1
|
Nath J, Dewan M, Ghosh A, Ray SS, Orasugh JT, Lahiri B, Chattopadhyay D, Adhikari A. Chitosan-based adsorbents for remediation of toxic dyes from wastewater: A review on adsorption mechanism, reusability, machine learning based modeling and future perspectives. Int J Biol Macromol 2025; 311:143388. [PMID: 40280518 DOI: 10.1016/j.ijbiomac.2025.143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
The disposal of recalcitrant dyes in aquatic environments from various industrial sectors is a threat to both the plant and animal kingdom. The presence of dyes in various water bodies undermines the availability of uncontaminated drinking water and may result in serious health-related issues and diseases. Therefore, it is of utmost importance to get rid of these harmful dyes from the aquatic environment. Hence various treatment techniques came to the fore, but they have their corresponding advantages and disadvantages. Several researchers have reported the adsorption of dyes with carbon-based composites, polymeric materials, and metal-based nanoparticles. However, the one with biocompatible materials or biopolymers deserves special attention as they are benign from an environmental viewpoint. We have chosen chitosan as our material of interest and elaborated on the positive aspects of chitosan as an excellent candidate for dye adsorption. Although a plethora of review articles has been disseminated in the past to underscore the utilization of chitosan-based adsorbents in the extraction of dyes, this manuscript endeavors to furnish a thorough examination of the complete adsorption process, encompassing its parameters and kinetics, thus facilitating a reader lacking foundational knowledge in this field to attain a more comprehensible understanding of the subject matter. This review also integrates a comprehensive overview of optimization methodologies for dye adsorption and examines relevant patents-an area that, to the best of our knowledge, has not been thoroughly addressed in previous review articles. Conclusively, it can be stated that chitosan can efficiently adsorb dye from wastewater showing good performance even after five cycles of adsorption/desorption. Moreover, several software programs can be used for optimizing maximum dye adsorption capacity of chitosan which shows well alignment with experimental results, thus making it suitable for real-life applications.
Collapse
Affiliation(s)
- Jyotishka Nath
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Mitali Dewan
- Department of Chemistry, Shahid Matangini Hazra Government General Degree College for Women, Chakshrikrishnapur, Kulberia, P.O: Kulberia, Dist: Purba Medinipur, 721649, West Bengal, India
| | - Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Basudev Lahiri
- Indian Institute of Technology Kharagpur, Department of Electronics & Electrical Communication Engineering at Indian Institute of Technology, Kharagpur, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| | - Arpita Adhikari
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| |
Collapse
|
2
|
Franco AJ, Alocilja E. Adsorption Studies of Salmonella Enteritidis and Escherichia coli on Chitosan-Coated Magnetic Nanoparticles. Cells 2025; 14:225. [PMID: 39937016 PMCID: PMC11817960 DOI: 10.3390/cells14030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
One of the challenges of microbiological testing is the complex and lengthy sample preparation, causing delays in getting the final result. Immunomagnetic separation is one of the sample preparation techniques recently used to overcome this complexity. However, it is expensive, fragile, and requires cold storage. This study aimed to use chitosan-coated magnetic nanoparticles (cMNP) to capture bacterial cells from a simulated matrix and understand the interaction between the bacteria and the cMNP using batch adsorption studies. To illustrate the concept, Salmonella Enteritidis and Escherichia coli were used. Results showed that the adsorption of Salmonella Enteritidis and E. coli fitted the pseudo-second-order kinetic model (R2 = 0.939 and 0.968, respectively) and the Freundlich isotherm model (R2 = 0.999 and 0.970, respectively). The increased ionic strength enhanced bacterial adsorption, and the highest capture efficiency was observed at pH 4 (32.8% and 98.1% for Salmonella Enteritidis and E. coli, respectively). These results show that chemisorption plays a significant role in bacterial adsorption to cMNP. Furthermore, increasing ionic strength and acidic pH (pH 4) significantly affects the adsorption of Salmonella Enteritidis and E. coli on cMNP, making them crucial for enhancing the performance of cMNP-based sample preparation methods.
