1
|
Surface and Structural Studies of Age-Related Changes in Dental Enamel: An Animal Model. MATERIALS 2022; 15:ma15113993. [PMID: 35683290 PMCID: PMC9182525 DOI: 10.3390/ma15113993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/28/2023]
Abstract
In the animal kingdom, continuously erupting incisors provided an attractive model for studying the enamel matrix and mineral composition of teeth during development. Enamel, the hardest mineral tissue in the vertebrates, is a tissue sensitive to external conditions, reflecting various disturbances in its structure. The developing dental enamel was monitored in a series of incisor samples extending the first four weeks of postnatal life in the spiny mouse. The age-dependent changes in enamel surface morphology in the micrometre and nanometre-scale and a qualitative assessment of its mechanical features were examined by applying scanning electron microscopy (SEM) and atomic force microscopy (AFM). At the same time, structural studies using XRD and vibrational spectroscopy made it possible to assess crystallinity and carbonate content in enamel mineral composition. Finally, a model for predicting the maturation based on chemical composition and structural factors was constructed using artificial neural networks (ANNs). The research presented here can extend the existing knowledge by proposing a pattern of enamel development that could be used as a comparative material in environmental, nutritional, and pharmaceutical research.
Collapse
|
2
|
Akkineni S, Zhu C, Chen J, Song M, Hoff SE, Bonde J, Tao J, Heinz H, Habelitz S, De Yoreo JJ. Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites. Proc Natl Acad Sci U S A 2022; 119:e2106965119. [PMID: 35522709 PMCID: PMC9172371 DOI: 10.1073/pnas.2106965119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite filaments, we investigated the impact of nanoribbon structure, sequence, and chemistry on amorphous calcium phosphate (ACP) nucleation. Using full-length human amelogenin and peptide analogs with an amyloid-like domain, films of β-sheet nanoribbons were self-assembled on graphite and characterized by in situ atomic force microscopy and molecular dynamics simulations. All sequences substantially reduce nucleation barriers for ACP by creating low-energy interfaces, while phosphoserines along the length of the nanoribbons dramatically enhance kinetic factors associated with ion binding. Furthermore, the distribution of negatively charged residues along the nanoribbons presents a potential match to the Ca–Ca distances of the multi-ion complexes that constitute ACP. These findings show that amyloid-like amelogenin nanoribbons provide potent scaffolds for ACP mineralization by presenting energetically and stereochemically favorable templates of calcium phosphate ion binding and suggest enhanced surface wetting toward calcium phosphates in general.
Collapse
Affiliation(s)
- Susrut Akkineni
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Cheng Zhu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Jiajun Chen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Miao Song
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Samuel E. Hoff
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Johan Bonde
- Division of Pure and Applied Biochemistry, Center for Applied Life Sciences, Lund University, Lund, SE-221 00, Sweden
| | - Jinhui Tao
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Stefan Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA 94143
| | - James J. De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
3
|
Bai Y, Bonde J, Carneiro KMM, Zhang Y, Li W, Habelitz S. A Brief History of the Discovery of Amelogenin Nanoribbons In Vitro and In Vivo. J Dent Res 2021; 100:1429-1433. [PMID: 34612757 DOI: 10.1177/00220345211043463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Without evidence for an organic framework, biological and biochemical processes observed during amelogenesis provided limited information on how extracellular matrix proteins control the development of the complex fibrous architecture of human enamel. Over a decade ago, amelogenin nanoribbons were first observed from recombinant proteins during in vitro mineralization experiments in our laboratory. In enamel from mice lacking the enzyme kallikrein 4 (KLK4), we later uncovered ribbon-like protein structures that matched the morphology, width, and thickness of the nanoribbons assembled by recombinant proteins. Interestingly, similar structures had already been described since the 1960s, when enamel sections from various mammals were demineralized and stained for transmission electron microscopy analysis. However, at that time, researchers were not aware of the ability of amelogenin to form nanoribbons and instead associated the filamentous nanostructures with possible imprints of mineral ribbons in the gel-like matrix of developing enamel. Further evidence for the significance of amelogenin nanoribbons for enamel development was stipulated when recent mineralization experiments succeeded in templating and orienting the growth of apatite ribbons along the protein nanoribbon framework. This article provides a brief historical review of the discovery of amelogenin nanoribbons in our laboratory in the context of reports by others on similar structures in the developing enamel matrix.
Collapse
Affiliation(s)
- Y Bai
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - J Bonde
- Division of Pure and Applied Biochemistry, Center of Applied Life Science, Lund University, Lund, Sweden
| | - K M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Y Zhang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - W Li
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - S Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Habelitz S, Bai Y. Mechanisms of Enamel Mineralization Guided by Amelogenin Nanoribbons. J Dent Res 2021; 100:1434-1443. [PMID: 34009057 DOI: 10.1177/00220345211012925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The nanofibrous nature and its intricate structural organization are the basis for the extraordinary ability of sound enamel to outlive masticatory forces at minimal failure rates. Apatite nanofibers of several hundreds of micrometers to possibly millimeters in length originate during the secretory stage of amelogenesis as 2-nm-thin and 15-nm-wide ribbons that develop and grow in length under the guidance of a dynamic mixture of specialized proteins, the developing enamel matrix (DEM). A critical role in the unidirectional and oriented growth of enamel mineral ribbons has been attributed to amelogenin, the major constituent of the DEM. This review elaborates on recent studies on the ability of ribbon-like assemblies of amelogenin to template the formation of an amorphous calcium phosphate precursor that transforms into apatite mineral ribbons similar to the ones observed in developing enamel. A mechanistic model of the biological processes that drive biomineralization in enamel is presented in the context of a comparative analysis of enamel mouse models and earlier structural data of the DEM emphasizing a regulatory role of the matrix metalloproteinase 20 in mineral deposition and the involvement of a process-directing agent for the templated mineral growth directed by amelogenin nanoribbons.
