1
|
Gupta S, Jha S, Rani S, Arora P, Kumar S. Medicinal Perspective of 2,4-Thiazolidinediones Derivatives: An Insight into Recent Advancements. ChemistryOpen 2024; 13:e202400147. [PMID: 39246226 PMCID: PMC11564877 DOI: 10.1002/open.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Indexed: 09/10/2024] Open
Abstract
2,4-Thiazolidinedione derivatives represent nitrogen-containing heterocyclic compounds utilized in type 2 diabetes mellitus management. Recent advances in medicinal chemistry have unveiled diverse therapeutic potentials and structural modifications of these derivatives. This review delves into novel TZD derivatives, encompassing their synthesis, structure-activity relationships, and pharmacokinetic profiles. Various therapeutic potentials of TZDs are explored, including anticancer, antimicrobial, anti-inflammatory, antioxidant, anticonvulsant, antihyperlipidemic, anticorrosive, and antitubercular activities. Additionally, it addresses mitigating side effects associated with marketed TZD derivatives such as weight gain, oedema, fractures, and congestive heart failure in type 2 diabetes mellitus management. The review elaborates on in vivo, in vitro, and ex vivo studies supporting different biological activities, alongside predicting ADME and drug-likeness properties of TZDs. Computational studies are also integrated to elucidate binding modes and affinities of novel TZD derivatives. Furthermore, a plethora of novel TZD derivatives with varied and enhanced therapeutic potentials are presented, warranting further evaluation of their biological activities.
Collapse
Affiliation(s)
- Sneha Gupta
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Sumeet Jha
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Supriya Rani
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Pinky Arora
- School of bioengineering and biosciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| | - Shubham Kumar
- School of Pharmaceutical SciencesLovely Professional UniversityJalandhar-Delhi G.T. RoadPhagwaraPunjab144411India
| |
Collapse
|
2
|
Bayoumi HH, Ibrahim MK, Dahab MA, Khedr F, El-Adl K. Rationale, in silico docking, ADMET profile, design, synthesis and cytotoxicity evaluations of phthalazine derivatives as VEGFR-2 inhibitors and apoptosis inducers. RSC Adv 2024; 14:27110-27121. [PMID: 39193307 PMCID: PMC11348385 DOI: 10.1039/d4ra04956j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
New phthalazine derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors were synthesized joined to different spacers including pyrazole, α,β-unsaturated ketonic fragment, pyrimidinone and/or pyrimidinthione. A docking study was carried out to explore the suggested binding orientations of the novel derivatives inside the active site of VEGFR-2. The obtained biological data were extremely interrelated to that of the docking study. In particular, compounds 4b and 3e showed the highest activities against Michigan Cancer Foundation-7 (MCF-7) and Hepatocellular carcinoma G2 (HepG2) with half maximal inhibitory concentration (IC50) = 0.06, 0.06 μM and 0.08, 0.19 μM respectively. Our derivatives 3a-e, 4a,b and 5a,b were evaluated for their cytotoxicity against normal VERO cells. Our compounds exhibited low toxicity concerning normal VERO cells with IC50 = 3.00-4.75 μM. In addition, our final derivatives 3a-e, 4a, 4b, 5a and 5b were investigated for their VEGFR-2 inhibitory activities. Derivative 4b exhibited the highest VEGFR-2 inhibitory activities at an IC50 value of 0.09 ± 0.02 μM. Derivatives 3e, 4a and 5b demonstrated good activities with IC50 values = 0.12 ± 0.02, 0.15 ± 0.03 and 0.13 ± 0.03 μM respectively. Furthermore, the activities of 4b were assessed against MCF-7 cancer cells for apoptosis induction, cell cycle distribution and growth inhibition. Compound 4b caused cell growth arrest in growth 2-mitosis (G2-M) phase; accumulation of cells at that phase became 6.92% after being 13.2 in control cells. Moreover, our derivatives 3e, 4b and 5b revealed a good in silico considered absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile in comparison to sorafenib.
Collapse
Affiliation(s)
- Hatem Hussein Bayoumi
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Khaled El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
3
|
Elgammal WE, Shaban SS, Eliwa EM, Halawa AH, Abd El-Gilil SM, Hassan RA, Abdou AM, Elhagali GA, Reheim MA. Thiazolation of phenylthiosemicarbazone to access new thiazoles: anticancer activity and molecular docking. Future Med Chem 2024; 16:1219-1237. [PMID: 38989988 PMCID: PMC11247539 DOI: 10.1080/17568919.2024.2342668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 07/12/2024] Open
Abstract
Aim: Novel thiazole hybrids were synthesized via thiazolation of 4-phenylthiosemicarbazone (4). Materials & methods: The anticancer activity against the NCI 60 cancer cell line panel. Results: Methyl 2-(2-((1-(naphthalen-2-yl)ethylidene)hydrazineylidene)-4-oxo-3-phenylthiazolidin-5-ylidene)acetate (6a) showed significant anticancer activity at 10 μM with a mean growth inhibition (GI) of 51.18%. It showed the highest cytotoxic activity against the ovarian cancer OVCAR-4 with an IC50 of 1.569 ± 0.06 μM. Compound 6a inhibited PI3Kα with IC50 = 0.225 ± 0.01 μM. Moreover, compound 6a revealed a decrease of Akt and mTOR phosphorylation in OVCAR-4 cells. In addition, antibacterial activity showed that compounds 11 and 12 were the most active against Staphylococcus aureus. Conclusion: Compound 6a is a promising molecule that could be a lead candidate for further studies.
