1
|
Dos Santos BM, Mallaupoma LRC, Pecenin MF, Mohanty A, Lu A, Bartlett PJ, Thomas AP, Gamo FJ, Garcia CRS. Unravelling the mode of action of the Tres Cantos Antimalarial Set (TCAMS): investigating the mechanism of potent antimalarial compounds potentially targeting the human serotonin receptor. Malar J 2025; 24:45. [PMID: 39953553 PMCID: PMC11827156 DOI: 10.1186/s12936-025-05271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Despite the strides made in recent decades, the resistance observed in existing antimalarial drugs, and the intricate life cycle of the Plasmodium parasite underscore the pressing need to develop novel and effective therapeutic interventions. This article provides a comprehensive evaluation of the outcomes stemming from screening a library comprising 48 compounds (TCAMS) against Plasmodium falciparum. METHODS This study focused on characterizing the IC50 values of compounds from the Tres Cantos Antimalarial Set (TCAMS) library via a double-labelling method of P. falciparum parasites with SYBR Green-I and MitoTracker Deep Red, which were evaluated via flow cytometry. Evaluation of the cytotoxicity of the best candidates in human embryonic kidney (HEK293) cells, chemoinformatic analysis, and exploration of the effects of the compounds on the action of serotonin and melatonin in the erythrocytic life cycle of the parasite. RESULTS IC50 characterization confirmed that 93.75% of the compounds tested exhibited antimalarial activity at concentrations below 2 micromolar (µM), with 5 compounds showing IC50 values below 50 nM (nM) (15.21 ± 5.97 nM to 45.82 ± 5.11 nM). Furthermore, 12 compounds presented IC50 values between 50 and 100 nM (57.43 ± 12.25 nM to 100.6 ± 22.89 nM), highlighting their potent in vitro efficacy against P. falciparum. Cytotoxicity evaluation in HEK293 cells revealed that 12 from 17 compounds did not significantly reduce cell viability. Cheminformatics analysis clustered the compounds based on structural and physicochemical similarities, revealing distinct structural patterns. Exploration of hypothetical targets from the TCAMS library identified 27 compounds with potential targets, 15 specifically targeted serotonergic receptors. Subsequent serotonin and melatonin treatment experiments indicated that certain compounds could inhibit both effects on parasitaemia, suggesting a complex interaction with signaling in P. falciparum. CONCLUSIONS This study identifies promising antimalarial candidates with low IC50 values and highlights the significance of targeting serotonin receptors in the development of potential antimalarial drugs.
Collapse
Affiliation(s)
- Benedito Matheus Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Lenna Rosanie Cordero Mallaupoma
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
- Department of Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Mateus Fila Pecenin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Abhinab Mohanty
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Angela Lu
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Paula J Bartlett
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Andrew P Thomas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Francisco-Javier Gamo
- Global Health Medicines R&D, GlaxoSmithKline (GSK), Tres Cantos, 28760, Madrid, Spain
| | - Celia R S Garcia
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Navarro M, Daniel LV, Colina-Vegas L, Visbal G. Zinc from an Essential Element to an Antiparasitic Therapeutic Agent. ACS OMEGA 2025; 10:2393-2414. [PMID: 39895759 PMCID: PMC11780429 DOI: 10.1021/acsomega.4c07331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
Tropical parasitic diseases affect millions of people around the world, particularly in poor countries. The human parasitic diseases that will be covered in this review are malaria and neglected diseases, such as leishmaniasis, Chagas disease, and African trypanosomiasis. The current treatments for these diseases present several problems, such as the development of drug resistance, very limited drugs available in the clinic, significant side effects of the drugs, and a long treatment period. For these reasons, there is an urgent need to develop new chemotherapeutics to eradicate or eliminate these diseases. Zinc-based drugs against parasitic diseases could be an alternative therapy to overcome the difficulties of the approved metallodrugs as antiparasitic agents. Zinc-based drugs are becoming an exciting field of research because zinc is an essential element that can lead to the development of multitarget antiparasitic agents, which are reviewed here.
Collapse
Affiliation(s)
- Maribel Navarro
- Laboratório
de Químicas Bioinorgânica e Catalise (LaQBIC), Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Luana Vanessa Daniel
- Laboratório
de Químicas Bioinorgânica e Catalise (LaQBIC), Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Legna Colina-Vegas
- Instituto
de Química, Universidade Federal
do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Gonzalo Visbal
- Laboratório
de Ácidos Nucleicos (Laban), Coordenação Geral
de Biologia (Cobio), Diretoria de Metrologia, Científica e
Industrial, DIMCI, Instituto Nacional de
Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro 25250-020, Brazil
| |
Collapse
|
3
|
Adegunloye AP, Adebayo JO. Piperine Enhances Antimalarial Activity of Methyl Gallate and Palmatine Combination. Acta Parasitol 2024; 69:1244-1252. [PMID: 38705947 DOI: 10.1007/s11686-024-00850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Artemisinin combination therapies, the first-line antimalarials in Nigeria, have reportedly suffered multiple failures in malaria treatment, hence the search for novel combination of other compounds. Methyl gallate and palmatine have been reported to exhibit antiplasmodial activities but the antimalarial activity of their combination has not been evaluated. Therefore, the evaluation of the combination of methyl gallate and palmatine for antimalarial activity in vitro and in vivo in the presence of piperine was carried out. MATERIALS AND METHODS The inhibitory potential of methyl gallate and palmatine combination on β-hematin (hemozoin) formation was studied in vitro. Also, the antimalarial activity of methyl gallate and palmatine combination with/without a bioenhancer (piperine) was evaluated in Plasmodium berghei NK65-infected mice. RESULTS Methyl gallate and palmatine in the ratio 3:2 acted synergistically in vitro and had the highest inhibitory effect (IC50 = 0.73 µg/mL) on β-hematin (hemozoin) formation. The 3:2 combination of methyl gallate and palmatine exhibited no antimalarial activity in vivo in the absence of piperine but caused reduction in parasitemia that exceeded 40% in the presence of piperine at the dose of 25 mg/kg body weight on days 6 and 8 post-inoculation in mice. CONCLUSION The 3:2 combination of methyl gallate and palmatine in the presence of piperine exhibited antimalarial activity in vivo, possibly by synergistic inhibition of hemozoin formation which may cause accumulation of haem within the food vacuole of Plasmodium spp. and its death.
Collapse
Affiliation(s)
- Adegbenro P Adegunloye
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joseph O Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.
| |
Collapse
|
4
|
Adugna T, Zelalem L, Alelign G. Blood smears examination and prevalence of malaria in Addis Zemen Town, Northwest Ethiopia (2013-2021): a retrospective study. Trop Dis Travel Med Vaccines 2024; 10:12. [PMID: 38745210 PMCID: PMC11095033 DOI: 10.1186/s40794-024-00219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION In Ethiopia, malaria is one of the major public health and socioeconomic problems, though tremendous efforts have been made. Currently, the country has a plan to eliminate malaria by 2030. To achieve this plan, epidemiological studies associated with malaria prevalence with gender, age groups, species types, and seasons are essential. Therefore, the aim of this study was to assess the prevalence of malaria from 2013 to 2021 in Addis Zemen town, Northwest Ethiopia. METHODS A retrospective study was conducted at assess the trend of malaria prevalence over the last nine years using recorded blood smear reports in the laboratory logbook from governmental health institutions. Trends in malaria cases and the proportion of genders, age groups, species, and seasons over time were compared. The data were analyzed using the SPSS-23 software package. RESULTS The overall malaria prevalence between 2013 and 2021 was 10.4%. From all confirmed cases, the minimum and maximum prevalence of malaria cases were recorded in 2018 (2%) and 2016 (33.2%) years, respectively. The infectious rate of males (59.3%) was significantly higher than that of females (40.7%) (p < 0.0001). In all survey periods, all age groups were infected by malaria parasites; the majority of the cases were between 15 and 45 years (57%) older than others. Statistically, a greater proportion of P. falciparum (80.1%) was recorded than P. vivax (18.5%) (p < 0.0001). Malaria cases were occurring throughout each month. The relative highest peaks of total malaria cases were observed during the months of September, October, and November. Seasonally, the highest infection rate was observed during spring (40.20%) compared to other seasons. CONCLUSIONS In conclusion, the study revealed that malaria transmission remained high, which affected males more than females and potentially reproductive ages. Two of the most important Plasmodium species were identified and found during all reviewed months and years, though P. falciparum was the most prevalent. Hence, the problem can be alleviated by using season-based long-lasting insecticide treated nets, regularly overseeing ongoing irrigation activity, overseeing the reduction of the water level of the Sheni River, health education, and providing immediate patient treatment.