Collapse
Affiliation(s)
- Anthony James Franco
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Abidli A, Ben Rejeb Z, Zaoui A, Naguib HE, Park CB. Comprehensive insights into the application of graphene-based aerogels for metals removal from aqueous media: Surface chemistry, mechanisms, and key features. Adv Colloid Interface Sci 2024; 335:103338. [PMID: 39577338 DOI: 10.1016/j.cis.2024.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Efficient removal of heavy metals and other toxic metal pollutants from wastewater is essential to protect human health and the surrounding vulnerable ecosystems. Therefore, significant efforts have been invested in developing practical and sustainable tools to address this issue, including high-performance adsorbents. In this respect, within the last few years, graphene-based aerogels/xerogels/cryogels (GBAs) have emerged and drawn significant attention as excellent materials for removing and recovering harmful and valuable metals from different aqueous media. Such an upward trend is mainly due to the features of the aerogel materials combined with the properties of the graphene derivatives within the aerogel's network, including the GBAs' unique three-dimensional (3D) porous structure, high porosity, low density, large specific surface area, exceptional electron mobility, adjustable and rich surface chemistry, remarkable mechanical features, and tremendous stability. This review offers a comprehensive analysis of the fundamental and practical aspects and phenomena related to the application of GBAs for metals removal. Herein, we cover all types of (bottom-up) synthesized GBAs, including true microporous graphene-based aerogels as well as other 3D graphene-based open-cell interconnected mesoporous and macroporous aerogels, foams, and sponges. Indeed, we provide insights into the fundamental understanding of the GBAs' suitability for such an important application by revealing the mechanisms involved in metals removal and the factors inducing and controlling the highly selective behavior of these distinctive adsorbents. Besides conventional adsorptive pathways, we critically analyzed the ability of GBAs to electrochemically capture metal pollutants (i.e., electrosorption) as well as their efficiency in metals detoxification through reductive mechanisms (i.e., adsorption-reduction-readsorption). We also covered the reusability aspect of graphene aerogels (GAs)-based adsorbents, which is strongly linked to the GBAs' outstanding stability and efficient desorption of captured metals. Furthermore, in view of their numerous practical and environmental benefits, the development and application of magnetically recoverable GAs for metals removal is also highlighted. Moreover, we shed light on the potential practical and scalable implementation of GBAs by evaluating their performance in continuous metals removal processes while highlighting the GBAs' versatility demonstrated by their ability to remove multiple contaminants along with metal pollutants from wastewater media. Finally, this review provides readers with an accessible overview and critical discussion of major recent achievements regarding the development and applications of GAs-based adsorbents for metal ions removal. Along with our recommendations and suggestions for potential future work and new research directions and opportunities, this review aims to serve as a valuable resource for researchers in the field of wastewater treatment and inspire further progress towards developing next-generation high-performance GBAs and expanding their application.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science & Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Toronto Smart Materials and Structures (TSMART), Department of Mechanical and Industrial Engineering, Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Hani E Naguib
- Toronto Smart Materials and Structures (TSMART), Department of Mechanical and Industrial Engineering, Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science & Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
4
|
Martínez-Mejía G, Cuadras-Arconada R, Vázquez-Torres NA, Caro-Briones R, Castell-Rodríguez A, Del Río JM, Corea M, Jiménez-Juárez R. Synthesis of hydrogels from biomaterials and their potential application in tissue engineering. Carbohydr Res 2024; 543:109216. [PMID: 39043084 DOI: 10.1016/j.carres.2024.109216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
In this study, a series of hydrogels were synthesized from chitosan(s) that was crosslinking with glutaraldehyde at different concentrations. Ascorbic acid in an acidic medium was used to facilitate non-covalent interactions. The chitosan(s) was obtained from shrimp cytoskeleton; while ascorbic acid was extracted from xoconostle juice. The hydrogel reaction was monitored by UV-vis spectroscopy (550 nm) to determine the reaction kinetics and reaction order at 60 °C. The hydrogels structures were characterized by NMR, FT-IR, HR-MS and SEM, while the degree of cross-linking was examined with TGA-DA. The extracellular matrices were obtained as stable hydrogels where reached maximum crosslinking was of 7 %, independent of glutaraldehyde quantity added. The rheological properties showed a behavior of weak gels and a dependence of crosslinking agent concentration on strength at different temperatures. The cytotoxicity assay showed that the gels had no adverse effects on cellular growth for all concentrations of glutaraldehyde.
