1
|
Guo T, Li W, Zheng W, Lin Y, Wen S. Quercetin rescues dihydrotestosterone-treated human dermal papilla cells via SHP2/AKT signaling to suppress autophagy and apoptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:7155-7170. [PMID: 39718610 DOI: 10.1007/s00210-024-03742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
The management of hair loss is vital in clinical dermatology due to its prevalence and impact on patients' quality of life. Quercetin is recognized for its diverse activities, including anti-inflammatory, anti-cancer, and immune regulation. However, its effects on human hair follicles and mechanisms remain unclear. This study explored quercetin's impact on countering DHT-induced cell damage, emphasizing apoptosis, cell cycle, mitochondria, and autophagy. Quercetin mitigated DHT's harm, restoring dermal papilla cell function and modulating cell cycle proteins. It restrained DHT-induced ROS and ATP loss, preserving mitochondrial integrity. Through network pharmacology analysis, it was discovered that quercetin targets SHP2, thereby regulating AKT signaling. Additionally, in mice, quercetin was found to promote hair growth. These significant insights highlight the potential of quercetin as a promising solution for hair loss and hair regeneration.
Collapse
Affiliation(s)
- Ting Guo
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenyu Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenjun Zheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Youkun Lin
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Sijian Wen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Jeong M, Kurihara S, Stankovic KM. An In Vitro Oxidative Stress Model of the Human Inner Ear Using Human-Induced Pluripotent Stem Cell-Derived Otic Progenitor Cells. Antioxidants (Basel) 2024; 13:1407. [PMID: 39594548 PMCID: PMC11591063 DOI: 10.3390/antiox13111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The inner ear organs responsible for hearing (cochlea) and balance (vestibular system) are susceptible to oxidative stress due to the high metabolic demands of their sensorineural cells. Oxidative stress-induced damage to these cells can cause hearing loss or vestibular dysfunction, yet the precise mechanisms remain unclear due to the limitations of animal models and challenges of obtaining living human inner ear tissue. Therefore, we developed an in vitro oxidative stress model of the pre-natal human inner ear using otic progenitor cells (OPCs) derived from human-induced pluripotent stem cells (hiPSCs). OPCs, hiPSCs, and HeLa cells were exposed to hydrogen peroxide or ototoxic drugs (gentamicin and cisplatin) that induce oxidative stress to evaluate subsequent cell viability, cell death, reactive oxygen species (ROS) production, mitochondrial activity, and apoptosis (caspase 3/7 activity). Dose-dependent reductions in OPC cell viability were observed post-exposure, demonstrating their vulnerability to oxidative stress. Notably, gentamicin exposure induced ROS production and cell death in OPCs, but not hiPSCs or HeLa cells. This OPC-based human model effectively simulates oxidative stress conditions in the human inner ear and may be useful for modeling the impact of ototoxicity during early pregnancy or evaluating therapies to prevent cytotoxicity.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
| | - Sho Kurihara
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
- Department of Otolaryngology-Head and Neck Surgery, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo 105-8461, Japan
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
He C, Gai H, Zhao W, Zhang H, Lai L, Ding C, Chen L, Ding J. Advances in the Study of Etiology and Molecular Mechanisms of Sensorineural Hearing Loss. Cell Biochem Biophys 2024; 82:1721-1734. [PMID: 38849694 DOI: 10.1007/s12013-024-01344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Sensorineural hearing loss (SNHL), a multifactorial progressive disorder, results from a complex interplay of genetic and environmental factors, with its underlying mechanisms remaining unclear. Several pathological factors are believed to contribute to SNHL, including genetic factors, ion homeostasis, cell apoptosis, immune inflammatory responses, oxidative stress, hormones, metabolic syndrome, human cytomegalovirus infection, mitochondrial damage, and impaired autophagy. These factors collectively interact and play significant roles in the onset and progression of SNHL. The present review offers a comprehensive overview of the various factors that contribute to SNHL, emphasizes recent developments in understanding its etiology, and explores relevant preventive and intervention measures.
Collapse
Affiliation(s)
- Cairong He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hongcun Gai
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wen Zhao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Haiqin Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Lai
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chenyu Ding
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jie Ding
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
4
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
5
|
Wagle SR, Kovacevic B, Ionescu CM, Foster T, Jones M, Mikov M, Wise A, Mooranian A, Al-Salami H. Probucol-bile acid based nanoparticles protect auditory cells from oxidative stress: an in vitro study. Ther Deliv 2024; 15:237-252. [PMID: 38469721 DOI: 10.4155/tde-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Aim: Excessive free radicals contribute to oxidative stress and mitochondrial dysfunction in sensorineural hearing loss (SNHL). The antioxidant probucol holds promise, but its limited bioavailability and inner ear barriers hinder effective SNHL treatment. Methodology: We addressed this by developing probucol-loaded nanoparticles with polymers and lithocholic acid and tested them on House Ear Institute-Organ of Corti cells. Results: Probucol-based nanoparticles effectively reduced oxidative stress-induced apoptosis, enhanced cellular viability, improved probucol uptake and promoted mitochondrial function. Additionally, they demonstrated the capacity to reduce reactive oxygen species through the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway. Conclusion: This innovative nanoparticle system holds the potential to prevent oxidative stress-related hearing impairment, providing an effective solution for SNHL.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad (Hajduk Veljkova 3, 21101), Serbia
| | | | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Rincon Sabatino S, Rivero A, Sangaletti R, Dietrich WD, Hoffer ME, King CS, Rajguru SM. Targeted therapeutic hypothermia protects against noise induced hearing loss. Front Neurosci 2024; 17:1296458. [PMID: 38292902 PMCID: PMC10826421 DOI: 10.3389/fnins.2023.1296458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Exposure to occupational or recreational loud noise activates multiple biological regulatory circuits and damages the cochlea, causing permanent changes in hearing sensitivity. Currently, no effective clinical therapy is available for the treatment or mitigation of noise-induced hearing loss (NIHL). Here, we describe an application of localized and non-invasive therapeutic hypothermia and targeted temperature management of the inner ear to prevent NIHL. Methods We developed a custom-designed cooling neck collar to reduce the temperature of the inner ear by 3-4°C post-injury to deliver mild therapeutic hypothermia. Results This localized and non-invasive therapeutic hypothermia successfully mitigated NIHL in rats. Our results show that mild hypothermia can be applied quickly and safely to the inner ear following noise exposure. We show that localized hypothermia after NIHL preserves residual hearing and rescues noise-induced synaptopathy over a period of months. Discussion This study establishes a minimally-invasive therapeutic paradigm with a high potential for rapid translation to the clinic for long-term preservation of hearing health.
Collapse
Affiliation(s)
| | - Andrea Rivero
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Rachele Sangaletti
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | - W. Dalton Dietrich
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Michael E. Hoffer
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | | | - Suhrud M. Rajguru
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
- RestorEar Devices LLC, Bozeman, MT, United States
| |
Collapse
|
7
|
Baek JI, Kim YR, Lee KY, Kim UK. Mitochondrial redox system: A key target of antioxidant therapy to prevent acquired sensorineural hearing loss. Front Pharmacol 2023; 14:1176881. [PMID: 37063286 PMCID: PMC10102650 DOI: 10.3389/fphar.2023.1176881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Noise (noise-induced hearing loss), and ototoxic drugs (drug-induced ototoxicity), and aging (age-related hearing loss) are the major environmental factors that lead to acquired sensorineural hearing loss. So far, there have been numerous efforts to develop protective or therapeutic agents for acquired hearing loss by investigating the pathological mechanisms of each types of hearing loss, especially in cochlear hair cells and auditory nerves. Although there is still a lack of information on the underlying mechanisms of redox homeostasis and molecular redox networks in hair cells, an imbalance in mitochondrial reactive oxygen species (ROS) levels that enhance oxidative stress has been suggested as a key pathological factor eventually causing acquired sensorineural hearing loss. Thus, various types of antioxidants have been investigated for their abilities to support auditory cells in maintenance of the hearing function against ototoxic stimuli. In this review, we will discuss the scientific possibility of developing drugs that target particular key elements of the mitochondrial redox network in prevention or treatment of noise- and ototoxic drug-induced hearing loss.
