increase the chemical space around the well-known GalNAc-ligand as ASGPR-binder, a high-throughput screening campaign was performed, testing approximately 550,000 compounds. After evaluation of the potential screening hits, only one compound, which showed high similarity with guanosine nucleosides, was chosen for further profiling. Crystal structure analysis revealed the coordination of the Ca2+-ion within the ASGPR-binding site by the cis-diol motif of the ribose unit as well as an additional π-π-interaction of the purine heterocycle to tryptophan-243. Based on these findings, guanosine was attached via the 5'-OH group to a recently described morpholino-based nucleotide using two different linker units. The resulting morpholino-guanosine building blocks were conjugated to the 5'-end of a literature-known transthyretin targeting small interfering RNA (siRNA), leading to trivalent siRNA-guanosine conjugates, which were tested for their TTR knockdown and exhibited similar potencies as the analogous GalNAc-conjugates in vitro and in vivo.
Collapse
Affiliation(s)
- Armin Hofmeister
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | | | - Bodo Brunner
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Mike Helms
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | | | | | - Gernot Zech
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Ziyu Li
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Gerhard Hessler
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Herman Schreuder
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Bettina Elshorst
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Arne Krack
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Michael Kurz
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Christoph Heubel
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| | - Sabine Scheidler
- Sanofi R&D, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Yang Z, Chen M, Ge R, Zhou P, Pan W, Song J, Ma S, Chen S, Xu C, Zhou M, Mi W, Ni H, Chen H, Yao X, Dong X, Chen Y, Zhou J, Xuan C, Dong C, Yan H, Xie S. Identification of a non-inhibitory aptameric ligand to CRL2 ZYG11B E3 ligase for targeted protein degradation. Nat Commun 2025; 16:2494. [PMID: 40082426 PMCID: PMC11906892 DOI: 10.1038/s41467-025-57823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
As a crucial element of proteolysis targeting chimeras (PROTACs), the choice of E3 ubiquitin ligase significantly influences degradation efficacy and selectivity. However, the available arsenal of E3 ligases for PROTAC development remains underexplored, severely limiting the scope of targeted protein degradation. In this study, we identify a non-inhibitory aptamer targeting ZYG11B, a substrate receptor of the Cullin 2-RING ligase complex, as an E3 warhead for targeted protein degradation. This aptamer-based PROTAC platform, termed ZATAC, is facilely produced through bioorthogonal chemistry or self-assembly and shows promise in eliminating several undruggable target proteins, including nucleolin (NCL), SRY-box transcription factor 2 (SOX2), and mutant p53-R175H, underscoring its universality and versatility. To specifically deliver ZATACs into cancer cells, we further develop DNA three-way junction-based ZATACs (3WJ-ZATACs) by integrating an additional aptamer that selectively recognizes the protein overexpressed on the surface of cancer cells. The 3WJ-ZATACs demonstrate in vivo tumor-specific distribution and achieve dual-target degradation, thereby suppressing tumor growth without causing noticeable toxicity. In summary, ZATACs represent a general, modular, and straightforward platform for targeted protein degradation, offering insights into the potential of other untapped E3 ligases.
Collapse
Affiliation(s)
- Zhihao Yang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education); Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University; Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Ruixin Ge
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ping Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wei Pan
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jiayi Song
- Department of Ophthalmology, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuwen Ma
- Department of Ophthalmology, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Chen
- Department of Ophthalmology, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Chenyu Xu
- School of Medicine, Nankai University, Tianjin, China
| | - Mengyu Zhou
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenyi Mi
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - He Chen
- Department of Medicinal Chemistry, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xue Yao
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xifeng Dong
- Department of Hematology, Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin Institute of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Chen
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenghao Xuan
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education); Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University; Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Cheng Dong
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education); Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University; Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin, China.
| | - Songbo Xie
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education); Key Laboratory of Immune Microenvironment and Disease (Ministry of Education); The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University; Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China.
- Department of Ophthalmology, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
11
|
Xing Y, Li J, Wang L, Zhu Z, Yan J, Liu Y, Liu Q. A Bifunctional Lysosome-Targeting Chimera Nanoplatform for Tumor-Selective Protein Degradation and Enhanced Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417942. [PMID: 39888098 DOI: 10.1002/adma.202417942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Lysosome-targeting chimeras (LYTACs) have recently emerged as a promising therapeutic strategy for degrading extracellular and membrane-associated pathogenic proteins by hijacking lysosome-targeting receptors. However, the antitumor performance of LYTAC is limited by its insufficient tumor accumulation and nonspecific activation. Additionally, the synergistic effects of LYTACs and other therapeutic modalities are crucial. To address these issues, a bifunctional LYTAC nanoplatform (NLTC) is developed for tumor-selective protein degradation and enhanced cancer immunotherapy. By rationally controlling the surface composition, the NLTC can effectively transport extracellular or membrane proteins into lysosomes for degradation via cation-independent mannose 6-phosphate receptors. With removable surface modification, an NLTC is obtained that efficiently accumulated in tumor tissues and avoided on-target off-tumor toxicity. Moreover, the synthesis method of NLTC is generally applicable to various enzymes. Thus, catalase (CAT) is encapsulated with NLTC to synergistically degrade cancer cell surface programmed death ligand-1 (PD-L1), relieve the immunosuppressive tumor microenvironment for effective cancer immunotherapy, and significantly inhibit tumor growth, recurrence, and metastasis in B16F10-bearing mice. This work presents a bifunctional LYTAC nanoplatform that can not only perform tissue-selective protein degradation but also integrate other therapeutic modalities, providing insights into the design of advanced LYTAC technologies for clinical applications.
Collapse
Affiliation(s)
- Yumeng Xing
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingjing Li
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Leyuan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Zhihui Zhu
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jian Yan
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yang Liu
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qi Liu
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- School of Pharmacy, Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
12
|
Ou L, Setegne MT, Elliot J, Shen F, Dassama LMK. Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics. Chem Rev 2025; 125:2120-2183. [PMID: 39818743 PMCID: PMC11870016 DOI: 10.1021/acs.chemrev.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The nascent field of targeted protein degradation (TPD) could revolutionize biomedicine due to the ability of degrader molecules to selectively modulate disease-relevant proteins. A key limitation to the broad application of TPD is its dependence on small-molecule ligands to target proteins of interest. This leaves unstructured proteins or those lacking defined cavities for small-molecule binding out of the scope of many TPD technologies. The use of proteins, peptides, and nucleic acids (otherwise known as "biologics") as the protein-targeting moieties in degraders addresses this limitation. In the following sections, we provide a comprehensive and critical review of studies that have used proteins and peptides to mediate the degradation and hence the functional control of otherwise challenging disease-relevant protein targets. We describe existing platforms for protein/peptide-based ligand identification and the drug delivery systems that might be exploited for the delivery of biologic-based degraders. Throughout the Review, we underscore the successes, challenges, and opportunities of using protein-based degraders as chemical biology tools to spur discoveries, elucidate mechanisms, and act as a new therapeutic modality.