Collapse
|
5
|
Lithanatudom P, Chawansuntati K, Saenjum C, Chaowasku T, Rattanathammethee K, Wungsintaweekul B, Osathanunkul M, Wipasa J. In-vitro antimalarial activity of methanolic leaf- and stem-derived extracts from four Annonaceae plants. BMC Res Notes 2023; 16:381. [PMID: 38135870 PMCID: PMC10740295 DOI: 10.1186/s13104-023-06664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE Plants in the Annonaceae family are known for having abundant biologically active secondary metabolites. They have been used in alternative drugs for various diseases in several countries, for instance, the bark of Cananga odorata (Lam.) Hook and Thomson is used for Ophthalmic inflammation and wound healing in Malaysia. Extracts from the leaves and stems of four Annonaceae plants, namely Uvaria longipes (Craib) L.L.Zhou, Y.C.F.Su & R.M.K.Saunders, Dasymaschalon sp., Artabotrys burmanicus A.DC, and Marsypopetalum modestum (Pierre) B.Xue & R.M.K.Saunders were investigated for growth inhibitory activity against blood-stage Plasmodium falciparum growth in vitro and for non-specific cytotoxicity against normal peripheral blood mononuclear cells (PBMCs). Antimalarial activity was assessed by invasion inhibition assay and the percentage of infected red blood cells on blood smears were determined. Cytotoxicity was tested by culturing PBMCs with the extracts, and viabilities were determined by Annexin V/propidium iodide staining. RESULTS A. burmanicus stem extract and M. modestum leaf extract were capable of inhibiting growth of P. falciparum when used at 200 µg/mL compared to chloroquine. The extracts at effective concentrations, did not affect the viability of PBMCs. These results support further need for characterization of active compounds from specific Annonaceae plants in order to exploit their components for potential malaria treatment.
Collapse
Affiliation(s)
- Pathrapol Lithanatudom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Chalermpong Saenjum
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tanawat Chaowasku
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | | | - Maslin Osathanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraprapa Wipasa
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
6
|
Munnik BL, Kaschula CH, Harding CR, Chellan P. Investigation of new ferrocenyl-artesunate derivatives as antiparasitics. Dalton Trans 2023; 52:15786-15797. [PMID: 37681434 PMCID: PMC10628858 DOI: 10.1039/d3dt02254d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Artesunate (Ars) is a semisynthetic antimalarial drug and is a part of the artemisinin-based combination therapy arsenal employed for malaria treatment. The drug functions mainly by activation of its endoperoxide bridge leading to increased oxidative stress in malaria parasites. The purpose of this study was to ascertain the antiparasitic effects of combining ferrocene and Arsvia short or long chain ester or amide linkages (C1-C4). The compounds were evaluated for growth inhibition activity on the apicomplexan parasites, Plasmodium falciparum (P. falciparum) and Toxoplasma gondii (T. gondii). All the complexes demonstrated good activity against T. gondii with IC50 values in the low micromolar range (0.28-1.2 μM) and good to excellent antimalarial activity against a chloroquine sensitive strain of P. falciparum (NF54). Further investigations on T. gondii revealed that the likely mode of action (MoA) is through the generation of reactive oxygen species. Additionally, immunofluorescence microscopy suggested a novel change in the morphology of the parasite by complex C3, an artesunate-ferrocenyl ethyl amide complex. The complexes were not cytotoxic or showed low cytotoxicity to two normal cell lines tested.
Collapse
Affiliation(s)
- Brandon L Munnik
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| | - Clare R Harding
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and inflammation, University of Glasgow, UK
| | - Prinessa Chellan
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| |
Collapse
|
7
|
Chopin N, Bosson J, Iikawa S, Picot S, Bienvenu AL, Lavoignat A, Bonnot G, Riou M, Beaugé C, Guillory V, Biot C, Pilet G, Chessé M, Davioud-Charvet E, Elhabiri M, Bouillon JP, Médebielle M. Evaluation of ferrocenyl-containing γ-hydroxy-γ-lactam-derived tetramates as potential antiplasmodials. Eur J Med Chem 2022; 243:114735. [PMID: 36122550 DOI: 10.1016/j.ejmech.2022.114735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/05/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
A series of ferrocenyl-containing γ-hydroxy-γ-lactam tetramates were prepared in 2-3 steps through ring opening-ring closure (RORC) process of γ-ylidene-tetronate derivatives in the presence of ferrocenyl alkylamines. The compounds were screened in vitro for their antiplasmodial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (W2) clones of P. falciparum, displaying activity in the range of 0.12-100 μM, with generally good resistance index. The most active ferrocene in these series exhibited IC50 equal to 0.09 μM (3D7) and 0.12 μM (W2). The low cytotoxicity of the ferrocenyl-containing γ-hydroxy-γ-lactam tetramates against Human Umbilical Vein Endothelial (HUVEC) cell line demonstrated selective antiparasitic activity. The redox properties of these ferrocene-derived tetramates were studied and physico-biochemical studies evidenced that these derivatives can exert potent antimalarial activities via a mechanism distinct from ferroquine.
Collapse
Affiliation(s)
- Nicolas Chopin
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France
| | - Julien Bosson
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France
| | - Shinya Iikawa
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France
| | - Stéphane Picot
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France; Institut de Parasitologie et Mycologie Médicale, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Anne-Lise Bienvenu
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France; Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Adeline Lavoignat
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France
| | - Guillaume Bonnot
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France
| | - Mickael Riou
- INRAE, UE-1277 Plateforme d'Infectiologie Expérimentale (PFIE), Centre Val de Loire, Nouzilly, France
| | - Corinne Beaugé
- INRAE, UE-1277 Plateforme d'Infectiologie Expérimentale (PFIE), Centre Val de Loire, Nouzilly, France
| | - Vanaïque Guillory
- INRAE, UE-1277 Plateforme d'Infectiologie Expérimentale (PFIE), Centre Val de Loire, Nouzilly, France; INRAE, UMR-1282 Infectiologie et Santé Publique (ISP), Centre Val de Loire - Université de Tours, Nouzilly, France
| | - Christophe Biot
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Pilet
- Univ. Lyon, Université Lyon 1, CNRS, LMI, UMR 5615, Villeurbanne, France
| | - Matthieu Chessé
- UMR 7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Elisabeth Davioud-Charvet
- UMR 7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Mourad Elhabiri
- UMR 7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France.
| | - Jean-Philippe Bouillon
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA Rouen, CNRS, Mont Saint-Aignan, France.
| | - Maurice Médebielle
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France.
| |
Collapse
|
8
|
Amporndanai K, Pinthong N, O’Neill PM, Hong WD, Amewu RK, Pidathala C, Berry NG, Leung SC, Ward SA, Biagini GA, Hasnain SS, Antonyuk SV. Targeting the Ubiquinol-Reduction (Q i) Site of the Mitochondrial Cytochrome bc1 Complex for the Development of Next Generation Quinolone Antimalarials. BIOLOGY 2022; 11:biology11081109. [PMID: 35892964 PMCID: PMC9330653 DOI: 10.3390/biology11081109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Antimalarials targeting the ubiquinol-oxidation (Qo) site of the Plasmodium falciparum bc1 complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Qo site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome bc1 complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for Plasmodial cytochrome bc1. Our crystallographic studies have enabled comparison of an in-silico homology docking model of P. falciparum with the mammalian's equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and P. falciparum Qi sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite bc1 with improved antimalarial properties.
Collapse
Affiliation(s)
- Kangsa Amporndanai
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK; (K.A.); (N.P.); (S.S.H.)
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Nattapon Pinthong
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK; (K.A.); (N.P.); (S.S.H.)
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
- Correspondence: (P.M.O.); (S.V.A.); Tel.: +44-(0)-1517955145 (S.V.A.); +44-(0)-1517943552 (P.M.O.)
| | - W. David Hong
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
| | - Richard K. Amewu
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Ghana, Accra P.O. Box LG 586, Ghana
| | - Chandrakala Pidathala
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
- Composite Interceptive Med-Science Laboratories Pvt. Ltd., Bengaluru 60099, Karnataka, India
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
| | - Suet C. Leung
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (W.D.H.); (R.K.A.); (C.P.); (N.G.B.); (S.C.L.)
| | - Stephen A. Ward
- Centre for Drugs and Diagnostics, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (S.A.W.); (G.A.B.)
| | - Giancarlo A. Biagini
- Centre for Drugs and Diagnostics, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (S.A.W.); (G.A.B.)
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK; (K.A.); (N.P.); (S.S.H.)
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK; (K.A.); (N.P.); (S.S.H.)
- Correspondence: (P.M.O.); (S.V.A.); Tel.: +44-(0)-1517955145 (S.V.A.); +44-(0)-1517943552 (P.M.O.)
| |
Collapse
|
9
|
Adebayo J, Ceravolo I, Gyebi G, Olorundare E, Babatunde A, Penna-Coutinho J, Koketsu M, Krettli A. Iloneoside, an antimalarial pregnane glycoside isolated from Gongronema latifolium leaf, potentiates the activity of chloroquine against multidrug resistant Plasmodium falciparum. Mol Biochem Parasitol 2022; 249:111474. [DOI: 10.1016/j.molbiopara.2022.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
|
10
|
Beteck RM, Jordaan A, Seldon R, Laming D, Hoppe HC, Warner DF, Khanye SD. Easy-To-Access Quinolone Derivatives Exhibiting Antibacterial and Anti-Parasitic Activities. Molecules 2021; 26:molecules26041141. [PMID: 33672753 PMCID: PMC7931078 DOI: 10.3390/molecules26041141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb) has a unique structural organisation, comprising a high lipid content mixed with polysaccharides. This makes cell wall a formidable barrier impermeable to hydrophilic agents. In addition, during host infection, Mtb resides in macrophages within avascular necrotic granulomas and cavities, which shield the bacterium from the action of most antibiotics. To overcome these protective barriers, a new class of anti-TB agents exhibiting lipophilic character have been recommended by various reports in literature. Herein, a series of lipophilic heterocyclic quinolone compounds was synthesised and evaluated in vitro against pMSp12::GFP strain of Mtb, two protozoan parasites (Plasmodium falciparum and Trypanosoma brucei brucei) and against ESKAPE pathogens. The resultant compounds exhibited varied anti-Mtb activity with MIC90 values in the range of 0.24–31 µM. Cross-screening against P. falciparum and T.b. brucei, identified several compounds with antiprotozoal activities in the range of 0.4–20 µM. Compounds were generally inactive against ESKAPE pathogens, with only compounds 8c, 8g and 13 exhibiting moderate to poor activity against S. aureus and A. baumannii.