Collapse
Affiliation(s)
- Jeong-In Baek
- Department of Companion Animal Health, College of Rehabilitation and Health, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
- *Correspondence: Un-Kyung Kim,
| |
Collapse
|
8
|
Krishnan Muthaiah VP, Kaliyappan K, Mahajan SD. Poly ADP-Ribose Polymerase-1 inhibition by 3-aminobenzamide recuperates HEI-OC1 auditory hair cells from blast overpressure-induced cell death. Front Cell Dev Biol 2023; 11:1047308. [PMID: 36949771 PMCID: PMC10025353 DOI: 10.3389/fcell.2023.1047308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Poly ADP-Ribose Polymerase-1 (PARP1), a DNA repair enzyme is implicated as a key molecule in the pathogenesis of several neurodegenerative disorders. Traumatic insults inducing oxidative stress results in its over-activation causing inflammation and cell death (Parthanatos). As PARP1 inhibition is known to reduce oxidative stress, we hypothesized that PARP1 inhibition by a known inhibitor 3-aminobenzamide (3AB) might recuperate the damage in an in vitro model of blast injury using HEI-OC1 cells (mouse auditory hair cells). Methods: Here, we evaluated the protective effect of 3AB on HEI-OC1 cells following single and repetitive blast overpressures (BOPs). Results: We found that inhibition of PARP1 b 3AB inhibits the PARP1 enzyme and its action of a post-translational modification i.e. formation of Poly ADP-Ribose Polymers which leads to massive ATP depletion. PARP inhibition (3AB treatment) reduced the oxidative stress (4HNE, a marker of lipid peroxidation, and 8OHdG, a marker of oxidative DNA damage) in cells exposed to single/repetitive BOPS through up-regulation of Nrf2, a transcriptional regulator of antioxidant defense and the GCLC, a rate limiting enzyme in the synthesis of glutathione. Discussion: Overall, we found that PARP inhibition by 3AB helps to maintain the viability of BOP-exposed auditory hair cells by recuperating the ATP pool from both mitochondrial and glycolytic sources.
Collapse
Affiliation(s)
- Vijaya Prakash Krishnan Muthaiah
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- *Correspondence: Vijaya Prakash Krishnan Muthaiah,
| | - Kathiravan Kaliyappan
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, Buffalo, NY, United States
| |
Collapse
|
9
|
Boecking B, Klasing S, Walter M, Brueggemann P, Nyamaa A, Rose M, Mazurek B. Vascular-Metabolic Risk Factors and Psychological Stress in Patients with Chronic Tinnitus. Nutrients 2022; 14:nu14112256. [PMID: 35684056 PMCID: PMC9183085 DOI: 10.3390/nu14112256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Little is known about molecular correlates of chronic tinnitus. We examined interrelationships between vascular−metabolic risk factors, perceived stress, and other routine blood values in patients with chronic tinnitus. Two-hundred patients (51% female) were screened for 49 blood parameters pertaining to vascular−metabolic risk, immune function, and redox processes. They further completed perceived stress- and tinnitus-related distress questionnaires. Following descriptive analyses, gender-specific sets of age- and tinnitus-severity-adjusted regression models investigated associations between perceived stress and blood parameters. Patients reported mildly elevated levels of perceived stress. Elevated levels of total cholesterol (65% and 61% of female and male patients, respectively), non-HDL-c (43/50%), LDL-c (56/59%), and lipoprotein_a (28/14%) were accompanied by high rates of overweight (99/100%) and smoking (28/31%). A low-level inflammatory state was accompanied by reduced reactive oxygen species (ROS)-neutralizing capacity (reduced co-enzyme Q10 and SOD1 levels). Most vascular risk factors were not correlated with perceived stress, except for fibrinogen (ß = −0.34) as well as C-reactive protein (ß = −0.31, p < 0.05) in men, and MCV (ß = −0.26, p < 0.05) in women. Interrelations between blood parameters and stress levels need to be investigated within psychobehavioural frameworks across varying distress levels. Alongside psychological interventions, a low-level inflammatory state may be a route for pharmacological therapeutics.
Collapse
Affiliation(s)
- Benjamin Boecking
- Tinnitus Center, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; (B.B.); (S.K.); (P.B.); (A.N.)
| | - Sven Klasing
- Tinnitus Center, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; (B.B.); (S.K.); (P.B.); (A.N.)
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, 18057 Rostock, Germany;
| | - Petra Brueggemann
- Tinnitus Center, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; (B.B.); (S.K.); (P.B.); (A.N.)
| | - Amarjargal Nyamaa
- Tinnitus Center, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; (B.B.); (S.K.); (P.B.); (A.N.)
| | - Matthias Rose
- Medical Department, Division of Psychosomatic Medicine, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Birgit Mazurek
- Tinnitus Center, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany; (B.B.); (S.K.); (P.B.); (A.N.)
- Correspondence:
| |
Collapse
|
10
|
ROS-Induced Oxidative Damage and Mitochondrial Dysfunction Mediated by Inhibition of SIRT3 in Cultured Cochlear Cells. Neural Plast 2022; 2022:5567174. [PMID: 35096052 PMCID: PMC8791755 DOI: 10.1155/2022/5567174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most common causes of disability worldwide. Previous evidence suggests that reactive oxygen species (ROS) may play an important role in the occurrence and development of SNHL, while its mechanism remains unclear. We cultured dissected organs of Corti in medium containing different concentrations (0, 0.25, 0.5, 0.75, 1, and 1.25 mM) of hydrogen peroxide (H2O2) and established a four-concentration model of 0, 0.5, 0.75, and 1 mM to study different degrees of damage. We examined ROS-induced mitochondrial damage and the role of sirtuin 3 (SIRT3). Our results revealed that the number of ribbon synapses and hair cells appeared significantly concentration-dependent decrease with exposure to H2O2. Outer hair cells (OHCs) and inner hair cells (IHCs) began to be lost, and activation of apoptosis of hair cells (HCs) was observed at 0.75 mM and 1 mM H2O2, respectively. In contrast with the control group, the accumulation of ROS was significantly higher, and the mitochondrial membrane potential (MMP) was lower in the H2O2-treated groups. Furthermore, the expression of SIRT3, FOXO3A, and SOD2 proteins declined, except for an initial elevation of SIRT3 between 0 and 0.75 mM H2O2. Administration of the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine resulted in increased damage to the cochlea, including loss of ribbon synapses and hair cells, apoptosis of hair cells, more production of ROS, and reduced mitochondrial membrane potential. Thoroughly, our results highlight that ROS-induced mitochondrial oxidative damage drives hair cell degeneration and apoptosis. Furthermore, SIRT3 is crucial for preserving mitochondrial function and protecting the cochlea from oxidative damage and may represent a possible therapeutic target for SNHL.