Collapse
Affiliation(s)
- Lisha Ou
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Mekedlawit T. Setegne
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Jeandele Elliot
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Fangfang Shen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
13
|
Xiao F, Shen X, Tang W, Yang D. Emerging Trends in DNA Nanotechnology-Enabled Cell Surface Engineering. JACS AU 2025; 5:550-570. [PMID: 40017777 PMCID: PMC11863167 DOI: 10.1021/jacsau.4c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Cell surface engineering is a rapidly advancing field, pivotal for understanding cellular physiology and driving innovations in biomedical applications. In this regard, DNA nanotechnology offers unprecedented potential for precisely manipulating and functionalizing cell surfaces by virtue of its inherent programmability and versatile functionalities. Herein, this Perspective provides a comprehensive overview of emerging trends in DNA nanotechnology for cell surface engineering, focusing on key DNA nanostructure-based tools, their roles in regulating cellular physiological processes, and their biomedical applications. We first discuss the strategies for integrating DNA molecules onto cell surfaces, including the attachment of oligonucleotides and the higher-order DNA nanostructure. Second, we summarize the impact of DNA-based surface engineering on various cellular processes, such as membrane protein degradation, signaling transduction, intercellular communication, and the construction of artificial cell membrane components. Third, we highlight the biomedical applications of DNA-engineered cell surfaces, including targeted therapies for cancer and inflammation, as well as applications in cell capture/protection and diagnostic detection. Finally, we address the challenges and future directions in DNA nanotechnology-based cell surface engineering. This Perspective aims to provide valuable insights for the rational design of DNA nanotechnology in cell surface engineering, contributing to the development of precise and personalized medicine.
Collapse
Affiliation(s)
- Fan Xiao
- Department
of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P. R. China
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
| | - Xinghong Shen
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
| | - Wenqi Tang
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
| | - Dayong Yang
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai 200438, P. R. China
- Bioinformatics
Center of AMMS, Beijing 100850, P. R. China
| |
Collapse
|
14
|
Ramírez-Cortés F, Ménová P. Hepatocyte targeting via the asialoglycoprotein receptor. RSC Med Chem 2025; 16:525-544. [PMID: 39628900 PMCID: PMC11609720 DOI: 10.1039/d4md00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
This review highlights the potential of asialoglycoprotein receptor (ASGPR)-mediated targeting in advancing liver-specific treatments and underscores the ongoing progress in the field. First, we provide a comprehensive examination of the nature of ASGPR ligands, both natural and synthetic. Next, we explore various drug delivery strategies leveraging ASGPR, with a particular emphasis on the delivery of therapeutic nucleic acids such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs). An in-depth analysis of the current status of RNA interference (RNAi) and ASO-based therapeutics is included, detailing approved therapies and those in various stages of clinical development (phases 1 to 3). Afterwards, we give an overview of other ASGPR-targeted conjugates, such as those with peptide nucleic acids or aptamers. Finally, targeted protein degradation of extracellular proteins through ASGPR is briefly discussed.
Collapse
Affiliation(s)
| | - Petra Ménová
- University of Chemistry and Technology, Prague Technická 5 16628 Prague 6 Czech Republic
| |
Collapse
|
15
|
Su M, Peng T, Zhu Y, Li J. Nucleic Acid Covalent Tags. Chembiochem 2025; 26:e202400805. [PMID: 39572501 DOI: 10.1002/cbic.202400805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Indexed: 03/05/2025]
Abstract
The selective and site-specific chemical labeling of proteins has emerged as a pivotal research area in chemical biology and cell biology. An effective protein labeling typically meets several criteria, including high specificity, rapid and robust conjugation under physiological conditions, operation at low concentrations with biocompatibility, and minimal perturbation of the protein function and activity. The conjugation of nucleic acids with proteins has garnered significant attention recently due to the rapid advancements in nucleic acid probe technologies, leveraging the programmable nature of nucleic acids alongside the multifaceted functionalities of proteins. It helps to convert protein-specific information into nucleic acid signals, facilitating upstream versatile recognition and downstream signal amplification for the target protein. This review critically evaluates the recent progress in nucleic acid-based protein labeling methodologies, with a specific focus on covalent labeling using aptamer tags, protein fusion tags or the technique of metabolic oligosaccharide engineering. The tags establish covalent linkages with target proteins through various modalities such as small molecules or metabolic glycan engineering. The insights presented in the review highlight promising avenues for the development of highly specific and versatile protein labeling techniques, which is essential for the improvement of protein-targeted detection and imaging across diverse biological contexts.
Collapse
Affiliation(s)
- Min Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Tao Peng
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
16
|
Zhang G, Yan S, Liu Y, Du Z, Min Q, Qin S. PROTACs coupled with oligonucleotides to tackle the undruggable. Bioanalysis 2025; 17:261-276. [PMID: 39895280 PMCID: PMC11864318 DOI: 10.1080/17576180.2025.2459528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Undruggable targets account for roughly 85% of human disease-related targets and represent a category of therapeutic targets that are difficult to tackle with traditional methods, but their considerable clinical importance. These targets are generally defined by planar functional interfaces and the absence of efficient ligand-binding pockets, making them unattainable for conventional pharmaceutical strategies. The advent of oligonucleotide-based proteolysis-targeting chimeras (PROTACs) has instilled renewed optimism in addressing these challenges. These PROTACs facilitate the targeted degradation of undruggable entities, including transcription factors (TFs) and RNA-binding proteins (RBPs), via proteasome-dependent mechanisms, thereby presenting novel therapeutic approaches for diseases linked to these targets. This review offers an in-depth examination of recent progress in the integration of PROTAC technology with oligonucleotides to target traditionally undruggable proteins, emphasizing the design principles and mechanisms of action of these innovative PROTACs.
Collapse
Affiliation(s)
- Guangshuai Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Si Yan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Yan Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Ziwei Du
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Qin Min
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, P.R. China
| |
Collapse
|
17
|
Zhou KXT, Bujold KE. The Emergence of Oligonucleotide Building Blocks in the Multispecific Proximity-Inducing Drug Toolbox of Destruction. ACS Chem Biol 2025; 20:3-18. [PMID: 39704048 DOI: 10.1021/acschembio.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Oligonucleotides are a rapidly emerging class of therapeutics. Their most well-known examples are informational drugs that modify gene expression by binding mRNA. Despite inducing proximity between biological machinery and mRNA when applied to modulating gene expression, oligonucleotides are not typically labeled as "proximity-inducing" in literature. Yet, they have recently been explored as building blocks for multispecific proximity-inducing drugs (MPIDs). MPIDs are unique because they can direct endogenous biological machinery to destroy targeted molecules and cells, in contrast to traditional drugs that inhibit only their functions. The unique mechanism of action of MPIDs has enabled the targeting of previously "undruggable" molecular entities that cannot be effectively inhibited. However, the development of MPIDs must ensure that these molecules will selectively direct a potent, destruction-based mechanism of action toward intended targets over healthy tissues to avoid causing life-threatening toxicities. Oligonucleotides have emerged as promising building blocks for the design of MPIDs because they are sequence-controlled molecules that can be rationally designed to program multispecific binding interactions. In this Review, we examine the emergence of oligonucleotide-containing MPIDs in the proximity induction space, which has been dominated by antibody and small molecule MPID modalities. Moreover, examples of oligonucleotides developed as MPID candidates in immunotherapy and protein degradation are discussed to demonstrate the utility of oligonucleotides in expanding the scope and selectivity of the MPID toolbox. Finally, we discuss the utility of programming "AND" gates into oligonucleotide scaffolds to encode conditional responses that have the potential to be incorporated into MPIDs, which can further enhance their selectivity, thus increasing the scope of this drug category.
