1
|
Patalano SD, Fuxman Bass P, Fuxman Bass JI. Transcription factors in the development and treatment of immune disorders. Transcription 2025; 16:118-140. [PMID: 38100543 PMCID: PMC11970766 DOI: 10.1080/21541264.2023.2294623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.
Collapse
Affiliation(s)
- Samantha D. Patalano
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Paula Fuxman Bass
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I. Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Bulusu SN, Mariaselvam CM, Shah S, Kommoju V, Kavadichanda C, Harichandrakumar KT, Thabah M, Negi VS. Type I interferon gene expression signature as a marker to predict response to cyclophosphamide based treatment in proliferative lupus nephritis. Lupus 2024; 33:1069-1081. [PMID: 39033304 DOI: 10.1177/09612033241266779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
OBJECTIVES To assess the longitudinal effect of cyclophosphamide (CYC) treatment on type-I interferon (IFN) signature in proliferative lupus nephritis (LN) and its role in predicting treatment response. METHODS Fifty-four biopsy proven proliferative LN patients scheduled to receive high-dose (HD) or low-dose (LD) CYC were recruited and followed up for six months. At six months, patients were classified as clinical responders (CR) or non-responders (NR) to treatment, using the EULAR/EDTA criteria. An IFN-gene based score (IGS) was developed from the mean log-transformed gene expression of MX1, OAS1, IFIT1, OASL, IFIT4, LY6E, IRF7 at baseline, three and six months. Longitudinal changes of IGS within and between groups were assessed and ΔIGS, which is the difference in IGS between baseline and three months was calculated. Independent predictors of non-response were identified and an ROC analysis was performed to evaluate their utility to predict NR. RESULTS There was a dynamic change in IGS within the HD, LD, CR, and NR groups. Compared to baseline, there was a significant decrease in IGS at three months in HD and LD groups (HD group: 2.01 to 1.14, p = .001; LD group = 2.01 to 0.81, p < .001), followed by a significant increase from three to six months in LD group (LD: 0.81 to 1.51, p = .03; HD: 1.14 to 1.54, p = .300). A decrease in IGS from baseline to three months was seen in both CR (2.13 to 0.79, p < .001) and NR groups (1.83 to 1.27, p = .046), and a significant increase from three to six months was observed only in the CR group (CR: 0.79 to 1.57, p = .006; NR: 1.27 to 1.46, p = 1). ΔIGS (baseline to three months) was higher in CR compared to NR group (-1.339 vs -0.563, p = .017). ROC analysis showed that the model comprising of 0.81 fold decrease in IGS from baseline to three months, endocapillary hypercellularity and interstitial inflammation on renal histopathology predicted non-response with a sensitivity of 83.3% and specificity of 71.4%. CONCLUSION In proliferative LN, treated with HD or LD-CYC, combined model comprising of decrease in IGS score by 0.81 fold from baseline to three months, along with important histopathological features such as endocapillary hypercellularity and interstitial inflammation had better predictive capability for non-response.
Collapse
Affiliation(s)
- Sree Nethra Bulusu
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Christina Mary Mariaselvam
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sanket Shah
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vallayyachari Kommoju
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Chengappa Kavadichanda
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Molly Thabah
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
3
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Zhou Y, Song HM. Type I interferon pathway in pediatric systemic lupus erythematosus. World J Pediatr 2024; 20:653-668. [PMID: 38914753 PMCID: PMC11269505 DOI: 10.1007/s12519-024-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The role of type I interferon (IFN-I) signaling in systemic lupus erythematosus (SLE) has been well established. However, unanswered questions remain regarding the applicability of these findings to pediatric-onset SLE. The aim of this review is to provide an overview of the novel discoveries on IFN-I signaling in pediatric-onset SLE. DATA SOURCES A literature search was conducted in the PubMed database using the following keywords: "pediatric systemic lupus erythematosus" and "type I interferon". RESULTS IFN-I signaling is increased in pediatric SLE, largely due to the presence of plasmacytoid dendritic cells and pathways such as cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase 1 and Toll-like receptor (TLR)4/TLR9. Neutrophil extracellular traps and oxidative DNA damage further stimulate IFN-I production. Genetic variants in IFN-I-related genes, such as IFN-regulatory factor 5 and tyrosine kinase 2, are linked to SLE susceptibility in pediatric patients. In addition, type I interferonopathies, characterized by sustained IFN-I activation, can mimic SLE symptoms and are thus important to distinguish. Studies on interferonopathies also contribute to exploring the pathogenesis of SLE. Measuring IFN-I activation is crucial for SLE diagnosis and stratification. Both IFN-stimulated gene expression and serum IFN-α2 levels are common indicators. Flow cytometry markers such as CD169 and galectin-9 are promising alternatives. Anti-IFN therapies, such as sifalimumab and anifrolumab, show promise in adult patients with SLE, but their efficacy in pediatric patients requires further investigation. Janus kinase inhibitors are another treatment option for severe pediatric SLE patients. CONCLUSIONS This review presents an overview of the IFN-I pathway in pediatric SLE. Understanding the intricate relationship between IFN-I and pediatric SLE may help to identify potential diagnostic markers and targeted therapies, paving the way for improved patient care and outcomes.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Hong-Mei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
5
|
Zhou L, Cai SZ, Dong LL. Recent advances in pathogenesis, diagnosis, and therapeutic approaches for digestive system involvement in systemic lupus erythematosus. J Dig Dis 2024; 25:410-423. [PMID: 39317429 DOI: 10.1111/1751-2980.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the presence of large amounts of autoantibodies and immune complex formation. Because of their atypical clinical symptoms, SLE patients with digestive system involvement may not be recognized or treated precisely and extensively. Clinicians should pay close attention to SLE with digestive system involvement, as these conditions can easily worsen the condition and possibly endanger the patient's life. In this review we summarized the pathogenesis, pathological characteristics, clinical manifestations, diagnosis, and therapies for digestive system involvement in SLE.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shao Zhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ling Li Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
6
|
Laurynenka V, Harley JB. The 330 risk loci known for systemic lupus erythematosus (SLE): a review. FRONTIERS IN LUPUS 2024; 2:1398035. [PMID: 39624492 PMCID: PMC11609870 DOI: 10.3389/flupu.2024.1398035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
An in-depth literature review of up to 2023 reveals 330 risk loci found by genetic association at p ≤ 5 × 10-8, with systemic lupus erythematosus (SLE) in at least one study of 160 pertinent publications. There are 225 loci found in East Asian (EAS), 106 in European (EU), 11 in African-American (AA), 18 Mixed American (MA), and 1 in Egyptian ancestries. Unexpectedly, most of these associations are found to date at p ≤ 5 × 10-8 in a single ancestry. However, the EAS and EU share 40 risk loci that are independently established. The great majority of the identified loci [250 (75.8%) of 330] do not contain a variant that changes an amino acid sequence. Meanwhile, most overlap with known regulatory elements in the genome [266 (80.6%) of 330], suggesting a major role for gene regulation in the genetic mechanisms of SLE. To evaluate the pathways altered by SLE-associated variants, we generated gene sets potentially regulated by SLE loci that consist of the nearest genes, published attributions, and genes predicted by computational tools. The most useful insights, at present, suggest that SLE genetic mechanisms involve (1) the regulation of both adaptive and innate immune responses including immune cell activation and differentiation; (2) the regulation of production and response to cytokines, including type I interferon; (3) apoptosis; (4) the sensing and removal of immune complexes and apoptotic particles; and (5) immune response to infections, including Epstein-Barr Virus, and symbiont microorganisms. These mechanisms affected by SLE genes involve multiple cell types, including B cells/plasma cells, T cells, dendritic cells, monocytes/macrophages, natural killer cells, neutrophils, and endothelial cells. The genetics of SLE from GWAS data reveal an incredibly complex profusion of interrelated molecular processes and interacting cells participating in SLE pathogenesis, mostly unified in the molecular regulation of inflammatory responses. These genetic associations in lupus and affected molecular pathways not only give us an understanding of the disease pathogenesis but may also help in drug discoveries for SLE treatment.
Collapse
Affiliation(s)
- Viktoryia Laurynenka
- US Department of Veterans Affairs Medical Center, Research Service, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati, OH, United States
| | - John B. Harley
- US Department of Veterans Affairs Medical Center, Research Service, Cincinnati, OH, United States
- Cincinnati Education and Research for Veterans Foundation (CERVF), Cincinnati, OH, United States
| |
Collapse
|
7
|
Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol 2022; 18:575-590. [PMID: 36097207 DOI: 10.1038/s41584-022-00826-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Type I interferons have been suspected for decades to have a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). Evidence has now overturned several long-held assumptions about how type I interferons are regulated and cause pathological conditions, providing a new view of SLE pathogenesis that resolves longstanding clinical dilemmas. This evidence includes data on interferons in relation to genetic predisposition and epigenetic regulation. Importantly, data are now available on the role of interferons in the early phases of the disease and the importance of non-haematopoietic cellular sources of type I interferons, such as keratinocytes, renal tubular cells, glial cells and synovial stromal cells, as well as local responses to type I interferons within these tissues. These local effects are found not only in inflamed target organs in established SLE, but also in histologically normal skin during asymptomatic preclinical phases, suggesting a role in disease initiation. In terms of clinical application, evidence relating to biomarkers to characterize the type I interferon system is complex, and, notably, interferon-blocking therapies are now licensed for the treatment of SLE. Collectively, the available data enable us to propose a model of disease pathogenesis that invokes the unique value of interferon-targeted therapies. Accordingly, future approaches in SLE involving disease reclassification and preventative strategies in preclinical phases should be investigated.