Collapse
|
11
|
Mechanism and Protection of Radiotherapy Induced Sensorineural Hearing Loss for Head and Neck Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2021:3548706. [PMID: 34970625 PMCID: PMC8714384 DOI: 10.1155/2021/3548706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022]
Abstract
Purpose Radiotherapy-induced sensorineural hearing loss (RISNHL) is a common adverse effect in patients with head and neck cancer. Given that there are few studies on the pathogenesis of RISNHL at present, we summarized the possible pathogenesis of RISNHL and possible protective measures found at present by referring to relevant literatures. Methods We performed a comprehensive literature search in the PubMed database, using keywords “sensorineural hearing loss,” “radiotherapy,” and “cancer,” among others. The literature was examined for the possible mechanism and preventive measures of sensorineural hearing loss induced by radiotherapy. Results We found that the incidence of RISNHL was closely related to the damage directly caused by ionizing radiation and the radiation-induced bystander effect. It also depends on the dose of radiation and the timing of chemotherapy. Studies confirmed that RISNHL is mainly involved in post-RT inflammatory response and changes in reactive oxygen species, mitogen-activated protein kinase, and p53 signaling pathways, leading to specific manners of cell death. We expect to reduce the incidence of hearing loss through advanced radiotherapy techniques, dose limitation of organs at risk, application of cell signaling inhibitors, use of antioxidants, induction of cochlear hair cell regeneration, and cochlear implantation. Conclusion RISNHL is associated with radiation damage to DNA, oxidative stress, and inflammation of cochlear cells, stria vascularis endothelial cells, vascular endothelial cells, spiral ganglion neurons, and other supporting cells. At present, the occurrence mechanism of RISNHL has not been clearly illustrated, and further studies are needed to better understand the underlying mechanism, which is crucial to promote the formulation of better strategies and prevent the occurrence of RISNHL.
Collapse
|
12
|
Peixoto Pinheiro B, Adel Y, Knipper M, Müller M, Löwenheim H. Auditory Threshold Variability in the SAMP8 Mouse Model of Age-Related Hearing Loss: Functional Loss and Phenotypic Change Precede Outer Hair Cell Loss. Front Aging Neurosci 2021; 13:708190. [PMID: 34408646 PMCID: PMC8366269 DOI: 10.3389/fnagi.2021.708190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory deficit in aging society, which is accompanied by increased speech discrimination difficulties in noisy environments, social isolation, and cognitive decline. The audiometric degree of ARHL is largely correlated with sensory hair cell loss in addition to age-related factors not captured by histopathological analysis of the human cochlea. Previous studies have identified the senescence-accelerated mouse prone strain 8 (SAMP8) as a model for studying ARHL and age-related modifications of the cochlear redox environment. However, the SAMP8 population exhibits a large variability in auditory function decline over age, whose underlying cause remains unknown. In this study, we analyzed auditory function of SAMP8 mice by measuring auditory brainstem response (ABR) thresholds at the age of 6 weeks (juvenile), 12 weeks (young adult), and 24 weeks (adult). Consistent with previous studies, SAMP8 mice exhibit an early progressive, age-related decline of hearing acuity. However, a spatiotemporal cytohistological analysis showed that the significant increase in threshold variability was not concurrently reflected in outer hair cell (OHC) loss observed in the lower and upper quartiles of the ABR threshold distributions over age. This functional loss was found to precede OHC loss suggesting that age-related phenotypic changes may be contributing factors not represented in cytohistological analysis. The expression of potassium channels KCNQ4 (KV7.4), which mediates the current IK,n crucial for the maintenance of OHC membrane potential, and KCNQ1 (KV7.1), which is an essential component in potassium circulation and secretion into the endolymph generating the endocochlear potential, showed differences between these quartiles and age groups. This suggests that phenotypic changes in OHCs or the stria vascularis due to variable oxidative deficiencies in individual mice may be predictors of the observed threshold variability in SAMP8 mice and their progressive ARHL. In future studies, further phenotypic predictors affected by accumulated metabolic challenges over age need to be investigated as potentially underlying causes of ARHL preceding irreversible OHC loss in the SAMP8 mouse model.
Collapse
Affiliation(s)
- Barbara Peixoto Pinheiro
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Youssef Adel
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Gentilin E, Cani A, Simoni E, Chicca M, Di Paolo ML, Martini A, Astolfi L. Hydrogen peroxide toxicity on auditory cells: An in vitro study. Chem Biol Interact 2021; 345:109575. [PMID: 34228970 DOI: 10.1016/j.cbi.2021.109575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/04/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
In recent decades, interest has increased in the role of reactive oxygen species (ROS) in health and disease. The ROS are key causative factors in several hearing loss pathologies including ototoxicity, noise trauma, cochlear ageing and ischemic injury. In order to investigate ROS effects on inner ear cells and counteract them, we developed an in vitro model of oxidative stress by exposing the inner ear cell line OC-k3 to hydrogen peroxide (H2O2) at concentrations able to affect in vivo cellular components but allowing cell survival. The treatment with high concentrations (20 and 30 μM) resulted in reduction of cell viability, activation of apoptosis/necrosis and alteration of morphology, cell cycle progression and antioxidant defences. The ROS effects in inner ear cells are difficult to assess in vivo. Organocultures may provide preservation of tissue architecture but involve ethical issues and can be used only for a limited time. An in vitro model that could be commercially available and easy to handle is necessary to investigate inner ear oxidative stress and the ways to counteract it. The OC-k3 line is a suitable in vitro model to study ROS effects on inner ear cells because the observed cell alterations and damages were similar to those reported in studies investigating ROS effects of ototoxic drugs, noise trauma and cochlear ageing.
Collapse
Affiliation(s)
- Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.
| | - Alice Cani
- Department of Woman and Children's Health, University of Padua, Padua, Italy.
| | - Edi Simoni
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | | | - Alessandro Martini
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy; Interdepartmental Research Centre "I-APPROVE - International Auditory Processing Project in Venice", University of Padua, Santi Giovanni e Paolo Hospital, ULSS3 Serenissima, Venice, Italy.
| | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy; Interdepartmental Research Centre "I-APPROVE - International Auditory Processing Project in Venice", University of Padua, Santi Giovanni e Paolo Hospital, ULSS3 Serenissima, Venice, Italy.
| |
Collapse
|
14
|
Objective and Measurable Biomarkers in Chronic Subjective Tinnitus. Int J Mol Sci 2021; 22:ijms22126619. [PMID: 34205595 PMCID: PMC8235100 DOI: 10.3390/ijms22126619] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Tinnitus is associated with increased social costs and reduced quality of life through sleep disorders or psychological distress. The pathophysiology of chronic subjective tinnitus, which accounts for most tinnitus, has not been clearly elucidated. This is because chronic subjective tinnitus is difficult to evaluate objectively, and there are no objective markers that represent the diagnosis or therapeutic effect of tinnitus. Based on the results of studies on patients with chronic subjective tinnitus, objective and measurable biomarkers that help to identify the pathophysiology of tinnitus have been summarized. A total of 271 studies in PubMed, 303 in EMBASE, and 45 in Cochrane Library were found on biomarkers related to chronic subjective tinnitus published until April 2021. Duplicate articles, articles not written in English, review articles, case reports, and articles that did not match our topic were excluded. A total of 49 studies were included. Three specimens, including blood, saliva, and urine, and a total of 58 biomarkers were used as indicators for diagnosis, evaluation, prognosis, and therapeutic effectiveness of tinnitus. Biomarkers were classified into eight categories comprising metabolic, hemostatic, inflammatory, endocrine, immunological, neurologic, and oxidative parameters. Biomarkers can help in the diagnosis, measure the severity, predict prognosis, and treatment outcome of tinnitus.