Collapse
Affiliation(s)
- Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Correspondence: (R.M.B.); (S.D.K.); Tel.: +27-46-603-8397 (S.D.K.)
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (A.J.); (D.F.W.)
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa;
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
| | - Heinrich C. Hoppe
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda 6140, South Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (A.J.); (D.F.W.)
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - Setshaba D. Khanye
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Makhanda 6140, South Africa; (D.L.); (H.C.H.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
- Correspondence: (R.M.B.); (S.D.K.); Tel.: +27-46-603-8397 (S.D.K.)
| |
Collapse
|
11
|
Arshad U, Mujahid A, Lieberzeit P, Afzal A, Bajwa SZ, Iqbal N, Roshan S. Molecularly imprinted polymeric coatings for sensitive and selective gravimetric detection of artemether. RSC Adv 2020; 10:34355-34363. [PMID: 35514404 PMCID: PMC9056809 DOI: 10.1039/d0ra04785f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/03/2020] [Indexed: 11/21/2022] Open
Abstract
Monitoring antimalarial drugs is necessary for clinical assays, human health, and routine quality control practices in pharmaceutical industries. Herein, we present the development of sensor coatings based on molecularly imprinted polymers (MIPs) combined with quartz crystal microbalance (QCM) for sensitive and selective gravimetric detection of an antimalarial drug: artemether. The MIP coatings are synthesized by using artemether as the template in a poly(methacrylic acid-co-ethylene glycol dimethacrylate) matrix. Artemether-MIP and the non-imprinted polymer (NIP) control or reference layers are deposited on 10 MHz dual-electrode QCM by spin coating (187 ± 9 nm layer thickness after optimization). The coatings are characterized by FTIR spectroscopy and atomic force microscopy that reveal marked differences among the MIP and NIP. The MIP-QCM sensor exhibits high sensitivity (0.51 Hz ppm-1) with sub-10 ppm detection and quantification limits. The MIP-QCM sensor also exhibits a 6-fold higher sensitivity compared to the NIP-QCM, and a dynamic working range of 30-100 ppm. The response time of MIP-QCM devices for a single cycle of analyte adsorption, signal saturation, and MIP regeneration is less than 2.5 min. The sensor also demonstrates selectivity factors of artemether-MIP of 2.2 and 4.1 compared to artemisinin and lumefantrine, respectively. Reversibility tests reveal less than 5% variation in sensor responses over three cycles of measurements at each tested concentration. The MIP-QCM showed lower detection limits than conventional HPLC-UV, and faster response time compared to HPLC-UV and liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Usman Arshad
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Adnan Mujahid
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Peter Lieberzeit
- Department of Physical Chemistry, University of Vienna Waehringer Strasse 42 Vienna A-1090 Austria
| | - Adeel Afzal
- Department of Chemistry, College of Science, University of Hafr Al Batin PO Box 1803 Hafr Al Batin 39524 Saudi Arabia
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering Jhang Road Faisalabad Pakistan
| | - Naseer Iqbal
- Department of Chemistry, College of Science, University of Hafr Al Batin PO Box 1803 Hafr Al Batin 39524 Saudi Arabia
| | - Sumaira Roshan
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| |
Collapse
|
12
|
Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethiopia. ScientificWorldJournal 2020. [DOI: 10.1155/2020/1295381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Malaria, caused by apicomplexan parasite, is an old disease and continues to be a major public health threat in many countries. This article aims to present different aspects of malaria including causes, pathogenesis, prevention, and treatment in an articulate and comprehensive manner. Six Plasmodium species are recognized as the etiology of human malaria, of which Plasmodium falciparum is popular in East and Southern Africa. Malaria is transmitted mainly through Anopheles gambiae and Anopheles funestus, the two most effective malaria vectors in the world. Half of the world’s population is at risk for malaria infection. Globally, the morbidity and mortality rates of malaria have become decreased even though few reports in Ethiopia showed high prevalence of malaria. The malaria parasite has a complex life cycle that takes place both inside the mosquito and human beings. Generally, diagnosis of malaria is classified into clinical and parasitological diagnoses. Lack of clear understanding on the overall biology of Plasmodium has created a challenge in an effort to develop new drugs, vaccines, and preventive methods against malaria. However, three types of vaccines and a lot of novel compounds are under perclinical and clinical studies that are triggered by the occurrence of resistance among commonly used drugs and insecticides. Antiadhesion adjunctive therapies are also under investigation in the laboratory. In addition to previously known targets for diagnostic tool, vaccine and drug discovery scientists from all corner of the world are in search of new targets and chemical entities.
Collapse
|
13
|
Uzor PF. Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8749083. [PMID: 32104196 PMCID: PMC7037883 DOI: 10.1155/2020/8749083] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 01/04/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022]
Abstract
Malaria is one of the major health problems in developing countries. The disease kills a large number of people every year and also affects financial status of many countries. Resistance of the plasmodium parasite, the causative agent, to the existing drugs, including chloroquine, mefloquine, and artemisinin based combination therapy (ACT), is a serious global issue in malaria treatment and control. This warrants an urgent quest for novel compounds, particularly from natural sources such as medicinal plants. Alkaloids have over the years been recognized as important phytoconstituents with interesting biological properties. In fact, the first successful antimalarial drug was quinine, an alkaloid, which was extracted from Cinchona tree. In the present review work, the alkaloids isolated and reported recently (2013 till 2019) to possess antimalarial activity are presented. Several classes of alkaloids, including terpenoidal, indole, bisindole, quinolone, and isoquinoline alkaloids, were identified with a promising antimalarial activity. It is hoped that the reports of the review work will spur further research into the structural modification and/or development of the interesting compounds as novel antimalarial drugs.
Collapse
Affiliation(s)
- Philip F. Uzor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, 410001 Nsukka, Enugu State, Nigeria
| |
Collapse
|
14
|
Tetrahydroisoquinoline-Based Non-Peptidomimetic Plasmepsin Inhibitors. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Xue L, Shi DH, Harjani JR, Huang F, Beveridge JG, Dingjan T, Ban K, Diab S, Duffy S, Lucantoni L, Fletcher S, Chiu FCK, Blundell S, Ellis K, Ralph SA, Wirjanata G, Teguh S, Noviyanti R, Chavchich M, Creek D, Price RN, Marfurt J, Charman SA, Cuellar ME, Strasser JM, Dahlin JL, Walters MA, Edstein MD, Avery VM, Baell JB. 3,3'-Disubstituted 5,5'-Bi(1,2,4-triazine) Derivatives with Potent in Vitro and in Vivo Antimalarial Activity. J Med Chem 2019; 62:2485-2498. [PMID: 30715882 DOI: 10.1021/acs.jmedchem.8b01799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A series of 3,3'-disubstituted 5,5'-bi(1,2,4-triazine) derivatives was synthesized and screened against the erythrocytic stage of Plasmodium falciparum 3D7 line. The most potent dimer, 6k, with an IC50 (50% inhibitory concentration) of 0.008 μM, had high in vitro potency against P. falciparum lines resistant to chloroquine (W2, IC50 = 0.0047 ± 0.0011 μM) and artemisinin (MRA1240, IC50 = 0.0086 ± 0.0010 μM). Excellent ex vivo potency of 6k was shown against clinical field isolates of both P. falciparum (IC50 = 0.022-0.034 μM) and Plasmodium vivax (IC50 = 0.0093-0.031 μM) from the blood of outpatients with uncomplicated malaria. Despite 6k being cleared relatively rapidly in mice, it suppressed parasitemia in the Peters 4-day test, with a mean ED50 value (50% effective dose) of 1.47 mg kg-1 day-1 following oral administration. The disubstituted triazine dimer 6k represents a new class of orally available antimalarial compounds of considerable interest for further development.