Collapse
Affiliation(s)
- Kevin Xiao Tong Zhou
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ONL8S 4M1, Canada
| | - Katherine E Bujold
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ONL8S 4M1, Canada
| |
Collapse
|
18
|
Liu Q, Xing H, Xiong M, Zhang XB. Specifically Editing Cancer Sialoglycans for Enhanced In Vivo Immunotherapy through Aptamer-Enzyme Chimeras. Angew Chem Int Ed Engl 2025; 64:e202414327. [PMID: 39324841 DOI: 10.1002/anie.202414327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 09/27/2024]
Abstract
Immune checkpoint blockade (ICB) therapies have demonstrated remarkable clinical success in treating cancer. However, their objective response rate remains suboptimal because current therapies rely on limited immune checkpoints that fail to cover the multiple immune evasion pathways of cancer. To explore potential ICB strategies, we propose a glycoimmune checkpoint elimination (glycoICE) therapy based on targeted editing of sialoglycans on the tumor cell surface using an aptamer-enzyme chimera (ApEC). The ApEC can be readily generated via a one-step bioorthogonal procedure, allowing for large-scale and uniform production. It specifically targets and desialylates cancer cells, disrupting the sialoglycan-Siglec axis to activate immune cells and enhance immunotherapy efficacy, while its high tumor selectivity minimizes side effects from indiscriminate desialylation of normal tissues. Furthermore, the ApEC has the potential to be a versatile platform for specific editing of sialoglycans in different tumor models by adjusting the aptamer sequences to target specific protein markers. This research not only introduces a novel molecular tool for the effective editing of sialoglycans in complex environments, but also provides valuable insights for advancing DNA-based drugs towards in vivo and clinical applications.
Collapse
Affiliation(s)
- Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| |
Collapse
|
19
|
Cheng B, Li M, Zheng J, Liang J, Li Y, Liang R, Tian H, Zhou Z, Ding L, Ren J, Shi W, Zhou W, Hu H, Meng L, Liu K, Cai L, Shao X, Fang L, Li H. Chemically engineered antibodies for autophagy-based receptor degradation. Nat Chem Biol 2025:10.1038/s41589-024-01803-1. [PMID: 39789191 DOI: 10.1038/s41589-024-01803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
Cell surface receptor-targeted protein degraders hold promise for drug discovery. However, their application is restricted because of the complexity of creating bifunctional degraders and the reliance on specific lysosome-shuttling receptors or E3 ubiquitin ligases. To address these limitations, we developed an autophagy-based plasma membrane protein degradation platform, which we term AUTABs (autophagy-inducing antibodies). Through covalent conjugation with polyethylenimine (PEI), the engineered antibodies acquire the capacity to degrade target receptors through autophagy. The degradation activities of AUTABs are self-sufficient, without necessitating the participation of lysosome-shuttling receptors or E3 ubiquitin ligases. The broad applicability of this platform was then illustrated by targeting various clinically important receptors. Notably, combining specific primary antibodies with a PEI-tagged secondary nanobody also demonstrated effective degradation of target receptors. Thus, our study outlines a strategy for directing plasma membrane proteins for autophagic degradation, which possesses desirable attributes such as ease of generation, independence from cell type and broad applicability.
Collapse
Affiliation(s)
- Binghua Cheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Meiqing Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Jiwei Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaming Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Hui Tian
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeyu Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Li Ding
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Ren
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Shi
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjie Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Long Meng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ke Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Ximing Shao
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| |
Collapse
|
20
|
Huang Y, Lin G, Liu S, Chen M, Yang C, Song Y. Aptamer-based Immune Checkpoint Inhibition for Cancer Immunotherapy. Chembiochem 2025; 26:e202400599. [PMID: 39417693 DOI: 10.1002/cbic.202400599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
Cancer has long been a significant threat to human life and health. The advent of immune checkpoint blockade strategies has reversed cancer-induced immune suppression, advanced the development of immunotherapy, and offered new hope in the fight against cancer. Aptamers, which possess the same specificity and affinity as antibodies, are advantageous due to their synthetic accessibility and ease of modification, providing novel insights for immune checkpoint research. In this review, we outline the key aptamers currently developed for immune checkpoints such as CTLA-4, PD-1, PD-L1 and Siglec-15. We explore their potential in therapeutic strategies, including functionalizing or engineering aptamers for covalent binding, valency control, and nanostructure assembly, as well as investigating molecular mechanisms such as glycosylated protein functions and cell-cell interactions. Finally, the future applications of aptamers in immunotherapy are discussed.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guihong Lin
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mingying Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
21
|
Lv Y, Li Y, Fu Q, Shi P. Controllable multivalent LYTACs enhance targeted protein degradation. Chem Commun (Camb) 2025; 61:580-583. [PMID: 39656158 DOI: 10.1039/d4cc04842c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We present a versatile DNA-based LYTAC framework that allows control over the valency of chimeras and the distance between ligands through DNA self-assembly. By evaluating the degradation capabilities of LYTACs with 1, 3, and 9 valences, we confirm the broad applicability of the multivalent enhancement effect across different lysosome-targeting receptor-mediated degradation pathways. Our findings provide valuable insights into improving the degradation efficiency of LYTACs.
Collapse
Affiliation(s)
- Yuheng Lv
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China.
| | - Yicun Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China.
| | - Qin Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China.
| | - Peng Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
22
|
Han Y, Zhang R, Bao H, Yang M, Gao Y, Gao X, Wang R, Tan W, Ji D. Molecular Programming Design of Glyconucleic Acid Aptamer with High Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408168. [PMID: 39630080 PMCID: PMC11775523 DOI: 10.1002/advs.202408168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/15/2024] [Indexed: 01/30/2025]
Abstract
Functional nucleic acids (FNAs), possessing specific biological functions beyond their informational roles, have gained widespread attention in disease therapeutics. However, their clinical application is severely limited by their low serum stability in complex physiological environments. In this work, a precise molecular programming strategy is explored to prepare glyconucleic acid aptamers (GNAAs) with high serum stability. Four glyconucleic acid modules compatible with commercial solid-phase synthesis are designed and synthesized. Through precise molecular design, the accurate modification of four different carbohydrate ligands at specific sites of DNA aptamers is achieved. It is demonstrated that glycosylation modification can significantly increase DNA aptamers' serum stability while maintaining their structures and high affinity. The stabilization effect is superior to that of currently commonly used commercial chemical modifications. Moreover, it is confirmed that this approach displays insignificant effects on the DNA aptamers' tumor-targeting ability and metabolism in vivo. This method offers a simple, economical, and efficient strategy for precise glycosylation modification of nucleic acids. This allows to prepare glycosyl functional nucleic acids with high serum stability, which can expand the application scope of functional nucleic acids and promote the practical transformation of functional nucleic acids.
Collapse
Affiliation(s)
- Yongqi Han
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
- College of Chemistry and Materials ScienceShanghai Normal UniversityShanghai200234China
| | - Rongjun Zhang
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Hong‐Liang Bao
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Mei Yang
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Yuan Gao
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Xiaobo Gao
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Ruowen Wang
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)The Chinese Academy of SciencesHangzhouZhejiang310022China
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan University ChangshaHunan410082China
| | - Ding‐Kun Ji
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| |
Collapse
|
23
|
Li YY, Yang Y, Zhang RS, Ge RX, Xie SB. Targeted degradation of membrane and extracellular proteins with LYTACs. Acta Pharmacol Sin 2025; 46:1-7. [PMID: 39103530 PMCID: PMC11696130 DOI: 10.1038/s41401-024-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Targeted protein degradation technology has gained substantial momentum over the past two decades as a revolutionary strategy for eliminating pathogenic proteins that are otherwise refractory to treatment. Among the various approaches developed to harness the body's innate protein homeostasis mechanisms for this purpose, lysosome targeting chimeras (LYTACs) that exploit the lysosomal degradation pathway by coupling the target proteins with lysosome-trafficking receptors represent the latest innovation. These chimeras are uniquely tailored to degrade proteins that are membrane-bound and extracellular, encompassing approximately 40% of all proteome. Several novel LYTAC formulas have been developed recently, providing valuable insights for the design and development of therapeutic degraders. This review delineates the recent progresses of LYTAC technology, its practical applications, and the factors that dictate target degradation efficiency. The potential and emerging trends of this technology are discussed as well. LYTAC technology offers a promising avenue for targeted protein degradation, potentially revolutionizing the therapeutic landscape for numerous diseases.