Collapse
Affiliation(s)
- Gabriela Martínez-Mejía
- Laboratorio de Investigación en Polímeros y Nanomateriales, Instituto Politécnico Nacional, UPALM, Escuela Superior de Ingeniería Química e Industrias Extractivas, Edificio Z-5, PB, San Pedro Zacatenco, Alcaldía Gustavo A. Madero, CP 07738, Ciudad de México, Mexico
| | - Ricardo Cuadras-Arconada
- Departamento de Química Orgánica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Alcaldía Miguel Hidalgo, CP 11340, Ciudad de México, Mexico
| | - Nadia Adriana Vázquez-Torres
- Departamento de Biología Celular y Tisular, Universidad Nacional Autónoma de México, Facultad de Medicina, Circuito Interior, Ciudad Universitaria, Av. Universidad3000, C.P. 04510, Ciudad de México, Mexico
| | - Rubén Caro-Briones
- Laboratorio de Investigación en Polímeros y Nanomateriales, Instituto Politécnico Nacional, UPALM, Escuela Superior de Ingeniería Química e Industrias Extractivas, Edificio Z-5, PB, San Pedro Zacatenco, Alcaldía Gustavo A. Madero, CP 07738, Ciudad de México, Mexico; Departamento de Mecánica, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, UPALM, San Pedro Zacatenco, Alcaldía Gustavo A. Madero, CP 07738, Ciudad de México, Mexico
| | - Andrés Castell-Rodríguez
- Departamento de Biología Celular y Tisular, Universidad Nacional Autónoma de México, Facultad de Medicina, Circuito Interior, Ciudad Universitaria, Av. Universidad3000, C.P. 04510, Ciudad de México, Mexico
| | - José Manuel Del Río
- Departamento de Metalurgia y Materiales, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM, San Pedro Zacatenco, Alcaldía Gustavo A. Madero, CP 07738, Ciudad de México, Mexico
| | - Mónica Corea
- Laboratorio de Investigación en Polímeros y Nanomateriales, Instituto Politécnico Nacional, UPALM, Escuela Superior de Ingeniería Química e Industrias Extractivas, Edificio Z-5, PB, San Pedro Zacatenco, Alcaldía Gustavo A. Madero, CP 07738, Ciudad de México, Mexico.
| | - Rogelio Jiménez-Juárez
- Departamento de Química Orgánica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Alcaldía Miguel Hidalgo, CP 11340, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Yang J, Lou T, Wang X. One-step fabrication of millimeter-scale hollow vesicles with chitosan /DADMAC/ sodium alginate graft copolymer for enhanced anionic dye adsorption. Int J Biol Macromol 2024; 269:132153. [PMID: 38729494 DOI: 10.1016/j.ijbiomac.2024.132153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Hollow vesicles are promising in water treatment due to their unique structure of the membrane and inner cavity. However, the adsorption capacity needs to be improved for targeted pollutants. Herein, millimeter-scale hollow vesicles were prepared with a one-step process of sequential stirring and grafting using chitosan, diallyldimethylammonium chloride, and sodium alginate as raw materials with the purpose of efficient removal of anionic dyes from wastewater. The composite vesicles were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The hollow vesicles showed the structure of the cationic membrane and the inner cavity, facilitating the dye adsorption. The adsorption capacity for the anionic dye Reactive Black 5 reached 698.1 mg/g, more than twice that of the binary composite vesicles without graft. The adsorption kinetics and isotherm data coincided with the pseudo-second-order and Langmuir models, respectively, and the adsorption mechanism was monolayer chemisorption. Moreover, the vesicles worked well in wide ranges of environment pH, temperature, and co-existing pollutants. They also possessed excellent cyclic regeneration performance, in which 93 % of the initial adsorption capacity was maintained after four cycles. These results indicate that the millimeter-scale hollow vesicles exhibit broad application prospects for wastewater purification.
Collapse
Affiliation(s)
- Jinshan Yang
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Tao Lou
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Xuejun Wang
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Hasanoğlu Özkan E, Kurnaz Yetim N, Koç MM. Preparation and characterization of AChE immobilized magnetic bio-nanocomposites (Fe 3O 4@Cht/Au) for pesticide detection. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:368-377. [PMID: 38764244 DOI: 10.1080/03601234.2024.2351779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Free enzymes cause difficulties in many applications due to their insufficient stability, loss of activity in a short time, and most importantly, although they are costly, they are used only once in reactions, lose their effect and cannot be recovered from the environment. Magnetic nanoparticles coated with biocompatible polymeric material are potential candidates for promising enzyme carriers due to their multifunctional pore surfaces, easy removal from the environment provided by the magnetization, ability to main stability under various harsh conditions. This study prepared a biosensor candidate based on the inhibiting acetylcholinesterase enzyme by organophosphate pesticides from chitosan-coated magnetic nanoparticles doped with gold. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction diffractometry, and Fourier transform infrared spectroscopy analysis confirmed the structure of synthesized nanocomposites. Magnetic characteristics of the nanocomposites were assessed using VSM. Bio-nanocomposite (Fe3O4@Cht/Au/AChE) was used to determine environmental pollutants qualitatively. Remediation of organophosphate-containing wastewater is an essential issue for environmental sustainability. In this work, Dichlorvos and Chlorpyrifos were selected as organic pollutants to assess the enzymatic activity of immobilized Fe3O4@Cht/Au/AChE. Optimum conditions for AChE enzyme were immobilized nanostructures (Fe3O4@Cht/Au/AChE) were determined. The optimum pH for the immobilized enzyme was found to be 8, and the optimum temperature was found to be 60 °C. Retained immobilized enzyme activity is found to be around 50% for the 20th reuse. In the presence of 150 µL pesticide, retained immobilized enzyme activity is found to be around 25%. Method validation was performed for pesticides. When using immobilized AChE, the LOD (limit of detection)-LOQ (limit of quantitation) values for Dichlorovos and Chlorpyrifos was obtained in the range of 0.0087-0.029 nM and 0.0014-0.0046 nM, respectively. The relative standard deviation (RSD%) values, which are indicators of precision, were found to be below 2%.