Collapse
Affiliation(s)
- Walid E Elgammal
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Safaa S Shaban
- Chemistry Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| | - Essam M Eliwa
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Institute of Chemistry of Strasbourg, UMR 7177-LCSOM, CNRS, Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Shimaa M Abd El-Gilil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amr M Abdou
- Department of Microbiology & Immunology, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Gameel Am Elhagali
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mam Abdel Reheim
- Department of Chemistry, Faculty of Science, Arish University, Arish, 45511, Egypt
| |
Collapse
|
4
|
El-Hddad SSA, Sobhy MH, El-Morsy A, Shoman NA, El-Adl K. Quinazolines and thiazolidine-2,4-dions as SARS-CoV-2 inhibitors: repurposing, in silico molecular docking and dynamics simulation. RSC Adv 2024; 14:13237-13250. [PMID: 38655479 PMCID: PMC11037030 DOI: 10.1039/d4ra02029d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
This paper presents an extensive analysis of COVID-19 with a specific focus on VEGFR-2 inhibitors as potential treatments. The investigation includes an overview of computational methodologies employed in drug repurposing and highlights in silico research aimed at developing treatments for SARS-CoV-2. The study explores the possible effects of twenty-eight established VEGFR-2 inhibitors, which include amide and urea linkers, against SARS-CoV-2. Among these, nine inhibitors exhibit highly promising in silico outcomes (designated as 3-6, 11, 24, 26, 27, and sorafenib) and are subjected to extensive molecular dynamics (MD) simulations to evaluate the binding modes and affinities of these inhibitors to the SARS-CoV-2 Mpro across a 100 ns timeframe. Additionally, MD simulations are conducted to ascertain the binding free energy of the most compelling ligand-pocket complexes identified through docking studies. The findings provide valuable understanding regarding the dynamic and thermodynamic properties of the interactions between ligands and pockets, reinforcing the outcomes of the docking studies and presenting promising prospects for the creation of therapeutic treatments targeting COVID-19.
Collapse
Affiliation(s)
- Sanadelaslam S A El-Hddad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Omar Almukhtar University Al Bayda 991 Libya
| | - Mohamed H Sobhy
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
| | - Ahmed El-Morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University Najaf Iraq
| | - Nabil A Shoman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University Giza Egypt
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo11884 Egypt
| |
Collapse
|
5
|
Abdulrahman FG, Abulkhair HS, Saeed HSE, El-Dydamony NM, Husseiny EM. Design, synthesis, and mechanistic insight of novel imidazolones as potential EGFR inhibitors and apoptosis inducers. Bioorg Chem 2024; 144:107105. [PMID: 38219482 DOI: 10.1016/j.bioorg.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
As regards to the structural analysis and optimization of diverse potential EGFR inhibitors, two series of imidazolyl-2-cyanoprop-2-enimidothioates and ethyl imidazolylthiomethylacrylates were designed and constructed as potential EGFR suppressors. The cytotoxic effect of the prepared derivatives was assessed toward hepatic, breast, and prostate cancerous cells (Hep-G2, MCF-7, and PC-3). Three derivatives 3d, 3e, and 3f presented potent antiproliferative activity and selectivity against the examined tumor cells showing IC50 values at low micromolar levels. Hence, successive biological assays were applied to determine the probable mechanism of action of the new compounds. They exhibited significant EGFR suppression with an IC50 range of 0.137-0.507 µM. The most effective EGFR inhibitor 3f arrested the MCF-7 cell cycle at the S phase by inducing the apoptotic pathway that was confirmed via increasing the expression of Caspases 8, 9, and Bax, which are associated with Bcl-2 decline. Additionally, molecular docking displayed a distinctive interaction between 3f and EGFR binding pocket. Overall, this work introduces some novel imidazolyl-2-cyanoprop-2-enimidothioates and ethyl imidazolylthiomethylacrylates as potential cytotoxic and EGFR inhibitors that deserve further research in tumor therapy.
Collapse
Affiliation(s)
- Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| | - Hoda S El Saeed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6(th) of October City, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| |
Collapse
|
6
|
Naufal M, Hermawati E, Syah YM, Hidayat AT, Hidayat IW, Al-Anshori J. Structure-Activity Relationship Study and Design Strategies of Hydantoin, Thiazolidinedione, and Rhodanine-Based Kinase Inhibitors: A Two-Decade Review. ACS OMEGA 2024; 9:4186-4209. [PMID: 38313530 PMCID: PMC10832052 DOI: 10.1021/acsomega.3c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024]
Abstract
Cancer is one of the most prominent causes of the rapidly growing mortality numbers worldwide. Cancer originates from normal cells that have acquired the capability to alter their molecular, biochemical, and cellular traits. The alteration of cell signaling enzymes, such as kinases, can initiate and amplify cancer progression. As a curative method, the targeted therapy utilized small molecules' capability to inhibit kinase's cellular function. This review provides a brief history (1999-2023) of Small Molecule Kinase Inhibitors (SMKIs) discovery with their molecular perspective. Furthermore, this current review also addresses the application and the development of hydantoin, thiazolidinedione, and rhodanine-based derivatives as kinase inhibitors toward several subclasses (EGFR, PI3K, VEGFR, Pim, c-Met, CDK, IGFR, and ERK) accompanied by their structure-activity relationship study and their molecular interactions. The present work summarizes and compiles all the important structural information essential for developing hydantoin, thiazolidinedione, and rhodanine-based kinase inhibitors to improve their potency in the future.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department
of Chemistry, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.