Collapse
Affiliation(s)
- Antonios Psarras
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
8
|
Jones EL, Laidlaw SM, Dustin LB. TRIM21/Ro52 - Roles in Innate Immunity and Autoimmune Disease. Front Immunol 2021; 12:738473. [PMID: 34552597 PMCID: PMC8450407 DOI: 10.3389/fimmu.2021.738473] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
TRIM21 (Ro52/SSA1) is an E3 ubiquitin ligase with key roles in immune host defence, signal transduction, and possibly cell cycle regulation. It is also an autoantibody target in Sjögren's syndrome, systemic lupus erythematosus, and other rheumatic autoimmune diseases. Here, we summarise the structure and function of this enzyme, its roles in innate immunity, adaptive immunity and cellular homeostasis, the pathogenesis of autoimmunity against TRIM21, and the potential impacts of autoantibodies to this intracellular protein.
Collapse
Affiliation(s)
- Esther L Jones
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Stephen M Laidlaw
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Lynn B Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Guiteras J, Ripoll É, Bolaños N, De Ramon L, Fontova P, Lloberas N, Cruzado JM, Aràn JM, Aviñó A, Eritja R, Gomà M, Taco R, Grinyó JM, Torras J. The gene silencing of IRF5 and BLYSS effectively modulates the outcome of experimental lupus nephritis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:807-821. [PMID: 33996261 PMCID: PMC8105598 DOI: 10.1016/j.omtn.2021.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus is a highly complex and heterogeneous autoimmune disease mostly mediated by B cells. It is characterized by circulating self-reactive antibodies that deposit and form immune complexes in kidney, leading to irreparable tissue damage and resulting in lupus nephritis. In a New Zealand Black X New Zealand White F1 mouse model, we tested two different small interfering RNA (siRNA) silencing treatments against interferon regulatory factor 5 (IRF5) and B cell-activating factor (BLYSS) expression and their combination in a second set of animals. The administration of these two siRNAs separately prevented the progression of proteinuria and albuminuria at similar levels to that in cyclophosphamide animals. These treatments effectively resulted in a reduction of serum anti-double-stranded DNA (dsDNA) antibodies and histopathological renal score compared with non-treated group. Treated groups showed macrophage, T cell, and B cell infiltrate reduction in renal tissue. Moreover, kidney gene expression analysis revealed that siRNA treatments modulated very few pathways in contrast to cyclophosphamide, despite showing similar therapeutic effects. Additionally, the combined therapy tested in a second set of animals, in which the disease appeared more virulent, exhibited better results than monotherapies in the disease progression, delaying the disease onset and ameliorating the disease outcome. Herein, we provide the potential therapeutic effect of both selective IRF5 and BLYSS silencing as an effective and potential treatment, particularly in early phases of the disease.
Collapse
Affiliation(s)
- Jordi Guiteras
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Élia Ripoll
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Núria Bolaños
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Laura De Ramon
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Pere Fontova
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Núria Lloberas
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Maria Cruzado
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Maria Aràn
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, 08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, 08034 Barcelona, Spain
| | - Montse Gomà
- Pathology Department, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Rosario Taco
- Pathology Department, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Maria Grinyó
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Juan Torras
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
10
|
Song S, De S, Nelson V, Chopra S, LaPan M, Kampta K, Sun S, He M, Thompson CD, Li D, Shih T, Tan N, Al-Abed Y, Capitle E, Aranow C, Mackay M, Clapp WL, Barnes BJ. Inhibition of IRF5 hyperactivation protects from lupus onset and severity. J Clin Invest 2021; 130:6700-6717. [PMID: 32897883 PMCID: PMC7685739 DOI: 10.1172/jci120288] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
The transcription factor IFN regulatory factor 5 (IRF5) is a central mediator of innate and adaptive immunity. Genetic variations within IRF5 are associated with a risk of systemic lupus erythematosus (SLE), and mice lacking Irf5 are protected from lupus onset and severity, but how IRF5 functions in the context of SLE disease progression remains unclear. Using the NZB/W F1 model of murine lupus, we show that murine IRF5 becomes hyperactivated before clinical onset. In patients with SLE, IRF5 hyperactivation correlated with dsDNA titers. To test whether IRF5 hyperactivation is a targetable function, we developed inhibitors that are cell permeable, nontoxic, and selectively bind to the inactive IRF5 monomer. Preclinical treatment of NZB/W F1 mice with an inhibitor attenuated lupus pathology by reducing serum antinuclear autoantibodies, dsDNA titers, and the number of circulating plasma cells, which alleviated kidney pathology and improved survival. Clinical treatment of MRL/lpr and pristane-induced lupus mice with an inhibitor led to significant reductions in dsDNA levels and improved survival. In ex vivo human studies, the inhibitor blocked SLE serum-induced IRF5 activation and reversed basal IRF5 hyperactivation in SLE immune cells. We believe this study provides the first in vivo clinical support for treating patients with SLE with an IRF5 inhibitor.
Collapse
Affiliation(s)
- Su Song
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Saurav De
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Rutgers Graduate School of Biomedical Sciences, Newark, New Jersey, USA
| | - Victoria Nelson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Samin Chopra
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Margaret LaPan
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kyle Kampta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Shan Sun
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Mingzhu He
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Dan Li
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Tiffany Shih
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Natalie Tan
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Eugenio Capitle
- Division of Allergy, Immunology and Rheumatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Cynthia Aranow
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Meggan Mackay
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - William L Clapp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
11
|
Okude H, Ori D, Kawai T. Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Front Immunol 2021; 11:625833. [PMID: 33633744 PMCID: PMC7902034 DOI: 10.3389/fimmu.2020.625833] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by pattern-recognition receptors (PRRs) is essential for eliciting antiviral immune responses by inducing the production of type I interferons (IFNs) and proinflammatory cytokines. Such responses are a prerequisite for mounting innate and pathogen-specific adaptive immune responses. However, host cells also use nucleic acids as carriers of genetic information, and the aberrant recognition of self-nucleic acids by PRRs is associated with the onset of autoimmune or autoinflammatory diseases. In this review, we describe the mechanisms of nucleic acid sensing by PRRs, including Toll-like receptors, RIG-I-like receptors, and DNA sensor molecules, and their signaling pathways as well as the disorders caused by uncontrolled or unnecessary activation of these PRRs.
Collapse
Affiliation(s)
- Haruna Okude
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
12
|
Hagberg N, Lundtoft C, Rönnblom L. Immunogenetics in systemic lupus erythematosus: Transitioning from genetic associations to cellular effects. Scand J Immunol 2020; 92:e12894. [DOI: 10.1111/sji.12894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Niklas Hagberg
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Christian Lundtoft
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Lars Rönnblom
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
13
|
Banga J, Srinivasan D, Sun CC, Thompson CD, Milletti F, Huang KS, Hamilton S, Song S, Hoffman AF, Qin YG, Matta B, LaPan M, Guo Q, Lu G, Li D, Qian H, Bolin DR, Liang L, Wartchow C, Qiu J, Downing M, Narula S, Fotouhi N, DeMartino JA, Tan SL, Chen G, Barnes BJ. Inhibition of IRF5 cellular activity with cell-penetrating peptides that target homodimerization. SCIENCE ADVANCES 2020; 6:eaay1057. [PMID: 32440537 PMCID: PMC7228753 DOI: 10.1126/sciadv.aay1057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/05/2020] [Indexed: 05/07/2023]
Abstract
The transcription factor interferon regulatory factor 5 (IRF5) plays essential roles in pathogen-induced immunity downstream of Toll-, nucleotide-binding oligomerization domain-, and retinoic acid-inducible gene I-like receptors and is an autoimmune susceptibility gene. Normally, inactive in the cytoplasm, upon stimulation, IRF5 undergoes posttranslational modification(s), homodimerization, and nuclear translocation, where dimers mediate proinflammatory gene transcription. Here, we report the rational design of cell-penetrating peptides (CPPs) that disrupt IRF5 homodimerization. Biochemical and imaging analysis shows that IRF5-CPPs are cell permeable, noncytotoxic, and directly bind to endogenous IRF5. IRF5-CPPs were selective and afforded cell type- and species-specific inhibition. In plasmacytoid dendritic cells, inhibition of IRF5-mediated interferon-α production corresponded to a dose-dependent reduction in nuclear phosphorylated IRF5 [p(Ser462)IRF5], with no effect on pIRF5 levels. These data support that IRF5-CPPs function downstream of phosphorylation. Together, data support the utility of IRF5-CPPs as novel tools to probe IRF5 activation and function in disease.