Collapse
Affiliation(s)
- Lian Xue
- School of Pharmaceutical Sciences , Nanjing Tech University , No. 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| | - Da-Hua Shi
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Jitendra R Harjani
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Fei Huang
- School of Pharmaceutical Sciences , Nanjing Tech University , No. 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| | - Julia G Beveridge
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Tamir Dingjan
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Kung Ban
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Sarah Diab
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Sandra Duffy
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Brisbane Innovation Park , Nathan , Queensland 4111 , Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Brisbane Innovation Park , Nathan , Queensland 4111 , Australia
| | - Sabine Fletcher
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Brisbane Innovation Park , Nathan , Queensland 4111 , Australia
| | - Francis C K Chiu
- Centre for Drug Candidate Optimisation , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Scott Blundell
- Centre for Drug Candidate Optimisation , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Katherine Ellis
- Drug Delivery Disposition and Dynamics , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Stuart A Ralph
- Bio21 Institute , The University of Melbourne , Parkville , Victoria 3052 , Australia
| | - Grennady Wirjanata
- Global and Tropical Health Division , Menzies School of Health Research and Charles Darwin University , Royal Darwin Hospital Campus, Rocklands Drive , Casuarina , Northern Territory 0810 , Australia
| | - Silvia Teguh
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology , Jalan Diponegoro 69 , Jakarta 10430 , Indonesia
| | - Marina Chavchich
- The Department of Drug Evaluation , Australian Defence Force Malaria and Infectious Disease Institute , Brisbane , Queensland 4052 , Australia
| | - Darren Creek
- Drug Delivery Disposition and Dynamics , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Ric N Price
- Global and Tropical Health Division , Menzies School of Health Research and Charles Darwin University , Royal Darwin Hospital Campus, Rocklands Drive , Casuarina , Northern Territory 0810 , Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine , University of Oxford , Oxford OX3 7LJ , U.K
| | - Jutta Marfurt
- Global and Tropical Health Division , Menzies School of Health Research and Charles Darwin University , Royal Darwin Hospital Campus, Rocklands Drive , Casuarina , Northern Territory 0810 , Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Matthew E Cuellar
- Institute for Therapeutics Discovery and Development , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota , United States
| | - Jessica M Strasser
- Institute for Therapeutics Discovery and Development , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota , United States
| | - Jayme L Dahlin
- Department of Pathology , Brigham and Women's Hospital , 75 Francis Street , Boston , Massachusetts 02115 , United States
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development , University of Minnesota , 717 Delaware Street SE , Minneapolis , Minnesota , United States
| | - Michael D Edstein
- The Department of Drug Evaluation , Australian Defence Force Malaria and Infectious Disease Institute , Brisbane , Queensland 4052 , Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Brisbane Innovation Park , Nathan , Queensland 4111 , Australia
| | - Jonathan B Baell
- School of Pharmaceutical Sciences , Nanjing Tech University , No. 30 South Puzhu Road , Nanjing 211816 , People's Republic of China.,Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
16
|
Sharma K, Srivastava A, Tiwari P, Sharma S, Shaquiquzzaman M, Alam MM, Akhter M. 3D QSAR Based Virtual Screening of Pyrido[1,2-a] Benzimidazoles as Potent Antimalarial Agents. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180502115147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Development of novel antimalarial agents has been one of the sought areas in
medicinal chemistry. In this study the same was done by virtual screening of in-house database on
developed QSAR model.
</P><P>
Methods: A six point pharmacophore model was generated (AADHRR.56) from 41 compounds using
PHASE module of Schrodinger software and used for pharmacophore based search. Docking studies of
the obtained hits were performed using GLIDE. Most promising hit was synthesized & biologically
evaluated for antimalarial activity.
</P><P>
Result: The best generated model was found to be statistically significant as it had a high correlation
coefficient r2= 0.989 and q2 =0.76 at 3 component PLS factor. The significance of hypothesis was also
confirmed by high Fisher ratio (F = 675.1) and RMSE of 0.2745. The model developed had good
predicted coefficient (Pearson R = 0.8826). The virtual screening on this model resulted in six hits,
which were docked against FP-2 enzyme. The synthesized compound displayed IC50 value of
0.27µg/ml against CQS (3D7) and 0.57μg/ml against CQR (RKL9).
</P><P>
Conclusion: 3D QSAR studies reviled that hydrophobic groups are important for anti-malarial activity
while H-donor is less desirable for the same. Electron withdrawing groups at R1 position favours the
activity. The biological activity data of the synthesized hit proved that the pharmacophore hypothesis
developed could be utilized for developing novel anti-malarial drugs.
Collapse
Affiliation(s)
- Kalicharan Sharma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Apeksha Srivastava
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Tiwari
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh 462036, India
| | - Shweta Sharma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - M. Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
17
|
The Challenges and Knowledge Gaps in Malaria Therapy: A Stakeholder Approach to Improving Oral Quinine Use in the Treatment of Childhood Malaria in Ghana. JOURNAL OF PHARMACEUTICS 2018; 2018:1784645. [PMID: 30538884 PMCID: PMC6261397 DOI: 10.1155/2018/1784645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022]
Abstract
Background The study was undertaken to elicit the knowledge, views, and perceptions of key stakeholders on malaria, its bioburden, and treatment options, in order to ascertain the knowledge gabs and challenges, especially in the use of oral quinine in childhood malaria. Methods A cross-sectional survey was conducted using a well-structured Likert Scale and self-administered questionnaire. The principal site of the study was a government-run children's hospital located in the Ashiedu Keteke Sub-Metro of Accra. The study population included health workers, parents, and guardians or care givers. The participants were 300, purposively selected, and consisted of both men (41%) and women (59%) who were twenty years and above, whether employed (42%), self-employed (37%), or unemployed (21%). Results Majority of the participants (78%) demonstrated above average knowledge of malaria. However, their awareness of the causes, modes of transmission, signs, and symptoms as well as preventive mechanisms of malaria did not result in low incidence of malaria. About 77% of the respondents agreed they would seek treatment within 24 hours once signs and symptoms are detected. Though close to 50% undertook home treatment of malaria, majority eventually sought treatment at hospital or clinic. Above 92% of respondents knew that quinine is used to treat malaria and agreed its bitter taste greatly affects compliance, especially in children. Consequently, 95% of the respondents would be glad if its bitter taste is masked. Conclusion The study demonstrated the availability of substantial knowledge of the devastating effects of malaria, especially in children. Therefore, there is the need to ensure the availability and utilization of effective paediatric formulations in the fight against malaria. From this study, fast dissolving oral thin film with a good mouth feel, would be the formulation of choice for quinine.
Collapse
|
18
|
Mudududdla R, Mohanakrishnan D, Bharate SS, Vishwakarma RA, Sahal D, Bharate SB. Orally Effective Aminoalkyl 10H-Indolo[3,2-b]quinoline-11-carboxamide Kills the Malaria Parasite by Inhibiting Host Hemoglobin Uptake. ChemMedChem 2018; 13:2581-2598. [PMID: 30358112 DOI: 10.1002/cmdc.201800579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/10/2018] [Indexed: 12/26/2022]
Abstract
A series of indolo[3,2-b]quinoline-C11-carboxamides were synthesized by incorporation of aminoalkyl side chains into the core of indolo[3,2-b]quinoline-C11-carboxylic acid. Their in vitro antiplasmodial evaluation against Plasmodium falciparum led to the identification of a 2-(piperidin-1-yl)ethanamine-linked analogue {2-bromo-N-[2-(piperidin-1-yl)ethyl]-10H-indolo[3,2-b]quinoline-11-carboxamide (3 g)} (IC50 =1.3 μm) as the most promising compound exhibiting good selectivity indices against mammalian cell lines. The kill kinetics on erythrocytic-stage parasites revealed that 3 g caused complete killing of only the trophozoite-stage parasites. Mechanistic studies showed that 3 g targets the food vacuole of the parasite and inhibits hemoglobin uptake, β-hematin formation, and the basic endocytic processes of the parasite. Analogue 3 g was found to be orally bioavailable, and its curative antimalarial studies at 50 mg per kg p.o. against a Plasmodium berghei (ANKA)-infected mouse model revealed that mice treated with 3 g showed 27-35 % suppression of parasitemia with an increase in life span relative to untreated, control mice. Thus, the present work demonstrated a proof of concept for the oral efficacy of indolo[3,2-b]quinoline-C11-carboxamides.
Collapse
Affiliation(s)
- Ramesh Mudududdla
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Dinesh Mohanakrishnan
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sonali S Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ram A Vishwakarma
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sandip B Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
19
|
Mvango S, Matshe WMR, Balogun AO, Pilcher LA, Balogun MO. Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics. Pharm Res 2018; 35:237. [PMID: 30324329 DOI: 10.1007/s11095-018-2517-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
Malaria is one of the oldest infectious diseases that afflict humans and its history extends back for millennia. It was once prevalent throughout the globe but today it is mainly endemic to tropical regions like sub-Saharan Africa and South-east Asia. Ironically, treatment for malaria has existed for centuries yet it still exerts an enormous death toll. This contradiction is attributed in part to the rapid development of resistance by the malaria parasite to chemotherapeutic drugs. In turn, resistance has been fuelled by poor patient compliance to the relatively toxic antimalarial drugs. While drug toxicity and poor pharmacological potentials have been addressed or ameliorated with various nanomedicine drug delivery systems in diseases like cancer, no clinically significant success story has been reported for malaria. There have been several reviews on the application of nanomedicine technologies, especially drug encapsulation, to malaria treatment. Here we extend the scope of the collation of the nanomedicine research literature to polymer therapeutics technology. We first discuss the history of the disease and how a flurry of scientific breakthroughs in the latter part of the nineteenth century provided scientific understanding of the disease. This is followed by a review of the disease biology and the major antimalarial chemotherapy. The achievements of nanomedicine in cancer and other infectious diseases are discussed to draw parallels with malaria. A review of the current state of the research into malaria nanomedicines, both encapsulation and polymer therapeutics polymer-drug conjugation technologies, is covered and we conclude with a consideration of the opportunities and challenges offered by both technologies.
Collapse
Affiliation(s)
- Sindisiwe Mvango
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.,Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - William M R Matshe
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa
| | - Abideen O Balogun
- Department of Medicine, Nottingham University Hospital, Nottingham, UK
| | - Lynne A Pilcher
- Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - Mohammed O Balogun
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.
| |
Collapse
|
20
|
Kinena L, Leitis G, Kanepe-Lapsa I, Bobrovs R, Jaudzems K, Ozola V, Suna E, Jirgensons A. Azole-based non-peptidomimetic plasmepsin inhibitors. Arch Pharm (Weinheim) 2018; 351:e1800151. [DOI: 10.1002/ardp.201800151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Linda Kinena
- Latvian Institute of Organic Synthesis; Riga Latvia
| | | | | | | | | | - Vita Ozola
- Latvian Institute of Organic Synthesis; Riga Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis; Riga Latvia
| | | |
Collapse
|
21
|
Pan WH, Xu XY, Shi N, Tsang SW, Zhang HJ. Antimalarial Activity of Plant Metabolites. Int J Mol Sci 2018; 19:ijms19051382. [PMID: 29734792 PMCID: PMC5983777 DOI: 10.3390/ijms19051382] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum. As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002) reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.