21, Jatinangor, Sumedang 45363, Indonesia
| | - Elvira Hermawati
- Department
of Chemistry, Bandung Institute of Technology, Jalan Ganesha Nomor 10, Bandung, Jawa Barat 40132, Indonesia
| | - Yana Maolana Syah
- Department
of Chemistry, Bandung Institute of Technology, Jalan Ganesha Nomor 10, Bandung, Jawa Barat 40132, Indonesia
| | - Ace Tatang Hidayat
- Department
of Chemistry, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.
21, Jatinangor, Sumedang 45363, Indonesia
| | - Ika Wiani Hidayat
- Department
of Chemistry, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.
21, Jatinangor, Sumedang 45363, Indonesia
| | - Jamaludin Al-Anshori
- Department
of Chemistry, Padjadjaran University, Jalan Raya Bandung-Sumedang Km.
21, Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
7
|
Bagheri A, Moradi S, Iraji A, Mahdavi M. Structure-based development of 3,5-dihydroxybenzoyl-hydrazineylidene as tyrosinase inhibitor; in vitro and in silico study. Sci Rep 2024; 14:1540. [PMID: 38233558 PMCID: PMC10794188 DOI: 10.1038/s41598-024-52022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
A series of new analogs of 3,5-dihydroxybenzoyl-hydrazineylidene conjugated to different methoxyphenyl triazole (11a-n) synthesized using click reaction. The structures of all synthesized compounds were characterized by FTIR, 1H, 13C-NMR spectroscopy, and CHO analysis. The tyrosinase inhibitory potential of the synthesized compounds was studied. The newly synthesized scaffolds were found to illustrate the variable degree of the inhibitory profile, and the most potent analog of this series was that one bearing 4-methoxyphenyl moiety, and exhibited an IC50 value of 55.39 ± 4.93 µM. The kinetic study of the most potent derivative reveals a competitive mode of inhibition. Next, molecular docking studies were performed to understand the potent inhibitor's binding mode within the enzyme's binding site. Molecular dynamics simulations were accomplished to further investigate the orientation and binding interaction over time and the stability of the 11m-tyrosinase complex.
Collapse
Affiliation(s)
- Azzam Bagheri
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Shahram Moradi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Abdulrahman FG, Abulkhair HS, Zidan RA, Alwakeel AI, Al-Karmalawy AA, Husseiny EM. Novel benzochromenes: design, synthesis, cytotoxicity, molecular docking and mechanistic investigations. Future Med Chem 2024; 16:105-123. [PMID: 38226455 DOI: 10.4155/fmc-2023-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024] Open
Abstract
Aim: A novel series of fused benzochromenes with expected cytotoxicity and HIF-1α inhibition was identified. Materials & methods: A bioisosterism-aided approach was applied to design new benzochromenes and assess their cytotoxicity against three cancer cell lines. The probable mechanistic effect and the in silico docking and pharmacokinetic profiles of the most effective derivatives were evaluated. Results: Compounds 3, 4, 5, 8 and 11 showed potent antiproliferative activity and excellent selectivity. Compound 8 showed significant HIF-1α inhibition with an IC50 value of 3.372 μM. It also enhanced apoptosis and arrested the HepG2 cell cycle at both the G0/G1 and S stages. Conclusion: Compound 8 was identified as a new potential anticancer candidate.
Collapse
Affiliation(s)
- Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| | - Riham A Zidan
- Department of Biochemistry, Al-Azhar University, Cairo, Egypt
| | - Asmaa I Alwakeel
- Department of Pharmacology & Toxicology, Al Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Ahram Canadian University, Giza, 12566, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| |
Collapse
|
9
|
Husseiny EM, Abulkhair HS, Saleh A, Altwaijry N, Zidan RA, Abdulrahman FG. Molecular overlay-guided design of new CDK2 inhibitor thiazepinopurines: Synthesis, anticancer, and mechanistic investigations. Bioorg Chem 2023; 140:106789. [PMID: 37611530 DOI: 10.1016/j.bioorg.2023.106789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Adopting the molecular overlay approach, three novel sets of thiazepinopurines with expected cytotoxicity and CDK2 inhibition potential were designed and synthesized. This was accomplished through the heteroannelation of purines, for the first time, with thiazepine. The obtained thiazepinopurines derivatives were assessed for their cytotoxicity toward tumor cells of three different types, HepG2, MCF-7, and PC-3 as well as one normal cell (WI38). Among the studied compounds, 3b and 3c exhibited significant antiproliferative activity against tumor cells presenting IC50 range of 5.52-17.09 µM in comparison with Roscovitine (9.32-13.82 µM). Additionally, both compounds displayed superior selectivity indices (SI = 3.00-7.15) toward tested cancer cells. The 4-chlorophenyl analog 3b has shown the best selectivity index, and hence it has been subjected to additional investigations to determine its proper mechanistic effect. Accordingly, the CDK2 inhibition potential, apoptosis induction, and cell cycle analysis of MCF-7 were evaluated. Results revealed that this analog displayed a potent CDK2 inhibition potential with an IC50 value of 0.219 µM. Findings also showed that 3b was thought to arrest MCF-7 cell cycle at S phase together with apoptosis induction by the increased expression of Bax, Caspase-8, and -9 markers with a concomitant decrease in Bcl-2 expression. Besides, the probable interaction of 3b with CDK2 binding pocket was investigated by molecular docking.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Riham A Zidan
- Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| |
Collapse
|
10
|
El-Hddad S, Sobhy M, Ayoub A, El-Adl K. In silico molecular docking, dynamics simulation and repurposing of some VEGFR-2 inhibitors based on the SARS-CoV-2-main-protease inhibitor N3. J Biomol Struct Dyn 2023; 41:9267-9281. [PMID: 36399002 DOI: 10.1080/07391102.2022.2148000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
The global and rapid spread of the novel human coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has brought immediate urgency to the discovery of favorable targets for COVID-19 treatment. Here, we consider drug reuse as an attractive methodology for drug discovery by reusing existing drugs to treat diseases other than their initial indications. Here, we review current information concerning the global health issue of COVID-19 including VEGFR-2 inhibitors. Besides, we describe computational approaches to be used in drug repurposing and highlight examples of in silico studies of drug development efforts against SARS-CoV-2. The present study suggests the potential anti-SARS-CoV-2 activities of 35 reported VEGFR-2 inhibitors containing the amide and urea linkers. Nineteen members revealed the best in silico results and hence, were subjected to further molecular dynamics (MD) simulation for their inhibitory activities against SARS-CoV-2 Mpro across 100 ns. Furthermore, MD simulations followed by calculations of the free energy of binding were also carried out for the most promising ligand-pocket complexes from docking studies to clarify some information on their dynamic and thermodynamic properties and approve the docking results. These results we obtained probably provided an excellent lead candidate for the development of therapeutic drugs against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanadelaslam El-Hddad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Omar Almukhtar University, Al Bayda, Libya
| | - Mohamed Sobhy
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Ahmed Ayoub
- HTuO Biosciences Inc., Vancouver, BC, Canada
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Husseiny EM, Abulkhair HS, El-Hddad SS, Osama N, El-Zoghbi MS. Aminopyridone-linked benzimidazoles: a fragment-based drug design for the development of CDK9 inhibitors. Future Med Chem 2023; 15:1213-1232. [PMID: 37584185 DOI: 10.4155/fmc-2023-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Aim: A fragment-based design and synthesis of three novel series of aminopyridone-linked benzimidazoles as potential anticancer candidates with significant CDK9 inhibition was implemented. Materials & methods: All synthesized compounds were submitted to National Cancer Institute, 60 cell lines and seven-dose cytotoxicity toward three cancer cells. Results: Compounds 2, 4a, 4c, 4d, 6a and 8a exhibited significant cytotoxicity and selectivity with IC50 range of 7.61-57.75 μM. Regarding the mechanism either in vitro or in silico, 4a, 6a and 8a displayed potent CDK9 inhibition with IC50 value of 0.424-8.461 μM. Compound 6a arrested the cell cycle at S phase and induced apoptosis in MCF-7 cells. Conclusion: Compound 6a is a promising CDK9 inhibitor that warrants additional research for cancer treatment.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11754, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, New Damietta, 34518, Egypt
| | - Sanadelaslam Sa El-Hddad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Omar Almukhtar University, Al Bayda, 102345, Libya
| | - Nada Osama
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shibin Elkom, Menoufia, 32511, Egypt
| | - Mona S El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Koum, 32511, Egypt
| |
Collapse
|
12
|
El-Kalyoubi S, Elbaramawi SS, Eissa AG, Al-Ageeli E, Hobani YH, El-Sharkawy AA, Mohamed HT, Al-Karmalawy AA, Abulkhair HS. Design and synthesis of novel uracil-linked Schiff bases as dual histone deacetylase type II/topoisomerase type I inhibitors with apoptotic potential. Future Med Chem 2023; 15:937-958. [PMID: 37381751 DOI: 10.4155/fmc-2023-0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Aim: The previously reported dual histone deacetylase type II (HDAC II) / topoisomerase type I (Topo I) inhibitors suffer pharmacokinetic limitations because of their huge molecular weights. Materials & methods: We report the design and synthesis of a smarter novel set of uracil-linked Schiff bases (19-30) as dual HDAC II/Topo I inhibitors keeping the essential pharmacophoric features. Cytotoxicity of all compounds was assessed against three cancer cell lines. Studies of their effects on the apoptotic BAX and antiapoptotic BCL2 genes, molecular docking studies, and absorption, distribution, metabolism and excretion studies were conducted. Results: Compounds 22, 25 and 30 exhibited significant activities. The bromophenyl derivative 22 displayed the best selectivity index, with IC50 values against HDAC II and Topo I of 1.12 and 13.44 μM, respectively. Conclusion: Compound 22 could be considered a lead HDAC II/Topo I inhibitor.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Samar S Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed G Eissa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Essam Al-Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, 82621, Saudi Arabia
| | - Yahya Hasan Hobani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 82621, Saudi Arabia