Collapse
Affiliation(s)
- Jaspreet Banga
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | | | - Chia-Chi Sun
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Cherrie D. Thompson
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Francesca Milletti
- Roche Innovation Center New York, 430 East 29th Street, New York, NY 10016, USA
| | - Kuo-Sen Huang
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Shannon Hamilton
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Su Song
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Ann F. Hoffman
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Yajuan Gu Qin
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Bharati Matta
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Margaret LaPan
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Qin Guo
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Gang Lu
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Dan Li
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Hong Qian
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - David R. Bolin
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Lena Liang
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Charles Wartchow
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Jin Qiu
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Michelle Downing
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Satwant Narula
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Nader Fotouhi
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Julie A. DeMartino
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Seng-Lai Tan
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Gang Chen
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
- Corresponding author. (B.J.B.); (G.C.)
| | - Betsy J. Barnes
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Corresponding author. (B.J.B.); (G.C.)
| |
Collapse
|
14
|
Li D, Matta B, Song S, Nelson V, Diggins K, Simpfendorfer KR, Gregersen PK, Linsley P, Barnes BJ. IRF5 genetic risk variants drive myeloid-specific IRF5 hyperactivation and presymptomatic SLE. JCI Insight 2020; 5:124020. [PMID: 31877114 DOI: 10.1172/jci.insight.124020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic variants within or near the interferon regulatory factor 5 (IRF5) locus associate with systemic lupus erythematosus (SLE) across ancestral groups. The major IRF5-SLE risk haplotype is common across populations, yet immune functions for the risk haplotype are undefined. We characterized the global immune phenotype of healthy donors homozygous for the major risk and nonrisk haplotypes and identified cell lineage-specific alterations that mimic presymptomatic SLE. Contrary to previous studies in B lymphoblastoid cell lines and SLE immune cells, IRF5 genetic variants had little effect on IRF5 protein levels in healthy donors. Instead, we detected basal IRF5 hyperactivation in the myeloid compartment of risk donors that drives the SLE immune phenotype. Risk donors were anti-nuclear antibody positive with anti-Ro and -MPO specificity, had increased circulating plasma cells and plasmacytoid dendritic cells, and had enhanced spontaneous NETosis. The IRF5-SLE immune phenotype was conserved over time and probed mechanistically by ex vivo coculture, indicating that risk neutrophils are drivers of the global immune phenotype. RNA-Seq of risk neutrophils revealed increased IRF5 transcript expression, IFN pathway enrichment, and decreased expression of ROS pathway genes. Altogether, the data support that individuals carrying the IRF5-SLE risk haplotype are more susceptible to environmental/stochastic influences that trigger chronic immune activation, predisposing to the development of clinical SLE.
Collapse
Affiliation(s)
- Dan Li
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Bharati Matta
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Su Song
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Victoria Nelson
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kirsten Diggins
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kim R Simpfendorfer
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Peter Linsley
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Betsy J Barnes
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
15
|
Correlations of Expression Levels of a Panel of Genes ( IRF5, STAT4, TNFSF4, MECP2, and TLR7) and Cytokine Levels (IL-2, IL-6, IL-10, IL-12, IFN- γ, and TNF- α) with Systemic Lupus Erythematosus Outcomes in Jordanian Patients. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1703842. [PMID: 31871930 PMCID: PMC6907047 DOI: 10.1155/2019/1703842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is characterized by systemic end-organ damage. We investigated the involvement of IRF5, TLR-7, MECP2, STAT4, and TNFSF4 genes and TNF-α, IFN-γ, IL-2, IL-12, IL-6, and IL-10 cytokines in SLE pathogenesis and in organ damage in Jordanian patients. Blood was collected from 51 patients and 50 controls. Expression levels of SLE genes in PBMCs and cytokine levels were determined using RT-PCR and ELISA, respectively. Expression levels of all genes and levels of TNF-α, IL-12, IL-6, and IL-10 were higher in SLE patients than those in controls (p < 0.05), whereas IL-2 level was lower. High STAT4 (α), TNFSF4, and IL-10 levels correlated with cardiovascular damage, and high MECP2 (α) and TNF-α correlated with renal damage. Pulmonary and musculoskeletal damages correlated with high levels of TNFSF4. We concluded that STAT4 and TNFSF4 genes with TNF-α and IL-10 cytokines could be used as biomarkers to assess SLE activity and manage treatment.
Collapse
|
16
|
Mariella E, Marotta F, Grassi E, Gilotto S, Provero P. The Length of the Expressed 3' UTR Is an Intermediate Molecular Phenotype Linking Genetic Variants to Complex Diseases. Front Genet 2019; 10:714. [PMID: 31475030 PMCID: PMC6707137 DOI: 10.3389/fgene.2019.00714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
In the last decades, genome-wide association studies (GWAS) have uncovered tens of thousands of associations between common genetic variants and complex diseases. However, these statistical associations can rarely be interpreted functionally and mechanistically. As the majority of the disease-associated variants are located far from coding sequences, even the relevant gene is often unclear. A way to gain insight into the relevant mechanisms is to study the genetic determinants of intermediate molecular phenotypes, such as gene expression and transcript structure. We propose a computational strategy to discover genetic variants affecting the relative expression of alternative 3′ untranslated region (UTR) isoforms, generated through alternative polyadenylation, a widespread posttranscriptional regulatory mechanism known to have relevant functional consequences. When applied to a large dataset in which whole genome and RNA sequencing data are available for 373 European individuals, 2,530 genes with alternative polyadenylation quantitative trait loci (apaQTL) were identified. We analyze and discuss possible mechanisms of action of these variants, and we show that they are significantly enriched in GWAS hits, in particular those concerning immune-related and neurological disorders. Our results point to an important role for genetically determined alternative polyadenylation in affecting predisposition to complex diseases, and suggest new ways to extract functional information from GWAS data.
Collapse
Affiliation(s)
- Elisa Mariella
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federico Marotta
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elena Grassi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Stefano Gilotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Center for Tranlational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Hoepel W, Newling M, Vogelpoel LTC, Sritharan L, Hansen IS, Kapsenberg ML, Baeten DLP, Everts B, den Dunnen J. FcγR-TLR Cross-Talk Enhances TNF Production by Human Monocyte-Derived DCs via IRF5-Dependent Gene Transcription and Glycolytic Reprogramming. Front Immunol 2019; 10:739. [PMID: 31024565 PMCID: PMC6464031 DOI: 10.3389/fimmu.2019.00739] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Antigen-presenting cells (APCs) such as dendritic cells (DCs) are crucial for initiation of adequate inflammatory responses, which critically depends on the cooperated engagement of different receptors. In addition to pattern recognition receptors (PRRs), Fc gamma receptors (FcγRs) have recently been identified to be important in induction of inflammation by DCs. FcγRs that recognize IgG immune complexes, which are formed upon opsonization of pathogens, induce pro-inflammatory cytokine production through cross-talk with PRRs such as Toll-like receptors (TLRs). While the physiological function of FcγR-TLR cross-talk is to provide protective immunity against invading pathogens, undesired activation of FcγR-TLR cross-talk, e.g., by autoantibodies, also plays a major role in the development of chronic inflammatory disorders such as rheumatoid arthritis (RA). Yet, the molecular mechanisms of FcγR-TLR cross-talk are still largely unknown. Here, we identified that FcγR-TLR cross-talk-induced cytokine production critically depends on activation of the transcription factor interferon regulatory factor 5 (IRF5), which results from induction of two different pathways that converge on IRF5 activation. First, TLR stimulation induced phosphorylation of TBK1/IKKε, which is required for IRF5 phosphorylation and subsequent activation. Second, FcγR stimulation induced nuclear translocation of IRF5, which is essential for gene transcription by IRF5. We identified that IRF5 activation by FcγR-TLR cross-talk amplifies pro-inflammatory cytokine production by increasing cytokine gene transcription, but also by synergistically inducing glycolytic reprogramming, which is another essential process for induction of inflammatory responses by DCs. Combined, here we identified IRF5 as a pivotal component of FcγR-TLR cross-talk in human APCs. These data may provide new potential targets to suppress chronic inflammation in autoantibody-associated diseases that are characterized by undesired or excessive FcγR-TLR cross-talk, such as RA, systemic sclerosis, and systemic lupus erythematous.
Collapse
Affiliation(s)
- Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa Newling
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Lisa T C Vogelpoel
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Lathees Sritharan
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Ivo S Hansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Martien L Kapsenberg
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Abstract
The Interferon regulatory factors (IRFs) are a family of transcription factors that play pivotal roles in many aspects of the immune response, including immune cell development and differentiation and regulating responses to pathogens. Three family members, IRF3, IRF5, and IRF7, are critical to production of type I interferons downstream of pathogen recognition receptors that detect viral RNA and DNA. A fourth family member, IRF9, regulates interferon-driven gene expression. In addition, IRF4, IRF8, and IRF5 regulate myeloid cell development and phenotype, thus playing important roles in regulating inflammatory responses. Thus, understanding how their levels and activity is regulated is of critical importance given that perturbations in either can result in dysregulated immune responses and potential autoimmune disease. This review will focus the role of IRF family members in regulating type I IFN production and responses and myeloid cell development or differentiation, with particular emphasis on how regulation of their levels and activity by ubiquitination and microRNAs may impact autoimmune disease.