Collapse
Affiliation(s)
- Yu-Yang Li
- Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo, 255300, China
| | - Yang Yang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ren-Shuai Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Rui-Xin Ge
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Song-Bo Xie
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, 300052, China.
| |
Collapse
|
24
|
Al Mazid M, Shkel O, Ryu E, Kim J, Shin KH, Kim YK, Lim HS, Lee JS. Aptamer and N-Degron Ensemble (AptaGron) as a Target Protein Degradation Strategy. ACS Chem Biol 2024; 19:2462-2468. [PMID: 39630150 PMCID: PMC11668241 DOI: 10.1021/acschembio.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Target protein degradation (TPD) is a promising strategy for catalytic downregulation of target proteins through various cellular proteolytic pathways. Despite numerous reports on novel TPD mechanisms, the discovery of target-specific ligands remains a major challenge. Unlike small-molecule ligands, aptamers offer significant advantages, owing to their SELEX-based systematic screening method. To fully utilize aptamers for TPD, we designed an aptamer and N-degron ensemble system (AptaGron) that circumvents the need for synthetic conjugations between aptamers and proteolysis-recruiting units. In our AptaGron system, a peptide nucleic acid containing an N-degron peptide and a sequence complementary to the aptamer was designed. Using this system, we successfully degraded three target proteins, tau, nucleolin, and eukaryotic initiation factor 4E (eIF4E), which lack specific small-molecule ligands. Our results highlight the potential of the AptaGron approach as a robust platform for targeted protein degradation.
Collapse
Affiliation(s)
- Mohammad
Faysal Al Mazid
- Division
of Bio-Medical Science and Technology, Korea
Institute of Science and Technology (KIST) & Department of Biological
Chemistry, KIST School UST, Seoul 02792, South Korea
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Olha Shkel
- Brain
Science Institute, Korea Institute of Science
and Technology (KIST) & Department of Biological Chemistry, KIST
School UST, Seoul 02792, South Korea
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Eunteg Ryu
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jiwon Kim
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Kyung Ho Shin
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Yun Kyung Kim
- Brain
Science Institute, Korea Institute of Science
and Technology (KIST) & Department of Biological Chemistry, KIST
School UST, Seoul 02792, South Korea
| | - Hyun Suk Lim
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Jun-Seok Lee
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| |
Collapse
|
25
|
Ning Y, Li B, Liu Y, Lu Y, Huang X, Liu B. Nanomotor-Driven Targeting Chimeras as Accelerators for the Degradation of Extracellular Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405209. [PMID: 39268797 DOI: 10.1002/smll.202405209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Targeted protein degradation (TPD) is emerging as a therapeutic paradigm and a serviceable research tool in chemical biology and disease treatment. However, without driving sources, most targeting chimeras (TACs) lack the capability of self-diffusion and active searching in biological environments, which significantly impedes degradation efficiency. Herein, nanomotor-driven targeting chimeras (MotorTACs) are ingeniously designed to achieve effective internalization and degradation of extracellular platelet-derived growth factor (PDGF), a driver to cancer invasion and metastasis. Catalyzed by endogenous H2O2, MotorTACs diffused rapidly and searched actively in living cells, as visualized at the single-particle level under the dark-field mode. Hydrolysis efficiency is significantly enhanced as target protein degradation is complete in only 4 h. Furthermore, MotorTACs-mediated degradation of PDGF is found to be via the lysosome and ubiquitin-proteasome dual-degradation pathways. Taking advantage of the properties, it is anticipated that MotorTACs provide a unique strategy against extracellular undruggable proteins, thus advancing the development of therapeutic interventions in chemical biology and disease treatment.
Collapse
Affiliation(s)
- Yujun Ning
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Bin Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
26
|
Xiao Y, Guo X, Zhang W, Ma L, Ren K. DNA Nanotechnology for Application in Targeted Protein Degradation. ACS Biomater Sci Eng 2024; 10:6814-6827. [PMID: 39367877 DOI: 10.1021/acsbiomaterials.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
DNA is a kind of flexible and versatile biomaterial for constructing nanostructures and nanodevices. Due to high biocompatibility and programmability and easy modification and fabrication, DNA nanotechnology has emerged as a powerful tool for application in intracellular targeted protein degradation. In this review, we summarize the recent advances in the design and mechanism of targeted protein degradation technologies such as protein hydrolysis targeted chimeras, lysosomal targeted chimeras, and autophagy based protein degradation. Subsequently, we introduce the DNA nanotechnologies of DNA cascade circuits, DNA nanostructures, and dynamic machines. Moreover, we present the latest developments in DNA nanotechnologies in targeted protein degradation. Finally, the vision and challenges are discussed.
Collapse
Affiliation(s)
- Yang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xinyi Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Weiwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lequn Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
27
|
Xing Y, Yang J, Peng A, Qian Y, Liu Y, Pan P, Liu Q. Lysosome Targeted Nanoparticle Aggregation Reverses Immunosuppressive Tumor Microenvironment for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412730. [PMID: 39358936 DOI: 10.1002/adma.202412730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Nanotechnology has proven its enormous application value in clinical practice. However, current research on nanomedicines mainly focuses on developing nanoparticles as delivery carriers to maximize the bioavailability of therapeutic agents, with little attention on exploring their potential to directly regulate physiological processes. In this study, inspired by the lysosomal swelling caused by excessive accumulation of undegraded substances, this work presents a lysosomal-targeting aggregated nanoparticle (LTANP) for cancer treatment. By rationally engineering surface composition, properties, and interparticle interactions, LTANP achieves efficient tumor accumulation and selective targeted aggregation in lysosomes of cancer cells, leading to unrelievable lysosomal swelling, and ultimately inducing lysosomal membrane permeabilization (LMP) of cancer cells. Further analysis shows that nanoparticle aggregation-mediated LMP can effectively trigger immunogenic cell death (ICD) by impairing autophagy-lysosome pathway, evoking robust antitumor immune responses and reversing tumor immunogenicity from "cold" to "hot" in a melanoma model. Additionally, LTANP can combine with clinically approved programmed death ligand-1 (PD-L1) antibodies to further unleash T cell-mediated antitumor immunity, significantly enhancing antitumor performance, inhibiting tumor recurrence and metastasis. This work demonstrates the potential of rationally engineered nanostructures in directly combating cancer and provides novel insights for the development of advanced nanoparticle-based cancer treatment.
Collapse
Affiliation(s)
- Yumeng Xing
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianhui Yang
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Ao Peng
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yujing Qian
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yang Liu
- College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Pei Pan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Qi Liu
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
28
|
Zhao W, Jiang Y, Li X, Wang H. Nanotechnology-Enabled Targeted Protein Degradation for Cancer Therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2020. [PMID: 39663650 DOI: 10.1002/wnan.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/11/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Targeted protein degradation (TPD) represents an innovative therapeutic strategy that has garnered considerable attention from both academic and industrial sectors due to its promising developmental prospects. Approximately 85% of human proteins are implicated in disease pathogenesis, and the FDA has approved around 400 drugs targeting these disease-related proteins, predominantly enzymes, transcription factors, and non-enzymatic proteins. However, existing therapeutic modalities fail to address certain "high-value" targets, such as c-Myc and Ras. The emergence of proteolysis-targeting chimeras (PROTAC) technology has introduced TPD into a new realm. The capability to target non-druggable sites has expanded the therapeutic horizon of protein-based drugs, although challenges related to bioavailability, safety, and adverse side effects have constrained their clinical progression. Nano-delivery systems and emerging TPD modalities, such as molecular glues, lysosome-targeted chimeras (LYTACs), autophagy system compounds (ATTEC), and antibody PROTAC (AbTACs), have mitigated some of these limitations. This paper reviews the latest advancements in TPD, highlighting their applications and benefits in cancer therapy, and concludes with a forward-looking perspective on the future development of this field.