Collapse
Affiliation(s)
| | - Nurdan Kurnaz Yetim
- Department of Chemistry, Faculty of Arts and Sciences, Kırklareli University, Kırklareli, Türkiye
| | - Mümin Mehmet Koç
- School of Medical Service, Kırklareli University, Kırklareli, Türkiye
- Department of Physics, Faculty of Arts and Sciences, Kırklareli University, Kırklareli, Türkiye
| |
Collapse
|
7
|
Tikhonov BB, Lisichkin DR, Sulman AM, Sidorov AI, Bykov AV, Lugovoy YV, Karpenkov AY, Bronstein LM, Matveeva VG. Magnetic Nanoparticle Support with an Ultra-Thin Chitosan Layer Preserves the Catalytic Activity of the Immobilized Glucose Oxidase. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:700. [PMID: 38668193 PMCID: PMC11054521 DOI: 10.3390/nano14080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Here, we developed magnetically recoverable biocatalysts based on magnetite nanoparticles coated with an ultra-thin layer (about 0.9 nm) of chitosan (CS) ionically cross-linked by sodium tripolyphosphate (TPP). Excessive CS amounts were removed by multiple washings combined with magnetic separation. Glucose oxidase (GOx) was attached to the magnetic support via the interaction with N-hydroxysuccinimide (NHS) in the presence of carbodiimide (EDC) leading to a covalent amide bond. These steps result in the formation of the biocatalyst for D-glucose oxidation to D-gluconic acid to be used in the preparation of pharmaceuticals due to the benign character of the biocatalyst components. To choose the catalyst with the best catalytic performance, the amounts of CS, TPP, NHS, EDC, and GOx were varied. The optimal biocatalyst allowed for 100% relative catalytic activity. The immobilization of GOx and the magnetic character of the support prevents GOx and biocatalyst loss and allows for repeated use.
Collapse
Affiliation(s)
- Boris B. Tikhonov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Daniil R. Lisichkin
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexandrina M. Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexander I. Sidorov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexey V. Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Yury V. Lugovoy
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexey Y. Karpenkov
- Department of Condensed Matter Physics, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia;
| | - Lyudmila M. Bronstein
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
| | - Valentina G. Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| |
Collapse
|
8
|
Kandasamy G, Manisekaran R, Arthikala MK. Chitosan nanoplatforms in agriculture for multi-potential applications - Adsorption/removal, sustained release, sensing of pollutants & delivering their alternatives - A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 240:117447. [PMID: 37863167 DOI: 10.1016/j.envres.2023.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
An increase in the global population has led to an increment in the food consumption, which has demanded high food production. To meet the production demands, different techniques and technologies are adopted in agriculture the past 70 years, where utilization of the industry-manufactured/synthetic pesticides (SPTCs - e.g., herbicides, insecticides, fungicides, bactericides, nematicides, acaricides, avicides, and so on) is one of them. However, it has been later revealed that the usage of SPTCs has negatively impacted the environment - especially water and soil, and also agricultural products - mainly foods. Though preventive measures are taken by government agencies, still the utilization rate of SPTCs is high, and consequently, their maximum residual limit (MRL) levels in food are above tolerance, which further results in serious health concerns in humans. So, there is an immediate need for decreasing the utilization of the SPTCs by delivering them effectively at reduced levels in agriculture but with the required efficacy. Apart from that, it is mandatory to detect/sense and also to remove them to lessen the environmental pollution, while developing effective alternative techniques/technologies. Among many suitable materials that are developed/idenified, chitosan, a bio-polymer has gained great attention and is comprehensively implemented in all the above-mentioned applications - sensing, delivery and removal, due to their excellent and required properties. Though many works are available, in this work, a special attention is given to chitosan and its derivatives (i.e., chitosan nanoparticles (CNPs))based removal, controlled release and sensing of the SPTCs - specifically herbicides and insecticides. Moreover, the chitosan/CNPs-based protective effects on the in vivo models during/after their exposure to the SPTCs, and the current technologies like clustered regularly interspaced short palindromic repeats (CRISPR) as alternatives for SPTCs are also reviewed.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, Tamil Nadu, India.