Collapse
Affiliation(s)
- S Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Y Bai
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
Yilmaz ED, Schneider GA, Swain MV. Influence of structural hierarchy on the fracture behaviour of tooth enamel. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0130. [PMID: 25713449 DOI: 10.1098/rsta.2014.0130] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tooth enamel has the critical role of enabling the mastication of food and also of protecting the underlying vital dentin and pulp structure. Unlike most vital tissue, enamel has no ability to repair or remodel and as such has had to develop robust damage tolerance to withstand contact fatigue events throughout the lifetime of a species. To achieve such behaviour, enamel has evolved a complex hierarchical structure that varies slightly between different species. The major component of enamel is apatite in the form of crystallite fibres with a nanometre-sized diameter that extend from the dentin-enamel junction to the oral surface. These crystallites are bound together by proteins and peptides into a range of hierarchical structures from micrometre diameter prisms to 50-100 μm diameter bundles of prisms known as Hunter-Schreger bands. As a consequence of such complex structural organization, the damage tolerance of enamel increases through various toughening mechanisms in the hierarchy but at the expense of fracture strength. This review critically evaluates the role of hierarchy on the development of the R-curve and the stress-strain behaviour. It attempts to identify and quantify the multiple mechanisms responsible for this behaviour as well as their impact on damage tolerance.
Collapse
Affiliation(s)
- Ezgi D Yilmaz
- Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg, Germany
| | - Gerold A Schneider
- Institute of Advanced Ceramics, Hamburg University of Technology, Hamburg, Germany
| | - Michael V Swain
- Prosthetic Department, Freiburg University, 29106 Freiburg, Germany Biomaterials, Faculty of Dentistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
6
|
Wiedemann-Bidlack FB, Kwak SY, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC. Effects of phosphorylation on the self-assembly of native full-length porcine amelogenin and its regulation of calcium phosphate formation in vitro. J Struct Biol 2010; 173:250-60. [PMID: 21074619 DOI: 10.1016/j.jsb.2010.11.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/16/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022]
Abstract
The self-assembly of the predominant extracellular enamel matrix protein amelogenin plays an essential role in regulating the growth and organization of enamel mineral during early stages of dental enamel formation. The present study describes the effect of the phosphorylation of a single site on the full-length native porcine amelogenin P173 on self-assembly and on the regulation of spontaneous calcium phosphate formation in vitro. Studies were also conducted using recombinant non-phosphorylated (rP172) porcine amelogenin, along with the most abundant amelogenin cleavage product (P148) and its recombinant form (rP147). Amelogenin self-assembly was assessed using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Using these approaches, we have shown that self-assembly of each amelogenin is very sensitive to pH and appears to be affected by both hydrophilic and hydrophobic interactions. Furthermore, our results suggest that the phosphorylation of the full-length porcine amelogenin P173 has a small but potentially important effect on its higher-order self-assembly into chain-like structures under physiological conditions of pH, temperature, and ionic strength. Although phosphorylation has a subtle effect on the higher-order assembly of full-length amelogenin, native phosphorylated P173 was found to stabilize amorphous calcium phosphate for extended periods of time, in sharp contrast to previous findings using non-phosphorylated rP172. The biological relevance of these findings is discussed.
Collapse
|
7
|
Moradian-Oldak J, Du C, Falini G. On the formation of amelogenin microribbons. Eur J Oral Sci 2006; 114 Suppl 1:289-96; discussion 327-9, 382. [PMID: 16674701 DOI: 10.1111/j.1600-0722.2006.00285.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently reported the remarkable spontaneous self-assembly and hierarchical organization of amelogenin 'microribbons' and their ability to facilitate oriented growth of apatite crystals in vitro. In a letter of correction we communicated the finding that the X-ray diffraction pattern reported in our original report was that of cellulose contaminant and not amelogenin microribbon. We have re-evaluated our data and confirmed the protein nature of the microribbons using Fourier transform infrared and Raman microspectroscopy. Some microribbons were remarkably similar in their morphology to that of cellulose fibers. The size distribution of amelogenin microribbons was wider, particularly in width and length, and generally smaller than those originally reported. Here we present additional detailed information on the formation of a series of intermediate hierarchical structures of amelogenin assemblies prior to the formation of microribbon. The most significant finding was that full-length amelogenin nanospheres had a tendency to assemble into collinear arrays whose function is assumed to be critical at the initial stage of enamel mineral deposition. The present data gives an insight into the step-by-step assembly process of amelogenin from nanometer scale molecules to micrometer scale organized structures that can be used as templates for controlled and oriented growth of apatite mineralization in vitro.
Collapse
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|
8
|
Moradian-Oldak J, Goldberg M. Amelogenin Supra-Molecular Assembly in vitro Compared with the Architecture of the Forming Enamel Matrix. Cells Tissues Organs 2006; 181:202-18. [PMID: 16612086 DOI: 10.1159/000091382] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tooth enamel is formed in the extracellular space within an organic matrix enriched in amelogenin proteins. Amelogenin nanosphere assembly is a key factor in controlling the oriented and organized growth of enamel apatite crystals. Recently, we have reported the formation of higher ordered structures resulting from organized association and self-orientation of amelogenin nanospheres in vitro. This remarkable hierarchical organization includes self-assembly of amelogenin molecules into subunits of 4-6 nm in diameter followed by their assembly to form nanospheres of 15-25 nm in radii. Chains of >100 nm length are then formed as the result of nanosphere association. These linear arrays of nanospheres assemble to form the microribbons that are hundreds of microns in length, tens of microns in width, and a few microns in thickness. Here, we review the step by step process of amelogenin self-assembly during the formation of microribbon structures in vitro. Assembly properties of selected amelogenins lacking the hydrophilic C terminus will then be reviewed. We will consider amelogenin as a template for the organized growth of crystals in vitro. Finally, we will compare the structures formed in vitro with globular and periodic structures observed earlier, in vivo, by different sample preparation conditions. We propose that the alignment of amelogenin nanospheres into long chains is evident in vivo, and is an important indication for the function of this protein in controlling the oriented and elongated growth of apatite crystals during enamel biomineralization.