Collapse
Affiliation(s)
- Caroline A Jefferies
- Department of Medicine, Division of Rheumatology and Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Identification of function and potential pathogenic mechanisms of SLE risk genes in dendritic cells. RECENT FINDINGS Functional studies of individual SLE risk factors in dendritic cells were performed, and functional alterations of some risk genes in dendritic cells were observed. Recent studies confirmed the pathogenic function of known risk genes. These findings postulate novel pathogenic mechanisms made by dendritic cells. SLE is a complex disease and its etiology is not clearly understood. Dendritic cells are innate immune cells and critical for determining immune activation and immune tolerance. Genetic studies identified several new candidate genes which predispose to development of autoimmune diseases, but the mechanism of those genes has not been identified. This report updates functional implications or pathways in dendritic cells which are putatively important for the development or propagation of SLE based on genetic and functional studies performed in both human and animal models.
Collapse
Affiliation(s)
- Sun Jung Kim
- Center for Autoimmune and Musculoskeletal Disease, Department of Molecular Medicine, The Feinstein Institute for Medical Research, School of Medicine at Northwell-Hofstra University, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
20
|
Barnes BJ. Genetic Versus Non-genetic Drivers of SLE: Implications of IRF5 Dysregulation in Both Roads Leading to SLE. Curr Rheumatol Rep 2019; 21:2. [PMID: 30645688 PMCID: PMC11977172 DOI: 10.1007/s11926-019-0803-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is characterized by a breakdown of immune tolerance, resulting in inflammation and tissue destruction. While the primary causes of SLE are still obscure, the disorder is highly heritable. Genetic risk variants, on their own, are rarely causal or fully explain disease pathogenesis. We discuss the possibility that IRF5, a SLE susceptibility gene, has both genetic and non-genetic contributions to disease pathogenesis. RECENT FINDINGS Genetic variants within and around IRF5 robustly associate with SLE risk. In SLE blood cells, IRF5 risk variants associate with elevated IRF5 expression and IFN production. Whether the observed increase in expression is due to risk variants or other disease-associated factors is not clear. Data from Irf5-/- mice backcrossed to multiple models of murine lupus support that IRF5's role in disease pathogenesis is non-genetic. Studies of IRF5 expression and function in genotyped healthy donors will address the question of whether IRF5 dysregulation in SLE is driven by genetic or non-genetic factors.
Collapse
Affiliation(s)
- Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Northwell Health, Feinstein Institute for Medical Research, Hofstra-Northwell School of Medicine, 350 Community Dr, Hempstead, NY, 11030, USA.
| |
Collapse
|
21
|
Thompson CD, Matta B, Barnes BJ. Therapeutic Targeting of IRFs: Pathway-Dependence or Structure-Based? Front Immunol 2018; 9:2622. [PMID: 30515152 PMCID: PMC6255967 DOI: 10.3389/fimmu.2018.02622] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The interferon regulatory factors (IRFs) are a family of master transcription factors that regulate pathogen-induced innate and acquired immune responses. Aberration(s) in IRF signaling pathways due to infection, genetic predisposition and/or mutation, which can lead to increased expression of type I interferon (IFN) genes, IFN-stimulated genes (ISGs), and other pro-inflammatory cytokines/chemokines, has been linked to the development of numerous diseases, including (but not limited to) autoimmune and cancer. What is currently lacking in the field is an understanding of how best to therapeutically target these transcription factors. Many IRFs are regulated by post-translational modifications downstream of pattern recognition receptors (PRRs) and some of these modifications lead to activation or inhibition. We and others have been able to utilize structural features of the IRFs in order to generate dominant negative mutants that inhibit function. Here, we will review potential therapeutic strategies for targeting all IRFs by using IRF5 as a candidate targeting molecule.
Collapse
Affiliation(s)
- Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
22
|
Kaur A, Lee LH, Chow SC, Fang CM. IRF5-mediated immune responses and its implications in immunological disorders. Int Rev Immunol 2018; 37:229-248. [PMID: 29985675 DOI: 10.1080/08830185.2018.1469629] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription factors are gene regulators that activate or repress target genes. One family of the transcription factors that have been extensively studied for their crucial role in regulating gene network in the immune system is the interferon regulatory factors (IRFs). IRFs possess a novel turn-helix turn motif that recognizes a specific DNA consensus found in the promoters of many genes that are involved in immune responses. IRF5, a member of IRFs has recently gained much attention for its role in regulating inflammatory responses and autoimmune diseases. Here, we discuss the role of IRF5 in regulating immune cells functions and how the dysregulation of IRF5 contributes to the pathogenesis of immune disorders. We also review the latest findings of potential IRF5 inhibitors that modulate IRF5 activity in the effort of developing therapeutic approaches for treating inflammatory disorders.
Collapse
Affiliation(s)
- Ashwinder Kaur
- a School of Pharmacy, Faculty of Science , The University of Nottingham Malaysia Campus , Selangor Darul , Ehsan , Malaysia
| | - Learn-Han Lee
- c School of Pharmacy , Monash University Malaysia , Selangor Darul , Ehsan , Malaysia.,e Jeffrey Cheah School of Medicine and Health Sciences , Monash University Malaysia , Selangor Darul , Ehsan , Malaysia
| | - Sek-Chuen Chow
- d School of Science , Monash University Malaysia , Selangor Darul , Ehsan , Malaysia
| | - Chee-Mun Fang
- b Department of Biomedical Sciences, Faculty of Science , The University of Nottingham Malaysia Campus , Selangor Darul , Ehsan , Malaysia
| |
Collapse
|
23
|
Calise J, Marquez Renteria S, Gregersen PK, Diamond B. Lineage-Specific Functionality of an Interferon Regulatory Factor 5 Lupus Risk Haplotype: Lack of B Cell Intrinsic Effects. Front Immunol 2018; 9:996. [PMID: 29867973 PMCID: PMC5949527 DOI: 10.3389/fimmu.2018.00996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022] Open
Abstract
Interferon regulatory factor 5 (IRF5) is widely recognized as a risk locus for systemic lupus erythematosus (SLE). Risk gene and IRF5 activation is triggered through toll-like receptor signaling. In myeloid cells, this leads to production of type I interferon and inflammatory cytokines, with enhanced production in cells of individuals harboring IRF5 risk alleles. Mouse models have also demonstrated the importance of IRF5 in B cell function, particularly plasma cell differentiation and isotype switching. Here, we evaluated the major SLE risk haplotype of IRF5 on the functional attributes of freshly isolated B cells from human subjects who do not have evidence of SLE or other forms of autoimmunity. We took this approach to avoid the complications of studying genotype-phenotype relationships in B cells that have been chronically exposed to an inflammatory disease environment before isolation. We focused on B cell endophenotypes that included gene expression, antibody secretion, class switching, and apoptotic susceptibility. We performed IRF5 overexpression studies, genetic reporter assays and electro-mobility shift assays on B and myeloid cell lines. Somewhat surprisingly, the results of our analyses indicate that IRF5 risk genotypes do not have a B cell intrinsic effect on these B cell functions. By contrast, we confirmed that the IRF5 risk and non-risk haplotypes exert differential effects in myeloid cells, including an increased susceptibility to apoptosis conferred by the risk haplotype. We also demonstrated an increased binding of the transcription factor specificity protein 1 to an insertion/deletion present in the risk haplotype. Our findings raise the specter that genetic risk alleles can have complex and unexpected lineage-specific effects, and these must be carefully considered when guiding or developing therapies based on understanding disease risk haplotypes.
Collapse
Affiliation(s)
- Justine Calise
- PhD Program in Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States.,Laboratory of Autoimmune & Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Northwell Health, Manhasset, NY, United States
| | - Susana Marquez Renteria
- Laboratory of Genomics & Human Genetics, The Feinstein Institute for Medical Research, Center for Genomics and Human Genetics, Northwell Health, Manhasset, NY, United States
| | - Peter K Gregersen
- Laboratory of Genomics & Human Genetics, The Feinstein Institute for Medical Research, Center for Genomics and Human Genetics, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Laboratory of Autoimmune & Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
24
|
IRF5 is elevated in childhood-onset SLE and regulated by histone acetyltransferase and histone deacetylase inhibitors. Oncotarget 2018; 8:47184-47194. [PMID: 28525378 PMCID: PMC5564555 DOI: 10.18632/oncotarget.17586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/17/2017] [Indexed: 11/25/2022] Open
Abstract
Interferon regulatory factor 5 (IRF5) plays a critical role in the induction of type I interferon, proinflammatory cytokines and chemokines, and participates in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). However, the relationship between IRF5 and childhood-onset SLE remains elusive. In the present study, we demonstrated that levels of mRNA expression of IRF5, IFN-α, and Sp1 were significantly increased in childhood-onset SLE, as seen on quantitative real-time PCR, and the expression of Sp1 and IFN-α was positively correlated with IRF5. In addition to being used as antitumor drugs, a number of histone deacetylase inhibitors (HDACi) display potent anti-inflammatory properties; however, their effects on IRF5 expression remain unclear. In this study, we identified that HDACi trichostatin A (TSA) and histone acetyltransferase (HAT)-p300 downregulated IRF5 promoter activity, mRNA expression, and protein level, whereas the HAT-p300/CBP-associated factor had no effect. Moreover, TSA inhibited the production of TNF-α and IL-6 in differentiated THP-1cells. Furthermore, chromatin immunoprecipitation assays revealed that TSA inhibited DNA binding of Sp1, RNA polymerase II, HDAC3, and p300 to the core promoter region of IRF5. Our results suggest that HDACi may have therapeutic potential in patients with autoimmune diseases such as SLE through repression of IRF5 expression.