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures & Biomaterials, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| | - Manoj-Kumar Arthikala
- Interdisciplinary Research Laboratory (LII), Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| |
Collapse
|
9
|
Jiang R, Zhu HY, Zang X, Fu YQ, Jiang ST, Li JB, Wang Q. A review on chitosan/metal oxide nanocomposites for applications in environmental remediation. Int J Biol Macromol 2024; 254:127887. [PMID: 37935288 DOI: 10.1016/j.ijbiomac.2023.127887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
A cleaner and safer environment is one of the most important requirements in the future. It has become increasingly urgent and important to fabricate novel environmentally-friendly materials to remove various hazardous pollutants. Compared with traditional materials, chitosan is a more environmentally friendly material due to its abundance, biocompatibility, biodegradability, film-forming ability and hydrophilicity. As an abundant of -NH2 and -OH groups on chitosan molecular chain could chelate with all kinds of metal ions efficiently, chitosan-based materials hold great potential as a versatile supporting matrix for metal oxide nanomaterials (MONMs) (TiO2, ZnO, SnO2, Fe3O4, etc.). Recently, many chitosan/metal oxide nanomaterials (CS/MONMs) have been reported as adsorbents, photocatalysts, heterogeneous Fenton-like agents, and sensors for potential and practical applications in environmental remediation and monitoring. This review analyzed and summarized the recent advances in CS/MONMs composites, which will provide plentiful and meaningful information on the preparation and application of CS/MONMs composites for wastewater treatment and help researchers to better understand the potential of CS/MONMs composites for environmental remediation and monitoring. In addition, the challenges of CS/MONM have been proposed.
Collapse
Affiliation(s)
- Ru Jiang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Hua-Yue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Xiao Zang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yong-Qian Fu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Sheng-Tao Jiang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Jian-Bing Li
- Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
10
|
Li X, Sánchez Del Río Sáez J, Du S, Sánchez Díaz R, Ao X, Wang DY. Bio-based chitosan-based film as a bifunctional fire-warning and humidity sensor. Int J Biol Macromol 2023; 253:126466. [PMID: 37659494 DOI: 10.1016/j.ijbiomac.2023.126466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Early fire detection is an efficient method to mitigate disastrous fire loss. However, developing smart low-temperature fire-warning sensors that better diminish fire hazards, especially those caused by household appliances, is still challenging. Herein, a salts-modified chitosan (salts-modified CS) based sensor with integrated fire-warning and humidity-monitoring capability is proposed using an easy assembling method. This sensor can respond to temperatures as low as 50 °C and a flame within 2 s quickly and detect relative humidity (RH) range above 50 % at 50 °C and 75 °C sensitively. This system can be reusable for multiple ignitions and works in high-humidity environments (>50 %). Furthermore, the comparison between different salts-modified CS films is carried out to elucidate the mechanism of the formation of electric current under the joint driven by temperature and humidity. Moreover, real-time temperature and RH monitoring can be achieved with a wireless transmission section. This design shows a promising approach for multifunctional CS-based sensors and paves a path to developing a new generation of smart fire-warning detectors.
Collapse
Affiliation(s)
- Xiaolu Li
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040, Madrid, Spain
| | - José Sánchez Del Río Sáez
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; Departamento de Ingeniería Eléctrica, Electrónica Automática y Física Aplicada, ETSIDI, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012, Madrid, Spain
| | - Shuanglan Du
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040, Madrid, Spain
| | | | - Xiang Ao
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040, Madrid, Spain
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain.