Collapse
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, Calif. 90033, USA.
| | | |
Collapse
|
9
|
Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL. Protein–Protein Interactions of the Developing Enamel Matrix. Curr Top Dev Biol 2006; 74:57-115. [PMID: 16860665 DOI: 10.1016/s0070-2153(06)74003-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extracellular matrix proteins control the formation of the inorganic component of hard tissues including bone, dentin, and enamel. The structural proteins expressed primarily in the enamel matrix are amelogenin, ameloblastin, enamelin, and amelotin. Other proteins, like biglycan, are also present in the enamel matrix as well as in other mineralizing and nonmineralizing tissues of mammals. In addition, the presence of sulfated enamel proteins, and "tuft" proteins has been examined and discussed in relation to enamel formation. The structural proteins of the enamel matrix must have specific protein-protein interactions to produce a matrix capable of directing the highly ordered structure of the enamel crystallites. Protein-protein interactions are also likely to occur between the secreted enamel proteins and the plasma membrane of the enamel producing cells, the ameloblasts. Such protein-protein interactions are hypothesized to influence the secretion of enamel proteins, establish short-term order of the forming matrix, and to mediate feedback signals to the transcriptional machinery of these cells. Membrane-bound proteins identified in ameloblasts, and which interact with the structural enamel proteins, include Cd63 (cluster of differentiation 63 antigen), annexin A2 (Anxa2), and lysosomal-associated glycoprotein 1 (Lamp1). These and related data help explain the molecular and cellular mechanisms responsible for the removal of the organic enamel matrix during the events of enamel mineralization, and how the enamel matrix influences its own fate through signaling initiated at the cell surface. The knowledge gained from enamel developmental studies may lead to better dental and nondental materials, or materials inspired by Nature. These data will be critical to scientists, engineers, and dentists in their pursuits to regenerate an entire tooth. For tooth regeneration to become a reality, the protein-protein interactions involving the key dental proteins must be identified and understood. The scope of this review is to discuss the current understanding of protein-protein interactions of the developing enamel matrix, and relate this knowledge to enamel biomineralization.
Collapse
Affiliation(s)
- John D Bartlett
- The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Aichmayer B, Margolis HC, Sigel R, Yamakoshi Y, Simmer JP, Fratzl P. The onset of amelogenin nanosphere aggregation studied by small-angle X-ray scattering and dynamic light scattering. J Struct Biol 2005; 151:239-49. [PMID: 16125972 DOI: 10.1016/j.jsb.2005.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 06/13/2005] [Accepted: 06/16/2005] [Indexed: 11/18/2022]
Abstract
Proteins with predominantly hydrophobic character called amelogenins play a key role in the formation of the highly organized enamel tissue by forming nanospheres that interact with hydroxyapatite crystals. In the present investigation, we have studied the temperature and pH-dependent self-assembly of two recombinant mouse amelogenins, rM179 and rM166, the latter being an engineered version of the protein that lacks a 13 amino acid hydrophilic C-terminus. It has been postulated that this hydrophilic domain plays an important role in controlling the self-assembly behavior of rM179. By small-angle X-ray and neutron scattering, as well as by dynamic light scattering, we observed the onset of an aggregation of the rM179 protein nanospheres at pH 8. This behavior of the full-length recombinant protein is best explained by a core-shell model for the nanospheres, where hydrophilic and negatively charged side chains prevent the agglomeration of hydrophobic cores of the protein nanospheres at lower temperatures, while clusters consisting of several nanospheres start to form at elevated temperatures. In contrast, while capable of forming nanospheres, rM166 shows a very different aggregation behavior resulting in the formation of larger precipitates just above room temperature. These results, together with recent observations that rM179, unlike rM166, can regulate mineral organization in vitro, suggest that the aggregation of nanospheres of the full-length amelogenin rM179 is an important step in the self-assembly of the enamel matrix.
Collapse
Affiliation(s)
- B Aichmayer
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Beniash E, Simmer JP, Margolis HC. The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro. J Struct Biol 2005; 149:182-90. [PMID: 15681234 DOI: 10.1016/j.jsb.2004.11.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 11/03/2004] [Indexed: 11/26/2022]
Abstract
Amelogenin is the most abundant protein in developing dental enamel. It is believed to play an important role in the regulation of the growth and organization of enamel crystals. Amelogenin, unlike many other proteins found in biominerals, is mostly hydrophobic except for a 13 amino acid hydrophilic C-terminal domain. To clarify the role of amelogenin in enamel mineralization, we designed calcium phosphate crystal growth experiments in the presence of recombinant amelogenins with or without the charged C-terminal domain. The shape and organization of the crystals were examined by TEM in bright field and diffraction modes. It was found that both full-length and truncated amelogenin inhibit crystal growth in directions normal to the c-axis. At the same time, crystallites organized into parallel arrays only in the presence of the full-length amelogenin in monomeric form. Pre-assembled amelogenins had no effect on crystals organization. These results imply that the hydrophobic portion of amelogenin plays a role in an inhibition of crystal growth, whereas the C-terminal domain is essential for the alignment of crystals into parallel arrays. Our data also suggest that nascent enamel structure emerges as a result of cooperative interactions between forming crystals and assembling proteins.