Collapse
Affiliation(s)
- Wen-Hui Pan
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China.
| | - Xin-Ya Xu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China.
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510070, China.
| | - Ni Shi
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China.
| | - Siu Wai Tsang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China.
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
22
|
Payili N, Yennam S, Rekula SR, Naidu CG, Bobde Y, Ghosh B. Design, Synthesis, and Evaluation of the Anticancer Properties of Novel Quinone Bearing Carbamyl β-Lactam Hybrids. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nagaraju Payili
- Chemistry Services; GVK Biosciences Pvt. Ltd.; Survey Nos: 125 (part) and 126, IDA Mallapur Hyderabad 500076 Telangana India
- Vignan's Foundation for Science; Technology and Research University (VFSTRU); Vadlamudi Guntur 522213 Andhra Pradesh India
| | - Satyanarayana Yennam
- Chemistry Services; GVK Biosciences Pvt. Ltd.; Survey Nos: 125 (part) and 126, IDA Mallapur Hyderabad 500076 Telangana India
| | - Santhosh Reddy Rekula
- Chemistry Services; GVK Biosciences Pvt. Ltd.; Survey Nos: 125 (part) and 126, IDA Mallapur Hyderabad 500076 Telangana India
| | - Challa Gangu Naidu
- Vignan's Foundation for Science; Technology and Research University (VFSTRU); Vadlamudi Guntur 522213 Andhra Pradesh India
| | - Yamini Bobde
- Department of Pharmacy; Birla Institute of Technology and Science, Pilani; Hyderabad Campus, Shameerpet Hyderabad 500078 Telangana India
| | - Balaram Ghosh
- Department of Pharmacy; Birla Institute of Technology and Science, Pilani; Hyderabad Campus, Shameerpet Hyderabad 500078 Telangana India
| |
Collapse
|
23
|
PINHEIRO LUIZC, FEITOSA LÍVIAM, SILVEIRA FLÁVIAFDA, BOECHAT NUBIA. Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives. ACTA ACUST UNITED AC 2018; 90:1251-1271. [DOI: 10.1590/0001-3765201820170830] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | - LÍVIA M. FEITOSA
- Fundação Oswaldo Cruz, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| | | | | |
Collapse
|
24
|
Sharma K, Shrivastava A, Mehra RN, Deora GS, Alam MM, Zaman MS, Akhter M. Synthesis of novel benzimidazole acrylonitriles for inhibition of Plasmodium falciparum growth by dual target inhibition. Arch Pharm (Weinheim) 2017; 351. [PMID: 29227011 DOI: 10.1002/ardp.201700251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/08/2022]
Abstract
Antimalarial drug resistance has emerged as a threat for treating malaria, generating a need to design and develop newer, more efficient antimalarial agents. This research aimed to identify novel leads as antimalarials. Dual receptor mechanism could be a good strategy to combat developing drug resistance. A series of benzimidazole acrylonitriles containing 18 compounds were designed, synthesized and evaluated for cytotoxicity, heme binding, ferriprotoporphyrin IX biomineralisation inhibition, and falcipain-2 enzyme assay. Furthermore, in silico docking and MD simulation studies were also performed.The tests revealed quite encouraging results. Three compounds, viz. R-01 (0.69 μM), R-04 (1.60 μM), and R-08 (1.61 μM), were found to have high antimalarial activity. These compounds were found to be in bearable cytotoxicity limits and their biological assay suggested that they had inhibitory activity against falcipain-2 and hemozoin formation. The docking revealed the binding mode of benzimidazole acrylonitrile derivatives and MD simulation studies revealed that the protein-ligand complex was stable. The agents exhibit good hemozoin formation inhibition activity and, hence, may be utilized as leads to design a newer drug class to overcome the drug resistance of hemozoin formation inhibitors such as chloroquine.
Collapse
Affiliation(s)
- Kalicharan Sharma
- Drug Design and Medicinal Chemistry Lab, Faculty of Pharmacy and Bioinformatics Infrastructure Facility, Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Apeksha Shrivastava
- Drug Design and Medicinal Chemistry Lab, Faculty of Pharmacy and Bioinformatics Infrastructure Facility, Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Ram N Mehra
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh, India
| | - Girdhar S Deora
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Mohammad M Alam
- Drug Design and Medicinal Chemistry Lab, Faculty of Pharmacy and Bioinformatics Infrastructure Facility, Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Mohammad S Zaman
- Drug Design and Medicinal Chemistry Lab, Faculty of Pharmacy and Bioinformatics Infrastructure Facility, Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Faculty of Pharmacy and Bioinformatics Infrastructure Facility, Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| |
Collapse
|
25
|
Ferraz R, Pinheiro M, Gomes A, Teixeira C, Prudêncio C, Reis S, Gomes P. Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models. Bioorg Med Chem Lett 2017; 27:4190-4193. [PMID: 28733082 DOI: 10.1016/j.bmcl.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 11/17/2022]
Abstract
Primaquine-based ionic liquids, obtained by acid-base reaction between parent primaquine and cinnamic acids, were recently found as triple-stage antimalarial hits. These ionic compounds displayed significant activity against both liver- and blood-stage Plasmodium parasites, as well as against stage V P. falciparum parasites. Remarkably, blood-stage activity of the ionic liquids against both chloroquine-sensitive (3D7) and resistant (Dd2) P. falciparum strains was clearly superior to those of the respective covalent (amide) analogues and of parent primaquine. Having hypothesized that such behaviour might be ascribed to an enhanced ability of the ionic compounds to permeate into Plasmodium-infected erythrocytes, we have carried out a differential scanning calorimetry-based study of the interactions between the ionic liquids and membrane models. Results provide evidence, at the molecular level, that the primaquine-derived ionic liquids may contribute to an increased permeation of the parent drug into malaria-infected erythrocytes, which has relevant implications towards novel antimalarial approaches based on ionic liquids.
Collapse
Affiliation(s)
- Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal; ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Marina Pinheiro
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal; ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal; ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Prudêncio
- ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal.
| |
Collapse
|
26
|
Odhiambo OC, Wamakima HN, Magoma GN, Kirira PG, Malala BJ, Kimani FT, Muregi FW. Efficacy and safety evaluation of a novel trioxaquine in the management of cerebral malaria in a mouse model. Malar J 2017; 16:268. [PMID: 28673299 PMCID: PMC5496145 DOI: 10.1186/s12936-017-1917-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/27/2017] [Indexed: 11/22/2022] Open
Abstract
Background The emergence of multidrug-resistant strains of Plasmodium falciparum poses a great threat of increased fatalities in cases of cerebral and other forms of severe malaria infections in which parenteral artesunate monotherapy is the current drug of choice. The study aimed to investigate in a mouse model of human cerebral malaria whether a trioxaquine chemically synthesized by covalent linking of a 4,7-dichloroquinoline pharmacophore to artesunate through a recent drug development approach termed ‘covalent bitherapy’ could improve the curative outcomes in cerebral malaria infections. Methods Human cerebral malaria rodent model, the C57BL/6 male mice were infected intraperitoneally (ip) with Plasmodium berghei ANKA and intravenously (iv) treated with the trioxaquine from day 8 post-infection (pi) at 12.5 and 25 mg/kg, respectively, twice a day for 3 days. Treatments with the trioxaquine precursors (artesunate and 4,7-dichloroquine), and quinine were also included as controls. In vivo safety evaluation for the trioxaquine was done according to Organization for Economic Co-operation and Development (OECD) guidelines 423, where female Swiss albino mice were orally administered with either 300 or 2000 mg/kg of the trioxaquine and monitored for signs of severity, and or mortality for 14 days post-treatment. Results The trioxaquine showed a potent and a rapid antiplasmodial activity with 80% parasite clearance in the first 24 h for the two dosages used. Long-term parasitaemia monitoring showed a total parasite clearance as the treated mice survived beyond 60 days post-treatment, with no recrudescence observed. Artesunate treated mice showed recrudescence 8 days post-treatment, with all mice in this group succumbing to the infection. Also, 4,7-dichloroquinoline and quinine did not show any significant parasitaemia suppression in the first 24 h post-treatment, with the animals succumbing to the infection. Conclusion Covalent bitherapy proves to be a viable source of urgently needed new anti-malarials for management of cerebral malaria, and this polypharmacology approach could be a potential strategy to protect artesunate from parasite resistance and in potentially improving clinical outcomes in severe forms of malaria infections.