Collapse
|
25
|
Malkiel S, Barlev AN, Atisha-Fregoso Y, Suurmond J, Diamond B. Plasma Cell Differentiation Pathways in Systemic Lupus Erythematosus. Front Immunol 2018; 9:427. [PMID: 29556239 PMCID: PMC5845388 DOI: 10.3389/fimmu.2018.00427] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023] Open
Abstract
Plasma cells (PCs) are responsible for the production of protective antibodies against infectious agents but they also produce pathogenic antibodies in autoimmune diseases, such as systemic lupus erythematosus (SLE). Traditionally, high affinity IgG autoantibodies are thought to arise through germinal center (GC) responses. However, class switching and somatic hypermutation can occur in extrafollicular (EF) locations, and this pathway has also been implicated in SLE. The pathway from which PCs originate may determine several characteristics, such as PC lifespan and sensitivity to therapeutics. Although both GC and EF responses have been implicated in SLE, we hypothesize that one of these pathways dominates in each individual patient and genetic risk factors may drive this predominance. While it will be important to distinguish polymorphisms that contribute to a GC-driven or EF B cell response to develop targeted treatments, the challenge will be not only to identify the differentiation pathway but the molecular mechanisms involved. In B cells, this task is complicated by the cross-talk between the B cell receptor, toll-like receptors (TLR), and cytokine signaling molecules, which contribute to both GC and EF responses. While risk variants that affect the function of dendritic cells and T follicular helper cells are likely to primarily influence GC responses, it will be important to discover whether some risk variants in the interferon and TLR pathways preferentially influence EF responses. Identifying the pathways of autoreactive PC differentiation in SLE may help us to understand patient heterogeneity and thereby guide precision therapy.
Collapse
Affiliation(s)
- Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ashley N Barlev
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Yemil Atisha-Fregoso
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Tecnologico de Monterrey, Monterrey, Mexico
| | - Jolien Suurmond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
26
|
Corrected and Republished from: The COP9 Signalosome Interacts with and Regulates Interferon Regulatory Factor 5 Protein Stability. Mol Cell Biol 2018; 38:38/3/e00493-17. [PMID: 29339435 DOI: 10.1128/mcb.00493-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022] Open
Abstract
The transcription factor interferon regulatory factor 5 (IRF5) exerts crucial functions in the regulation of host immunity against extracellular pathogens, DNA damage-induced apoptosis, death receptor signaling, and macrophage polarization. Tight regulation of IRF5 is thus warranted for an efficient response to extracellular stressors and for limiting autoimmune and inflammatory responses. Here we report that the COP9 signalosome (CSN), a general modulator of diverse cellular and developmental processes, associates constitutively with IRF5 and promotes its protein stability. The constitutive CSN/IRF5 interaction was identified using proteomics and confirmed by endogenous immunoprecipitations. The CSN/IRF5 interaction occurred on the carboxyl and amino termini of IRF5; a single internal deletion (Δ455-466) was found to significantly reduce IRF5 protein stability. CSN3 was identified as a direct interacting partner of IRF5, and knockdown of this subunit with small interfering RNAs (siRNAs) resulted in enhanced degradation. Degradation was further augmented by knockdown of CSN1 and CSN3 together. The ubiquitin E1 inhibitor UBEI-41 or the proteasome inhibitor MG132 prevented IRF5 degradation, supporting that its stability is regulated by the ubiquitin-proteasome system. Importantly, activation of IRF5 by the death receptor ligand tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resulted in enhanced degradation via loss of the CSN/IRF5 interaction. This study defines the CSN as a new interacting partner of IRF5 that controls its stability.
Collapse
|
27
|
De S, Zhang B, Shih T, Singh S, Winkler A, Donnelly R, Barnes BJ. B Cell-Intrinsic Role for IRF5 in TLR9/BCR-Induced Human B Cell Activation, Proliferation, and Plasmablast Differentiation. Front Immunol 2018; 8:1938. [PMID: 29367853 PMCID: PMC5768180 DOI: 10.3389/fimmu.2017.01938] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
Upon recognition of antigen, B cells undergo rapid proliferation followed by differentiation to specialized antibody secreting cells (ASCs). During this transition, B cells are reliant upon a multilayer transcription factor network to achieve a dramatic remodeling of the B cell transcriptional landscape. Increased levels of ASCs are often seen in autoimmune diseases and it is believed that altered expression of regulatory transcription factors play a role in this imbalance. The transcription factor interferon regulatory factor 5 (IRF5) is one such candidate as polymorphisms in IRF5 associate with risk of numerous autoimmune diseases and correlate with elevated IRF5 expression. IRF5 genetic risk has been widely replicated in systemic lupus erythematosus (SLE), and loss of Irf5 ameliorates disease in murine lupus models, in part, through the lack of pathogenic autoantibody secretion. It remains unclear, however, whether IRF5 is contributing to autoantibody production through a B cell-intrinsic function. To date, IRF5 function in healthy human B cells has not been characterized. Using human primary naive B cells, we define a critical intrinsic role for IRF5 in B cell activation, proliferation, and plasmablast differentiation. Targeted IRF5 knockdown resulted in significant immunoglobulin (Ig) D retention, reduced proliferation, plasmablast differentiation, and IgG secretion. The observed decreases were due to impaired B cell activation and clonal expansion. Distinct from murine studies, we identify and confirm new IRF5 target genes, IRF4, ERK1, and MYC, and pathways that mediate IRF5 B cell-intrinsic function. Together, these results identify IRF5 as an early regulator of human B cell activation and provide the first dataset in human primary B cells to map IRF5 dysfunction in SLE.
Collapse
Affiliation(s)
- Saurav De
- Rutgers Graduate School of Biomedical Sciences, Newark, NJ, United States.,Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Baohong Zhang
- Clinical Genetics and Bioinformatics, Pfizer Inc., Cambridge, MA, United States
| | - Tiffany Shih
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sukhwinder Singh
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States
| | - Aaron Winkler
- Department of Inflammation and Immunology, Pfizer Inc., Cambridge, MA, United States
| | - Robert Donnelly
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ, United States
| |
Collapse
|
28
|
Iwamoto T, Niewold TB. Genetics of human lupus nephritis. Clin Immunol 2016; 185:32-39. [PMID: 27693588 DOI: 10.1016/j.clim.2016.09.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by immune complex formation with multi-organ manifestations. Lupus nephritis (LN) is one of the most severe types of organ damage in SLE, and it clearly contributes to increased morbidity and mortality due to SLE. LN occurs more frequently and is more severe in non-European ancestral backgrounds, although the cause of this disparity remains largely unknown. Genetic factors play an important role in the pathogenesis of SLE. Although many SLE susceptibility genes have been identified, the genetic basis of LN is not as well understood. While some of the established general SLE susceptibility genes are associated with LN, recent discoveries highlight a number of genes with renal functions that are specifically associated with LN. Some of these genes associated with LN help to explain the disparity in the prevalence of nephritis between individuals with SLE, and also partially explain differences in LN between ancestral backgrounds. Moreover, not only the gene mutations, but also post-translational modifications seem to play important roles in the pathogenesis of LN. Overall it seems likely that a combination of general SLE susceptibility genes cooperate with LN specific risk genes to result in the genetic propensity for LN. In this review, we will outline the genetic contribution to LN and describe possible roles of LN susceptibility genes.
Collapse
Affiliation(s)
- Taro Iwamoto
- Division of Rheumatology & Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy B Niewold
- Division of Rheumatology & Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Suurmond J, Calise J, Malkiel S, Diamond B. DNA-reactive B cells in lupus. Curr Opin Immunol 2016; 43:1-7. [PMID: 27504587 DOI: 10.1016/j.coi.2016.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
IgG anti-DNA antibodies are both diagnostic and pathogenic for systemic lupus erythematosus (SLE). They contribute to tissue inflammation through direct tissue binding and to systemic inflammation through activation of Toll-like receptors by nucleic acid-containing immune complexes. IgG DNA-reactive antibodies originate when B cell tolerance mechanisms are impaired. The heterogeneous immune perturbations in SLE lead to the survival and activation of DNA-reactive B cells in various B cell subsets at distinct stages of B cell maturation and differentiation. We propose that the spectrum of B cell alterations and failed tolerance mechanisms for DNA-reactive B cells in lupus patients is best understood by studying genetic risk alleles. This implies that the B cells producing IgG anti-DNA antibodies and the failed tolerance mechanisms(s) will differ across patients. A better understanding of these differences should lead to better patient stratification, improved outcomes of clinical trials, and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Jolien Suurmond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA
| | - Justine Calise
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA; PhD Program in Molecular Medicine, Hofstra-Northwell School of Medicine, 500 Hofstra Blvd, Hempstead, NY 11549, USA
| | - Susan Malkiel
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
30
|
Specific detection of interferon regulatory factor 5 (IRF5): A case of antibody inequality. Sci Rep 2016; 6:31002. [PMID: 27481535 PMCID: PMC4969615 DOI: 10.1038/srep31002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
Interferon regulatory factor 5 (IRF5) is a member of the IRF family of transcription factors. IRF5 was first identified and characterized as a transcriptional regulator of type I interferon expression after virus infection. In addition to its critical role(s) in the regulation and development of host immunity, subsequent studies revealed important roles for IRF5 in autoimmunity, cancer, obesity, pain, cardiovascular disease, and metabolism. Based on these important disease-related findings, a large number of commercial antibodies have become available to study the expression and function of IRF5. Here we validate a number of these antibodies for the detection of IRF5 by immunoblot, flow cytometry, and immunofluorescence or immunohistochemistry using well-established positive and negative controls. Somewhat surprising, the majority of commercial antibodies tested were unable to specifically recognize human or mouse IRF5. We present data on antibodies that do specifically recognize human or mouse IRF5 in a particular application. These findings reiterate the importance of proper controls and molecular weight standards for the analysis of protein expression. Given that dysregulated IRF5 expression has been implicated in the pathogenesis of numerous diseases, including autoimmune and cancer, results indicate that caution should be used in the evaluation and interpretation of IRF5 expression analysis.
