1
|
Mohsin N, Khalid S, Rasool N, Aman L, Kanwal A, Imran M. Metallo-Organic Complexes Containing Transition Metals; Synthetic Approaches and Pharmaceutical Aspects. Chempluschem 2025:e202400748. [PMID: 39988561 DOI: 10.1002/cplu.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Coordination compounds offer a flexible framework for the thoughtful design of novel therapeutic-metallodrugs because of the unique properties of metal ions, such as their ability to coordinate with a wide range of organic ligands, variable oxidation states, a wide range of geometries, and coordination numbers. The pharmaceutical potential of a metal ion and associated substances is validated by the prevalence of various disease states linked to a metal ion's excess or deficiency within the biological system. Researchers have sought more selective, efficacious metallodrugs that cause fewer adverse effects. Attempts have resulted in considering a large range of organic ligands, preferably polydentate ligands with demonstrated biological activity, and a large range of metals from the periodic table, primarily from the d-block. In this review, we have outlined the key coordination complexes comprising N-, O-, and S-donor ligands reported in the last six years to demonstrate the potential applications of these metallo-organic complexes. The synthetic pathways of ligands, their complexes, and their potential for therapeutic applications are highlighted.
Collapse
Affiliation(s)
- Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Labiqa Aman
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
2
|
Hussein HH, Al-Azawi KF, Hasoon BA, El-Sayed DS. Advance Screening of Bis-azetidinone Derivatives: Synthesis, Spectroscopy, Antioxidant and Antimicrobial Analysis with Molecular Docking Assessment. Curr Org Synth 2025; 22:396-409. [PMID: 40259592 DOI: 10.2174/0115701794318870240923073910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 04/23/2025]
Abstract
INTRODUCTION This study includes synthesis, characterizations, antimicrobial, antioxidant, and docking molecular study of novel Bis-Azetidinone compounds that combined two units of β-lactam rings .In the present investigation, the aromatic aldehydes with primary amine were condensed to create Schiff's base, which was then reacted with chloroacetylchloride to produce bis-Azetidinone compounds. METHODS Melting points, FTIR, and NMR spectrum analyses were used to examine the morphological and topological characteristics of the Bis-Azetidinone compounds. The results indicate that the prepared Compounds synthesis has excellent antimicrobial activity against both Gram-negative (Escherichia coli,), Gram-positive bacteria (Staphylococcus aureus) and fungal (Candida albicans) and also indicated that the Compounds synthesis (A2) gave a higher antimicrobial effect than the B2, C2. The synergistic activity was examined against the pathogenic microbial strains. It was observed that employing compound synthesis combined with antibiotics enhanced the synergistic efficacy compared to using compound synthesis alone or antibiotic alone on Gram-positive bacteria and fungi. RESULTS The antioxidant efficiency was assessed by DPPH, the results show that the compound synthesis has antioxidant activity, and also indicated that the synthesized compound (A2) gave a higher antioxidant effect than the B2, C2. Docking study confirmed via redocking of crystalized substrate or inhibitor within target binding pocket. The docking results reveal that the synthesized compounds, with a total binding affinity of less than -48 kcal/mol, could be clinically used for future therapeutic purposes. CONCLUSION The present research demonstrates the advantageous effectiveness of a simpler production procedure, novel Bis-Azetidinone compounds, for producing high-purity with low hazard that may be utilized as future possible medical therapies.