Collapse
Affiliation(s)
- Elia Beniash
- Department of Biomineralization, The Forsyth Institute, Boston, MA 02115-3799, USA.
| | | | | |
Collapse
|
12
|
Chen H, Banaszak Holl M, Orr BG, Majoros I, Clarkson BH. Interaction of dendrimers (artificial proteins) with biological hydroxyapatite crystals. J Dent Res 2003; 82:443-8. [PMID: 12766196 DOI: 10.1177/154405910308200608] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This investigation sets out to mimic protein-crystal interaction during biomineralization with the use of artificial proteins (dendrimers). It is hypothesized that these interactions depend on the surface charge of hydroxyapatite crystals. This was investigated with the use of dendrimers with capped surfaces of different charges to probe the surface. We used AFM images of crystal-bound dendrimers to determine the distribution of the surface charge, and its magnitude was correlated to the binding capacity of the dendrimers to the surface. The binding capacity of the dendrimers in ascending order at pH 7.4 was: acetamide-capped, -NHC(O)CH3, neutral charge; carboxylic-acid-capped, -COOH, negative charge; and amine-capped, -NH2, positive charge. AFM images of the crystals showed dendrimers spaced equally along the crystal. The results suggest that the crystal surface has alternating bands of positive and negative charge or a differential charge array, i.e., alternating bands of either more or less positive or negative charge.
Collapse
Affiliation(s)
- H Chen
- School of Dentistry and Department of Chemistry, University of Michigan, 1011 N. University, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | |
Collapse
|
13
|
Takagi M, Kamiya N, Urushizaki T, Tada Y, Tanaka H. Gene expression and immunohistochemical localization of biglycan in association with mineralization in the matrix of epiphyseal cartilage. THE HISTOCHEMICAL JOURNAL 2000; 32:175-86. [PMID: 10841312 DOI: 10.1023/a:1004099324169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study has used in situ hybridization, Northern blot analysis, and immunohistochemistry at the light and electron microscope levels to localize mRNAs and core proteins of biglycan in developing tibial epiphyseal cartilage of 10-day old Wistar rats. The expression of mRNAs and core proteins of biglycan appeared prominent in hypertrophic and degenerative chondrocytes associated with the epiphyseal ossification centre and the growth plate cartilage, but was not seen in the rest of epiphyseal cartilage. Northern blot analysis confirmed biglycan mRNA expression in the epiphyseal cartilage. Ultrastructural immunogold cytochemistry of the growth plate revealed that prominent immunolabelling was confined to the Golgi apparatus and cisternae of rough-surfaced endoplasmic reticulum of the hypertrophic and the degenerating chondrocytes, the early mineralized cartilage matrices of the longitudinal septum of the lower hypertrophic and the calcifying zones, and fully mineralized cartilage mitrices, which were present in the metaphyseal bone trabeculae. Furthermore, Western blot analysis of biglycan in extracts of fresh epiphyseal cartilage revealed that an EDTA extract, after chondroitinase ABC digestion, contains core proteins of biglycan, indicating the presence of biglycan in mineralized cartilage matrices. These results indicate that the distribution of biglycan is associated with cartilage matrix mineralization.
Collapse
Affiliation(s)
- M Takagi
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
14
|
Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol 1999; 126:270-99. [PMID: 10441532 DOI: 10.1006/jsbi.1999.4130] [Citation(s) in RCA: 415] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biomineralization of the dental enamel matrix with a carbonated hydroxyapatite mineral generates one of the most remarkable examples of a vertebrate mineralized tissue. Recent advances in the molecular biology of ameloblast gene products have now revealed the primary structures of the principal proteins involved in this extracellular mineralizing system, amelogenins, tuftelins, ameloblastins, enamelins, and proteinases, but details of their secondary, tertiary, and quaternary structures, their interactions with other matrix and or cell surface proteins, and their functional role in dental enamel matrix mineralization are still largely unknown. This paper reviews our current knowledge of these molecules, the probable molecular structure of the enamel matrix, and the functional role of these extracellular matrix proteins. Recent studies on the major structural role played by the amelogenin proteins are discussed, and some new data on synthetic amelogenin matrices are reviewed.
Collapse
Affiliation(s)
- A G Fincham
- Center for Craniofacial Molecular Biology, School of Dentistry, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
15
|
Moradian-Oldak J, Tan J, Fincham AG. Interaction of amelogenin with hydroxyapatite crystals: an adherence effect through amelogenin molecular self-association. Biopolymers 1998; 46:225-38. [PMID: 9715666 DOI: 10.1002/(sici)1097-0282(19981005)46:4<225::aid-bip4>3.0.co;2-r] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
At the secretory stage of tooth enamel formation the majority of the organic matrix is composed of amelogenin proteins that are believed to provide the scaffolding for the initial carbonated hydroxyapatite crystals to grow. The primary objective of this study was to investigate the interaction between amelogenins and growing apatite crystals. Two in vitro strategies were used: first, we examined the influence of amelogenins as compared to two other macromolecules, on the kinetics of seeded growth of apatite crystals; second, using transmission electron micrographs of the crystal powders, based on a particle size distribution study, we evaluated the effect of the macromolecules on the aggregation of growing apatite crystals. Two recombinant amelogenins (rM179, rM166), the synthetic leucine-rich amelogenin polypeptide (LRAP), poly(L-proline), and phosvitin were used. It was shown that the rM179 amelogenin had some inhibitory effect on the kinetics of calcium hydroxyapatite seeded growth. The inhibitory effect, however, was not as destructive as that of other macromolecules tested. The degree of inhibition of the macromolecules was in the order of phosvitin > LRAP > poly(L-proline) > rM179 > rM166. Analysis of particle size distribution of apatite crystal aggregates indicated that the full-length amelogenin protein (rM179) caused aggregation of the growing apatite crystals more effectively than other macromolecules. We propose that during the formation of hydroxyapatite crystal clusters, the growing apatite crystals adhere to each other through the molecular self-association of interacting amelogenin molecules. The biological implications of this adherence effect with respect to enamel biomineralization are discussed.