Collapse
|
15
|
Liu Y, Wu H, Zhang F, Yang J, He J. Resveratrol upregulates miR-455-5p to antagonize cisplatin ototoxicity via modulating the PTEN-PI3K-AKT axis. Biochem Cell Biol 2021; 99:385-395. [PMID: 34077275 DOI: 10.1139/bcb-2020-0459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Resveratrol is a non-flavonoid polyphenol compound that exists in many plants, and is considered an antitoxin. This study explores the effects from the regulation of miR-455-5p by resveratrol on cisplatin-induced ototoxicity via the PTEN-PI3K-AKT signaling pathway. For this, House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were transfected with miR-455-5p inhibitor and treated with cisplatin and resveratrol, then cell proliferation, apoptosis, and oxidative stress were evaluated. A mouse model of hearing loss was established, and these mice were treated with cisplatin, resveratrol, or cisplatin combined with resveratrol, by intraperitoneal injection. The auditory brainstem response (ABR) threshold was measured, and hair cells were examined using immunofluorescence staining. The expression levels of miR-455-5p, PTEN, and PI3K/Akt proteins were examined. The results from our in-vitro experiments indicate that resveratrol promoted viability and reduced apoptosis and oxidative stress in cisplatin-induced HEI-OC1 cells. Resveratrol upregulated miR-455-5p, downregulated PTEN, and activated the PI3K-Akt axis. These effects of resveratrol were reversed by knock-down of miR-455-5p. The results from our in-vivo experiments indicate that resveratrol protected hearing and inhibited the hair-cell injury caused by cisplatin ototoxicity. Resveratrol also upregulated miR-455-5p, downregulated PTEN, and activated the PTEN-PI3K-Akt axis in cochlear tissues from cisplatin-treated mice. These results indicate that resveratrol upregulates miR-455-5p to target PTEN and activate the PI3K-Akt signaling pathway to counteract cisplatin ototoxicity.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Hui Wu
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Fan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Jun Yang
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| | - Jingchun He
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200000, P.R. China
| |
Collapse
|
16
|
Effects of Moringa Extract on Aminoglycoside-Induced Hair Cell Death and Organ of Corti Damage. Otol Neurotol 2021; 42:1261-1268. [PMID: 34049329 DOI: 10.1097/mao.0000000000003193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Moringa extract, a naturally occurring anti-oxidant, protects against aminoglycoside-induced hair cell death and hearing loss within the organ of Corti. BACKGROUND Reactive oxygen species (ROS) arise primarily in the mitochondria and have been implicated in aminoglycoside-induced ototoxicity. Mitochondrial dysfunction results in loss of membrane potential, release of caspases, and cell apoptosis. Moringa extract has not previously been examined as a protective agent for aminoglycoside-induced ototoxicity. METHODS Putative otoprotective effects of moringa extract were investigated in an organotypic model using murine organ of Corti explants subjected to gentamicin-induced ototoxicity. Assays evaluated hair cell loss, cytochrome oxidase expression, mitochondrial membrane potential integrity, and caspase activity. RESULTS In vitro application of moringa conferred significant protection from gentamicin-induced hair cell loss at dosages from 25 to 300 μg/mL, with dosages above 100 μg/mL conferring near complete protection. Assays demonstrated moringa extract suppression of ROS, preservation of cytochrome oxidase activity, and reduction in caspase production. CONCLUSION Moringa extract demonstrated potent antioxidant properties with significant protection against gentamicin ototoxicity in cochlear explants.
Collapse
|
17
|
Evaluation of the effects of hair colouring products on the oxidative status in rats. Postepy Dermatol Alergol 2020; 37:766-770. [PMID: 33240018 PMCID: PMC7675090 DOI: 10.5114/ada.2020.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 06/09/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction Permanent hair dyes, oxidant creams, and henna are usually used for cosmetic purposes and sometimes for therapeutic expectations. The effects of these products, which are used to change hair colour and can be absorbed percutaneously on the oxidative status is not known exactly. Aim To investigate the effects of these products, which have various contents, on the oxidative status using an in vivo rat model. Material and methods The products used for hair colouring were prepared as recommended for human use and applied to the back region of Wistar albino rats. Superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) levels were measured in serum and liver samples of rats. The Kruskal-Wallis test showed significant differences in serum SOD, aspartate aminotranspherase (AST), alanine aminotranspherase (ALT), and liver MDA levels among the study groups. Results There were statistically significant positive correlations between hepatic MDA values and AST and ALT values. Hair dyes, oxidant creams, and henna were found to have oxidative and hepatotoxic effects. Surprisingly, comparisons revealed that oxidative effect and hepatic toxicity of the oxidant cream and henna were similar. The oxidant cream was more oxidating and hepatotoxic than the hair dye. Conclusions Knowing the facts about these products, which are easily accessible to every individual in society and are considered to be innocent, will prevent possible harm.
Collapse
|
18
|
Wang Z, Wilson CM, Ge Y, Nemes J, LaValle C, Boutté A, Carr W, Kamimori G, Haghighi F. DNA Methylation Patterns of Chronic Explosive Breaching in U.S. Military Warfighters. Front Neurol 2020; 11:1010. [PMID: 33192958 PMCID: PMC7645105 DOI: 10.3389/fneur.2020.01010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/31/2020] [Indexed: 02/01/2023] Open
Abstract
Background: Injuries from exposure to explosions rose dramatically during the Iraq and Afghanistan wars, which motivated investigation of blast-related neurotrauma. We have undertaken human studies involving military "breachers" -exposed to controlled, low-level blast during a 3-days explosive breaching course. Methods: We screened epigenetic profiles in peripheral blood samples from 59 subjects (in two separate U.S. Military training sessions) using Infinium MethylationEPIC BeadChips. Participants had varying numbers of exposures to blast over their military careers (empirically defined as high ≥ 40, and conversely, low < 39 breaching exposures). Daily self-reported physiological symptoms were recorded. Tinnitus, memory problems, headaches, and sleep disturbances are most frequently reported. Results: We identified 14 significantly differentially methylated regions (DMRs) within genes associated with cumulative blast exposure in participants with high relative to low cumulative blast exposure. Notably, NTSR1 and SPON1 were significantly differentially methylated in high relative to low blast exposed groups, suggesting that sleep dysregulation may be altered in response to chronic cumulative blast exposure. In comparing lifetime blast exposure at baseline (prior to exposure in current training), and top associated symptoms, we identified significant DMRs associated with tinnitus, sleep difficulties, and headache. Notably, we identified KCNN3, SOD3, MUC4, GALR1, and WDR45B, which are implicated in auditory function, as differentially methylated associated with self-reported tinnitus. These findings suggest neurobiological mechanisms behind auditory injuries in our military warfighters and are particularly relevant given tinnitus is not only a primary disability among veterans, but has also been demonstrated in active duty medical records for populations exposed to blast in training. Additionally, we found that differentially methylated regions associated with the genes CCDC68 and COMT track with sleep difficulties, and those within FMOD and TNXB track with pain and headache. Conclusion: Sleep disturbances, as well as tinnitus and chronic pain, are widely reported in U.S. military service members and veterans. As we have previously demonstrated, DNA methylation encapsulates lifetime exposure to blast. The current data support previous findings and recapitulate transcriptional regulatory alterations in genes involved in sleep, auditory function, and pain. These data uncovered novel epigenetic and transcriptional regulatory mechanism underlying the etiological basis of these symptoms.