Collapse
Affiliation(s)
- Huda H Hussein
- Applied Science Department, Branch of Chemistry, University of Technology, Baghdad, Iraq
| | - Khalida F Al-Azawi
- Applied Science Department, Branch of Chemistry, University of Technology, Baghdad, Iraq
| | - Butheina A Hasoon
- Applied Science Department, Branch of Biotechnology, University of Technology, Baghdad, Iraq
| | - Doaa S El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| |
Collapse
|
3
|
Benselama W, Benchouk W. In silico design based on quantum chemical, molecular docking studies and ADMET predictions of ciprofloxacin derivatives as novel potential antibacterial and antimycrobacterium agents. J Biomol Struct Dyn 2024; 42:7650-7666. [PMID: 37551116 DOI: 10.1080/07391102.2023.2240906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. In this paper, we report the prediction of new ciprofloxacin derivatives by quantum chemical, molecular docking studies and pharmacokinetic properties. Theoretical studies were performed by geometry optimization computation using B3LYP level at 6-311 G (d,p) basis set. The absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters were predicted and the result show that all compounds have a great ADMET profile. To study the antibacterial, anti-Mycobacterium tuberculosis activities, ciprofloxacin and its derivatives were interacted with the proteins: Thymidylate Kinase (PDB: 4QGG), Biotin carboxylase (PDB: 3JZF) and β-lactamase BlaC (PDB: 3N7W). The results of the docking studies indicate that one pharmacophore designed presents a great inhibition behavior against gram-positive organism (4QGG) and significant interactions observed between the compound and ARG48, GLN101, ARG105 and GLU37 residues of 4QGG. Also, another derivative designed present the best inhibition against gram-negative organism (3JZF) several interactions were noticed between the compound and GLY165, ILE287, LEU278, HIS236, HIS209, MET169 and LYS159 residues of (3JZF). As well as, one designed candidate is good inhibitors for β-lactamase (3N7W) multiple no bonded interactions were observed between the compound and SER84, ILE117, ASN186, LYS87, ARG187, ASN186 and THR251 residues of(3N7W). Molecular dynamics (MD) simulation study was also performed for 100 ns to confirm the stability behaviour of the main protein and inhibitor complexes. The MD simulation study validated the stability of three compounds in the protein binding pocket as potent binders. Natural bonding orbital analysis, reactivity indices and molecular electrostatic potential were carried out. The research finding of this study can be helpful to design a new potent antibacterial, antimycrobacterium candidate's drugs that will serve as the basis for future in vitro and in vivo research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wafa Benselama
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| | - Wafaa Benchouk
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
4
|
Mukhtar SS, Sroor FM, Hafez TS, Abdelraof M, El-Sayed AF, Laboud YN, Hassaneen HM, Saleh FM. Evaluation of Pyrazolyl-Indolizine Derivatives as Antimicrobial Agents: Synthesis, In vitro, In silico ADMET and Molecular Docking Studies. Chem Biodivers 2024; 21:e202400825. [PMID: 38802323 DOI: 10.1002/cbdv.202400825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Herein, we report analogues of s-indacene by the synthesis of novel indolizine derivatives. Using chloroform as an appropriate solvent, sixteen derivatives of pyrazolyl-indolizine (4--19) were prepared by the reaction of 3-(dimethylamino)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (1) with hydrazonoyl chloride derivatives (2) in the presence of triethylamine in good to excellent yields. We used NMR spectra, IR, mass spectrometry, as well as elemental analyses to prove the chemical structures and the purity of the synthesized compounds 4-19. Among all tested compounds 5, 9, 13 and 19 had a potent antimicrobial efficiency against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aerginousea, Sallmonella typhemerium, and Candida albicans. Furthermore, a significant increase in lipid peroxidation (LPO) toward the Gram-negative bacteria, Pseudomonas aeruginosa when treated with compound 9 was observed, while compound 13 remarkably increased the cell membrane oxidation of Salmonella typhimurium. Additionally, we utilized docking studies and in silico methods to evaluate the drug-likeness, physicochemical properties, and ADMET profiles of the compounds. The results of the molecular docking simulation revealed that the synthesized compounds displayed decreased binding energy when interacting with the active sites of important enzymes, including Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of S. typhimurium, and Gyrase B of B. subtilis.
Collapse
Affiliation(s)
- Shorouk S Mukhtar
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 12622, Cairo, Egypt
| | - Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 12622, Cairo, Egypt
| | - Taghrid S Hafez
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 12622, Cairo, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Yara N Laboud
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Hamdi M Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma M Saleh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Banti CN, Kalousi FD, Psarra AMG, Moushi EE, Leonidas DD, Hadjikakou SK. Silver ciprofloxacin (CIPAG): a multitargeted metallodrug in the development of breast cancer therapy. J Biol Inorg Chem 2024; 29:177-186. [PMID: 38581541 PMCID: PMC11098868 DOI: 10.1007/s00775-024-02048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
The anti-proliferative activity of the known metalloantibiotic {[Ag(CIPH)2]NO3∙0.75MeOH∙1.2H2O} (CIPAG) (CIPH = ciprofloxacin) against the human breast adenocarcinoma cancer cells MCF-7 (hormone dependent (HD)) and MDA-MB-231 (hormone independent (HI)) is evaluated. The in vitro toxicity and genotoxicity of the metalloantibiotic were estimated toward fetal lung fibroblast (MRC-5) cells. The molecular mechanism of the CIPAG activity against MCF-7 cells was clarified by the (i) cell morphology, (ii) cell cycle arrest, (iii) mitochondrial membrane permeabilization, and (iv) by the assessment of the possible differential effect of CIPAG on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) transcriptional activation, applying luciferase reporter gene assay. Moreover, the ex vivo mechanism of CIPAG was clarified by its binding affinity toward calf thymus (CT-DNA).