Collapse
Affiliation(s)
- J Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles 90033, USA.
| | | | | |
Collapse
|
16
|
Fincham AG, Simmer JP. Amelogenin proteins of developing dental enamel. CIBA FOUNDATION SYMPOSIUM 1997; 205:118-30; discussion 130-4. [PMID: 9189621 DOI: 10.1002/9780470515303.ch9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The amelogenins of developing dental enamel are tissue-specific proteins, rich in proline, leucine, histidine and glutamyl residues, and synthesized by the ameloblast cells of the inner enamel epithelium. These proteins comprise the bulk of the extracellular matrix that becomes mineralized with a hydroxyapatite phase to become the mature enamel. Examination of the amino acid sequences of amelogenins from a range of mammals shows a high degree of evolutionary sequence conservation, suggestive of specialized function. Recently it has been shown that multiple amelogenin components, observed in the matrix, arise both by a sequence of post-secretory proteolytic processing and by the expression of alternatively spliced mRNAs generated from the amelogenin gene(s) that are located on the sex chromosomes. Although the function of these amelogenins in enamel biomineralization is unknown, physico-chemical studies of recombinant amelogenins have shown that they undergo a self-assembly process in vitro generating supra-molecular 'nanosphere' structures, and recent observations in vivo point to a functional role for the nanospheres in the ultrastructural organization of the secretory enamel matrix, conducive to the organized development of the earliest mineral crystallites.
Collapse
Affiliation(s)
- A G Fincham
- Center for Craniafacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
17
|
Abstract
BACKGROUND The synthesis, secretion, and fate of matrix proteins released by ameloblasts during enamel formation was studied in continuously erupting rat incisors. METHODS Computerized image processing was used to quantify silver grain distribution in radioautographs of sections prepared from rats injected with 3H-methionine, and this was correlated with fluorographs defining radiolabeling patterns of proteins in enamel organ cell and enamel homogenates prepared from freeze-dried teeth of rats injected with 35S-methionine and other radioactive amino acids and precursors such as sugar, sulfate, and phosphate. Some rats were also treated with brefeldin A to characterize newly formed proteins blocked from being secreted from ameloblasts. RESULTS The results indicate that ameloblasts rapidly synthesize and secrete (minutes) at least five primary enamel matrix proteins, including a 65 kDa sugar-containing sulfated enamel protein and four nonsulfated proteins with molecular weights near 31, 29, 27, and 23 kDa as estimated by SDS-PAGE. The 27 kDa protein appears to correspond to the primary amelogenin described in many species. The cells also appear to release at least one phosphoprotein with molecular weight near 27 kDa, which may be an amelogenin, and up to five cysteine-containing proteins with molecular weights near 94, 90, 72, 55, and 27 kDa. The proteins collectively are released at interrod and rod growth sites where they appear to remain close to their point of release from ameloblasts. The 65 kDa sulfated protein and 31 kDa nonsulfated protein are rapidly converted into lower molecular weight forms (hours), whereas nonsulfated proteins near 29, 27, and 23 kDa are more slowly transformed into fragments near 20, 18, and 10 kDa in molecular weight (days). These fragments do not accumulate but appear to be removed from the enamel layer as they are created. CONCLUSIONS Enamel proteins seen by Coomassie blue (or silver) staining of one-dimensional polyacrylamide gels, therefore, represent a composite image of newly secreted and derived forms of sulfated and nonsulfated proteins that sometimes have similar molecular weights.
Collapse
Affiliation(s)
- C E Smith
- Department of Anatomy, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
18
|
McKee MD, Nanci A. Postembedding colloidal-gold immunocytochemistry of noncollagenous extracellular matrix proteins in mineralized tissues. Microsc Res Tech 1995; 31:44-62. [PMID: 7626799 DOI: 10.1002/jemt.1070310105] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immunocytochemistry is a powerful tool for investigating protein secretion, extracellular matrix assembly, and cell-matrix and matrix-matrix/mineral relationships. When applied to the tissues of bones (bone and calcified cartilage) and teeth (dentin, cementum, and enamel), where calcium phosphate-containing extracellular matrices are the predominant structural component related to their weight-bearing and masticatory roles, respectively, data from immunocytochemical studies have been prominent in advancing our understanding of mineralized tissue modeling and remodeling. The present review on the application of postembedding, colloidal-gold immunocytochemistry to mineralized tissues focuses on the advantages of this approach and relates them to conceptual, theoretical, and experimental data currently available discussing matrix-mineral interactions and extracellular matrix formation and turnover in these tissues. More specifically, data are summarized regarding the distribution and role of noncollagenous proteins in different mineralized tissues, particularly in the context of how they interface with mineral, and how this relationship might be affected by the various tissue-processing steps and immunocytochemical strategies commonly implemented to examine the distribution and function of tissue proteins. Furthermore, a technical discussion is presented that outlines several different possibilities for epitope exposure in mineralized tissues during preparation of thin sections for transmission electron microscopy. Cell biological concepts of protein secretion by cells of the mineralized tissues, and subsequent extracellular matrix assembly and organization, are illustrated by examples of high-resolution, colloidal-gold immunolabeling for osteopontin, bone sialoprotein, and osteocalcin in the collagen-based mineralized tissues and for enamel protein (amelogenin) in enamel.