Collapse
Affiliation(s)
- Onyango C Odhiambo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi, Kenya
| | - Hannah N Wamakima
- Department of Pharmaceutical Sciences, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya
| | - Gabriel N Magoma
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi, Kenya
| | - Peter G Kirira
- Department of Physical Sciences, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya
| | - Bonface J Malala
- Department of Biological Sciences, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya
| | - Francis T Kimani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, Kenya
| | - Francis W Muregi
- Department of Biological Sciences, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya.
| |
Collapse
|
27
|
Villasmil T, Rojas J, Aparicio R, Gamboa N, Acosta ME, Rodrigues J, Usubillaga A. Antimalarial Activity of some Kaurenes. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The antimalarial activity of sixteen ent-kaurenes was assayed on male albino mice infected with Plasmodium berghei. Ent-kaur-16-en-19-oic acid (kaurenic acid), 15α-hydroxy- ent-kaur-16-en-19-oic acid, 15α-acetoxy- ent-kaur-16-en-19-oic acid, and ent-kaur-9(11)16-en-19-oic acid, natural kaurenes isolated from two species of Espelletiinae, were modified by semisynthesis to obtain methyl esters, glucopyranosyl esters, epoxides, 17-hydroxy, and isokaurenes (compounds with a 15,16-double bond). The kaurenes were first submitted to an in vitro test to measure their capacity to inhibit the formation of β-hematin. Compared with chloroquine (95.7%), the best effect was shown by 16,17-epoxy- ent-kauran-19-oic acid α-D-glucopyranosyl ester (2a), which produced 92.6% inhibition. Three other kaurenes showed good inhibition levels: ent-kaur-16-en-19-oic acid (1a, 73.5%), 17-hydroxy- ent-kaur-15-en-19-oic acid methyl ester (3b, 76.5%), and 15-oxo-16,17-epoxy- ent-kaur-16-en-19-oic acid α-D-glucopyranosyl ester (4b,76.1%). These four compounds were assayed in a four day suppressive test in vivo (Peters’ test) using chloroquine as a positive control Two hours after infection the mice received the first treatment and then every 24 hours during four consecutive days. Blood smears from the tails were prepared on the fourth day and parasitemia was determined microscopically. Survivals were followed up to the 30th day post-infection, Once again compound 2a performed best, showing 4.5% of parasitemia on the fourth day post-infection (chloroquine 0.2%) and a survival time of 25.5 days (chloroquine 29.5 days; 1a 18.8 days, 4b 12 7 days and 3b 10.3 days). A comparative examination of the effect of all compounds on the in vitro test permitted the inference that the presence of a C-19 carboxylic moiety was a requirement for the antimalarial activity and that a 16,17 epoxy group enhanced such activity.
Collapse
Affiliation(s)
- Thayded Villasmil
- Instituto de Investigaciones Facultad de Farmacia y Bioánalisis of Chemistry, Universidad de Los Andes, Mérida, Venezuela
| | - Julio Rojas
- Instituto de Investigaciones Facultad de Farmacia y Bioánalisis of Chemistry, Universidad de Los Andes, Mérida, Venezuela
| | - Rosa Aparicio
- Instituto de Investigaciones Facultad de Farmacia y Bioánalisis of Chemistry, Universidad de Los Andes, Mérida, Venezuela
| | - Neira Gamboa
- Unidad de Bioquimica, Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria Eugenia Acosta
- Unidad de Bioquimica, Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela
| | - Juan Rodrigues
- Unidad de Bioquimica, Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela
| | - Alfredo Usubillaga
- Instituto de Investigaciones Facultad de Farmacia y Bioánalisis of Chemistry, Universidad de Los Andes, Mérida, Venezuela
| |
Collapse
|
28
|
Howard JL, Schotten C, Browne DL. Continuous flow synthesis of antimalarials: opportunities for distributed autonomous chemical manufacturing. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00034k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The concept of distributed manufacturing of chemicals is presented and discussed, with specific focus on the context of preparing molecules that can combat the development of geographically-localised resistant strains of infectious pathogens.
Collapse
|
29
|
Kluska M, Marciniuk-Kluska A, Prukała D, Prukała W. Analytics of Quinine and its Derivatives. Crit Rev Anal Chem 2016; 46:139-45. [PMID: 25831406 DOI: 10.1080/10408347.2014.996700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of this study was to perform a synthesis and analysis of the most important information on quinine and its derivatives, which are still very important in the treatment of malaria. The analysis of stereoisomers of quinine and its derivatives was conducted using two techniques, high-performance liquid chromatography and capillary electrophoresis. Particularly noteworthy is the technique used for the determination of isotachophoresis, referred to as one of the so-called green chemistry techniques. Particular attention was paid to properties and the use of quinine and its derivatives in the treatment of malaria. The analytical part will supplement knowledge about quinidine, quinine, and cinchonidine, and will contribute to the growth of research on the so-much-needed drugs against malaria.
Collapse
Affiliation(s)
- Mariusz Kluska
- a Institute of Chemistry, Siedlce University of Natural Sciences and Humanities , Siedlce , Poland
| | - Anna Marciniuk-Kluska
- b Faculty of Management, Siedlce University of Natural Sciences and Humanities , Siedlce , Poland
| | - Dorota Prukała
- c Faculty of Chemistry, Adam Mickiewicz University , Poznań , Poland
| | - Wiesław Prukała
- c Faculty of Chemistry, Adam Mickiewicz University , Poznań , Poland
| |
Collapse
|
30
|
7-Chloro-4-aminoquinoline γ-hydroxy-γ-lactam derived-tetramates as a new family of antimalarial compounds. Bioorg Med Chem Lett 2016; 26:5308-5311. [DOI: 10.1016/j.bmcl.2016.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022]
|
31
|
Yang B, Feng YJ, Vu H, McCormick B, Rowley J, Pedro L, Crowther GJ, Van Voorhis WC, Forster PI, Quinn RJ. Bioaffinity Mass Spectrometry Screening. ACTA ACUST UNITED AC 2016; 21:194-200. [PMID: 26773071 DOI: 10.1177/1087057115622605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS or ESI-FTMS) was used to screen 192 natural product extracts and a 659-member natural product-based fragment library for bindings to a potential malaria drug target, Plasmodium falciparum Rab11a (PfRab11a, PF13_0119). One natural product extract and 11 fragments showed binding activity. A new natural product, arborside E, was identified from the active extract of Psydrax montigena as a weak binder. Its binding activity and inhibitory activity against PfRab11a were confirmed by ESI-FTMS titration experiments and an orthogonal enzyme assay.
Collapse
Affiliation(s)
- Ben Yang
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Yun Jiang Feng
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Hoan Vu
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brendan McCormick
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Jessica Rowley
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Liliana Pedro
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | | | | | - Paul I Forster
- Queensland Herbarium, DSITI, Brisbane Botanic Gardens, Queensland, Australia
| | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| |
Collapse
|
32
|
Grimberg BT, Grimberg KO. Hemozoin detection may provide an inexpensive, sensitive, 1-minute malaria test that could revolutionize malaria screening. Expert Rev Anti Infect Ther 2016; 14:879-83. [PMID: 27530228 PMCID: PMC5224914 DOI: 10.1080/14787210.2016.1222900] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 08/08/2016] [Indexed: 12/25/2022]
Abstract
Malaria remains widespread throughout the tropics and is a burden to the estimated 3.5 billion people who are exposed annually. The lack of a fast and accurate diagnostic method contributes to preventable malaria deaths and its continued transmission. In many areas diagnosis is made solely based on clinical presentation. Current methods for malaria diagnosis take more than 20 minutes from the time blood is drawn and are frequently inaccurate. The introduction of an accurate malaria diagnostic that can provide a result in less than 1 minute would allow for widespread screening and treatment of endemic populations, and enable regions that have gained a foothold against malaria to prevent its return. Using malaria parasites' waste product, hemozoin, as a biomarker for the presence of malaria could be the tool needed to develop this rapid test.
Collapse
Affiliation(s)
- Brian T Grimberg
- a School of Medicine - Center for Global Health and Diseases , Case Western Reserve University , Cleveland , OH , USA
| | - Kerry O Grimberg
- b School of Medicine, Department of Radiology , Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
33
|
Boss C, Aissaoui H, Amaral N, Bauer A, Bazire S, Binkert C, Brun R, Bürki C, Ciana CL, Corminboeuf O, Delahaye S, Dollinger C, Fischli C, Fischli W, Flock A, Frantz MC, Girault M, Grisostomi C, Friedli A, Heidmann B, Hinder C, Jacob G, Le Bihan A, Malrieu S, Mamzed S, Merot A, Meyer S, Peixoto S, Petit N, Siegrist R, Trollux J, Weller T, Wittlin S. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action. ChemMedChem 2016; 11:1995-2014. [DOI: 10.1002/cmdc.201600298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/04/2016] [Indexed: 11/09/2022]
|
34
|
Srinivasarao K, Agarwal P, Srivastava K, Haq W, Puri SK, Katti SB. Design, synthesis, and in vitro antiplasmodial activity of 4-aminoquinolines containing modified amino acid conjugates. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1555-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Ekengard E, Kumar K, Fogeron T, de Kock C, Smith PJ, Haukka M, Monari M, Nordlander E. Pentamethylcyclopentadienyl-rhodium and iridium complexes containing (N^N and N^O) bound chloroquine analogue ligands: synthesis, characterization and antimalarial properties. Dalton Trans 2016; 45:3905-17. [DOI: 10.1039/c5dt03739e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium and iridium cyclopentadienyl complexes have been examined for anti-malarial activity. Three rhodium complexes are especially active.