Collapse
Affiliation(s)
- Christina N Banti
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| | - Foteini D Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Eleni E Moushi
- Department of Life Sciences, The School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Sotiris K Hadjikakou
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
- Institute of Materials Science and Computing, University Research Centre of Ioannina (URCI), Ioannina, Greece.
| |
Collapse
|
6
|
Derki NEH, Kerassa A, Belaidi S, Derki M, Yamari I, Samadi A, Chtita S. Computer-Aided Strategy on 5-(Substituted benzylidene) Thiazolidine-2,4-Diones to Develop New and Potent PTP1B Inhibitors: QSAR Modeling, Molecular Docking, Molecular Dynamics, PASS Predictions, and DFT Investigations. Molecules 2024; 29:822. [PMID: 38398573 PMCID: PMC10892620 DOI: 10.3390/molecules29040822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
A set of 5-(substituted benzylidene) thiazolidine-2,4-dione derivatives was explored to study the main structural requirement for the design of protein tyrosine phosphatase 1B (PTP1B) inhibitors. Utilizing multiple linear regression (MLR) analysis, we constructed a robust quantitative structure-activity relationship (QSAR) model to predict inhibitory activity, resulting in a noteworthy correlation coefficient (R2) of 0.942. Rigorous cross-validation using the leave-one-out (LOO) technique and statistical parameter calculations affirmed the model's reliability, with the QSAR analysis revealing 10 distinct structural patterns influencing PTP1B inhibitory activity. Compound 7e(ref) emerged as the optimal scaffold for drug design. Seven new PTP1B inhibitors were designed based on the QSAR model, followed by molecular docking studies to predict interactions and identify structural features. Pharmacokinetics properties were assessed through drug-likeness and ADMET studies. After that density functional theory (DFT) was conducted to assess the stability and reactivity of potential diabetes mellitus drug candidates. The subsequent dynamic simulation phase provided additional insights into stability and interactions dynamics of the top-ranked compound 11c. This comprehensive approach enhances our understanding of potential drug candidates for treating diabetes mellitus.
Collapse
Affiliation(s)
- Nour-El Houda Derki
- VTRS Laboratory, Faculty of Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria (A.K.)
| | - Aicha Kerassa
- VTRS Laboratory, Faculty of Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria (A.K.)
- Group of Computational and Medicinal Chemistry, Laboratory of Molecular Chemistry and Environment, University of Biskra, P.O. Box 145, Biskra 07000, Algeria;
| | - Salah Belaidi
- Group of Computational and Medicinal Chemistry, Laboratory of Molecular Chemistry and Environment, University of Biskra, P.O. Box 145, Biskra 07000, Algeria;
| | - Maroua Derki
- VTRS Laboratory, Faculty of Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria (A.K.)