Collapse
|
31
|
Wei Z, Yan L, Chen Y, Bao C, Deng J, Deng J. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression. Mol Med Rep 2016; 14:1091-8. [PMID: 27277156 PMCID: PMC4940072 DOI: 10.3892/mmr.2016.5352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels.
Collapse
Affiliation(s)
- Zhiquan Wei
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, P.R. China
| | - Li Yan
- Laboratory of Basis and Application Research of Zhuang Medicine Formulas, Zhuang Medicine College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, P.R. China
| | - Yixin Chen
- Guangxi Key Laboratory of Pharmacodynamics Studies of Traditional Chinese Medicine, Nanning, Guangxi 530001, P.R. China
| | - Chuanhong Bao
- Department of Pharmacy, Ruikang Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530012, P.R. China
| | - Jing Deng
- Dana‑Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jiagang Deng
- Guangxi Key Laboratory of Pharmacodynamics Studies of Traditional Chinese Medicine, Nanning, Guangxi 530001, P.R. China
| |
Collapse
|
32
|
Griesbeck M, Ziegler S, Laffont S, Smith N, Chauveau L, Tomezsko P, Sharei A, Kourjian G, Porichis F, Hart M, Palmer CD, Sirignano M, Beisel C, Hildebrandt H, Cénac C, Villani AC, Diefenbach TJ, Le Gall S, Schwartz O, Herbeuval JP, Autran B, Guéry JC, Chang JJ, Altfeld M. Sex Differences in Plasmacytoid Dendritic Cell Levels of IRF5 Drive Higher IFN-α Production in Women. THE JOURNAL OF IMMUNOLOGY 2015; 195:5327-36. [PMID: 26519527 DOI: 10.4049/jimmunol.1501684] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/30/2015] [Indexed: 01/17/2023]
Abstract
Increased IFN-α production contributes to the pathogenesis of infectious and autoimmune diseases. Plasmacytoid dendritic cells (pDCs) from females produce more IFN-α upon TLR7 stimulation than pDCs from males, yet the mechanisms underlying this difference remain unclear. In this article, we show that basal levels of IFN regulatory factor (IRF) 5 in pDCs were significantly higher in females compared with males and positively correlated with the percentage of IFN-α-secreting pDCs. Delivery of recombinant IRF5 protein into human primary pDCs increased TLR7-mediated IFN-α secretion. In mice, genetic ablation of the estrogen receptor 1 (Esr1) gene in the hematopoietic compartment or DC lineage reduced Irf5 mRNA expression in pDCs and IFN-α production. IRF5 mRNA levels furthermore correlated with ESR1 mRNA levels in human pDCs, consistent with IRF5 regulation at the transcriptional level by ESR1. Taken together, these data demonstrate a critical mechanism by which sex differences in basal pDC IRF5 expression lead to higher IFN-α production upon TLR7 stimulation in females and provide novel targets for the modulation of immune responses and inflammation.
Collapse
Affiliation(s)
- Morgane Griesbeck
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; Centre d'Immunonologie et des Maladies Infectieuses-Paris, Université Pierre et Marie Curie/INSERM U1135, Hôpital Pitié Salpêtrière, Paris 75013, France
| | - Susanne Ziegler
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg 20246, Germany
| | - Sophie Laffont
- INSERM U1043, Toulouse F-31300, France; CNRS, U5282, Toulouse F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France
| | - Nikaïa Smith
- Chemistry and Biology, Nucleotides and Immunology for Therapy, CNRS UMR-8601, Université Paris Descartes, Paris 75270, France
| | - Lise Chauveau
- Institut Pasteur, Unité de recherche associée CNRS 3015, Unite Virus et Immunité, Paris 75015, France
| | | | - Armon Sharei
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139
| | | | | | - Meghan Hart
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | | | | | - Claudia Beisel
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg 20246, Germany; Medical Department, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Heike Hildebrandt
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg 20246, Germany
| | - Claire Cénac
- INSERM U1043, Toulouse F-31300, France; CNRS, U5282, Toulouse F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France
| | | | | | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Olivier Schwartz
- Institut Pasteur, Unité de recherche associée CNRS 3015, Unite Virus et Immunité, Paris 75015, France
| | - Jean-Philippe Herbeuval
- Chemistry and Biology, Nucleotides and Immunology for Therapy, CNRS UMR-8601, Université Paris Descartes, Paris 75270, France
| | - Brigitte Autran
- Centre d'Immunonologie et des Maladies Infectieuses-Paris, Université Pierre et Marie Curie/INSERM U1135, Hôpital Pitié Salpêtrière, Paris 75013, France
| | - Jean-Charles Guéry
- INSERM U1043, Toulouse F-31300, France; CNRS, U5282, Toulouse F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France
| | - J Judy Chang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3800, Australia
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg 20246, Germany;
| |
Collapse
|
33
|
López de Padilla CM, Niewold TB. The type I interferons: Basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene 2015; 576:14-21. [PMID: 26410416 DOI: 10.1016/j.gene.2015.09.058] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 09/04/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023]
Abstract
There is increasing scientific and clinical interest in elucidating the biology of type I Interferons, which began approximately 60 years ago with the concept of "viral interference", a property that reduces the ability of a virus to infect cells. Although our understanding of the multiple cellular and molecular functions of interferons has advanced significantly, much remains to be learned and type I Interferons remain an active and fascinating area of inquiry. In this review, we cover some general aspects of type I interferon genes, with emphasis on interferon-alpha, and various aspects of molecular mechanisms triggered by type I interferons and toll-like receptor signaling by the Janus activated kinase/signal transducer activation of transcription (JAK-STAT) pathway and interferon regulatory factor pathway. We will also describe the role of type I interferons in autoimmune and inflammatory diseases, and its potential use as therapeutic agent.
Collapse
Affiliation(s)
| | - Timothy B Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
34
|
Giannopoulou EG, Elemento O, Ivashkiv LB. Use of RNA sequencing to evaluate rheumatic disease patients. Arthritis Res Ther 2015; 17:167. [PMID: 26126608 PMCID: PMC4488125 DOI: 10.1186/s13075-015-0677-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studying the factors that control gene expression is of substantial importance for rheumatic diseases with poorly understood etiopathogenesis. In the past, gene expression microarrays have been used to measure transcript abundance on a genome-wide scale in a particular cell, tissue or organ. Microarray analysis has led to gene signatures that differentiate rheumatic diseases, and stages of a disease, as well as response to treatments. Nowadays, however, with the advent of next-generation sequencing methods, massive parallel sequencing of RNA tends to be the technology of choice for gene expression profiling, due to several advantages over microarrays, as well as for the detection of non-coding transcripts and alternative splicing events. In this review, we describe how RNA sequencing enables unbiased interrogation of the abundance and complexity of the transcriptome, and present a typical experimental workflow and bioinformatics tools that are often used for RNA sequencing analysis. We also discuss different uses of this next-generation sequencing technology to evaluate rheumatic disease patients and investigate the pathogenesis of rheumatic diseases such as rheumatoid arthritis, systemic lupus erythematosus, juvenile idiopathic arthritis and Sjögren’s syndrome.
Collapse
Affiliation(s)
- Eugenia G Giannopoulou
- Biological Sciences Department, New York City College of Technology, City University of New York, New York, NY, 11201, USA. .,Arthritis and Tissue Degeneration Program and the David Z Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA.
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10021, USA.
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program and the David Z Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA.
| |
Collapse
|
35
|
Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much More than M1 and M2 Macrophages, There are also CD169(+) and TCR(+) Macrophages. Front Immunol 2015; 6:263. [PMID: 26074923 PMCID: PMC4443739 DOI: 10.3389/fimmu.2015.00263] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Monocytes are considered to be precursor cells of the mononuclear phagocytic system, and macrophages are one of the leading members of this cellular system. Macrophages play highly diverse roles in maintaining an organism's integrity by either directly participating in pathogen elimination or repairing tissue under sterile inflammatory conditions. There are different subpopulations of macrophages and each one has its own characteristics and functions. In this review, we summarize present knowledge on the polarization of macrophages that allows the generation of subpopulations called classically activated macrophages or M1 and alternative activated macrophages or M2. Furthermore, there are macrophages that their origin and characterization still remain unclear but have been involved as main players in some human pathologies. Thus, we also review three other categories of macrophages: tumor-associated macrophages, CD169(+) macrophages, and the recently named TCR(+) macrophages. Based on the literature, we provide information on the molecular characterization of these macrophage subpopulations and their specific involvement in several human pathologies such as cancer, infectious diseases, obesity, and asthma. The refined characterization of the macrophage subpopulations can be useful in designing new strategies, supplementing those already established for the treatment of diseases using macrophages as a therapeutic target.