Collapse
Affiliation(s)
- Wutong Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | | | - Xiufen Li
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
29
|
Tian J, Zhang Z, Shi Y, Wu Z, Shao Y, Wang L, Xu X, Xin Z. Flower-Shaped PCR Scaffold-Based Lateral Flow Bioassay for Bacillus cereus Endospores Detection. Int J Mol Sci 2024; 25:11286. [PMID: 39457067 PMCID: PMC11509332 DOI: 10.3390/ijms252011286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Bacillus cereus, a foodborne pathogen, produces resilient endospores that are challenging to detect with conventional methods. This study presents a novel Flower-Shaped PCR Scaffold-based Lateral Flow Biosensor (FSPCRS-LFB), which employs an aptamer-integrated PCR scaffold as capture probes, replacing the traditional streptavidin-biotin (SA-Bio) approach. The FSPCRS-LFB demonstrates high sensitivity and cost-efficiency in detecting B. cereus endospores, with a limit of detection (LOD) of 4.57 endospores/mL a visual LOD of 102 endospores/mL, and a LOD of 6.78 CFU/mL for endospore-cell mixtures. In chicken and tea samples, the platform achieved LODs of 74.5 and 52.8 endospores/mL, respectively, with recovery rates of 82.19% to 97.88%. Compared to existing methods, the FSPCRS-LFB offers a 3.7-fold increase in sensitivity while reducing costs by 26% over the SA-Bio strategy and 87.5% over rolling circle amplification (RCA). This biosensor provides a rapid, sensitive and cost-effective solution for point-of-care testing (POCT) of B. cereus endospores, expanding detection capabilities and offering novel approaches for pathogen detection.
Collapse
Affiliation(s)
- Jingjing Tian
- Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (Z.Z.); (Y.S.); (Z.W.); (Y.S.); (X.X.)
| | - Zhuyi Zhang
- Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (Z.Z.); (Y.S.); (Z.W.); (Y.S.); (X.X.)
| | - Yaning Shi
- Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (Z.Z.); (Y.S.); (Z.W.); (Y.S.); (X.X.)
| | - Zichao Wu
- Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (Z.Z.); (Y.S.); (Z.W.); (Y.S.); (X.X.)
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (Z.Z.); (Y.S.); (Z.W.); (Y.S.); (X.X.)
| | - Limin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xinglian Xu
- Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (Z.Z.); (Y.S.); (Z.W.); (Y.S.); (X.X.)
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, State Key Lab of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (Z.Z.); (Y.S.); (Z.W.); (Y.S.); (X.X.)
| |
Collapse
|
30
|
Fang T, Zheng Z, Li N, Zhang Y, Ma J, Yun C, Cai X. Lysosome-targeting chimeras containing an endocytic signaling motif trigger endocytosis and lysosomal degradation of cell-surface proteins. Chem Sci 2024:d4sc05093b. [PMID: 39391383 PMCID: PMC11459673 DOI: 10.1039/d4sc05093b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Lysosome-targeting degradation technologies have emerged as a promising therapeutic strategy for the selective depletion of target extracellular and cell-surface proteins by harnessing a cell-surface effector protein such as lysosome-targeting receptors (LTRs) or transmembrane E3 ligases that direct lysosomal degradation. We recently developed a lysosome-targeting degradation platform termed signal-mediated lysosome-targeting chimeras (SignalTACs) that functions independently of an LTR or E3 ligase; these are engineered fusion proteins comprising a target binder, a cell-penetrating peptide (CPP), and a lysosomal sorting signal motif (P1). Herein, we present the next-generation SignalTACs containing a single endocytic signal that bypasses the need for a CPP. We demonstrate that the fusion with a 10-amino acid endocytic signaling peptide (P3) derived from the cation-independent mannose-6-phosphate receptor (CI-M6PR) induces robust internalization and lysosomal degradation of the target protein. The P3-based SignalTAC exhibited enhanced antitumor efficacy compared to the parent antibody. We envision that the fusion of the endocytic signaling peptide P3 to a target binder may allow the construction of an effective degrader for membrane-associated targets. Furthermore, mechanistic studies identified different drivers for the activities of the P3- and P1-based SignalTACs, which is expected to provide crucial insights toward the harnessing of the intrinsic signaling pathways to direct protein trafficking and degradation.
Collapse
Affiliation(s)
- Tong Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Zhenting Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Na Li
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Yishu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Jing Ma
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Chengyu Yun
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| |
Collapse
|
31
|
Wang D, Zhou X, Huang M, Duan J, Qiu Y, Yi H, Wang Y, Xue H, Zhang J, Yang Q, Gao H, Guo Z, Zhang K. Cascade Enzymes Confined in DNA Nanoanchors for Antitumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50295-50304. [PMID: 39265065 DOI: 10.1021/acsami.4c09835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Cascade-enzyme reaction systems have emerged as promising tools for treating malignant tumors by efficiently converting nutrients into toxic substances. However, the challenges of poor localized retention capacity and utilization of highly active enzymes often result in extratumoral toxicity and reduced therapeutic efficacy. In this study, we introduced a cell membrane-DNA nanoanchor (DNANA) with a spatially confined cascade enzyme for in vivo tumor therapy. The DNANAs are constructed using a polyvalent cholesterol-labeled DNA triangular prism, ensuring high stability in cell membrane attachment. Glucose oxidase (GOx) and horseradish peroxidase (HRP), both modified with streptavidin, are precisely confined to biotin-labeled DNANAs. Upon intratumoral injection, DNANA enzymes efficiently colonize the tumor site through cellular membrane engineering strategies, significantly reducing off-target enzyme leakage and the associated risks of extratumoral toxicity. Furthermore, DNANA enzymes demonstrated effective cancer therapy in vitro and in vivo by depleting glucose and producing highly cytotoxic hydroxyl radicals in the vicinity of tumor cells. This membrane-engineered cascade-enzyme reaction system presents a conceptual approach to tumor treatment.
Collapse
Affiliation(s)
- Danyu Wang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Zhou
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Mengyu Huang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Duan
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Qiu
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Yi
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Wang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huimin Xue
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiali Zhang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiuxia Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Henan 450001, China
| | - Hua Gao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Guo
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaixiang Zhang
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Henan 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
32
|
Yu S, Shi T, Li C, Xie C, Wang F, Liu X. Programming DNA Nanoassemblies into Polyvalent Lysosomal Degraders for Potent Degradation of Pathogenic Membrane Proteins. NANO LETTERS 2024; 24:11573-11580. [PMID: 39225423 DOI: 10.1021/acs.nanolett.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lysosome-targeting chimera (LYTAC) shows great promise for protein-based therapeutics by targeted degradation of disease-associated membrane or extracellular proteins, yet its efficiency is constrained by the limited binding affinity between LYTAC reagents and designated proteins. Here, we established a programmable and multivalent LYTAC system by tandem assembly of DNA into a high-affinity protein degrader, a heterodimer aptamer nanostructure targeting both pathogenic membrane protein and lysosome-targeting receptor (insulin-like growth factor 2 receptor, IGF2R) with adjustable spatial distribution or organization pattern. The DNA-based multivalent LYTACs showed enhanced efficacy in removing immune-checkpoint protein programmable death-ligand 1 (PD-L1) and vascular endothelial growth factor receptor 2 (VEGFR2) in tumor cell membrane that respectively motivated a significant increase in T cell activity and a potent effect on cancer cell growth inhibition. With high programmability and versatility, this multivalent LYTAC system holds considerable promise for realizing protein therapeutics with enhanced activity.