Collapse
Affiliation(s)
- Zhaoyu Wang
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States
| | - Caroline M. Wilson
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, New York, NY, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeffrey Nemes
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Christina LaValle
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela Boutté
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Gary Kamimori
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Fatemeh Haghighi
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, New York, NY, United States
| |
Collapse
|
19
|
Kita A, Saldate J, Chang C, Chellappa N, Jong J, Matsuda R, Schmidt A, Shih B, Shafqat I, Schoettler K, Acharya S, Seidlits S, Hoffman L. Implantable Drug Reservoir Devices for Inner Ear Delivery of Pharmacotherapeutics. Otolaryngol Head Neck Surg 2020; 163:791-798. [DOI: 10.1177/0194599820930229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective Cisplatin is a platinum-based chemotherapeutic drug that secondarily induces toxicity in inner ear sensory epithelia, contributing to auditory and vestibular dysfunction. We describe the creation of a drug reservoir device (DRD) to combat this ototoxicity for the duration of chemotherapy. As ototoxic side effects of chemotherapy may limit an oncologist’s ability to prescribe first-line agents such as cisplatin, mitigating such devastating effects through prolonged topical therapy would be tremendously valuable. Study Design We investigated (1) the ability of an electrospun polylactic acid DRD to provide prolonged delivery of the posited otoprotectant metformin and (2) the development of an in vitro model utilizing Sh-Sy5y human neuroblastoma cells to assess the efficacy of metformin in reducing cisplatin-induced toxicity. Setting Neurophysiology laboratory. Methods Basic science experiments were performed to assess DRD properties and metformin’s effects on cisplatin toxicity in culture. Results We found that DRDs with increasing polylactic acid concentrations exhibited metformin release for up to 8 weeks. In modeling elution across the round window in vitro, continued elution of metformin was observed for at least 6 weeks, as quantified by spectrophotometry. Unfortunately, metformin did not exhibit protective efficacy in this model using Sh-Sy5y cells. Conclusion While metformin was not found to be protective in Sh-Sy5y cells, these results suggest that an electrospun DRD can provide a tailorable drug delivery system providing medication for the duration of chemotherapy treatment. This represents a novel drug delivery system and efficacy screening assay with broad clinical applications in personalized delivery of inner ear therapies.
Collapse
Affiliation(s)
- Ashley Kita
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Johnny Saldate
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Courtney Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Nitika Chellappa
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Jeremy Jong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Riley Matsuda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Andrew Schmidt
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Brandon Shih
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Iram Shafqat
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kari Schoettler
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shiv Acharya
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Stephanie Seidlits
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Larry Hoffman
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
Chou CW, Chen YY, Wang CC, Kao TW, Wu CJ, Chen YJ, Zhou YC, Chen WL. Urinary biomarkers of polycyclic aromatic hydrocarbons and the association with hearing threshold shifts in the United States adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:562-570. [PMID: 31808090 DOI: 10.1007/s11356-019-06883-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are regarded as environmental pollutants that contribute to several adverse health outcomes. There is no research evidence to support a connection between PAH exposure and hearing loss. Our study aimed to determine the association between PAH exposure and hearing threshold shifts using the National Health and Nutrition Examination Survey (NHANES) dataset. A cross-sectional study was conducted among 1,071 US adults participating in the NHANES from 2001 to 2004. The association between PAH metabolites and the log-transformed hearing threshold was investigated using multivariate regression models, which included log-transformed, low-frequency and high-frequency thresholds. After additional pertinent adjustments, a positive correlation between PAH metabolite concentration and log-transformed hearing thresholds was observed. Individuals in the fourth quartile of PAH metabolite concentration had higher hearing thresholds compared with those in the first quartile of PAH metabolite concentration. Exposure to PAHs is related to hearing threshold shift at both low and high frequencies in the US adult population.
Collapse
Affiliation(s)
- Cheng-Wai Chou
- Department of otorhinolaryngology head and neck surgery, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Division of Geriatric Medicine, Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yuan-Yuei Chen
- Division of Geriatric Medicine, Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Internal Medicine, Tri-Service General Hospital Songshan Branch and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chung-Ching Wang
- Division of Geriatric Medicine, Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Wei Kao
- Division of Geriatric Medicine, Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Clinical Medical, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chen-Jung Wu
- Division of Geriatric Medicine, Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Family Medicine, Department of Community Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, Republic of China
| | - Ying-Jen Chen
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Chao Zhou
- Division of Geriatric Medicine, Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Division of Geriatric Medicine, Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
21
|
Petridou AI, Zagora ET, Petridis P, Korres GS, Gazouli M, Xenelis I, Kyrodimos E, Kontothanasi G, Kaliora AC. The Effect of Antioxidant Supplementation in Patients with Tinnitus and Normal Hearing or Hearing Loss: A Randomized, Double-Blind, Placebo Controlled Trial. Nutrients 2019; 11:3037. [PMID: 31842394 PMCID: PMC6950042 DOI: 10.3390/nu11123037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023] Open
Abstract
Tinnitus is the perception of sound in the absence of any external stimulus. Oxidative stress is possibly involved in its pathogenesis and a variety of antioxidant compounds have been studied as potential treatment approaches. The objective of the present study was to assess the effects of antioxidant supplementation in tinnitus patients. This is a randomized, double-blind, placebo-controlled clinical trial. Patients (N = 70) were randomly allocated to antioxidant supplementation (N = 35) or to placebo (N = 35) for a total of 3 months. Demographic, anthropometric, clinical, and nutritional data were collected. Serum total antioxidant capacity (TAC), oxidized LDL (oxLDL), and superoxide dismutase (SOD), tinnitus loudness, frequency, and minimum masking level (MML), and scores in Tinnitus Handicap Inventory questionnaire (THI), Tinnitus Functional Index (TFI), and Visual Analogue Scale (VAS) were evaluated at baseline and follow-up. Tinnitus loudness and MML significantly decreased from baseline to post measure (p < 0.001) only in the antioxidant group, the overall change being significantly different between the two groups post-intervention (p < 0.001). THI and VAS decreased only in the antioxidant group. Differences in changes in serum TAC, SOD, and oxLDL post-intervention were insignificant. In conclusion, antioxidant therapy seems to reduce the subjective discomfort and tinnitus intensity in tinnitus patients.