| | - Aya Ali El-Sharkawy
- Zoology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
- Faculty of Biotechnology, October University for Modern Sciences & Arts, Giza, 12451, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| |
Collapse
|
13
|
Musa A, Ihmaid SK, Hughes DL, Said MA, Abulkhair HS, El-Ghorab AH, Abdelgawad MA, Shalaby K, Shaker ME, Alharbi KS, Alotaibi NH, Kays DL, Taylor LJ, Parambi DGT, Alzarea SI, Al-Karmalawy AA, Ahmed HEA, El-Agrody AM. The anticancer and EGFR-TK/CDK-9 dual inhibitory potentials of new synthetic pyranopyrazole and pyrazolone derivatives: X-ray crystallography, in vitro, and in silico mechanistic investigations. J Biomol Struct Dyn 2023; 41:12411-12425. [PMID: 36661285 DOI: 10.1080/07391102.2023.2167000] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Treatment options for the management of breast cancer are still inadequate. This inadequacy is attributed to the lack of effective targeted medications, often resulting in the recurrence of metastatic disorders. Cumulative evidence suggests that epidermal growth factor receptor (EGFR-TK) and cyclin-dependent kinases-9 (CDK-9) overexpression correlates with worse overall survival in breast cancer patients. Pyranopyrazole and pyrazolone are privileged options for the development of anticancer agents. Inspired by this proven scientific fact, we report here the synthesis of two new series of suggested anticancer molecules incorporating both heterocycles together with their characterization by IR, 1H NMR, 13C NMR, 13C NMR-DEPT, and X-ray diffraction methods. An attempt to get the pyranopyrazole-gold complexes was conducted but unexpectedly yielded benzylidene-2,4-dihydro-3H-pyrazol-3-one instead. This unexpected result was confirmed by X-ray crystallographic analysis. All newly synthesized compounds were assessed for their anti-proliferative activity against two different human breast cancer cells, and the obtained results were compared with the reference drug Staurosporine. The target compounds revealed variable cytotoxicity with IC50 at a low micromolar range with superior selectivity indices. Target enzyme EGFR-TK and CDK-9 assays showed that compounds 22 and 23 effectively inhibited both biological targets with IC50 values of 0.143 and 0.121 µM, respectively. Molecular docking experiments and molecular dynamics simulation were also conducted to further rationalize the in vitro obtained results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Saleh K Ihmaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University, Irbid, Jordon
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Musa A Said
- Chemistry Department, College of Sciences, Taibah University, Medina, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, Egypt
| | - Ahmed H El-Ghorab
- Department of Chemistry, College of Science, Jouf university, Sakaka, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf university, Sakaka, Aljouf, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Deborah L Kays
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Laurence J Taylor
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf university, Sakaka, Aljouf, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
14
|
Malebari AM, E A Ahmed H, Ihmaid SK, Omar AM, Muhammad YA, Althagfan SS, Aljuhani N, A A El-Sayed AA, Halawa AH, El-Tahir HM, Turkistani SA, Almaghrabi M, K B Aljohani A, El-Agrody AM, Abulkhair HS. Exploring the dual effect of novel 1,4-diarylpyranopyrazoles as antiviral and anti-inflammatory for the management of SARS-CoV-2 and associated inflammatory symptoms. Bioorg Chem 2023; 130:106255. [PMID: 36403336 PMCID: PMC9671780 DOI: 10.1016/j.bioorg.2022.106255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
COVID-19 and associated substantial inflammations continue to threaten humankind triggering death worldwide. So, the development of new effective antiviral and anti-inflammatory medications is a major scientific goal. Pyranopyrazoles have occupied a crucial position in medicinal chemistry because of their biological importance. Here, we report the design and synthesis of a series of sixteen pyranopyrazole derivatives substituted with two aryl groups at N-1 and C-4. The designed compounds are suggested to show dual activity to combat the emerging Coronaviruses and associated substantial inflammations. All compounds were evaluated for their in vitro antiviral activity and cytotoxicity against SARS-CoV infected Vero cells. As well, the in vitro assay of all derivatives against the SARS-CoV Mpro target was performed. Results revealed the potential of three pyranopyrazoles (22, 27, and 31) to potently inhibit the viral main protease with IC50 values of 2.01, 1.83, and 4.60 μM respectively compared with 12.85 and 82.17 μM for GC-376 and lopinavir. Additionally, in vivo anti-inflammatory testing for the most active compound 27 proved its ability to reduce levels of two cytokines (TNF-α and IL-6). Molecular docking and dynamics simulation revealed consistent results with the in vitro enzymatic assay and indicated the stability of the putative complex of 27 with SARS-CoV-2 Mpro. The assessment of metabolic stability and physicochemical properties of 27 have also been conducted. This investigation identified a set of metabolically stable pyranopyrazoles as effective anti-SARS-CoV-2 Mpro and suppressors of host cell cytokine release. We believe that the new compounds deserve further chemical optimization and evaluation for COVID-19 treatment.