Collapse
Affiliation(s)
- Shuyi Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Tianhui Shi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chenbiao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chongyu Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Beijing Life Science Academy, Beijing 102209, China
| |
Collapse
|
33
|
Yao S, Wang Y, Tang Q, Yin Y, Geng Y, Xu L, Liang S, Xiang J, Fan J, Tang J, Liu J, Shao S, Shen Y. A plug-and-play monofunctional platform for targeted degradation of extracellular proteins and vesicles. Nat Commun 2024; 15:7237. [PMID: 39174543 PMCID: PMC11341853 DOI: 10.1038/s41467-024-51720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Existing strategies use bifunctional chimaeras to mediate extracellular protein degradation. However, these strategies rely on specific lysosome-trafficking receptors to facilitate lysosomal delivery, which may raise resistance concerns due to intrinsic cell-to-cell variation in receptor expression and mutations or downregulation of the receptors. Another challenge is establishing a universal platform applicable in multiple scenarios. Here, we develop MONOTAB (MOdified NanOparticle with TArgeting Binders), a plug-and-play monofunctional degradation platform that can drag extracellular targets into lysosomes for degradation. MONOTAB harnesses the inherent lysosome-targeting ability of certain nanoparticles to obviate specific receptor dependency and the hook effect. To achieve high modularity and programmable target specificity, we utilize the streptavidin-biotin interaction to immobilize antibodies or other targeting molecules on nanoparticles, through an antibody mounting approach or by direct binding. Our study reveals that MONOTAB can induce efficient degradation of diverse therapeutic targets, including membrane proteins, secreted proteins, and even extracellular vesicles.
Collapse
Affiliation(s)
- Shasha Yao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Yi Wang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Qian Tang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, Zhejiang, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yujie Yin
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Yu Geng
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, China
| | - Lei Xu
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, China
| | - Shifu Liang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Jiaqi Fan
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, Zhejiang, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- Biomedical and Heath Translational Research Center of Zhejiang Province, 314400, Haining, Zhejiang, China.
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China.
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Haridas V, Dutta S, Munjal A, Singh S. Inhibitors to degraders: Changing paradigm in drug discovery. iScience 2024; 27:109574. [PMID: 38646175 PMCID: PMC11031827 DOI: 10.1016/j.isci.2024.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
The chemical understanding of biological processes provides not only a deeper insight but also a solution to abnormal biological functioning. Protein degradation, a natural biological process for debris removal in the cell, has been studied for years. The recent finding that natural degradation pathways can be utilized for therapeutic purposes is a paradigm shift in the drug discovery approach. Methods such as Proteolysis Targeting Chimera (PROTAC), lysosomal targeting chimera, hydrophobic tagging, AUtophagy TArgeting Chimera, AUTOphagy TArgeting Chimera and several other variants of these methods have made a considerable impact on the way of drug design. Few selected examples testify that a huge wave of change is on the way. The drug design based on the targeted protein degradation is a powerful tool in our arsenal. More molecules will be invented that will uncover the hidden secrets of biological functioning and provide enduring solutions to several unmet medical needs.
Collapse
Affiliation(s)
- V. Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Souvik Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, New Delhi 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, New Delhi 110067, India
| |
Collapse
|
35
|
Duan Q, Jia H, Chen W, Qin C, Zhang K, Jia F, Fu T, Wei Y, Fan M, Wu Q, Tan W. Multivalent Aptamer-Based Lysosome-Targeting Chimeras (LYTACs) Platform for Mono- or Dual-Targeted Proteins Degradation on Cell Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308924. [PMID: 38425146 PMCID: PMC11077639 DOI: 10.1002/advs.202308924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Selective protein degradation platforms have opened novel avenues in therapeutic development and biological inquiry. Antibody-based lysosome-targeting chimeras (LYTACs) have emerged as a promising technology that extends the scope of targeted protein degradation to extracellular targets. Aptamers offer an advantageous alternative owing to their potential for modification and manipulation toward a multivalent state. In this study, a chemically engineered platform of multivalent aptamer-based LYTACs (AptLYTACs) is established for the targeted degradation of either single or dual protein targets. Leveraging the biotin-streptavidin system as a molecular scaffold, this investigation reveals that trivalently mono-targeted AptLYTACs demonstrate optimum efficiency in degrading membrane proteins. The development of this multivalent AptLYTACs platform provides a principle of concept for mono-/dual-targets degradation, expanding the possibilities of targeted protein degradation.
Collapse
Affiliation(s)
- Qiao Duan
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200120China
| | - Hao‐Ran Jia
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200120China
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Weichang Chen
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Chunhong Qin
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Kejing Zhang
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunan410006China
| | - Fei Jia
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Ting Fu
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yong Wei
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Qin Wu
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200120China
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| |
Collapse
|
36
|
Wu X, Hu JJ, Yoon J. Cell Membrane as A Promising Therapeutic Target: From Materials Design to Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202400249. [PMID: 38372669 DOI: 10.1002/anie.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/20/2024]
Abstract
The cell membrane is a crucial component of cells, protecting their integrity and stability while facilitating signal transduction and information exchange. Therefore, disrupting its structure or impairing its functions can potentially cause irreversible cell damage. Presently, the tumor cell membrane is recognized as a promising therapeutic target for various treatment methods. Given the extensive research focused on cell membranes, it is both necessary and timely to discuss these developments, from materials design to specific biomedical applications. This review covers treatments based on functional materials targeting the cell membrane, ranging from well-known membrane-anchoring photodynamic therapy to recent lysosome-targeting chimaeras for protein degradation. The diverse therapeutic mechanisms are introduced in the following sections: membrane-anchoring phototherapy, self-assembly on the membrane, in situ biosynthesis on the membrane, and degradation of cell membrane proteins by chimeras. In each section, we outline the conceptual design or general structure derived from numerous studies, emphasizing representative examples to understand advancements and draw inspiration. Finally, we discuss some challenges and future directions in membrane-targeted therapy from our perspective. This review aims to engage multidisciplinary readers and encourage researchers in related fields to advance the fundamental theories and practical applications of membrane-targeting therapeutic agents.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
- Department of Chemistry and Nanoscience, Ewha Womans University, 03706, Seoul, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03706, Seoul, Republic of Korea
| |
Collapse
|
37
|
Kim J, Byun I, Kim DY, Joh H, Kim HJ, Lee MJ. Targeted protein degradation directly engaging lysosomes or proteasomes. Chem Soc Rev 2024; 53:3253-3272. [PMID: 38369971 DOI: 10.1039/d3cs00344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Targeted protein degradation (TPD) has been established as a viable alternative to attenuate the function of a specific protein of interest in both biological and clinical contexts. The unique TPD mode-of-action has allowed previously undruggable proteins to become feasible targets, expanding the landscape of "druggable" properties and "privileged" target proteins. As TPD continues to evolve, a range of innovative strategies, which do not depend on recruiting E3 ubiquitin ligases as in proteolysis-targeting chimeras (PROTACs), have emerged. Here, we present an overview of direct lysosome- and proteasome-engaging modalities and discuss their perspectives, advantages, and limitations. We outline the chemical composition, biochemical activity, and pharmaceutical characteristics of each degrader. These alternative TPD approaches not only complement the first generation of PROTACs for intracellular protein degradation but also offer unique strategies for targeting pathologic proteins located on the cell membrane and in the extracellular space.
Collapse
Affiliation(s)
- Jiseong Kim
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Do Young Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hyunhi Joh
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hak Joong Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Min Jae Lee
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Wells JA, Kumru K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat Rev Drug Discov 2024; 23:126-140. [PMID: 38062152 DOI: 10.1038/s41573-023-00833-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 02/08/2024]
Abstract
Targeted protein degradation (TPD) has emerged in the past decade as a major new drug modality to remove intracellular proteins with bispecific small molecules that recruit the protein of interest (POI) to an E3 ligase for degradation in the proteasome. Unlike classic occupancy-based drugs, intracellular TPD (iTPD) eliminates the target and works catalytically, and so can be more effective and sustained, with lower dose requirements. Recently, this approach has been expanded to the extracellular proteome, including both secreted and membrane proteins. Extracellular targeted protein degradation (eTPD) uses bispecific antibodies, conjugates or small molecules to degrade extracellular POIs by trafficking them to the lysosome for degradation. Here, we focus on recent advances in eTPD, covering degrader systems, targets, molecular designs and parameters to advance them. Now almost any protein, intracellular or extracellular, is addressable in principle with TPD.