Collapse
Affiliation(s)
- M D McKee
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Canada
| | | |
Collapse
|
19
|
Dong W, Warshawsky H. Failure to demonstrate a protein coat on enamel crystallites by morphological means. Arch Oral Biol 1995; 40:321-30. [PMID: 7605259 DOI: 10.1016/0003-9969(94)00171-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phosphotungstic acid (PTA) treatment of section of Epon-embedded enamel dissolves the crystallites and stains material postulated to be crystal-bound proteins. Alternative, capillarity forces within the channels left after crystallite removal may draw in PTA. This prediction was tested on three systems. (1) Protein free synthetic hydroxyapatite was embedded in Epon; treatment of thin sections with PTA removed most crystals, leaving empty holes outlined by stain that could not represent protein. (2) Sections of rat incisor enamel were treated with PTA and then re-embedded in Epon and sectioned at 90 degrees to the original plane. In these sections-of-section the cut ends of dissolved crystallite profiles were coated with stain. To determine if stained protein coats can be detected in the absence of the crystallite profiles, Epon sections were partially demineralized with formic acid, re-embedded in Epon and sections-of section were PTA treated. Previously extracted crystallites left no stained coats, and only the crystallites that were not removed by formic acid left PTA-stained outlines. (3) PTA-treated sections of dogfish shark enameloid were flooded with 5-nm colloidal gold particles and sections-of-section were prepared. The presence of gold particles on the section surface and in holes previously occupied by crystallites suggested that PTA solution could also be sucked into similar holes. It is concluded that PTA outlines are not crystal-bound proteins but artefacts caused by stain lining holes left in the section when the crystallites have been extracted.
Collapse
Affiliation(s)
- W Dong
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
20
|
Bonucci E. Ultrastructural organic-inorganic relationships in calcified tissues: cartilage and bone vs. enamel. Connect Tissue Res 1995; 33:157-62. [PMID: 7554948 DOI: 10.3109/03008209509016996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Close organic-inorganic relationships exist in all calcified tissues, the inorganic substance being linked to crystal ghosts (CGs). These are organic, crystal-like structures present in areas of initial calcification. In cartilage and bone, they form aggregates with the same morphology and distribution as the calcification nodules; in enamel, they consist of long filament- and ribbon-like structures, having the same arrangement as untreated crystals. CGs of cartilage and bone are acidic structures with histochemical properties of proteoglycans; CGs of enamel probably correspond to enamelins. The close morphologic similarity between CGs and crystals suggests that the former have a role in the formation of the latter.
Collapse
Affiliation(s)
- E Bonucci
- Department of Experimental Medicine, University La Sapienza, Rome, Italy
| |
Collapse
|
21
|
Bonucci E, Lozupone E, Silvestrini G, Favia A, Mocetti P. Morphological studies of hypomineralized enamel of rat pups on calcium-deficient diet, and of its changes after return to normal diet. Anat Rec (Hoboken) 1994; 239:379-95. [PMID: 7978362 DOI: 10.1002/ar.1092390405] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Micro-hardness investigations have shown that rat pups nursed by mothers on a low calcium diet and weaned with the maternal calcium-deficient diet develop hypomineralized enamel. The inorganic and organic components of this enamel, their relationships, and their changes after return to normal diet have been studied by light and electron microscopy. METHODS The maturation zone of incisor enamel has been studied in: (1) rats nursed for 20 days by mothers on a low calcium diet and weaned for 30 days with the same diet (E1 enamel); (2) rats that after the calcium-deficient diet were fed normal diet for 10 days (E2 enamel); and (3) rats nursed for 20 days by mothers on a normal diet and weaned for 30 days with a normal diet (controls). RESULTS The results showed that E1 enamel was hypomineralized, as noted by its Azure II-Methylene blue stainability in undecalcified sections, its light staining with the von Kossa method, and its ultrastructure. E1 crystallites, although present throughout the whole enamel, were thinner than those of E2 enamel, which were similar to those of controls. E1 interrod crystallites were thicker in the intermediate than in the dentinal zone and were thicker than rod crystallites. Organic matrix was present throughout the whole E1 enamel. Its organic components (crystal ghosts) had the same shape, arrangement, and organization as those of inorganic crystallites. Crystal ghosts were greatly reduced in E2 enamel and in controls. CONCLUSIONS The results lead to the conclusions that: (1) E1 enamel is hypomineralized, and its degree of calcification is restored by return to a normal calcium diet; (2) intra- and interprismatic calcification occurs in a different way; (3) crystallite thickness is initially greater in dentinal than in the superficial zone and is reversed as crystallite growth is completed; and (4) loss of enamel proteins is necessary for completion of crystallite growth and not for crystallite formation.