Collapse
Affiliation(s)
- Anna I. Petridou
- 1st ENT Department, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (A.I.P.); (I.X.); (E.K.)
| | - Eleftheria T. Zagora
- ENT Department, General Hospital of Nikaia “Agios Panteleimon”, Nikaia, 18454 Athens, Greece; (E.T.Z.); (G.K.)
| | - Petros Petridis
- ENT Department, St. Johannes Hospital, 44137 Dortmund, Germany;
| | - George S. Korres
- 2nd ENT Department, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 12462 Chaidari, Greece;
| | - Maria Gazouli
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioannis Xenelis
- 1st ENT Department, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (A.I.P.); (I.X.); (E.K.)
| | - Efthymios Kyrodimos
- 1st ENT Department, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, 11527 Athens, Greece; (A.I.P.); (I.X.); (E.K.)
| | - Georgia Kontothanasi
- ENT Department, General Hospital of Nikaia “Agios Panteleimon”, Nikaia, 18454 Athens, Greece; (E.T.Z.); (G.K.)
| | - Andriana C. Kaliora
- Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| |
Collapse
|
22
|
Cousins RPC. Medicines discovery for auditory disorders: Challenges for industry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3652. [PMID: 31795652 DOI: 10.1121/1.5132706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Currently, no approved medicines are available for the prevention or treatment of hearing loss. Pharmaceutical industry productivity across all therapeutic indications has historically been disappointing, with a 90% chance of failure in delivering a marketed drug after entering clinical evaluation. To address these failings, initiatives have been applied in the three cornerstones of medicine discovery: target selection, clinical candidate selection, and clinical studies. These changes aimed to enable data-informed decisions on the translation of preclinical observations into a safe, clinically effective medicine by ensuring the best biological target is selected, the most appropriate chemical entity is advanced, and that the clinical studies enroll the correct patients. The specific underlying pathologies need to be known to allow appropriate patient selection, so improved diagnostics are required, as are methodologies for measuring in the inner ear target engagement, drug delivery and pharmacokinetics. The different therapeutic strategies of protecting hearing or preventing hearing loss versus restoring hearing are reviewed along with potential treatments for tinnitus. Examples of current investigational drugs are discussed to highlight key challenges in drug discovery and the learnings being applied to improve the probability of success of launching a marketed medicine.
Collapse
Affiliation(s)
- Rick P C Cousins
- University College London Ear Institute, University College London, London, WC1X 8EE, United Kingdom
| |
Collapse
|
23
|
Ogier JM, Burt RA, Drury HR, Lim R, Nayagam BA. Organotypic Culture of Neonatal Murine Inner Ear Explants. Front Cell Neurosci 2019; 13:170. [PMID: 31130846 PMCID: PMC6509234 DOI: 10.3389/fncel.2019.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
The inner ear is a complex organ containing highly specialised cell types and structures that are critical for sensing sound and movement. In vivo, the inner ear is difficult to study due to the osseous nature of the otic capsule and its encapsulation within an intricate bony labyrinth. As such, mammalian inner ear explants are an invaluable tool for the study and manipulation of the complex intercellular connections, structures, and cell types within this specialised organ. The greatest strength of this technique is that the complete organ of Corti, or peripheral vestibular organs including hair cells, supporting cells and accompanying neurons, is maintained in its in situ form. The greatest weakness of in vitro hair cell preparations is the short time frame in which the explanted tissue remains viable. Yet, cochlear explants have proven to be an excellent experimental model for understanding the fundamental aspects of auditory biology, substantiated by their use for over 40 years. In this protocol, we present a modernised inner ear explant technique that employs organotypic cell culture inserts and serum free media. This approach decreases the likelihood of explant damage by eliminating the need for adhesive substances. Serum free media also restricts excessive cellular outgrowth and inter-experimental variability, both of which are side effects of exogenous serum addition to cell cultures. The protocol described can be applied to culture both cochlear and vestibular explants from various mammals. Example outcomes are demonstrated by immunohistochemistry, hair cell quantification, and electrophysiological recordings to validate the versatility and viability of the protocol.
Collapse
Affiliation(s)
- Jacqueline M. Ogier
- Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel A. Burt
- Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Department of Genetics, The University of Melbourne, Parkville, VIC, Australia
| | - Hannah R. Drury
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
- The Bionics Institute, East Melbourne, VIC, Australia
| |
Collapse
|
24
|
Abstract
Hearing loss is present in millions of people worldwide. Current treatment for patients with severe to profound hearing loss consists of cochlear implantation. Providing the cochlear nerve is intact, patients generally benefit greatly from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. Ongoing research in cell transplantation and gene therapy promises to lead to new developments that will improve the function of cochlear implants. Translation of these experimental approaches is presently at an early stage. This review focuses on the application of biological therapies in severe hearing loss and discusses some of the barriers to translating basic scientific research into clinical reality. We emphasize the application of these novel therapies to cochlear implantation.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
25
|
Lin KY, Chung CH, Ciou JS, Su PF, Wang PW, Shieh DB, Wang TC. Molecular damage and responses of oral keratinocyte to hydrogen peroxide. BMC Oral Health 2019; 19:10. [PMID: 30634966 PMCID: PMC6329095 DOI: 10.1186/s12903-018-0694-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2O2)-based tooth bleaching reagents have recently increased in popularity and controversy. H2O2 gel (3%) is used in a Nightguard for vital bleaching; transient tooth sensitivity and oral mucosa irritation have been reported. Genotoxicity and carcinogenicity have also been significant concerns. METHODS We used primary cultured normal human oral keratinocytes (NHOKs) as an in vitro model to investigate the pathological effects to mitochondria functions on human oral keratinocytes exposed to different doses of H2O2 for different durations. RESULTS An MTT assay showed compromised cell viability at a dose over 5 mM. The treatments induced nuclear DNA damage, measured using a single-cell gel electrophoresis assay. A real-time quantitative polymerase chain reaction showed H2O2 induced significant increase in mitochondrial 4977-bp deletion. Mitochondrial membrane potential and apoptosis assays suggested that oxidative damage defense mechanisms were activated after prolonged exposure to H2O2. Reduced intracellular glutathione was an effective defense against oxidative damage from 5 mM of H2O2. CONCLUSION Our study suggests the importance for keratinocyte damage of the dose and the duration of the exposure to H2O2 in at-home-bleaching. A treatment dose ≥100 mM directly causes severe cytotoxicity with as little as 15 min of exposure.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Harrisburg, PA, 16803, USA
| | - Ching-Hung Chung
- Department of Stomatology, National Cheng-Kung University Hospital, Tainan, 70101, Taiwan
| | - Jheng-Sian Ciou
- Graduate Institute of Pharmaceutical Science, Chia-Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Wen Wang
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Dar-Bin Shieh
- Department of Stomatology, National Cheng-Kung University Hospital, Tainan, 70101, Taiwan. .,Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Applied Nanomedicine, Center for Micro/Nano Science and Technology, Advanced Optronic Technology Center, Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Tzu-Chueh Wang
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, 71710, Taiwan.
| |
Collapse
|
26
|
Quinoxaline protects zebrafish lateral line hair cells from cisplatin and aminoglycosides damage. Sci Rep 2018; 8:15119. [PMID: 30310154 PMCID: PMC6181994 DOI: 10.1038/s41598-018-33520-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023] Open
Abstract
Hair cell (HC) death is the leading cause of hearing and balance disorders in humans. It can be triggered by multiple insults, including noise, aging, and treatment with certain therapeutic drugs. As society becomes more technologically advanced, the source of noise pollution and the use of drugs with ototoxic side effects are rapidly increasing, posing a threat to our hearing health. Although the underlying mechanism by which ototoxins affect auditory function varies, they share common intracellular byproducts, particularly generation of reactive oxygen species. Here, we described the therapeutic effect of the heterocyclic compound quinoxaline (Qx) against ototoxic insults in zebrafish HCs. Animals incubated with Qx were protected against the deleterious effects of cisplatin and gentamicin, and partially against neomycin. In the presence of Qx, there was a reduction in the number of TUNEL-positive HCs. Since Qx did not block the mechanotransduction channels, based on FM1-43 uptake and microphonic potentials, this implies that Qx’s otoprotective effect is at the intracellular level. Together, these results unravel a novel therapeutic role for Qx as an otoprotective drug against the deleterious side effects of cisplatin and aminoglycosides, offering an alternative option for patients treated with these compounds.