Collapse
Affiliation(s)
- Erik Ekengard
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Kamlesh Kumar
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Thibault Fogeron
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Carmen de Kock
- Division of Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- Observatory 7925
- South Africa
| | - Peter J. Smith
- Division of Pharmacology
- Department of Medicine
- University of Cape Town Medical School
- Observatory 7925
- South Africa
| | - Matti Haukka
- Department of Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | - Magda Monari
- Dipartimento di Chimica “G. Ciamician”
- Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| |
Collapse
|
36
|
Overcash JM, Aryan A, Myles KM, Adelman ZN. Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes. Chromosome Res 2015; 23:31-42. [PMID: 25596822 DOI: 10.1007/s10577-014-9450-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mosquitoes are high-impact disease vectors with the capacity to transmit pathogenic agents that cause diseases such as malaria, yellow fever, chikungunya, and dengue. Continued growth in knowledge of genetic, molecular, and physiological pathways in mosquitoes allows for the development of novel control methods and for the continued optimization of existing ones. The emergence of site-specific nucleases as genomic engineering tools promises to expedite research of crucial biological pathways in these disease vectors. The utilization of these nucleases in a more precise and efficient manner is dependent upon knowledge and manipulation of the DNA repair pathways utilized by the mosquito. While progress has been made in deciphering DNA repair pathways in some model systems, research into the nature of the hierarchy of mosquito DNA repair pathways, as well as in mechanistic differences that may exist, is needed. In this review, we will describe progress in the use of site-specific nucleases in mosquitoes, along with the hierarchy of DNA repair in the context of mosquito chromosomal organization and structure, and how this knowledge may be manipulated to achieve precise chromosomal engineering in mosquitoes.
Collapse
Affiliation(s)
- Justin M Overcash
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, 305 Fralin Life Science Institute, 360 West Campus Dr., Blacksburg, VA, 24061, USA
| | | | | | | |
Collapse
|
37
|
McConville M, Fernández J, Angulo-Barturen Í, Bahamontes-Rosa N, Ballell-Pages L, Castañeda P, de Cózar C, Crespo B, Guijarro L, Jiménez-Díaz MB, Martínez-Martínez MS, de Mercado J, Santos-Villarejo Á, Sanz LM, Frigerio M, Washbourn G, Ward SA, Nixon GL, Biagini GA, Berry NG, Blackman MJ, Calderón F, O'Neill PM. Carbamoyl Triazoles, Known Serine Protease Inhibitors, Are a Potent New Class of Antimalarials. J Med Chem 2015. [PMID: 26222445 DOI: 10.1021/acs.jmedchem.5b00434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Screening of the GSK corporate collection, some 1.9 million compounds, against Plasmodium falciparum (Pf), revealed almost 14000 active hits that are now known as the Tres Cantos Antimalarial Set (TCAMS). Followup work by Calderon et al. clustered and computationally filtered the TCAMS through a variety of criteria and reported 47 series containing a total of 522 compounds. From this enhanced set, we identified the carbamoyl triazole TCMDC-134379 (1), a known serine protease inhibitor, as an excellent starting point for SAR profiling. Lead optimization of 1 led to several molecules with improved antimalarial potency, metabolic stabilities in mouse and human liver microsomes, along with acceptable cytotoxicity profiles. Analogue 44 displayed potent in vitro activity (IC50 = 10 nM) and oral activity in a SCID mouse model of Pf infection with an ED50 of 100 and ED90 of between 100 and 150 mg kg(-1), respectively. The results presented encourage further investigations to identify the target of these highly active compounds.
Collapse
Affiliation(s)
- Matthew McConville
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Jorge Fernández
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Íñigo Angulo-Barturen
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Noemi Bahamontes-Rosa
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Lluis Ballell-Pages
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Pablo Castañeda
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Cristina de Cózar
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Benigno Crespo
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Laura Guijarro
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - María Belén Jiménez-Díaz
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Maria S Martínez-Martínez
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Jaime de Mercado
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Ángel Santos-Villarejo
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Laura M Sanz
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Micol Frigerio
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Gina Washbourn
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Stephen A Ward
- Liverpool School of Tropical Medicine , Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Gemma L Nixon
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Giancarlo A Biagini
- Liverpool School of Tropical Medicine , Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Neil G Berry
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical Research , Mill Hill, London NW7 1AA, United Kingdom
| | - Félix Calderón
- Tres Cantos Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
38
|
From hybrid compounds to targeted drug delivery in antimalarial therapy. Bioorg Med Chem 2015; 23:5120-30. [PMID: 25913864 DOI: 10.1016/j.bmc.2015.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 11/21/2022]
Abstract
The discovery of new drugs to treat malaria is a continuous effort for medicinal chemists due to the emergence and spread of resistant strains of Plasmodium falciparum to nearly all used antimalarials. The rapid adaptation of the malaria parasite remains a major limitation to disease control. Development of hybrid antimalarial agents has been actively pursued as a promising strategy to overcome the emergence of resistant parasite strains. This review presents the journey that started with simple combinations of two active moieties into one chemical entity and progressed into a delivery/targeted system based on major antimalarial classes of drugs. The rationale for providing different mechanisms of action against a single or additional targets involved in the multiple stages of the parasite's life-cycle is highlighted. Finally, a perspective for this polypharmacologic approach is presented.
Collapse
|
39
|
Melariri P, Kalombo L, Nkuna P, Dube A, Hayeshi R, Ogutu B, Gibhard L, deKock C, Smith P, Wiesner L, Swai H. Oral lipid-based nanoformulation of tafenoquine enhanced bioavailability and blood stage antimalarial efficacy and led to a reduction in human red blood cell loss in mice. Int J Nanomedicine 2015; 10:1493-503. [PMID: 25759576 PMCID: PMC4346002 DOI: 10.2147/ijn.s76317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tafenoquine (TQ), a new synthetic analog of primaquine, has relatively poor bioavailability and associated toxicity in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. A microemulsion formulation of TQ (MTQ) with sizes <20 nm improved the solubility of TQ and enhanced the oral bioavailability from 55% to 99% in healthy mice (area under the curve 0 to infinity: 11,368±1,232 and 23,842±872 min·μmol/L) for reference TQ and MTQ, respectively. Average parasitemia in Plasmodium berghei-infected mice was four- to tenfold lower in the MTQ-treated group. In vitro antiplasmodial activities against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum indicated no change in half maximal inhibitory concentration, suggesting that the microemulsion did not affect the inherent activity of TQ. In a humanized mouse model of G6PD deficiency, we observed reduction in toxicity of TQ as delivered by MTQ at low but efficacious concentrations of TQ. We hereby report an enhancement in the solubility, bioavailibility, and efficacy of TQ against blood stages of Plasmodium parasites without a corresponding increase in toxicity.
Collapse
Affiliation(s)
- Paula Melariri
- Polymers and Composites, Material Science and Manufacturing, Council for Scientific and Industrial Research, Port Elizabeth, South Africa
| | - Lonji Kalombo
- Polymer and Composites, Material Science and Manufacturing, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Patric Nkuna
- Polymer and Composites, Material Science and Manufacturing, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Admire Dube
- Polymer and Composites, Material Science and Manufacturing, Council for Scientific and Industrial Research, Pretoria, South Africa ; School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Rose Hayeshi
- Polymer and Composites, Material Science and Manufacturing, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Benhards Ogutu
- Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya ; Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Liezl Gibhard
- Division of Pharmacology, University of Cape Town Medical School, Groote Schuur Hospital, Cape Town, South Africa
| | - Carmen deKock
- Division of Pharmacology, University of Cape Town Medical School, Groote Schuur Hospital, Cape Town, South Africa
| | - Peter Smith
- Division of Pharmacology, University of Cape Town Medical School, Groote Schuur Hospital, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Pharmacology, University of Cape Town Medical School, Groote Schuur Hospital, Cape Town, South Africa
| | - Hulda Swai
- Polymer and Composites, Material Science and Manufacturing, Council for Scientific and Industrial Research, Pretoria, South Africa
| |
Collapse
|
40
|
Kang HK, Seo CH, Park Y. Marine peptides and their anti-infective activities. Mar Drugs 2015; 13:618-54. [PMID: 25603351 PMCID: PMC4306955 DOI: 10.3390/md13010618] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/01/2015] [Indexed: 12/29/2022] Open
Abstract
Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present.
Collapse
Affiliation(s)
- Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju 314-701, Korea.
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
| |
Collapse
|
41
|
Vandekerckhove S, D'hooghe M. Quinoline-based antimalarial hybrid compounds. Bioorg Med Chem 2014; 23:5098-119. [PMID: 25593097 DOI: 10.1016/j.bmc.2014.12.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/03/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
Quinoline-containing compounds, such as quinine and chloroquine, have a long-standing history as potent antimalarial agents. However, the increasing resistance of the Plasmodium parasite against these drugs and the lack of licensed malaria vaccines have forced chemists to develop synthetic strategies toward novel biologically active molecules. A strategy that has attracted considerable attention in current medicinal chemistry is based on the conjugation of two biologically active molecules into one hybrid compound. Since quinolines are considered to be privileged antimalarial building blocks, the synthesis of quinoline-containing antimalarial hybrids has been elaborated extensively in recent years. This review provides a literature overview of antimalarial hybrid molecules containing a quinoline core, covering publications between 2009 and 2014.
Collapse
Affiliation(s)
- Stéphanie Vandekerckhove
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
42
|
Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo. Proc Natl Acad Sci U S A 2014; 111:E5508-17. [PMID: 25489076 DOI: 10.1073/pnas.1405994111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Malaria remains a major global health problem. Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Here we explore the potential of the aminoacyl-tRNA synthetase (ARS) family as a source of antimalarial drug targets. First, a battery of known and novel ARS inhibitors was tested against Plasmodium falciparum cultures, and their activities were compared. Borrelidin, a natural inhibitor of threonyl-tRNA synthetase (ThrRS), stands out for its potent antimalarial effect. However, it also inhibits human ThrRS and is highly toxic to human cells. To circumvent this problem, we tested a library of bioengineered and semisynthetic borrelidin analogs for their antimalarial activity and toxicity. We found that some analogs effectively lose their toxicity against human cells while retaining a potent antiparasitic activity both in vitro and in vivo and cleared malaria from Plasmodium yoelii-infected mice, resulting in 100% mice survival rates. Our work identifies borrelidin analogs as potent, selective, and unexplored scaffolds that efficiently clear malaria both in vitro and in vivo.