Collapse
Affiliation(s)
- James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| | - Kaan Kumru
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Tian Y, Miao Y, Guo P, Wang J, Han D. Insulin-like Growth Factor 2-Tagged Aptamer Chimeras (ITACs) Modular Assembly for Targeted and Efficient Degradation of Two Membrane Proteins. Angew Chem Int Ed Engl 2024; 63:e202316089. [PMID: 38059276 DOI: 10.1002/anie.202316089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Overexpression of pathogenic membrane proteins drives abnormal proliferation and invasion of tumor cells. Various strategies to durably knockdown membrane proteins with heterobifunctional degraders have been successfully developed, including LYTAC, KineTAC, and AbTAC. However, challenges including complicated synthetic procedures and the inability to simultaneously degrade multiple pathogenic proteins still exist. Herein, we developed insulin-like growth factor 2 (IGF2)-tagged aptamer chimeras (ITACs) that link the cell-surface lysosome-targeting receptor IGF2R and membrane proteins of interest (POIs) based on specific recognition of aptamers to the POIs and high-affinity binding of IGF2 to IGF2R. We demonstrated that ITACs exhibit robust degradation efficiency of various membrane proteins in multiple cell lines. Furthermore, systematic studies revealed that a moderate cell-surface IGF2R level is responsible for the excellent degradation performance of ITACs. Importantly, we further established a modular assembly strategy that allows assembly of one IGF2 with two aptamers with precise stoichiometry (dITACs), enabling cooperative and simultaneous degradation of two membrane proteins. This work provides an efficient and facile target membrane protein degradation platform and will shed light on the treatment of diseases related to the overexpression of membrane proteins.
Collapse
Affiliation(s)
- Yuan Tian
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanyan Miao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Junyan Wang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
40
|
Park D, Lee SJ, Park JW. Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy. Biomedicines 2024; 12:187. [PMID: 38255292 PMCID: PMC10813750 DOI: 10.3390/biomedicines12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, the field of drug delivery has witnessed remarkable progress, driven by the quest for more effective and precise therapeutic interventions. Among the myriad strategies employed, the integration of aptamers as targeting moieties and stimuli-responsive systems has emerged as a promising avenue, particularly in the context of anticancer therapy. This review explores cutting-edge advancements in targeted drug-delivery systems, focusing on the integration of aptamers and stimuli-responsive platforms for enhanced spatial anticancer therapy. In the aptamer-based drug-delivery systems, we delve into the versatile applications of aptamers, examining their conjugation with gold, silica, and carbon materials. The synergistic interplay between aptamers and these materials is discussed, emphasizing their potential in achieving precise and targeted drug delivery. Additionally, we explore stimuli-responsive drug-delivery systems with an emphasis on spatial anticancer therapy. Tumor microenvironment-responsive nanoparticles are elucidated, and their capacity to exploit the dynamic conditions within cancerous tissues for controlled drug release is detailed. External stimuli-responsive strategies, including ultrasound-mediated, photo-responsive, and magnetic-guided drug-delivery systems, are examined for their role in achieving synergistic anticancer effects. This review integrates diverse approaches in the quest for precision medicine, showcasing the potential of aptamers and stimuli-responsive systems to revolutionize drug-delivery strategies for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
41
|
Zhu L, Zhou Y, Zhang B, Luo Y, Fang C, Yan X, Cai Y, Jiang L, Ge J. Conjugation with glucagon like peptide-1 enables targeted protein degradation. Bioorg Chem 2023; 141:106908. [PMID: 37827016 DOI: 10.1016/j.bioorg.2023.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Lysosome-targeting chimeras (LYTACs) have emerged as a promising technique to extend the scope of targeted protein degradation to extracellular proteins, e.g., secreted proteins and membrane-anchored proteins. However, up to now, only a small number of lysosomal targeting receptors (LTRs), such as cation-independent mannose 6-phosphate receptor (CI-M6PR) and asialoglycoprotein receptor (ASGPR), were reported to build LYTACs for degradation of extracellular proteins. Therefore, it is important to explore more functionalized ligands for the relevant LTRs to expand the LYTAC framework. Herein, we demonstrate a new LTR ligand-glucagon like peptide 1 (GLP-1) based targeted degradation platform, termed GLP-1 receptor-targeting chimeras (GLP-1-LYTAC). GLP-1-LYTACs are formed by conjugating GLP-1 with targeted binder (such as antibody) through Click Chemistry, showing efficiently lysosomal degradation of both extracellular proteins (GFP and Neutravidin) as well as cell membrane proteins (EGFR and PD-L1). We believe that this novel GLP-1-LYTAC will open up a new dimension for targeted protein breakdown.
Collapse
Affiliation(s)
- Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiyu Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yin Luo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chen Fang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoqiao Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yefeng Cai
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Linye Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
42
|
Mikitiuk M, Barczyński J, Bielski P, Arciniega M, Tyrcha U, Hec A, Lipińska AD, Rychłowski M, Holak TA, Sitar T. IGF2 Peptide-Based LYTACs for Targeted Degradation of Extracellular and Transmembrane Proteins. Molecules 2023; 28:7519. [PMID: 38005242 PMCID: PMC10673611 DOI: 10.3390/molecules28227519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Lysosome-targeting chimeras (LYTACs) have recently been developed to facilitate the lysosomal degradation of specific extracellular and transmembrane molecular targets. However, the LYTAC particles described to date are based on glycopeptide conjugates, which are difficult to prepare and produce on a large scale. Here, we report on the development of pure protein LYTACs based on the non-glycosylated IGF2 peptides, which can be readily produced in virtually any facility capable of monoclonal antibody production. These chimeras utilize the IGF2R/CI-M6PR pathway for lysosomal shuttling and, in our illustrative example, target programmed death ligand 1 (PD-L1), eliciting physiological effects analogous to immune checkpoint blockade. Results from in vitro assays significantly exceed the effects of anti-PD-L1 antibodies alone.
Collapse
Affiliation(s)
- Michał Mikitiuk
- Recepton Sp. z o.o., Trzy Lipy 3, 80-172 Gdańsk, Poland
- Department of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Jan Barczyński
- Recepton Sp. z o.o., Trzy Lipy 3, 80-172 Gdańsk, Poland
- Department of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland
| | | | | | | | | | - Andrea D. Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Tad A. Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Tomasz Sitar
- Recepton Sp. z o.o., Trzy Lipy 3, 80-172 Gdańsk, Poland
| |
Collapse
|
43
|
Zhang B, Brahma RK, Zhu L, Feng J, Hu S, Qian L, Du S, Yao SQ, Ge J. Insulin-like Growth Factor 2 (IGF2)-Fused Lysosomal Targeting Chimeras for Degradation of Extracellular and Membrane Proteins. J Am Chem Soc 2023; 145:24272-24283. [PMID: 37899626 DOI: 10.1021/jacs.3c08886] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Targeted degradation of the cell-surface and extracellular proteins via the endogenous lysosomal degradation pathways, such as lysosome-targeting chimeras (LYTACs), has recently emerged as an attractive tool to expand the scope of extracellular chemical biology. Herein, we report a series of recombinant proteins genetically fused to insulin-like growth factor 2 (IGF2), which we termed iLYTACs, that can be conveniently obtained in high yield by standard cloning and bacterial expression in a matter of days. We showed that both type-I iLYTACs, in which IGF2 was fused to a suitable affibody or nanobody capable of binding to a specific protein target, and type-II iLYTAC (or IGF2-Z), in which IGF2 was fused to the IgG-binding Z domain that served as a universal antibody-binding adaptor, could be used for effective lysosomal targeting and degradation of various extracellular and membrane-bound proteins-of-interest. These heterobifunctional iLYTACs are fully genetically encoded and can be produced on a large scale from conventional E. coli expression systems without any form of chemical modification. In the current study, we showed that iLYTACs successfully facilitated the cell uptake, lysosomal localization, and efficient lysosomal degradation of various disease-relevant protein targets from different mammalian cell lines, including EGFR, PD-L1, CD20, and α-synuclein. The antitumor properties of iLYTACs were further validated in a mouse xenograft model. Overall, iLYTACs represent a general and modular strategy for convenient and selective targeted protein degradation, thus expanding the potential applications of current LYTACs and related techniques.