Collapse
|
27
|
Morioka S, Sakaguchi H, Yamaguchi T, Ninoyu Y, Mohri H, Nakamura T, Hisa Y, Ogita K, Saito N, Ueyama T. Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction. J Neurochem 2018; 146:459-473. [PMID: 29675997 DOI: 10.1111/jnc.14451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Previous studies have convincingly argued that reactive oxygen species (ROS) contribute to the development of several major types of sensorineural hearing loss, such as noise-induced hearing loss (NIHL), drug-induced hearing loss, and age-related hearing loss. However, the underlying molecular mechanisms induced by ROS in these pathologies remain unclear. To resolve this issue, we established an in vivo model of ROS overproduction by generating a transgenic (TG) mouse line expressing the human NADPH oxidase 4 (NOX4, NOX4-TG mice), which is a constitutively active ROS-producing enzyme that does not require stimulation or an activator. Overproduction of ROS was detected at the cochlea of the inner ear in NOX4-TG mice, but they showed normal hearing function under baseline conditions. However, they demonstrated hearing function vulnerability, especially at high-frequency sounds, upon exposure to intense noise, which was accompanied by loss of cochlear outer hair cells (OHCs). The vulnerability to loss of hearing function and OHCs was rescued by treatment with the antioxidant Tempol. Additionally, we found increased protein levels of the heat-shock protein 47 (HSP47) in models using HEK293 cells, including H2 O2 treatment and cells with stable and transient expression of NOX4. Furthermore, the up-regulated levels of Hsp47 were observed in both the cochlea and heart of NOX4-TG mice. Thus, antioxidant therapy is a promising approach for the treatment of NIHL. Hsp47 may be an endogenous antioxidant factor, compensating for the chronic ROS overexposure in vivo, and counteracting ROS-related hearing loss.
Collapse
Affiliation(s)
- Shigefumi Morioka
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.,Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Yuzuru Ninoyu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takashi Nakamura
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Faculty of Health and Medical Sciences, Kyoto Gakuen University, Kyoto, Japan
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| |
Collapse
|
28
|
Abstract
This review is focused on the unusual composition of the endolymph of the inner ear and its function in mechanoelectrical transduction. The role of K(+) and Ca(2+) in excitatory influx, the very low Na(+), Ca(2+) and Mg(2+) concentrations of endolymph, stereocilia structure of hair cells and some proteins involved in mechanosensory signal transduction with emphasis on auditory receptors are presented and analyzed in more details. An alternative hypothetical model of ciliary structure and endolymph with a 'normal' composition is discussed. It is concluded that the unique endolymph cation content is more than an energy saving mechanism that avoids disturbing circulatory vibrations to achieve a much better mechanosensory resolution. It is the only possible way to fulfil the requirements for a precise ciliary mechanoelectrical transduction in conditions where pressure events with quite diverse amplitudes and duration are transformed into adequate hair cell membrane depolarizations, which are regulated by a sensitive Ca(2+)-dependent feedback tuning.
Collapse
Affiliation(s)
- H Gagov
- Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria.
| | | | | |
Collapse
|
29
|
Mwangi M, Kil SH, Phak D, Park HY, Lim DJ, Park R, Moon SK. Interleukin-10 Attenuates Hypochlorous Acid-Mediated Cytotoxicity to HEI-OC1 Cochlear Cells. Front Cell Neurosci 2017; 11:314. [PMID: 29056901 PMCID: PMC5635053 DOI: 10.3389/fncel.2017.00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Inflammatory reaction plays a crucial role in the pathophysiology of acquired hearing loss such as ototoxicity and labyrinthitis. In our earlier work, we showed the pivotal role of otic fibrocytes in cochlear inflammation and the critical involvement of proinflammatory cytokines in cisplatin ototoxicity. We also demonstrated that otic fibrocytes inhibit monocyte chemoattractant protein 1 (CCL2) upregulation in response to interleukin-10 (IL-10) via heme oxygenase 1 (HMOX1) signaling, resulting in suppression of cochlear inflammation. However, it is still unclear how IL-10 affects inflammation-mediated cochlear injury. Here we aim to determine how hypochlorous acid, a model inflammation mediator affects cochlear cell viability and how IL-10 affects hypochlorous acid-mediated cochlear cell injury. NaOCl, a sodium salt of hypochlorous acid (HOCl) was found to induce cytotoxicity of HEI-OC1 cells in a dose-dependent manner. Combination of hydrogen peroxide and myeloperoxidase augmented cisplatin cytotoxicity, and this synergism was inhibited by N-Acetyl-L-cysteine and ML-171. The rat spiral ligament cell line (RSL) appeared to upregulate the antioxidant response element (ARE) activities upon exposure to IL-10. RSL cells upregulated the expression of NRF2 (an ARE ligand) and NR0B2 in response to CoPP (a HMOX1 inducer), but not to ZnPP (a HMOX1 inhibitor). Adenovirus-mediated overexpression of NR0B2 was found to suppress CCL2 upregulation. IL-10-positive cells appeared in the mouse stria vascularis 1 day after intraperitoneal injection of lipopolysaccharide (LPS). Five days after injection, IL-10-positive cells were observed in the spiral ligament, spiral limbus, spiral ganglia, and suprastrial area, but not in the stria vascularis. IL-10R1 appeared to be expressed in the mouse organ of Corti as well as HEI-OC1 cells. HEI-OC1 cells upregulated Bcl-xL expression in response to IL-10, and IL-10 was shown to attenuate NaOCl-induced cytotoxicity. In addition, HEI-OC1 cells upregulated IL-22RA upon exposure to cisplatin, and NaOCl cytotoxicity was inhibited by IL-22. Taken together, our findings suggest that hypochlorous acid is involved in cochlear injury and that IL-10 potentially reduces cochlear injury through not only inhibition of inflammation but also enhancement of cochlear cell viability. Further studies are needed to determine immunological characteristics of intracochlear IL-10-positive cells and elucidate molecular mechanisms involved in the otoprotective activity of IL-10.
Collapse
Affiliation(s)
- Martin Mwangi
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sung-Hee Kil
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Phak
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hun Yi Park
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, South Korea
| | - David J Lim
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Raekil Park
- Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
30
|
Roemer A, Staecker H, Sasse S, Lenarz T, Warnecke A. [Biological therapies in otology. German version]. HNO 2017; 65:571-585. [PMID: 28204850 DOI: 10.1007/s00106-016-0304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Millions of people worldwide suffer from hearing loss. Current treatment for patients with severe to profound hearing loss consists of cochlear implants. Providing the cochlear nerve is intact, patients generally benefit enormously from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. New therapeutic concepts based on cell transplantation and gene therapy are developing rapidly, at least in the research sector. Compared to the wealth of basic research available in this area, translation of these new experimental approaches into clinical application is presently at a very early stage. The current review focuses on translatable treatment concepts and discusses the barriers that need to be overcome in order to translate basic scientific research into clinical reality. Furthermore, the first examples of clinical application of biological therapies in severe hearing loss are presented, particularly in connection with cochlear implants.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| |
Collapse
|
31
|
Abdel Aziz AM, Sh Hamed S, Gaballah MA. Possible Relationship between Chronic Telogen Effluvium and Changes in Lead, Cadmium, Zinc, and Iron Total Blood Levels in Females: A Case-Control Study. Int J Trichology 2015; 7:100-6. [PMID: 26622152 PMCID: PMC4639951 DOI: 10.4103/0974-7753.167465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction: Hair loss is a common and distressing problem that can affect both males and females of all ages. Chronic telogen effluvium (CTE) is idiopathic diffuse scalp hair shedding of at least 6 months duration. Hair loss can be one of the symptoms of metal toxicity. Lead (Pb) and cadmium (Cd) are highly toxic metals that can cause acute and chronic health problems in human. The aim of the present study is to determine if there is a relationship between these metals and CTE in women and if CTE is also associated with changes in zinc (Zn) or iron (Fe) blood levels. Materials and Methods: Pb, Cd, Fe and Zn total blood levels were determined in 40 female patients fulfilling the criteria of CTH and compared with total blood levels of same elements in 30 well-matched healthy women. Results: Quantitative analysis of total blood Fe, Zn, Pb and Cd revealed that there were no significant differences between patients and controls regarding Fe, Zn, and Pb. Yet, Cd level was significantly higher in patients than controls. In addition, Cd level showed significant positive correlation with the patient's body weight. Conclusion: Estimation of blood Pb and Cd levels can be important in cases of CTE as Cd toxicity can be the underlying hidden cause of such idiopathic condition.