Collapse
|
43
|
Kiboi D, Irungu B, Orwa J, Kamau L, Ochola-Oyier LI, Ngángá J, Nzila A. Piperaquine and Lumefantrine resistance in Plasmodium berghei ANKA associated with increased expression of Ca2+/H+ antiporter and glutathione associated enzymes. Exp Parasitol 2014; 147:23-32. [PMID: 25448357 DOI: 10.1016/j.exppara.2014.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 09/27/2014] [Accepted: 10/16/2014] [Indexed: 11/16/2022]
Abstract
We investigated the mechanisms of resistance of two antimalarial drugs piperaquine (PQ) and lumefantrine (LM) using the rodent parasite Plasmodium berghei as a surrogate of the human parasite, Plasmodium falciparum. We analyzed the whole coding sequence of Plasmodium berghei chloroquine resistance transporter (Pbcrt) and Plasmodium berghei multidrug resistance gene 1(Pbmdr-1) for polymorphisms. These genes are associated with quinoline resistance in Plasmodium falciparum. No polymorphic changes were detected in the coding sequences of Pbcrt and Pbmdr1 or in the mRNA transcript levels of Pbmdr1. However, our data demonstrated that PQ and LM resistance is achieved by multiple mechanisms that include elevated mRNA transcript levels of V-type H(+) pumping pyrophosphatase (vp2), Ca(2+)/H(+) antiporter (vcx1), gamma glutamylcysteine synthetase (ggcs) and glutathione-S-transferase (gst) genes, mechanisms also known to contribute to chloroquine resistance in P. falciparum and rodent malaria parasites. The increase in ggcs and gst transcript levels was accompanied by high glutathione (GSH) levels and elevated activity of glutathione-S-transferase (GST) enzyme. Taken together, these results demonstrate that Pbcrt and Pbmdr1 are not associated with PQ and LM resistance in P. berghei ANKA, while vp2, vcx1, ggcs and gst may mediate resistance directly or modulate functional mutations in other unknown genes.
Collapse
Affiliation(s)
- Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya; KEMRI-Centre for Traditional Medicine and Drug Research, P.O. Box 54840-00200, Nairobi, Kenya.
| | - Beatrice Irungu
- KEMRI-Centre for Traditional Medicine and Drug Research, P.O. Box 54840-00200, Nairobi, Kenya
| | - Jennifer Orwa
- KEMRI-Centre for Traditional Medicine and Drug Research, P.O. Box 54840-00200, Nairobi, Kenya
| | - Luna Kamau
- KEMRI-Centre for Biotechnology Research and Development, P.O. Box 54840-00200, Nairobi, Kenya
| | | | - Joseph Ngángá
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Alexis Nzila
- Department of Chemistry, King Fahd University of Petroleum and Minerals, P.O. Box 468, Dharan 31261, Saudi Arabia
| |
Collapse
|
44
|
High-throughput tri-colour flow cytometry technique to assess Plasmodium falciparum parasitaemia in bioassays. Malar J 2014; 13:412. [PMID: 25331683 PMCID: PMC4213491 DOI: 10.1186/1475-2875-13-412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unbiased flow cytometry-based methods have become the technique of choice in many laboratories for high-throughput, accurate assessments of malaria parasites in bioassays. A method to quantify live parasites based on mitotracker red CMXRos was recently described but consistent distinction of early ring stages of Plasmodium falciparum from uninfected red blood cells (uRBC) remains a challenge. METHODS Here, a high-throughput, three-parameter (tri-colour) flow cytometry technique based on mitotracker red dye, the nucleic acid dye coriphosphine O (CPO) and the leucocyte marker CD45 for enumerating live parasites in bioassays was developed. The technique was applied to estimate the specific growth inhibition index (SGI) in the antibody-dependent cellular inhibition (ADCI) assay and compared to parasite quantification by microscopy and mitotracker red staining. The Bland-Altman analysis was used to compare biases between SGI estimated by the tri-colour staining technique, mitotracker red and by microscopy. RESULTS CPO allowed a better separation between early rings and uRBCs compared to mitotracker red resulting in a more accurate estimate of total parasitaemia. The tri-colour technique is rapid, cost effective and robust with comparable sensitivity to microscopy and capable of discriminating between live and dead and/or compromised parasites. Staining for CD45 improved parasitaemia estimates in ADCI assay since high numbers of leucocytes interfered with the accurate identification of parasitized RBC. The least bias (-1.60) in SGI was observed between the tri-colour and microscopy. CONCLUSION An improved methodology for high-throughput assessment of P. falciparum parasitaemia under culture conditions that could be useful in different bioassays, including ADCI and growth inhibition assays has been developed.
Collapse
|
45
|
Strategic use of antimalarial drugs that block falciparum malaria parasite transmission to mosquitoes to achieve local malaria elimination. Parasitol Res 2014; 113:3535-46. [PMID: 25185662 DOI: 10.1007/s00436-014-4091-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/25/2014] [Indexed: 01/03/2023]
Abstract
The ultimate aim of malaria chemotherapy is not only to treat symptomatic infection but also to reduce transmission potential. With the absence of clinically proven vaccines, drug-mediated blocking of malaria transmission gains growing interest in the research agenda for malaria control and elimination. In addition to the limited arsenal of antimalarials available, the situation is further complicated by the fact that most commonly used antimalarials are being extensively resisted by the parasite and do not assist in blocking its transmission to vectors. Most antimalarials do not exhibit gametocytocidal and/ or sporontocidal activity against the sexual stages of Plasmodium falciparum but may even enhance gametocytogenesis and gametocyte transmissibility. Artemisinin derivatives and 8-aminoquinolines are useful transmission-blocking antimalarials whose optimal actions are on different stages of gametocytes. Transmission control interventions that include gametocytocides covering the spectrum of gametocyte development should be used to reduce and, if possible, stop transmission and infectivity of gametocytes to mosquitoes. Potent gametocytocidal drugs could also help deter the spread of antimalarial drug resistance. Novel proof-of-concept compounds with gametocytocidal activity, such as trioxaquines, synthetic endoperoxides, and spiroindolone, should be further tested for possible clinical utility before investigating the possibility of integrating them in transmission-reducing interventions. Strategic use of potent gametocytocides at appropriate timing with artemisinin-based combination therapies should be given attention, at least, in the short run. This review highlights the role that antimalarials could play in blocking gametocyte transmission and infectivity to mosquitoes and, hence, in reducing the potential of falciparum malaria transmissibility and drug resistance spread.
Collapse
|
46
|
Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 962:109-131. [DOI: 10.1016/j.jchromb.2014.02.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 02/06/2023]
|
47
|
Ashok P, Ganguly S, Murugesan S. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies. Drug Discov Today 2014; 19:1781-1791. [PMID: 24953707 DOI: 10.1016/j.drudis.2014.06.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/14/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
The infectious disease Malaria is caused by different species of the genus Plasmodium. Resistance to quinoline antimalarial drugs and decreased susceptibility to artemisinin-based combination therapy have increased the need for novel antimalarial agents. Historically, natural products have been used for the treatment of infectious diseases. Identification of natural products and their semi-synthetic derivatives with potent antimalarial activity is an important method for developing novel antimalarial agents. Manzamine alkaloids are a unique group of β-carboline alkaloids isolated from various species of marine sponge displaying potent antimalarial activity against drug-sensitive and -resistant strains of Plasmodium. In this review, we demonstrate antimalarial potency, cytotoxicity and antimalarial SAR of manzamine alkaloids.
Collapse
Affiliation(s)
- Penta Ashok
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani 333031, India
| | - Swastika Ganguly
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra 835215, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani 333031, India.
| |
Collapse
|
48
|
Joubert JP, Smit FJ, du Plessis L, Smith PJ, N’Da DD. Synthesis and in vitro biological evaluation of aminoacridines and artemisinin–acridine hybrids. Eur J Pharm Sci 2014; 56:16-27. [DOI: 10.1016/j.ejps.2014.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 01/16/2023]
|
49
|
Cloete TT, de Kock C, Smith PJ, N'Da DD. Synthesis, in vitro antiplasmodial activity and cytotoxicity of a series of artemisinin–triazine hybrids and hybrid-dimers. Eur J Med Chem 2014; 76:470-81. [DOI: 10.1016/j.ejmech.2014.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/11/2022]
|
50
|
Villarino N, Schmidt NW. CD8 + T Cell Responses to Plasmodium and Intracellular Parasites. ACTA ACUST UNITED AC 2014; 9:169-178. [PMID: 24741372 PMCID: PMC3983867 DOI: 10.2174/1573395509666131126232327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Parasitic protozoa are major threats to human health affecting millions of people around the world. Control of these infections by the host immune system relies on a myriad of immunological mechanisms that includes both humoral and cellular immunity. CD8+ T cells contribute to the control of these parasitic infections in both animals and humans. Here, we will focus on the CD8+ T cell response against a subset of these protozoa: Plasmodium, Toxoplasma gondii, Leishmania and Trypanosoma cruzi, with an emphasis on experimental rodent systems. It is evident a complex interaction occurs between CD8+ T cells and the invading protozoa. A detailed understanding of how CD8+ T cells mediate protection should provide the basis for the development of effective vaccines that prevent and control infections by these parasites.
Collapse
Affiliation(s)
- Nicolas Villarino
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nathan W Schmidt
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|