Collapse
Affiliation(s)
- Leslie Chávez-Galán
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosio Villegas, Mexico City, Mexico
| | - Maria L. Olleros
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Dominique Vesin
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Irene Garcia
- Department of Pathology and Immunology, Faculty of Medicine, Centre Medical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| |
Collapse
|
36
|
Abstract
Autoimmune diseases occur when the immune system attacks and destroys the organs and tissues of its own host. Autoimmunity is the third most common type of disease in the United States. Because there is no cure for autoimmunity, it is extremely important to study the mechanisms that trigger these diseases. Most autoimmune diseases predominantly affect females, indicating a strong sex bias. Various factors, including sex hormones, the presence or absence of a second X chromosome, and sex-specific gut microbiota can influence gene expression in a sex-specific way. These changes in gene expression may, in turn, lead to susceptibility or protection from autoimmunity, creating a sex bias for autoimmune diseases. In this Review we discuss recent findings in the field of sex-dependent regulation of gene expression and autoimmunity.
Collapse
|
37
|
Genetics of serum concentration of IL-6 and TNFα in systemic lupus erythematosus and rheumatoid arthritis: a candidate gene analysis. Clin Rheumatol 2015; 34:1375-82. [PMID: 25652333 DOI: 10.1007/s10067-015-2881-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/05/2015] [Accepted: 01/19/2015] [Indexed: 12/19/2022]
Abstract
Elevated concentrations of inflammatory mediators are characteristic of autoimmune disease accompanied by chronic or recurrent inflammation. We examined the hypothesis that mediators of inflammation known to be elevated in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are associated with genetic polymorphism previously identified in studies of inflammatory disease. Serum interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) concentrations in patients with SLE (n = 117) or RA (n = 164) and in inflammatory disease-free control subjects (n = 172) were measured by multiplex ELISA. Candidate genes were chosen from studies of autoimmune and inflammatory disease. Genotypes were determined for 345 SNP markers in 75 genes. Association between serum analytes and single alleles was tested by linear regression. Polymorphisms in several genes were associated with IL-6 levels (including IL10, TYK2, and CD40L in SLE and DRB1, NOD2, and CSF1 in RA) or with TNFα levels (including TNFSF4 and CSF2 in SLE and PTPN2, DRB1, and NOD2 in RA). Some associations were shared between disease and control groups or between IL-6 and TNFα within a group. In conclusion, variation in genes implicated in disease pathology is associated with serum IL-6 or TNFα concentration. Some genetic associations are more apparent in healthy controls than in SLE or RA, suggesting dysregulation of the principal mediators of chronic inflammation in disease. Susceptibility genes may affect inflammatory response with variable effect on disease etiology.
Collapse
|
38
|
Santana-de Anda K, Gómez-Martín D, Monsivais-Urenda AE, Salgado-Bustamante M, González-Amaro R, Alcocer-Varela J. Interferon regulatory factor 3 as key element of the interferon signature in plasmacytoid dendritic cells from systemic lupus erythematosus patients: novel genetic associations in the Mexican mestizo population. Clin Exp Immunol 2015; 178:428-37. [PMID: 25130328 DOI: 10.1111/cei.12429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2014] [Indexed: 12/19/2022] Open
Abstract
Many genetic studies have found an association between interferon regulatory factors (IRF) single nucleotide polymorphisms (SNPs) and systemic lupus erythematosus (SLE); however, specific dendritic cell (DC) alterations have not been assessed. The aim of the present study was to address the expression of IRF3 and IRF5 on different DC subsets from SLE patients, as well as their association with interferon (IFN)-α production and novel SNPs. For the genetic association analyses, 156 SLE patients and 272 healthy controls from the Mexican mestizo population were included. From these, 36 patients and 36 controls were included for functional analysis. Two IRF3 SNPs - rs2304206 and rs2304204 - were determined. We found an increased percentage of circulating pDC in SLE patients in comparison to controls (8.04 ± 1.48 versus 3.35 ± 0.8, P = 0.032). We also observed enhanced expression of IRF3 (64 ± 6.36 versus 36.1 ± 5.57, P = 0.004) and IRF5 (40 ± 5.25 versus 22.5 ± 2.6%, P = 0.010) restricted to this circulating pDC subset from SLE patients versus healthy controls. This finding was associated with higher IFN-α serum levels in SLE (160.2 ± 21 versus 106.1 ± 14 pg/ml, P = 0.036). Moreover, the IRF3 rs2304206 polymorphism was associated with increased susceptibility to SLE [odds ratio (OR), 95% confidence interval (CI) = 2.401 (1.187-4.858), P = 0.021] as well as enhanced levels of serum type I IFN in SLE patients who were positive for dsDNA autoantibodies. The IRF3 rs2304204 GG and AG genotypes conferred decreased risk for SLE. Our findings suggest that the predominant IRF3 expression on circulating pDC is a key element for the increased IFN-α activation based on the interplay between the rs2304206 gene variant and the presence of dsDNA autoantibodies in Mexican mestizo SLE patients.
Collapse
Affiliation(s)
- K Santana-de Anda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, México
| | | | | | | | | | | |
Collapse
|
39
|
Kottyan LC, Zoller EE, Bene J, Lu X, Kelly JA, Rupert AM, Lessard CJ, Vaughn SE, Marion M, Weirauch MT, Namjou B, Adler A, Rasmussen A, Glenn S, Montgomery CG, Hirschfield GM, Xie G, Coltescu C, Amos C, Li H, Ice JA, Nath SK, Mariette X, Bowman S, Rischmueller M, Lester S, Brun JG, Gøransson LG, Harboe E, Omdal R, Cunninghame-Graham DS, Vyse T, Miceli-Richard C, Brennan MT, Lessard JA, Wahren-Herlenius M, Kvarnström M, Illei GG, Witte T, Jonsson R, Eriksson P, Nordmark G, Ng WF, Anaya JM, Rhodus NL, Segal BM, Merrill JT, James JA, Guthridge JM, Scofield RH, Alarcon-Riquelme M, Bae SC, Boackle SA, Criswell LA, Gilkeson G, Kamen DL, Jacob CO, Kimberly R, Brown E, Edberg J, Alarcón GS, Reveille JD, Vilá LM, Petri M, Ramsey-Goldman R, Freedman BI, Niewold T, Stevens AM, Tsao BP, Ying J, Mayes MD, Gorlova OY, Wakeland W, Radstake T, Martin E, Martin J, Siminovitch K, Moser Sivils KL, Gaffney PM, Langefeld CD, Harley JB, Kaufman KM. The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet 2014; 24:582-96. [PMID: 25205108 DOI: 10.1093/hmg/ddu455] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5-TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10(-49); OR = 1.38-1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10(-27)-10(-32), OR = 1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5-TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3.