Collapse
Affiliation(s)
- Azizah M Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| | - Saleh K Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University Irbid, Jordan
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia; Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yosra A Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| | - Sultan S Althagfan
- Clinical and Hospital Pharmacy Department, Taibah University, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Naif Aljuhani
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abdel-Aziz A A El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia; Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Heba M El-Tahir
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | | | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| |
Collapse
|
15
|
Kumar H, Aggarwal N, Marwaha MG, Deep A, Chopra H, Matin MM, Roy A, Emran TB, Mohanta YK, Ahmed R, Mohanta TK, Saravanan M, Marwaha RK, Al-Harrasi A. Thiazolidin-2,4-Dione Scaffold: An Insight into Recent Advances as Antimicrobial, Antioxidant, and Hypoglycemic Agents. Molecules 2022; 27:6763. [PMID: 36235304 PMCID: PMC9572748 DOI: 10.3390/molecules27196763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Heterocyclic compounds containing nitrogen and sulfur, especially those in the thiazole family, have generated special interest in terms of their synthetic chemistry, which is attributable to their ubiquitous existence in pharmacologically dynamic natural products and also as overwhelmingly powerful agrochemicals and pharmaceuticals. The thiazolidin-2,4-dione (TZD) moiety plays a central role in the biological functioning of several essential molecules. The availability of substitutions at the third and fifth positions of the Thiazolidin-2,4-dione (TZD) scaffold makes it a highly utilized and versatile moiety that exhibits a wide range of biological activities. TZD analogues exhibit their hypoglycemic activity by improving insulin resistance through PPAR-γ receptor activation, their antimicrobial action by inhibiting cytoplasmic Mur ligases, and their antioxidant action by scavenging reactive oxygen species (ROS). In this manuscript, an effort has been made to review the research on TZD derivatives as potential antimicrobial, antioxidant, and antihyperglycemic agents from the period from 2010 to the present date, along with their molecular mechanisms and the information on patents granted to TZD analogues.
Collapse
Affiliation(s)
- Harsh Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Minakshi Gupta Marwaha
- Department of Pharmaceutical Sciences, Sat Priya College of Pharmacy, Rohtak 124001, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Hitesh Chopra
- College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Mohammed M. Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
16
|
Othman EM, Fayed EA, Husseiny EM, Abulkhair HS. The effect of novel synthetic semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles on the apoptotic markers, VEGFR-2, and cell cycle of myeloid leukemia. Bioorg Chem 2022; 127:105968. [PMID: 35728289 DOI: 10.1016/j.bioorg.2022.105968] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
Abstract
Vascular Endothelial Growth Factor II (VEGFR-2) has been proved as a rational target in cancer therapy. Although currently prescribed VEGFR-2 inhibitors are showing potent antitumor activity, they are often causing serious unwanted effects, restricting their extensive use as chemotherapeutics. Herein, after analyzing the structures of the effective VEGFR-2 inhibitor molecules, we report the synthesis of a new set of semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles with expected potency of inhibiting the VEGFR-2 signaling. The design of new compounds considered maintaining the essential pharmacophoric features of sorafenib for effective binding with the receptor target. All compounds have been evaluated for their growth inhibition effect against a panel of sixty cancer cells at the National Cancer Institute. Leukemia cancer cells, especially HL-60 and SR, were shown to be the most sensitive to the cytotoxic effect of new compounds. Thiosemicarbazones 21, 26, and 30 exhibited the best activity against almost all tested cancer cells. Therefore, a set of subsequent in vitro biological evaluations has been performed to understand the mechanistic effect of these compounds further. They inhibited the VEGFR-2 with IC50 values of 0.128, 0.413, and 0.067 µM respectively compared with 0.048 µM of Sorafenib. The probable mechanistic effect of 30 has been further evaluated on a number of apoptotic and antiapoptotic markers including BAX, BCL2, caspase-3, and caspase-9. Results revealed the potential of the thiosemicarbazone-linked triazole 30 to induce both the early and the late apoptosis, elevate BAX/BCL2 ratio, induce caspase-3 & caspase-9, and arrest the HL-60 cell cycle at the G2/M and G0-G1 phases. Molecular docking of new semicarbazones and thiosemicarbazones into the proposed biological target receptor has also been performed. Results of docking studies proved the potential of new semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles to effectively bind with crucial residues of the VEGFR-2 binding pocket.
Collapse
Affiliation(s)
- Esraa M Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Eman A Fayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| |
Collapse
|
17
|
Othman EM, Fayed EA, Husseiny EM, Abulkhair HS. Apoptosis induction, PARP-1 inhibition, and cell cycle analysis of leukemia cancer cells treated with novel synthetic 1,2,3-triazole-chalcone conjugates. Bioorg Chem 2022; 123:105762. [DOI: 10.1016/j.bioorg.2022.105762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
|
18
|
El-Adl K, Sakr HM, Yousef RG, Mehany ABM, Abulkhair HS, Eissa IH. New quinoxalin-2(1H)-one-derived VEGFR-2 inhibitors: Design, synthesis, in vitro anticancer evaluations, in silico ADMET, and docking studies. Arch Pharm (Weinheim) 2022; 355:e2200048. [PMID: 35437829 DOI: 10.1002/ardp.202200048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