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, UAEU, Al Ain P.O. Box 15551, United Arab Emirates
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco
| |
Collapse
|
7
|
El-Sayed DS, Tawfik EM, Elhusseiny AF, El-Dissouky A. A perception into binary and ternary copper (II) complexes: synthesis, characterization, DFT modeling, antimicrobial activity, protein binding screen, and amino acid interaction. BMC Chem 2023; 17:55. [PMID: 37316928 DOI: 10.1186/s13065-023-00962-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Ensuring healthy lives and promoting well-being for all at all ages is the third goal of the sustainable development plan, so it was necessary to identify the most important problems that threaten health in our world. The World Health Organization declared that antibiotic resistance is one of the uppermost global public health threats facing humanity and searching for new antibiotics is slow. This problem can be approached by improving available drugs to combat various bacterial threats. To circumvent bacterial resistance, three copper(II) complexes based on the pefloxacin drug were prepared and characterized using analytical, spectroscopic, and thermal techniques. The resulting data suggested the formation of one octahedral binary and two distorted square pyramidal ternary complexes. Fluorescence spectra results revealed the formation of a turn-on fluorophore for amino acid detection. Computational calculations investigated quantum and reactivity parameters. Molecular electrostatic potential profiles and noncovalent bond interaction-reduced density gradient analysis indicated the active sites on the complex surface. The complexes were subjected to six microbial species, where the octahedral binary complex provoked its antimicrobial potency in comparison with ternary complexes. The enhanced antimicrobial activity against gram-negative bacterium E-coli compared to gentamicin was exhibited by the three complexes. Docking simulation was performed based on the crystal structure of E. coli and S. pneumoniae receptors using 5I2D and 6O15 codes. The binary complex exhibited a potent fitness score with 5I2D (TBE = - 107 kcal/mol) while ternary complexes displayed the highest docked score of fitness with 6O15.
Collapse
Affiliation(s)
- Doaa S El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, 2 Bagdad Street, P.O. Box 2-Moharrem Beck, Alexandria, 21321, Egypt.
| | - Eman M Tawfik
- Chemistry Department, Faculty of Science, Alexandria University, 2 Bagdad Street, P.O. Box 2-Moharrem Beck, Alexandria, 21321, Egypt
| | - Amel F Elhusseiny
- Chemistry Department, Faculty of Science, Alexandria University, 2 Bagdad Street, P.O. Box 2-Moharrem Beck, Alexandria, 21321, Egypt
| | - Ali El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, 2 Bagdad Street, P.O. Box 2-Moharrem Beck, Alexandria, 21321, Egypt
| |
Collapse
|
8
|
A facile and robust approach for synthesis and structural characterization of an unprecedented ring system of 4H-pyrazolo[3,4-f]indolizine-4,9(2H)-dione derivatives. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Sharma S, Sharma BK, Jain S, Gulyani P. A Combined QSAR and Molecular Docking Approach for Identifying
Pyrimidine Derivatives as Penicillin Binding Protein Inhibitors. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220427101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Antimicrobial resistance has been rising continuously in the past few years due
to the overuse and exploitation of existing antimicrobials. This has motivated the search for a novel scaffold
that has the capability of rapid antimicrobial action. The hybridized pyrimidines have attracted us due
to their widespread biological activities, such as anti-bacterial and antifungal activities.
Objective:
The present study incorporates a series of pyrimidine-based antimicrobial agents for the 2D
quantitative structure-activity relationship analysis (2D QSAR) and docking analysis.
Methods:
The exploration of the chemical structures in combination with the biological activity in CPMLR led to the detection of six descriptors (Constitutional descriptors, Topological descriptors, Modified Burden Eigenvalues and 2D autocorrelations) for modeling the activity. The resulted QSAR model has been validated using combinatorial protocol in multiple linear regression (CP-MLR) and partial least squares (PLS) analysis.
Methods:
The exploration of the chemical structures in combination with the biological activity in
CPMLR led to the detection of six descriptors (Constitutional descriptors, Topological descriptors, Modified
Burden Eigenvalues and 2D autocorrelations) for modeling the activity. The resulted QSAR model
has been validated using a combinatorial protocol in multiple linear regression (CP-MLR) and partial
least squares (PLS) analysis.
Results:
The best QSAR model displays the r2
t
value of 0.594, Q2
LOO value of 0.779, Q2
L5O value of
0.767. Further docking study was executed using Autodock Vina against Penicillin-binding protein
(PBP2a).
Conclusion:
From the results, Compounds 4, 11and 24 were found to possess a good binding affinity
towards PBP2a.