| |
Collapse
|
11
|
Yadav A, Raghav S, Jangid NK, Srivastava A, Jadoun S, Srivastava M, Dwivedi J. Myrica esculenta Leaf Extract-Assisted Green Synthesis of Porous Magnetic Chitosan Composites for Fast Removal of Cd (II) from Water: Kinetics and Thermodynamics of Adsorption. Polymers (Basel) 2023; 15:4339. [PMID: 37960019 PMCID: PMC10649474 DOI: 10.3390/polym15214339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Heavy metal contamination in water resources is a major issue worldwide. Metals released into the environment endanger human health, owing to their persistence and absorption into the food chain. Cadmium is a highly toxic heavy metal, which causes severe health hazards in human beings as well as in animals. To overcome the issue, current research focused on cadmium ion removal from the polluted water by using porous magnetic chitosan composite produced from Kaphal (Myrica esculenta) leaves. The synthesized composite was characterized by BET, XRD, FT-IR, FE-SEM with EDX, and VSM to understand the structural, textural, surface functional, morphological-compositional, and magnetic properties, respectively, that contributed to the adsorption of Cd. The maximum Cd adsorption capacities observed for the Fe3O4 nanoparticles (MNPs) and porous magnetic chitosan (MCS) composite were 290 mg/g and 426 mg/g, respectively. Both the adsorption processes followed second-order kinetics. Batch adsorption studies were carried out to understand the optimum conditions for the fast adsorption process. Both the adsorbents could be regenerated for up to seven cycles without appreciable loss in adsorption capacity. The porous magnetic chitosan composite showed improved adsorption compared to MNPs. The mechanism for cadmium ion adsorption by MNPs and MCS has been postulated. Magnetic-modified chitosan-based composites that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad development prospects in various industrial sewage and wastewater treatment fields.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapna Raghav
- Department of Chemistry, Nirankari Baba Gurubachan Singh Memorial College, Sohna 122103, India
| | | | - Anamika Srivastava
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General, Velásquez, Arica 1775, Chile;
| | - Manish Srivastava
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| |
Collapse
|
12
|
Mostaraddi S, Pazhang M, Ebadi-Nahari M, Najavand S. The Relationship Between the Cross-Linker on Chitosan-Coated Magnetic Nanoparticles and the Properties of Immobilized Papain. Mol Biotechnol 2023; 65:1809-1823. [PMID: 36795275 DOI: 10.1007/s12033-023-00687-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
The immobilized enzymes' properties can be affected by cross-linkers on the surface of supports. To study how cross-linkers alter enzymes function, chitosan-coated magnetic nanoparticles (CMNPs) with immobilized papain were prepared using glutaraldehyde and or genipin, and then, the properties of the nanoparticles and the immobilized enzymes were assessed. The Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), and X-Ray Diffraction (XRD) results showed that the CMNPs were prepared and papain molecules were immobilized on CMNPs by glutaraldehyde (CMNP-Glu-Papain) or by genipin (CMNP-Gen-Papain). Also, the results associated with enzymes activity indicated that the immobilization by glutaraldehyde and genipin increased the pH optimum of papain from 7 to 7.5 and 9, respectively. The kinetic results indicated that the immobilization by genipin slightly affects the enzyme affinity to the substrate. The stability results showed that CMNP-Gen-Papain has more thermal stability than CMNP-Glu-Papain and papain immobilization on CMNPs by genipin leads to stabilization of the enzyme in the presence of polar solvents, probably due to the more hydroxyl groups on CMNPs activated by genipin. In conclusion, this study suggests that there is a relationship between the types of cross-linker on the surface of supports, and the mechanism of action, kinetic parameters, and the stability of immobilized papain.
Collapse
Affiliation(s)
- Samaneh Mostaraddi
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Pazhang
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Mostafa Ebadi-Nahari
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Saeed Najavand
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
13
|
Recent Application Prospects of Chitosan Based Composites for the Metal Contaminants Wastewater Treatment. Polymers (Basel) 2023; 15:polym15061453. [PMID: 36987232 PMCID: PMC10057141 DOI: 10.3390/polym15061453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Heavy metals, known for their toxic nature and ability to accumulate and magnify in the food chain, are a major environmental concern. The use of environmentally friendly adsorbents, such as chitosan (CS)—a biodegradable cationic polysaccharide, has gained attention for removing heavy metals from water. This review discusses the physicochemical properties of CS and its composites and nanocomposites and their potential application in wastewater treatment.