More than 70% of cancer patients who are treated with chemotherapeutics do not show a durable response. As part of the global plan seeking new effective chemotherapeutics, here, we report the synthesis and in vitro and computational studies of new lenvatinib and sorafenib analog quinoxalines as vascular endothelial growth factor receptor II (VEGFR-2) tyrosine kinase inhibitors. The central quinolone and pyridine moieties of the Food and Drug Administration-approved anticancer agents lenvatinib and sorafenib were replaced with the versatile quinoxaline scaffold that has been exploited for developing potent cytotoxic agents. With some minor structural optimizations, all the other pharmacophoric features of lenvatinib and sorafenib were maintained. Accordingly, three new sets of quinoxalines were synthesized to evaluate their activity against liver, colorectal, and breast malignancies. The results obtained in the in vitro cytotoxicity evaluation study revealed the superior activity of three derivatives (20, 25, and 29) compared with that of doxorubicin and sorafenib. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling and docking of 20, 25, and 29 into the VEGFR-2 receptor were also performed. Results of in silico studies showed the potential of the designed compounds to bind effectively with a number of key residues. The obtained in vitro cytotoxic activity and ADMET profiles of compounds 20, 25, and 29 suggested that they should be subjected to further structural optimizations to develop new candidates in cancer treatment protocols.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Helmy M Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Abdelgawad MA, El-Adl K, El-Hddad SSA, Elhady MM, Saleh NM, Khalifa MM, Khedr F, Alswah M, Nayl AA, Ghoneim MM, Abd El-Sattar NEA. Design, Molecular Docking, Synthesis, Anticancer and Anti-Hyperglycemic Assessments of Thiazolidine-2,4-diones Bearing Sulfonylthiourea Moieties as Potent VEGFR-2 Inhibitors and PPARγ Agonists. Pharmaceuticals (Basel) 2022; 15:ph15020226. [PMID: 35215339 PMCID: PMC8880361 DOI: 10.3390/ph15020226] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Newly designed thiazolidine-2,4-diones 3–7a–c were synthesized, and their anticancer activities were screened against three cancer lines. They showed potent activities against HepG2 compared to the other HCT116 and MCF-7 tumor cell lines. Compounds 7c and 6c were detected as highly effective derivatives against MCF-7 (IC50 = 7.78 and 8.15 µM), HCT116 (IC50 = 5.77 and 7.11 µM) and HepG2 (IC50 = 8.82 and 8.99 µM). The highly effective derivatives 6a–c and 7a–c were tested against VERO normal cell lines. All derivatives were evaluated for their VEGFR-2 inhibitory actions and demonstrated high to low activities, with IC50 values varying from 0.08 to 0.93 µM. Moreover, derivatives 5a–c, 6a–c and 7a–c were assessed to verify their in vitro binding affinities to PPARγ and insulin-secreting activities. Finally, docking studies were performed to explore their affinities and binding modes toward both VEGFR-2 and PPARγ receptors.
Collapse
Affiliation(s)
- Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (M.M.K.); (F.K.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo 11785, Egypt
- Correspondence: or or
| | | | - Mostafa M. Elhady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt;
| | - Nashwa M. Saleh
- Department of Chemistry, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11754, Egypt;
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (M.M.K.); (F.K.)
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (M.M.K.); (F.K.)
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Nour E. A. Abd El-Sattar
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt;
| |
Collapse
|
20
|
Othman EM, Fayed EA, Husseiny EM, Abulkhair HS. Rationale design, synthesis, cytotoxicity evaluation, and in silico mechanistic studies of novel 1,2,3-triazoles with potential anticancer activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02061k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new set of 1,2,3-triazoles was designed and synthesized to evaluate their potential to inhibit the growth of cancer cells.
Collapse
Affiliation(s)
- Esraa M. Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Eman A. Fayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Ebtehal M. Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt
| |
Collapse
|
21
|
Aljuhani A, Ahmed HEA, Ihmaid SK, Omar AM, Althagfan SS, Alahmadi YM, Ahmad I, Patel H, Ahmed S, Almikhlafi MA, El-Agrody AM, Zayed MF, Turkistani SA, Abulkhair SH, Almaghrabi M, Salama SA, Al-Karmalawy AA, Abulkhair HS. In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-M Pro inhibitors. RSC Adv 2022; 12:26895-26907. [PMID: 36320844 PMCID: PMC9494209 DOI: 10.1039/d2ra04015h] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
An essential target for COVID-19 is the main protease of SARS-CoV-2 (Mpro). With the objective of targeting this receptor, a novel set of pyrido[1,2-a]pyrrolo[2,3-d]pyrimidines with terminal carboxamide fragments was designed, synthesized, and considered as an initial motif for the creation of effective pan-coronavirus inhibitors. Accordingly, nine derivatives (21–29) have been introduced for in vitro assay to evaluate their antiviral activity and cytotoxicity effect against COVID-19 virus using Vero cells. The obtained data revealed that the majority of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with weak or even no detectable cytotoxic effect on Vero cells. Extensive molecular docking simulations highlighted proper non-covalent interaction of new compounds within the binding pocket of Mpro as a potential target for their antiviral activity. In vitro assay for all the synthesized derivatives against the viral Mpro target indicated that compounds 25 and 29 have promising inhibitory activity with IC50 values at low micromolar concentrations. The molecular dynamic simulation results predicted the stability of compound 29 in the binding cavity of SARS-CoV-2 Mpro and hence supported the high inhibitory activity shown by the In vitro assay. These results suggested that compounds 25 and 29 merit further investigations as promising drug candidates for the management of SARS-CoV-2. An essential target for COVID-19 is the main protease of SARS-CoV-2 (Mpro).![]()
Collapse
Affiliation(s)
- Ateyatallah Aljuhani
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Hany E. A. Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Saleh K. Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Sultan S. Althagfan
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Yaser M. Alahmadi
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sahar Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assuit, Egypt