Collapse
Affiliation(s)
- Bei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Rajeev Kungur Brahma
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiayi Feng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shiqi Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
44
|
Li Y, Liu X, Yu L, Huang X, Wang X, Han D, Yang Y, Liu Z. Covalent LYTAC Enabled by DNA Aptamers for Immune Checkpoint Degradation Therapy. J Am Chem Soc 2023. [PMID: 37910771 DOI: 10.1021/jacs.3c03899] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Immune checkpoint blockade (ICB) therapy, while achieving tremendous clinical successes, still suffers from a low objective response rate in clinical cancer treatment. As a proof-of-concept study, we propose a new immune checkpoint degradation (ICD) therapy relying on lysosome-targeting chimera (LYTAC) to deplete immune checkpoint programmed death ligand-1 (PD-L1) on the tumor cell surface. Our designed chimeric aptamer on one side targets lysosome-trafficking receptor, and on the other side allows biorthogonal covalent-conjugation-reinforced specific binding of PD-L1. This covalent LYTAC is able to hijack PD-L1 for lysosomal degradation with greatly improved efficiency over its noncovalent counterpart in complex in vivo environment. Beyond abolishing the PD-1/PD-L1 axis associated immune resistance, we demonstrate for the first time that LYTAC-triggered PD-L1 degradation could directly cause immunogenic apoptosis of tumor cells to elicit tumor-specific immune responses, offering unparalleled advantages over ICB antibody therapy. Remarkably, ICD therapy with covalent LYTAC achieves comparable or higher antitumor efficacy while causing significantly less inflammatory injury compared to antibody-based ICB therapy. Moreover, covalent LYTAC can serve as a general platform for specifically degrading other membrane-associated proteins, making it a promising tool for future applications. Our work presents a novel molecular tool for effective LYTAC in complex environments, offering valuable insights in pushing DNA-based LYTAC drugs toward in vivo and clinical applications.
Collapse
Affiliation(s)
- Yuqing Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Yu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xin Huang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xuan Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Da Han
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
45
|
Hou M, Guo R, Ren T, Wang T, Jiang JH, He J. Selective Proteolysis of Activated Transcriptional Factor by NIR-Responsive Palindromic DNA Thalidomide Conjugate Inhibits the Canonical Smad Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302525. [PMID: 37415558 DOI: 10.1002/smll.202302525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Dysfunctional transcription factors that activate abnormal expressions of specific proteins are often associated with the progression of various diseases. Despite being attractive drug targets, the lack of druggable sites has dramatically hindered their drug development. The emergence of proteolysis targeting chimeras (PROTACs) has revitalized the drug development of many conventional hard-to-drug protein targets. Here, the use of a palindromic double-strand DNA thalidomide conjugate (PASTE) to selectively bind and induce proteolysis of targeted activated transcription factor (PROTAF) is reported. The selective proteolysis of the dimerized phosphorylated receptor-regulated Smad2/3 and inhibition of the canonical Smad pathway validates PASTE-mediated PROTAF. Further aptamer-guided active delivery of PASTE and near-infrared light-triggered PROTAF are demonstrated. Great potential in using PASTE for the selective degradation of the activated transcription factor is seen, providing a powerful tool for studying signaling pathways and developing precision medicines.
Collapse
Affiliation(s)
- Min Hou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205, China
| | - Rui Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tianyu Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianjun He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
46
|
Zhang GR, Tan W, Wang XQ. Chemical Tailoring of Aptamer Glues with Significantly Enhanced Recognition Ability for Targeted Membrane Protein Degradation. ACS NANO 2023; 17:15146-15154. [PMID: 37494291 DOI: 10.1021/acsnano.3c04457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Cell membrane proteins play a crucial role in the development of early cancer diagnosis strategies and precision medicine techniques. However, the application of aptamers in cell membrane protein-based biomedical research is limited by their inherent drawbacks, such as sensitivity to the recognition environment and susceptibility to enzymatic degradation, which leads to the loss of recognition ability. To address these challenges, this study presents a subzero-temperature-enabled molecule stacking strategy for the on-demand tailoring of aptamer glues for the precision recognition and efficient degradation of membrane protein. Mechanistic studies revealed that nucleic acid molecule stacking occurred during the freezing and melting processes, facilitating a rapid click reaction by bringing two reactive groups together. In vitro investigations demonstrated that the strategy confers aptamer glues with significantly enhanced specific recognition ability and binding affinity, allowing the distinction of a targeted cell line from a nontargeted cell line. Moreover, the engineered aptamer glue exhibited impressive targeted cell membrane protein degradation ability; around 74% of the c-Met protein was degraded in 24 h. These findings hold great potential for advancing cancer diagnosis and targeted therapy through the development of more stable and reliable aptamer probes.
Collapse
Affiliation(s)
- Guo-Rong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
47
|
Ai L, Jiang X, Zhang K, Cui C, Liu B, Tan W. Tools and techniques for the discovery of therapeutic aptamers: recent advances. Expert Opin Drug Discov 2023; 18:1393-1411. [PMID: 37840268 DOI: 10.1080/17460441.2023.2264187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION The pursuit of novel therapeutic agents for serious diseases such as cancer has been a global endeavor. Aptamers characteristic of high affinity, programmability, low immunogenicity, and rapid permeability hold great promise for the treatment of diseases. Yet obtaining the approval for therapeutic aptamers remains challenging. Consequently, researchers are increasingly devoted to exploring innovative strategies and technologies to advance the development of these therapeutic aptamers. AREAS COVERED The authors provide a comprehensive summary of the recent progress of the SELEX (Systematic Evolution of Ligands by EXponential enrichment) technique, and how the integration of modern tools has facilitated the identification of therapeutic aptamers. Additionally, the engineering of aptamers to enhance their functional attributes, such as inhibiting and targeting, is discussed, demonstrating the potential to broaden their scope of utility. EXPERT OPINION The grand potential of aptamers and the insufficient development of relevant drugs have spurred countless efforts for stimulating their discovery and application in the therapeutic field. While SELEX techniques have undergone significant developments with the aid of advanced analysis instruments and ingeniously updated aptameric engineering strategies, several challenges still impede their clinical translation. A key challenge lies in the insufficient understanding of binding conformation and susceptibility to degradation under physiological conditions. Despite the hurdles, our opinion is optimistic. With continued progress in overcoming these obstacles, the widespread utilization of aptamers for clinical therapy is envisioned to become a reality soon.
Collapse
Affiliation(s)
- Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
| | - Xinyi Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
| | - Kejing Zhang
- Department of Geriatrics and Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, The People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, The People's Republic of China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
| | - Bo Liu
- Department of Geriatrics and Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, The People's Republic of China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, The People's Republic of China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, The People's Republic of China
| |
Collapse
|