Collapse
Affiliation(s)
- E Bonucci
- Department of Experimental Medicine and Pathology, University La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
22
|
Mann A, Lampl M, Monge J. Patterns of ontogeny in human evolution: Evidence from dental development. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1990. [DOI: 10.1002/ajpa.1330330507] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Herold RC, Rosenbloom J. Immunocytochemical localization of enamelin proteins in developing bovine teeth. Arch Oral Biol 1990; 35:373-9. [PMID: 2372242 DOI: 10.1016/0003-9969(90)90184-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enamelins were localized at both the light and electron microscopic level using an antienamelin monoclonal antibody and indirect immunogold methods. Bovine fetal incisors (crown-rump length 17-30 cm) were preserved in Karnovsky's fixative and embedded in Epon. For light microscopy, 2 microM thick sections were immunostained by the indirect method using the monoclonal antibody and goat anti-mouse IgG linked to 5 nM gold particles, followed by silver enhancement to increase the sensitivity of the method. For electron microscopy, thin sections were immunostained (indirect) with the antienamelin monoclonal antibody and goat anti-mouse IgG linked to 5 or 15 nM gold. Control samples were treated with an unrelated monoclonal antibody. The localization of enamelins was confined in the light microscopic sections to the extracellular enamel matrix. No gold staining was observed in the ameloblasts or other enamel organ cells even though the gold-silver technique is extremely sensitive. Ultrastructurally, enamelin was localized in the enamel extracellular matrix and associated ameloblasts. Both the crystal-containing and granular matrix were positively stained, with most gold particles being closely associated with the crystals. Counting of gold particles indicated more than 4 times as many amelogeninas enamelin-reactive antigenic sites in similar regions. Decalcification did not increase immunostaining with the anti-enamelin antibody in the extracellular matrix. Within ameloblasts, the gold particles were associated with secretory granules and Golgi complexes. Thus it appears that enamelins are synthesized in ameloblasts and secreted into the extracellular matrix in a similar manner to amelogenins and are preferentially associated with matrix hydroxyapatite crystals. Transient levels of enamelins within the ameloblasts are apparently too low to be detected by light microscopy.
Collapse
Affiliation(s)
- R C Herold
- Research Center in Oral Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
24
|
Abstract
It has been variously suggested that the organic matrix associated with the mineral phase of enamel is present as either calcified fibrils, central dark lines, peripheral sheaths around hexagonal crystals, or organic ghosts apparently contained within crystal profiles. The most consistent findings confirm the crystal ghost conception. Grid decalcification of nearly mature sectioned enamel and staining revealed hollow, noncrystalline structures whose external measurements were statistically identical to those of the dissolved crystallites, but with internal measurements too small to accommodate the crystallites. To explain these apparent ghosts in view of the incompatibility of ghosts with crystal structure, it has been proposed that the crystallites are not hexagonal in cross-sections and the hexagonal appearance is due to projections of parallelepiped-shaped crystallite segments with cut surfaces that are rhomboidal in shape. Material on the surface of such profiles would project as if it were contained within the profile. Hexagonal forms could not be demonstrated in isolated crystallites examined by transmission electron microscopy, high-resolution scanning electron microscopy, and replicas made of the isolated crystallite preparations examined by transmission electron microscopy. Existing evidence does not rule out the possibility that the noncrystalline profiles represent stain drawn into the holes left by the dissolved crystallites as a result of high capillarity forces.
Collapse
Affiliation(s)
- H Warshawsky
- Department of Anatomy, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Abstract
The present paper reviews the main features of amelogenin and enamelin biochemistry, molecular biology, structural and ultrastructural localization, and immunology. It also examines recent studies concerning the origin, chemical characterization, suggested role, and participation of these two major classes of extracellular developing enamel matrix proteins in the complex process of "matrix-mediated" mineralization.
Collapse
Affiliation(s)
- D Deutsch
- Dental Research Unit, Hebrew University--Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
26
|
McKee MD, Warshawsky H. Banding patterns in rat incisor enamel stained by histochemical complexing methods for calcium. Anat Rec (Hoboken) 1989; 224:7-13. [PMID: 2471424 DOI: 10.1002/ar.1092240103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A characteristic banding pattern can be visualized at the surface of the rat incisor in the maturation zone of amelogenesis by staining with glyoxal bis(2-hydroxyanil) (GBHA). Other banding patterns can be obtained with certain histological and fluorochrome stains and by radioautography following 45Ca injection. In this study, several histochemical reagents known to complex with different states of calcium were used to stain the surface of enamel. Rat incisors were quickly dissected and immediately immersed in solutions containing the following calcium-binding reagents: arsenazo III, calmagite, murexide, N,N-naphthaloylhydroxylamine, and calcein. Routinely, one contralateral lower incisor from each pair was counterstained with GBHA in order to relate each of the staining patterns to the banded distribution of maturation ameloblasts that is reflected by the characteristic GBHA staining pattern in the enamel. Each of the reagents used in this study demonstrated a staining pattern consisting of a series of broad bands running transversely and obliquely across the enamel. In all cases, the dyes stained predominantly that enamel associated with ruffle-ended ameloblasts, i.e. enamel left unstained by GBHA. Some of the reagents also stained enamel in the secretion zone. The appearance and distribution of the staining patterns reflect the banded distribution of maturation ameloblasts and appear to be controlled on a time scale related to the rapid modulation of these cells.
Collapse
Affiliation(s)
- M D McKee
- Department of Anatomy, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
27
|
Tanabe T, Aoba T, Moreno EC, Fukae M. Effect of fluoride in the apatitic lattice on adsorption of enamel proteins onto calcium apatites. J Dent Res 1988; 67:536-42. [PMID: 2844869 DOI: 10.1177/00220345880670030301] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The selective adsorption of enamel proteins onto crystalline calcium apatites having different specific surface areas and various degrees of fluoride substitution was investigated. The proteins were obtained from the outer (close to the ameloblast) layer of secretory enamel of porcine permanent incisors. The adsorption of the enamel proteins was not affected markedly by the variation of specific surface area of the hydroxyapatites used as adsorbents, but it was enhanced substantially with increasing fluoride content in the crystalline lattice. Through the use of SDS- and two-dimensional polyacrylamide gel electrophoresis, it was shown that the originally secreted amelogenin (25 kd) as well as 60-90-kd and 5-6-kd molecules adsorbed most selectively onto the hydroxyapatites and that additional moieties having 21-23-kd and 14-18-kd molecular masses commenced to adsorb onto the apatitic surfaces with increasing degrees of fluoride substitution in the lattice. In contrast, the 20-kd amelogenin, a product partially degraded from the 25-kd amelogenin, showed no significant adsorption, even onto the fluoridated apatites. These results suggest that the retention of proteinaceous matrix in the developing enamel might be affected by the nature of the forming crystals.