| | - Mohannad A. Almikhlafi
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ahmed M. El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed F. Zayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia
| | | | - Shorouk H. Abulkhair
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University (Girls), Nasr City 11754, Cairo, Egypt
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Samir A. Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University – Egypt, International Coastal Road, New Damietta 34518, Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University – Egypt, International Coastal Road, New Damietta 34518, Egypt
| |
Collapse
|
22
|
El-Adl K, Abdel-Rahman AAH, Omar AM, Alswah M, Saleh NM. Design, synthesis, anticancer, and docking of some S- and/or N-heterocyclic derivatives as VEGFR-2 inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100237. [PMID: 34862655 DOI: 10.1002/ardp.202100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Novel heterocyclic derivatives (4-22) were designed, synthesized, and evaluated against hepatocellular carcinoma type (HepG2) and breast cancer (MCF-7) cells, targeting the VEGFR-2 enzyme. Compounds 18, 10, 13, 11, and 14 were found to be the most potent derivatives against both the HepG2 and MCF-7 cancer cell lines, with GI50 = 2.11, 2.54 µM, 3.16, 3.64 µM, 3.24, 6.99 µM, 7.41, 6.49 µM and 8.08, 10.46 µM, respectively. Compounds 18 and 10 showed higher activities against both HepG2 and MCF-7 cells than sorafenib (GI50 = 9.18, 5.47 µM, respectively) and doxorubicin (GI50 = 7.94, 8.07 µM, respectively). Compounds 13, 11, and 14 showed higher activities than sorafenib against HepG2 cancer cells, but lower activities against MCF-7 cells. Compounds 18, 13, and 10 were more potent than sorafenib, inhibiting vascular endothelial growth factor receptor-2 (VEGFR-2) at GI50 values of 0.05, 0.06, and 0.08 µM, respectively. Compound 11 inhibited VEGFR-2 at an IC50 value of 0.10 µM, which is equipotent to sorafenib. Compound 14 inhibited VEGFR-2 at an IC50 value of 0.11 µM, which is nearly equipotent to sorafenib. The tested compounds have more selectivity against cancer cell lines. Compounds 18, 10, 13, 11, and 14 are, respectively, 16.76, 9.24, 6.06, 2.78, and 2.85 times more toxic in HePpG2 cancer cells than in VERO normal cells. Also, compounds 18, 10, 13, 11, and 14 are, respectively, 14.07, 8.02, 2.81, 3.18, and 2.20 times more toxic in MCF-7 than in VERO normal cells. The most active compounds, 10, 13, and 18, showed a good ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | | | - Asmaa M Omar
- Chemistry Department, Menoufia University, Shebin El-Koam, Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Nashwa M Saleh
- Department of Chemistry, Al-Azhar University (Girls Branch), Cairo, Egypt
| |
Collapse
|
23
|
Khedr F, Ibrahim MK, Eissa IH, Abulkhair HS, El-Adl K. Phthalazine-based VEGFR-2 inhibitors: Rationale, design, synthesis, in silico, ADMET profile, docking, and anticancer evaluations. Arch Pharm (Weinheim) 2021; 354:e2100201. [PMID: 34411344 DOI: 10.1002/ardp.202100201] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023]
Abstract
In the designed compounds, a new linker was inserted in the form of fragments with verified VEGFR-2 inhibitory potential, including an α,β-unsaturated ketonic fragment, pyrazole, and pyrimidine. Also, new distal hydrophobic moieties were attached to these linkers that are expected to increase the hydrophobic interaction with VEGFR-2 and, consequently, the affinity. These structural optimizations have led us to identify the novel dihydropyrazole derivative 6e as a promising hit molecule. All the new derivatives were evaluated to assess their anticancer activity against three human cancer cell lines, including HepG2, HCT-116, and MCF-7. The results of the in vitro anticancer evaluation study revealed the moderate to excellent cytotoxicity of 6c , 6e , 6g , and 7b , with IC50 values in the low micromolar range. The inhibitory activity of VEGFR-2 was investigated for 16 of the designed compounds. The enzyme assay results of the new compounds were compared with those of sorafenib as a reference VEGFR-2 inhibitor. The obtained results demonstrated that our derivatives are potent VEGFR-2 inhibitors. The most potent derivatives 6c , 6e , 6g , and 7b showed IC50 values in the range of 0.11-0.22 µM. Molecular docking and pharmacokinetic studies were also conducted to rationalize the VEGFR-2 inhibitory activity and to evaluate the ability of the most potent derivatives to be developed as good drug candidates.
Collapse
Affiliation(s)
- Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
24
|
El-Shershaby MH, Ghiaty A, Bayoumi AH, Ahmed HEA, El-Zoghbi MS, El-Adl K, Abulkhair HS. 1,2,4-Triazolo[4,3-c]quinazolines: a bioisosterism-guided approach towards the development of novel PCAF inhibitors with potential anticancer activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj00710f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Targeting PCAF with small inhibitor molecules has emerged as a potential therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
| | - Adel Ghiaty
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Mona S. El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy
- Menoufia University
- Shebin El-Koum
- Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design, Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
- Department of Pharmaceutical Chemistry
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| |
Collapse
|
25
|
El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Alswah M, Ahmed HEA, Al-Karmalamy AA, Abulkhair HS. The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj02838c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resistance of pathogenic microbes to currently available antimicrobial agents has been considered a global alarming concern.
Collapse
Affiliation(s)
- Mohamed H. El-Shershaby
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Kamal M. El-Gamal
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design
- Faculty of Pharmacy
- Al-Azhar University
- Cairo
- Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| | - Ahmed A. Al-Karmalamy
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Horus University - Egypt
- New Damietta
- Egypt
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Nasr City 11884
- Egypt
| |
Collapse
|