Collapse
Affiliation(s)
- Smriti Sharma
- Amity Institute of Pharmacy, Amity University, Sector-125, Noida-201313, India
| | - Brij K. Sharma
- Department of Chemistry, Government
College, Bundi-323 001, Rajasthan, India
| | - Surabhi Jain
- Faculty of Pharmacy, B. Pharmacy College Rampura-kakanpur, (Gujarat
Technological University), Panchmahals, Gujarat, India
| | - Puja Gulyani
- Amity Institute of Pharmacy, Amity University, Sector-125, Noida-201313, India
| |
Collapse
|
10
|
Design and synthesis of new N-thioacylated ciprofloxacin derivatives as urease inhibitors with potential antibacterial activity. Sci Rep 2022; 12:13827. [PMID: 35970866 PMCID: PMC9378659 DOI: 10.1038/s41598-022-17993-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/03/2022] [Indexed: 01/06/2023] Open
Abstract
A new series of N-thioacylated ciprofloxacin 3a-n were designed and synthesized based on Willgerodt-Kindler reaction. The results of in vitro urease inhibitory assay indicated that almost all the synthesized compounds 3a-n (IC50 = 2.05 ± 0.03-32.49 ± 0.32 μM) were more potent than standard inhibitors, hydroxyurea (IC50 = 100 ± 2.5 μM) and thiourea (IC50 = 23 ± 0.84 μM). The study of antibacterial activity against Gram-positive species (S. aureus and S. epidermidis) revealed that the majority of compounds were more active than ciprofloxacin as the standard drug, and 3h derivative bearing 3-fluoro group had the same effect as ciprofloxacin against Gram-negative bacteria (P. aeruginosa and E. coli). Based on molecular dynamic simulations, compound 3n exhibited pronounced interactions with the critical residues of the urease active site and mobile flap pocket so that the quinolone ring coordinated toward the metal bi-nickel center and the essential residues at the flap site like His593, His594, and Arg609. These interactions caused blocking the active site and stabilized the movement of the mobile flap at the entrance of the active site channel, which significantly reduced the catalytic activity of urease. Noteworthy, 3n also exhibited IC50 values of 5.59 ± 2.38 and 5.72 ± 1.312 µg/ml to inhibit urease enzyme against C. neoformans and P. vulgaris in the ureolytic assay.
Collapse
|
11
|
Elkanzi NAA, Ali AM, Hrichi H, Abdou A. New mononuclear Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) complexes incorporating 4‐{[(2 hydroxyphenyl)imino]methyl}phenyl‐4‐methylbenzenesulfonate (HL): Synthesis, characterization, theoretical, anti‐inflammatory, and molecular docking investigation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nadia A. A. Elkanzi
- Chemistry Department, College of Science Jouf University Sakaka Saudi Arabia
| | - Ali M. Ali
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
| | - Hajer Hrichi
- Chemistry Department, College of Science Jouf University Sakaka Saudi Arabia
| | - Aly Abdou
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
| |
Collapse
|
12
|
Zalevskaya OA, Gur’eva YA. Recent Studies on the Antimicrobial Activity of Copper Complexes. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Tiihonen A, Cox-Vazquez SJ, Liang Q, Ragab M, Ren Z, Hartono NTP, Liu Z, Sun S, Zhou C, Incandela NC, Limwongyut J, Moreland AS, Jayavelu S, Bazan GC, Buonassisi T. Predicting Antimicrobial Activity of Conjugated Oligoelectrolyte Molecules via Machine Learning. J Am Chem Soc 2021; 143:18917-18931. [PMID: 34739239 DOI: 10.1021/jacs.1c05055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New antibiotics are needed to battle growing antibiotic resistance, but the development process from hit, to lead, and ultimately to a useful drug takes decades. Although progress in molecular property prediction using machine-learning methods has opened up new pathways for aiding the antibiotics development process, many existing solutions rely on large data sets and finding structural similarities to existing antibiotics. Challenges remain in modeling unconventional antibiotic classes that are drawing increasing research attention. In response, we developed an antimicrobial activity prediction model for conjugated oligoelectrolyte molecules, a new class of antibiotics that lacks extensive prior structure-activity relationship studies. Our approach enables us to predict the minimum inhibitory concentration for E. coli K12, with 21 molecular descriptors selected by recursive elimination from a set of 5305 descriptors. This predictive model achieves an R2 of 0.65 with no prior knowledge of the underlying mechanism. We find the molecular representation optimum for the domain is the key to good predictions of antimicrobial activity. In the case of conjugated oligoelectrolytes, a representation reflecting the three-dimensional shape of the molecules is most critical. Although it is demonstrated with a specific example of conjugated oligoelectrolytes, our proposed approach for creating the predictive model can be readily adapted to other novel antibiotic candidate domains.