Collapse
Affiliation(s)
- T Tanabe
- Tsurumi University, School of Dental Medicine, Yokohama, Japan
| | | | | | | |
Collapse
|
28
|
McKee MD, Brown JI, Warshawsky H. A simple method for the preparation of isolated enamel crystallites for transmission electron microscopy. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1988; 8:225-6. [PMID: 3246610 DOI: 10.1002/jemt.1060080211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M D McKee
- Department of Anatomy, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
29
|
Garant PR, Sasaki T, Colflesh PE. Na-K-ATPase in the enamel organ: localization and possible roles in enamel formation. Adv Dent Res 1987; 1:267-75. [PMID: 2847763 DOI: 10.1177/08959374870010021601] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ouabain-sensitive, K-dependent p-nitrophenyl phosphatase (p-NPPase) activity was localized ultra-Ocytochemically in the lateral plasma membranes of secretory ameloblasts and the stratum intermedium and principally in the papillary layer cells of aldehyde-fixed rat incisor enamel organs by the one-step lead method. Daily intraperitoneal injection of ouabain (250 μg, 500 μg, and 1 mg/100 g body weight) for two weeks reduced p-NPPase activity in the enamel organ cells. However, the degree to which this activity was reduced appeared to vary among the experimental animals. Addition of ouabain to the cytochemical incubation medium completely inhibited p-NPPase activity in the tissues. Although long-term ouabain injection did not result in any morphological alterations of the enamel organ cells, it caused, in part, an appearance of electron-dense, homogeneous matrix-like substances (MS) in the extracellular spaces of the ameloblast layers at both the secretion and maturation stages. In addition, long-term ouabain injection appeared to have resulted in delayed maturation of enamel as measured by energy-dispersive x-ray analysis of Ca and P in surface enamel. These results suggest that Na-K-ATPase of enamel organ cells may participate in the net flow (removal) of organic matrix components and water from the enamel during the maturation stage of enamel formation. It is suggested that this flow is maintained by local osmotic gradients generated by Na-K-ATPase within the papillary layer.
Collapse
|
30
|
Aoba T, Fukae M, Tanabe T, Shimizu M, Moreno EC. Selective adsorption of porcine-amelogenins onto hydroxyapatite and their inhibitory activity on hydroxyapatite growth in supersaturated solutions. Calcif Tissue Int 1987; 41:281-9. [PMID: 2825935 DOI: 10.1007/bf02555230] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The selective adsorption of amelogenins onto synthetic hydroxyapatite (HA) and their inhibitory activity on the seeded HA crystal growth were investigated using enamel proteins obtained from the outer layer of immature porcine-enamel (soft, cheeselike in consistency) of developing permanent incisors. Special interests were paid to the effect of a postsecretory degradation of the original amelogenin(s) on their adsorption and inhibitory activity. In the adsorption studies, it was apparent that the originally secreted amelogenin (25 K), proline, and histidine-rich protein (2a), as well as the higher molecular weight components (60-90 K), showed a strong adsorption affinity onto the HA. This adsorption of protein 2a was related to its inhibition of the crystal growth of seeded HA in a dilute supersaturated solution. On the other hand, the partially degraded product (20 K) of amelogenins, protein 2b, lost the high adsorption affinity onto the HA, and consequently showed no significant inhibitory activity. The observed selective adsorption of protein 2a onto HA was apparent at pH 6.0 and pH 7.4 even in the presence of dissociative solvents, such as 3 M urea or 2 and 4 M guanidine-HCl; however, this selective behavior was sensitive to changes in pH, and was not displayed at pH values of 7.8 or 10.8. The results suggest that the originally secreted amelogenin 2a may play an active role in amelogenesis, and that enamel mineralization could be regulated by the secretion of amelogenins and their inactivation through partial enzymic degradation, prior to their complete removal.
Collapse
Affiliation(s)
- T Aoba
- Forsyth Dental Center, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
31
|
Kallenbach E. Electron microscopy of abnormal secretory products of rat incisor ameloblasts in tetracycline-induced lesions. J Oral Pathol Med 1987. [DOI: 10.1111/j.1600-0714.1987.tb00706.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Kallenbach E. Crystal-associated matrix components in rat incisor enamel. An electron-microscopic study. Cell Tissue Res 1986; 246:455-61. [PMID: 3779820 DOI: 10.1007/bf00215908] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sections of glutaraldehyde-OsO4-fixed, plastic-embedded rat incisor enamel were left untreated, stained, decalcified (1% formic acid in 10% sodium citrate), or decalcified-stained. The presence of apatite crystals was monitored with electron diffraction. After brief decalcification and staining, apatite crystals and matrix components were visualized in the same field. The ghost was continuous with crystal fragments, and the coat appeared as a dense line next to crystals and ghosts. Position of ghosts and crystals at the ameloblast-enamel junction (AEJ) of the secretion zone suggested that there may be a lag of no more than 1/5 min between the elaboration of ghost and crystal. A major change in enamel morphology occurs between the AEJ and the deep enamel of the secretion zone. The ghost becomes thinner, the coat more pronounced, and the crystal enlarges. There is only little change from the deep secretion to the maturation zone enamel.
Collapse
|