Collapse
|
14
|
Wang K, Zhang F, Xu K, Che Y, Qi M, Song C. Modified magnetic chitosan materials for heavy metal adsorption: a review. RSC Adv 2023; 13:6713-6736. [PMID: 36860541 PMCID: PMC9969337 DOI: 10.1039/d2ra07112f] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Magnetic chitosan materials have the characteristics of both chitosan and magnetic particle nuclei, showing the characteristics of easy separation and recovery, strong adsorption capacity and high mechanical strength, and have received extensive attention in adsorption, especially in the treatment of heavy metal ions. In order to further improve its performance, many studies have modified magnetic chitosan materials. This review discusses the strategies for the preparation of magnetic chitosan using coprecipitation, crosslinking, and other methods in detail. Besides, this review mainly summarizes the application of modified magnetic chitosan materials in the removal of heavy metal ions in wastewater in recent years. Finally, this review also discusses the adsorption mechanism, and puts forward the prospect of the future development of magnetic chitosan in wastewater treatment.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University Weihai 264209 China
| | - Fanbing Zhang
- Marine College, Shandong University Weihai 264209 China
| | - Kexin Xu
- Marine College, Shandong University Weihai 264209 China
| | - Yuju Che
- Marine College, Shandong University Weihai 264209 China
| | - Mingying Qi
- Marine College, Shandong University Weihai 264209 China
| | - Cui Song
- Marine College, Shandong University Weihai 264209 China
- Shandong University-Weihai Research Institute of Industrial Technology Weihai 264209 China
| |
Collapse
|
15
|
Benettayeb A, Seihoub FZ, Pal P, Ghosh S, Usman M, Chia CH, Usman M, Sillanpää M. Chitosan Nanoparticles as Potential Nano-Sorbent for Removal of Toxic Environmental Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:447. [PMID: 36770407 PMCID: PMC9920024 DOI: 10.3390/nano13030447] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Adsorption is the most widely used technique for advanced wastewater treatment. The preparation and application of natural renewable and environmentally friendly materials makes this process easier and more profitable. Chitosan is often used as an effective biomaterial in the adsorption world because of its numerous functional applications. Chitosan is one of the most suitable and functionally flexible adsorbents because it contains hydroxyl (-OH) and amine (-NH2) groups. The adsorption capacity and selectivity of chitosan can be further improved by introducing additional functions into its basic structure. Owing to its unique surface properties and adsorption ability of chitosan, the development and application of chitosan nanomaterials has gained significant attention. Here, recent research on chitosan nanoparticles is critically reviewed by comparing various methods for their synthesis with particular emphasis on the role of experimental conditions, limitations, and applications in water and wastewater treatment. The recovery of pollutants using magnetic nanoparticles is an important treatment process that has contributed to additional development and sustainable growth. The application of such nanoparticles in the recovery metals, which demonstrates a "close loop technology" in the current scenarios, is also presented in this review.
Collapse
Affiliation(s)
- Asmaa Benettayeb
- Laboratoire de Génie Chimique et Catalyse Hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M’NAOUAR, Oran 31000, Algeria
| | - Fatima Zohra Seihoub
- Laboratoire de Génie Chimique et Catalyse Hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M’NAOUAR, Oran 31000, Algeria
| | - Preeti Pal
- Accelerated Cleaning Systems India Private Limited, Sundervan Complex, Andheri West, Mumbai 400053, India
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Muhammad Usman
- School of Civil Engineering, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg 2050, South Africa
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), No. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu 611731, China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
16
|
Isotherm, Thermodynamics, and Kinetics of Methyl Orange Adsorption onto Magnetic Resin of Chitosan Microspheres. Int J Mol Sci 2022; 23:ijms232213839. [PMID: 36430316 PMCID: PMC9692306 DOI: 10.3390/ijms232213839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Severe environmental pollution problems arising from toxic dyestuffs (e.g., methyl orange) are receiving increasing attention. Therefore, dyes' safe removal has become a research hotspot. Among the many physical-chemical removal techniques, adsorption using renewable biological resources has proved to be more advantageous over others due to its effectiveness and economy. Chitosan is a natural, renewable biopolymer obtained by deactivated chitin. Thus, the magnetic resin of chitosan microspheres (MRCM), prepared by reversed-phase suspension cross-linking polymerization, was used to remove methyl orange from a solution in a batch adsorption system. The main results are as follows: (1) The results of physical and swelling properties of MRCM indicated that MRCM was a type of black spherical, porous, water-absorbing, and weak alkali exchange resin, and it had the ability to adsorb methyl orange when it was applied in solutions above pH 2.0. (2) In batch adsorption studies, the maximum adsorption capacity was obtained at pH 5; the adsorption equilibrium time was 140 min; and the maximum adsorption was reached at 450 mg/L initial concentration. (3) Among the three isotherm adsorption models, Langmuir achieved the best fit for the adsorption of methyl orange onto MRCM. (4) The adsorption thermodynamics indicated that the adsorption was spontaneous, with increasing enthalpy, and was driven by the entropy. (5) The pseudo-second-order kinetics equation was most suitable to describe the adsorption kinetics, and the adsorption kinetics was also controlled by the liquid-film diffusion dynamics. Consequently, MRCM with relatively higher methyl orange adsorption exhibited the great efficiency for methyl orange removal as an environment-friendly sorbent. Thus, the findings are useful for methyl orange pollution control in real-life wastewater treatment applications.