Collapse
Affiliation(s)
- Armi Tiihonen
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sarah J Cox-Vazquez
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Qiaohao Liang
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohamed Ragab
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zekun Ren
- Singapore MIT Alliance for Research and Technology, #05-09, Innovation Wing, 1 Create Way, Singapore 138602, Singapore
| | | | - Zhe Liu
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shijing Sun
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cheng Zhou
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Nathan C Incandela
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jakkarin Limwongyut
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Senthilnath Jayavelu
- Institute for Infocomm Research, Artificial Intelligence, Analytics and Informatics, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore.,Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Tonio Buonassisi
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Singapore MIT Alliance for Research and Technology, #05-09, Innovation Wing, 1 Create Way, Singapore 138602, Singapore
| |
Collapse
|
14
|
Üstün E, Şahin N, Çelik C, Tutar U, Özdemir N, Gürbüz N, Özdemir İ. Synthesis, characterization, antimicrobial and antibiofilm activity, and molecular docking analysis of NHC precursors and their Ag-NHC complexes. Dalton Trans 2021; 50:15400-15412. [PMID: 34647935 DOI: 10.1039/d1dt02003j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microorganisms attach to surfaces and interfaces and form biofilms which create a sheltered area for host cell response. Therefore, biofilms provide troubles in fields such as medicine, food, and pharmaceuticals. Inhibition of formation of biofilms through hindering of quorum sensing could be a method for the production of new generation antibiotics. In this study, four new benzimidazole type NHC precursors (1-allyl-3-benzyl-5,6-dimethylbenzimidazolium chloride, 1-allyl-3-(2,4,6-trimethylbenzyl)-5,6-dimethylbenzimidazolium chloride, 1-allyl-3-(2,3,5,6-tetramethylbenzyl)-5,6-dimethylbenzimidazolium chloride, and 1-allyl-3-(2,3,4,5,6-pentamethylbenzyl)-5,6-dimethylbenzimidazolium chloride and Ag-NHC complexes of these molecules were synthesized and characterized by elemental analysis, FT-IR spectroscopy, 1H, and 13C{1H} NMR spectroscopy, LC-MS, and single crystal crystallography. Antimicrobial and biofilm formation inhibition activities of the molecules were evaluated. In addition, the activities of the molecules were examined in detail by molecular docking analysis. According to the results obtained, higher activity was achieved with the complex molecules when compared with the benzimidazole derivative ligands.
Collapse
Affiliation(s)
- Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, 52200 Ordu, Turkey
| | - Neslihan Şahin
- Department of Basic Education, Faculty of Education, Cumhuriyet University, 58040, Sivas, Turkey.
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280, Malatya, Turkey
| | - Cem Çelik
- Department of Medical Microbiology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Uğur Tutar
- Department of Botanica, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, 58140, Turkey
| | - Namık Özdemir
- Department of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280, Malatya, Turkey
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280, Malatya, Turkey
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey
| |
Collapse
|
15
|
Jia Y, Zhao L. The antibacterial activity of fluoroquinolone derivatives: An update (2018-2021). Eur J Med Chem 2021; 224:113741. [PMID: 34365130 DOI: 10.1016/j.ejmech.2021.113741] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
Bacterial infection is amongst the most common diseases in community and hospital settings. Fluoroquinolones, exerting the antibacterial activity through binding to type II bacterial topoisomerase enzymes, DNA gyrase and topoisomerase IV, are mainstays of chemotherapy. At present, fluoroquinolones are the most valuable antibacterial agents used popularly. However, the emergence of more virulent and resistant pathogens by the development of either mutated DNA-binding proteins or efflux pump mechanism for fluoroquinolones results in an urgent demand to develop new fluoroquinolones to withstand the drug resistance and to obtain a broader spectrum of activity. This review aims to outline the recent advances of fluoroquinolone derivatives with antibacterial potential and to summarize the structure-activity relationship (SAR) so as to provide an insight for rational design of more active candidates, covering articles published between January 2018 and June 2021.