Collapse
Affiliation(s)
- Abeer M Abdel Aziz
- Department of Dermatology, Andrology and Sexually Transmitted Diseases, Faculty of Medicine, Mansoura University, El-Gomhoria St., Mansoura, Egypt
| | - Sameera Sh Hamed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, El-Gomhoria St., Mansoura, Egypt
| | - Mohammad A Gaballah
- Department of Dermatology, Andrology and Sexually Transmitted Diseases, Faculty of Medicine, Mansoura University, El-Gomhoria St., Mansoura, Egypt
| |
Collapse
|
32
|
Chrbolka P, Paluch Z, Alušík Š. Current perspectives of tinnitus and its therapeutic options. Eur Geriatr Med 2015. [DOI: 10.1016/j.eurger.2015.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Abstract
Mechanisms that lead to the death of hair cells are reviewed. Exposure to noise, the use of ototoxic drugs that damage the cochlea and old age are accompanied by hair cell death. Outer hair cells are often more susceptible than inner hair cells, partly because of an intrinsically greater susceptibility; high frequency cells are also more vulnerable. A common factor in hair cell loss following age-related changes and exposure to ototoxic drugs or high noise levels is the generation of reactive oxygen species, which can trigger intrinsic apoptosis (the mitochondrial pathway). However, hair cell death is sometimes produced via an extracellular signal pathway triggering extrinsic apoptosis. Necrosis and necroptosis also play a role and, in various situations in which cochlear damage occurs, a balance exists between these possible routes of cell death, with no one mechanism being exclusively activated. Finally, the numerous studies on these mechanisms of hair cell death have led to the identification of many potential therapeutic agents, some of which have been used to attempt to treat people exposed to damaging events, although clinical trials are not yet conclusive. Continued work in this area is likely to lead to clinical treatments that could be used to prevent or ameliorate hearing loss.
Collapse
Affiliation(s)
- David N Furness
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK,
| |
Collapse
|
34
|
Protective effects of Ginkgo biloba extract EGb 761 against noise trauma-induced hearing loss and tinnitus development. Neural Plast 2014; 2014:427298. [PMID: 25028612 PMCID: PMC4083883 DOI: 10.1155/2014/427298] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/16/2023] Open
Abstract
Noise-induced hearing loss (NIHL) and resulting comorbidities like subjective tinnitus are common diseases in modern societies. A substance shown to be effective against NIHL in an animal model is the Ginkgo biloba extract EGb 761. Further effects of the extract on the cellular and systemic levels of the nervous system make it a promising candidate not only for protection against NIHL but also for its secondary comorbidities like tinnitus. Following an earlier study we here tested the potential effectiveness of prophylactic EGb 761 treatment against NIHL and tinnitus development in the Mongolian gerbil. We monitored the effects of EGb 761 and noise trauma-induced changes on signal processing within the auditory system by means of behavioral and electrophysiological approaches. We found significantly reduced NIHL and tinnitus development upon EGb 761 application, compared to vehicle treated animals. These protective effects of EGb 761 were correlated with changes in auditory processing, both at peripheral and central levels. We propose a model with two main effects of EGb 761 on auditory processing, first, an increase of auditory brainstem activity leading to an increased thalamic input to the primary auditory cortex (AI) and second, an asymmetric effect on lateral inhibition in AI.
Collapse
|
35
|
Teodori L, Giovanetti A, Albertini MC, Rocchi M, Perniconi B, Valente MG, Coletti D. Static magnetic fields modulate X-ray-induced DNA damage in human glioblastoma primary cells. JOURNAL OF RADIATION RESEARCH 2014; 55:218-227. [PMID: 24345558 PMCID: PMC3951070 DOI: 10.1093/jrr/rrt107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 06/03/2023]
Abstract
Although static magnetic fields (SMFs) are used extensively in the occupational and medical fields, few comprehensive studies have investigated their possible genotoxic effect and the findings are controversial. With the advent of magnetic resonance imaging-guided radiation therapy, the potential effects of SMFs on ionizing radiation (IR) have become increasingly important. In this study we focused on the genotoxic effect of 80 mT SMFs, both alone and in combination with (i.e. preceding or following) X-ray (XR) irradiation, on primary glioblastoma cells in culture. The cells were exposed to: (i) SMFs alone; (ii) XRs alone; (iii) XR, with SMFs applied during recovery; (iv) SMFs both before and after XR irradiation. XR-induced DNA damage was analyzed by Single Cell Gel Electrophoresis assay (comet assay) using statistical tools designed to assess the tail DNA (TD) and tail length (TL) as indicators of DNA fragmentation. Mitochondrial membrane potential, known to be affected by IR, was assessed using the JC-1 mitochondrial probe. Our results showed that exposure of cells to 5 Gy of XR irradiation alone led to extensive DNA damage, which was significantly reduced by post-irradiation exposure to SMFs. The XR-induced loss of mitochondrial membrane potential was to a large extent averted by exposure to SMFs. These data suggest that SMFs modulate DNA damage and/or damage repair, possibly through a mechanism that affects mitochondria.
Collapse
Affiliation(s)
- Laura Teodori
- Radiation Development and Application, UTAPRAD-DIM, ENEA, Via Enrico Fermi 45, Frascati, Rome 00044, Italy
- Fondazione San Raffaele, SS Ceglie San Michele Km 1.2, Ceglie Messapica 72013, Italy
| | - Anna Giovanetti
- Radiation Biology and Human Health UTBIORAD, ENEA, Via Anguillarese 301, Casaccia, Rome 00123, Italy
| | | | - Marco Rocchi
- Institute of Biomathematics, University of Urbino ‘Carlo Bo’, Via Saffi 2, Urbino 61029, Italy
| | - Barbara Perniconi
- UPMC Paris 06, UR4 Aging, Stress and Inflammation, 7 Quai Saint Bernard, Paris 75252, France
| | | | - Dario Coletti
- UPMC Paris 06, UR4 Aging, Stress and Inflammation, 7 Quai Saint Bernard, Paris 75252, France
| |
Collapse
|
36
|
Tan PX, Du SS, Ren C, Yao QW, Yuan YW. Radiation-induced Cochlea Hair Cell Death: Mechanisms and Protection. Asian Pac J Cancer Prev 2013; 14:5631-5. [DOI: 10.7314/apjcp.2013.14.10.5631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|