Collapse
|
17
|
Facile synthesis of Cu-based metal–organic framework/chitosan composite granules for toluene adsorption. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Poly(amidoxime)-graft-magnetic chitosan for highly efficient and selective uranium extraction from seawater. Carbohydr Polym 2022; 301:120367. [DOI: 10.1016/j.carbpol.2022.120367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
|
19
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
20
|
Bai J, Zhang M, Wang X, Zhang J, Yang Z, Fan L, An Y, Guan R. Combination of Micelle Collapse and CuNi Surface Dissolution for Electrodeposition of Magnetic Freestanding Chitosan Film. NANOMATERIALS 2022; 12:nano12152629. [PMID: 35957059 PMCID: PMC9370670 DOI: 10.3390/nano12152629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Magnetic chitosan hydrogel has aroused immense attention in recent years due to their biomedical significance and magnetic responsiveness. Here, A new electrodeposition method is reported for the fabrication of a novel CuNi-based magnetic chitosan freestanding film (MCFF) in an acidic chitosan plating bath containing SDS-modified CuNi NPs. Contrary to chitosan’s anodic and cathodic deposition, which typically involves electrochemical oxidation, the synthetic process is triggered by coordination of chitosan with Cu and Ni ions in situ generated by the controlled surface dissolution of the suspended NPs with the acidic plating bath. The NPs provide not only the ions required for chitosan growth but also become entrapped during electrodeposition, thereby endowing the composite with magnetic properties. The obtained MCFF offers a wide range of features, including good mechanical strength, magnetic properties, homogeneity, and morphological transparency. Besides the fundamental interest of the synthesis itself, sufficient mechanical strength ensures that the hydrogel can be used by either peeling it off of the electrode or by directly building a complex hydrogel electrode. Its fast and easy magnetic steering, separation and recovery, large surface area, lack of secondary pollution, and strong chelating capability could lead to it finding applications as an electrochemical detector or adsorbent.
Collapse
Affiliation(s)
- Jingyuan Bai
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Meilin Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Xuejiao Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Jin Zhang
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China;
- Correspondence: (J.Z.); (R.G.)
| | - Zhou Yang
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
| | - Longyi Fan
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
| | - Yanan An
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Renguo Guan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
- Correspondence: (J.Z.); (R.G.)
| |
Collapse
|
21
|
Al-Hussainawy MK, Sahb Mehdi Z, Jasim KK, Alshamsi HA, Saud HR, Kyhoiesh HAK. A single rapid route synthesis of magnetite/chitosan nanocomposite: Competitive study. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Gulati S, Lingam B HN, Baul A, Kumar S, Wadhwa R, Trivedi M, Varma RS, Amar A. Recent progress, synthesis, and applications of chitosan-decorated magnetic nanocomposites in remediation of dye-laden wastewaters. NEW J CHEM 2022. [DOI: 10.1039/d2nj03558h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past several decades, the disposal of dyes from the industrial manufacturing sector has had an inadvertent impact on water ecology as polluted water bodies with these hazardous dyes...
Collapse
|
23
|
Rathinam K, Kou X, Hobby R, Panglisch S. Sustainable Development of Magnetic Chitosan Core-Shell Network for the Removal of Organic Dyes from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7701. [PMID: 34947299 PMCID: PMC8706649 DOI: 10.3390/ma14247701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
The wide use of alizarin red S (ARS), a typical anthraquinone dye, has led to its continued accumulation in the aquatic environment, which causes mutagenic and carcinogenic effects on organisms. Therefore, this study focused on the removal of ARS dye by adsorption onto a magnetic chitosan core-shell network (MCN). The successful synthesis of the MCN was confirmed by ATR-FTIR, SEM, and EDX analysis. The influence of several parameters on the removal of ARS dye by the MCN revealed that the adsorption process reached equilibrium after 60 min, pH played a major role, and electrostatic interactions dominated for the ARS dye removal under acidic conditions. The adsorption data were described well by the Langmuir isotherm and a pseudo-second order kinetic model. In addition to the preferable adsorption of hydrophobic dissolved organic matter (DOM) fractions onto the MCN, the electrostatic repulsive forces between the previously adsorbed DOM onto MCN and ARS dye resulted in lower ARS dye removal. Furthermore, the MCN could easily be regenerated and reused for up to at least five cycles with more than 70% of its original efficiency. Most importantly, the spent MCN was pyrolytically converted into N-doped magnetic carbon and used as an adsorbent for various dyes, thus establishing a waste-free adsorption process.
Collapse
Affiliation(s)
- Karthik Rathinam
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Xinwei Kou
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Ralph Hobby
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Stefan Panglisch
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
- IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
- DGMT German Society for Membrane Technology e.V., Universitätsstr. 2, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstr. 2, 45141 Essen, Germany
| |
Collapse
|