Collapse
Affiliation(s)
- Yanshu Jia
- Faculty of Science and Technology, Quest International University Perak, Ipoh, 30250, Perak, Malaysia
| | - Liyan Zhao
- Department of Paediatrics, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
16
|
Walden DM, Khotimchenko M, Hou H, Chakravarty K, Varshney J. Effects of Magnesium, Calcium, and Aluminum Chelation on Fluoroquinolone Absorption Rate and Bioavailability: A Computational Study. Pharmaceutics 2021; 13:594. [PMID: 33919271 PMCID: PMC8143323 DOI: 10.3390/pharmaceutics13050594] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
Fluoroquinolones (FQs) are a widespread class of broad-spectrum antibiotics prescribed as a first line of defense, and, in some cases, as the only treatment against bacterial infection. However, when administered orally, reduced absorption and bioavailability can occur due to chelation in the gastrointestinal tract (GIT) with multivalent metal cations acquired from diet, coadministered compounds (sucralfate, didanosine), or drug formulation. Predicting the extent to which this interaction reduces in vivo antibiotic absorption and systemic exposure remains desirable yet challenging. In this study, we focus on quinolone interactions with magnesium, calcium and aluminum as found in dietary supplements, antacids (Maalox) orally administered therapies (sucralfate, didanosine). The effect of FQ-metal complexation on absorption rate was investigated through a combined molecular and pharmacokinetic (PK) modeling study. Quantum mechanical calculations elucidated FQ-metal binding energies, which were leveraged to predict the magnitude of reduced bioavailability via a quantitative structure-property relationship (QSPR). This work will help inform clinical FQ formulation design, alert to possible dietary effects, and shed light on drug-drug interactions resulting from coadministration at an earlier stage in the drug development pipeline.
Collapse
Affiliation(s)
| | | | | | | | - Jyotika Varshney
- VeriSIM Life, San Francisco, CA 94104, USA; (D.M.W.); (M.K.); (H.H.); (K.C.)
| |
Collapse
|
17
|
Cai DH, Zhang CL, Liu QY, He L, Liu YJ, Xiong YH, Le XY. Synthesis, DNA binding, antibacterial and anticancer properties of two novel water-soluble copper(II) complexes containing gluconate. Eur J Med Chem 2021; 213:113182. [PMID: 33486198 DOI: 10.1016/j.ejmech.2021.113182] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/20/2022]
Abstract
In this paper, two new Cu(II) complexes, [Cu(Gluc)(HPB)(H2O)]Gluc (CuG1) and [Cu(Gluc)(HPBC)(H2O)]Gluc (CuG2) (where HPB = 2-(2'-pyridyl)benzimidazole, HPBC = 5-chloro-2-(2'-pyridyl)benzimidazole, Gluc = d-Gluconic acid), with good water solubility were synthesized and characterized. These complexes exhibited a five-coordinated tetragonal pyramidal geometry. The DNA binding and cleavage properties of the complexes were investigated using multi-spectroscopy, viscosity measurement, molecular docking and gel electrophoresis analysis methods. The results showed that the complexes could interact with DNA by insertion and groove binding, and cleave CT-DNA through a singlet oxygen-dependent pathway in the presence of ascorbic acid. The studies on antibacterial and anticancer activities in vitro demonstrated that both complexes had good inhibitory activity against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes) and one Gram-negative bacterium (Escherichia coli) and good cytotoxic activity toward the tested cancer cells (A549, HeLa and SGC-7901). CuG2 showed higher antimicrobial and cytotoxic activities than CuG1, which was consistent with their binding strength and cleavage ability to DNA, indicating that their antimicrobial and cytotoxic activities may be related to the DNA interaction. Moreover, the cell-based mechanism studies have indicated that CuG1 and CuG2 could arrest the cell cycle at G2/M phase, elevate the levels of intracellular reactive oxygen species (ROS) and decrease the mitochondrial membrane potential (MMP). The results showed that the complexes could induce apoptosis through DNA-damaged and ROS-mediated mitochondrial dysfunction pathways. Finally, the in vivo antitumor study revealed that CuG2 inhibited tumor growth by 50.44%, which is better than that of cisplatin (40.94%).
Collapse
Affiliation(s)
- Dai-Hong Cai
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China
| | - Chun-Lian Zhang
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qi-Yan Liu
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China
| | - Liang He
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Ya-Hong Xiong
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xue-Yi Le
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|