Collapse
Affiliation(s)
- Leah C Kottyan
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Erin E Zoller
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and
| | - Jessica Bene
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and
| | - Xiaoming Lu
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Andrew M Rupert
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher J Lessard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA Department of Pathology and
| | - Samuel E Vaughn
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and
| | - Miranda Marion
- Department of Biostatistical Sciences and Center for Public Health Genomics and
| | - Matthew T Weirauch
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bahram Namjou
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Stuart Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Courtney G Montgomery
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Gang Xie
- Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | | | - Chris Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - He Li
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA Department of Pathology and
| | - John A Ice
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xavier Mariette
- Department of Rheumatology, Hôpitaux Universitaires Paris-Sud, INSERM U1012, Le Kremlin Bicêtre, France
| | - Simon Bowman
- Rheumatology Department, University Hospital Birmingham, Birmingham, UK
| | | | | | - Sue Lester
- The Queen Elizabeth Hospital, Adelaide, Australia The University of Adelaide, Adelaide, Australia
| | - Johan G Brun
- Institute of Internal Medicine, University of Bergen, Bergen, Norway Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Lasse G Gøransson
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Erna Harboe
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | | | - Tim Vyse
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Corinne Miceli-Richard
- Department of Rheumatology, Hôpitaux Universitaires Paris-Sud, INSERM U1012, Le Kremlin Bicêtre, France
| | - Michael T Brennan
- Department of Oral Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | | | | | | | - Gabor G Illei
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | | | - Roland Jonsson
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway Broegelmann Research Laboratory, The Gade Institute, University of Bergen, Bergen, Norway
| | - Per Eriksson
- Department of Rheumatology, Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Gunnel Nordmark
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Wan-Fai Ng
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogotá, Colombia
| | - Nelson L Rhodus
- Department of Oral Surgery, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Barbara M Segal
- Division of Rheumatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Joan T Merrill
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA Division of Veterans Affairs Medical Center, Oklahoma City, OK, USA Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marta Alarcon-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA de Genómica e Investigación Oncológica (GENYO), Pfizer-Universidad de Granada-Junta de Andalucia, Granada, Spain
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lindsey A Criswell
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, University of California San Francisco, San Francisco, CA, USA
| | - Gary Gilkeson
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Diane L Kamen
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Chaim O Jacob
- Divison of Gastrointestinal and Liver Diseases, Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth Brown
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Graciela S Alarcón
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Reveille
- Division of Rheumatology and Clinical Immunogenetics, The Univeristy of Texas Health Science Center at Houston, Houston, TX, USA
| | - Luis M Vilá
- University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins, Baltimore, MD, USA
| | | | | | - Timothy Niewold
- Division of Rheumatology and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Anne M Stevens
- University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Betty P Tsao
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jun Ying
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Maureen D Mayes
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Olga Y Gorlova
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Ward Wakeland
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Timothy Radstake
- Department of Rheumatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Ezequiel Martin
- Instituto de Parasitología y Biomedicina López Neyra Avda, Granada, Spain and
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López Neyra Avda, Granada, Spain and
| | - Katherine Siminovitch
- Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, ON, Canada Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kathy L Moser Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences and Center for Public Health Genomics and
| | - John B Harley
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Kenneth M Kaufman
- Division of Rheumatology, Center for Autoimmune Genomics and Etiology and US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
40
|
TRIpartite motif 21 (TRIM21) differentially regulates the stability of interferon regulatory factor 5 (IRF5) isoforms. PLoS One 2014; 9:e103609. [PMID: 25084355 PMCID: PMC4118895 DOI: 10.1371/journal.pone.0103609] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
IRF5 is a member of the Interferon Regulatory Factor (IRF) family of transcription factors activated downstream of the Toll-Like receptors (TLRs). Polymorphisms in IRF5 have been shown to be associated with the autoimmune disease Systemic Lupus Erythematosus (SLE) and other autoimmune conditions, suggesting a central role for IRF5 in the regulation of the immune response. Four different IRF5 isoforms originate due to alternative splicing and to the presence or absence of a 30 nucleotide insertion in IRF5 exon 6. Since the polymorphic region disturbs a PEST domain, a region associated with protein degradation, we hypothesized that the isoforms bearing the insertion might have increased stability, thus explaining the association of individual IRF5 isoforms with SLE. As the E3 ubiquitin ligase TRIpartite Motif 21 (TRIM21) has been shown to regulate the stability and hence activity of members of the IRF family, we investigated whether IRF5 is subjected to regulation by TRIM21 and whether dysregulation of this mechanism could explain the association of IRF5 with SLE. Our results show that IRF5 is degraded following TLR7 activation and that TRIM21 is involved in this process. Comparison of the individual IRF5 variants demonstrates that isoforms generated by alternative splicing are resistant to TRIM21-mediated degradation following TLR7 stimulation, thus providing a functional link between isoforms expression and stability/activity which contributes to explain the association of IRF5 with SLE.
Collapse
|
41
|
Yasuda K, Watkins AA, Kochar GS, Wilson GE, Laskow B, Richez C, Bonegio RG, Rifkin IR. Interferon regulatory factor-5 deficiency ameliorates disease severity in the MRL/lpr mouse model of lupus in the absence of a mutation in DOCK2. PLoS One 2014; 9:e103478. [PMID: 25076492 PMCID: PMC4116215 DOI: 10.1371/journal.pone.0103478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/01/2014] [Indexed: 11/18/2022] Open
Abstract
Interferon regulatory factor 5 (IRF5) polymorphisms are strongly associated with an increased risk of developing the autoimmune disease systemic lupus erythematosus. In mouse lupus models, IRF5-deficiency was shown to reduce disease severity consistent with an important role for IRF5 in disease pathogenesis. However these mouse studies were confounded by the recent demonstration that the IRF5 knockout mouse line contained a loss-of-function mutation in the dedicator of cytokinesis 2 (DOCK2) gene. As DOCK2 regulates lymphocyte trafficking and Toll-like receptor signaling, this raised the possibility that some of the protective effects attributed to IRF5 deficiency in the mouse lupus models may instead have been due to DOCK2 deficiency. We have therefore here evaluated the effect of IRF5-deficiency in the MRL/lpr mouse lupus model in the absence of the DOCK2 mutation. We find that IRF5-deficient (IRF5−/−) MRL/lpr mice develop much less severe disease than their IRF5-sufficient (IRF5+/+) littermates. Despite markedly lower serum levels of anti-nuclear autoantibodies and reduced total splenocyte and CD4+ T cell numbers, IRF5−/− MRL/lpr mice have similar numbers of all splenic B cell subsets compared to IRF5+/+ MRL/lpr mice, suggesting that IRF5 is not involved in B cell development up to the mature B cell stage. However, IRF5−/− MRL/lpr mice have greatly reduced numbers of spleen plasmablasts and bone marrow plasma cells. Serum levels of B lymphocyte stimulator (BLyS) were markedly elevated in the MRL/lpr mice but no effect of IRF5 on serum BLyS levels was seen. Overall our data demonstrate that IRF5 contributes to disease pathogenesis in the MRL/lpr lupus model and that this is due, at least in part, to the role of IRF5 in plasma cell formation. Our data also suggest that combined therapy targeting both IRF5 and BLyS might be a particularly effective therapeutic approach in lupus.
Collapse
Affiliation(s)
- Kei Yasuda
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (KY); (IRR)
| | - Amanda A. Watkins
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Guneet S. Kochar
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gabriella E. Wilson
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Bari Laskow
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christophe Richez
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ramon G. Bonegio
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ian R. Rifkin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (KY); (IRR)
| |
Collapse
|
42
|
Interferon regulatory factor 5-dependent immune responses in the draining lymph node protect against West Nile virus infection. J Virol 2014; 88:11007-21. [PMID: 25031348 DOI: 10.1128/jvi.01545-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Upon activation of Toll-like and RIG-I-like receptor signaling pathways, the transcription factor IRF5 translocates to the nucleus and induces antiviral immune programs. The recent discovery of a homozygous mutation in the immunoregulatory gene guanine exchange factor dedicator of cytokinesis 2 (Dock2mu/mu) in several Irf5-/- mouse colonies has complicated interpretation of immune functions previously ascribed to IRF5. To define the antiviral functions of IRF5 in vivo, we infected backcrossed Irf5-/-×Dock2wt/wt mice (here called Irf5-/- mice) and independently generated CMV-Cre Irf5fl/fl mice with West Nile virus (WNV), a pathogenic neurotropic flavivirus. Compared to congenic wild-type animals, Irf5-/- and CMV-Cre Irf5fl/fl mice were more vulnerable to WNV infection, and this phenotype was associated with increased infection in peripheral organs, which resulted in higher virus titers in the central nervous system. The loss of IRF5, however, was associated with only small differences in the type I interferon response systemically and in the draining lymph node during WNV infection. Instead, lower levels of several other proinflammatory cytokines and chemokines, as well as fewer and less activated immune cells, were detected in the draining lymph node 2 days after WNV infection. WNV-specific antibody responses in Irf5-/- mice also were blunted in the context of live or inactivated virus infection and this was associated with fewer antigen-specific memory B cells and long-lived plasma cells. Our results with Irf5-/- mice establish a key role for IRF5 in shaping the early innate immune response in the draining lymph node, which impacts the spread of virus infection, optimal B cell immunity, and disease pathogenesis. IMPORTANCE Although the roles of IRF3 and IRF7 in orchestrating innate and adaptive immunity after viral infection are established, the function of the related transcription factor IRF5 remains less certain. Prior studies in Irf5-/- mice reported conflicting results as to the contribution of IRF5 in regulating type I interferon and adaptive immune responses. The lack of clarity may stem from a recently discovered homozygous loss-of-function mutation of the immunoregulatory gene Dock2 in several colonies of Irf5-/- mice. Here, using a mouse model with a deficiency in IRF5 and wild-type Dock2 alleles, we investigated how IRF5 modulates West Nile virus (WNV) pathogenesis and host immune responses. Our in vivo studies indicate that IRF5 has a key role in shaping the early proinflammatory cytokine response in the draining lymph node, which impacts immunity and control of WNV infection.
Collapse
|
43
|
Cuda CM, Misharin AV, Gierut AK, Saber R, Haines GK, Hutcheson J, Hedrick SM, Mohan C, Budinger GS, Stehlik C, Perlman H. Caspase-8 acts as a molecular rheostat to limit RIPK1- and MyD88-mediated dendritic cell activation. THE JOURNAL OF IMMUNOLOGY 2014; 192:5548-60. [PMID: 24808358 DOI: 10.4049/jimmunol.1400122] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Caspase-8, an executioner enzyme in the death receptor pathway, was shown to initiate apoptosis and suppress necroptosis. In this study, we identify a novel, cell death-independent role for caspase-8 in dendritic cells (DCs): DC-specific expression of caspase-8 prevents the onset of systemic autoimmunity. Failure to express caspase-8 has no effect on the lifespan of DCs but instead leads to an enhanced intrinsic activation and, subsequently, more mature and autoreactive lymphocytes. Uncontrolled TLR activation in a RIPK1-dependent manner is responsible for the enhanced functionality of caspase-8-deficient DCs, because deletion of the TLR-signaling mediator, MyD88, ameliorates systemic autoimmunity induced by caspase-8 deficiency. Taken together, these data demonstrate that caspase-8 functions in a cell type-specific manner and acts uniquely in DCs to maintain tolerance.
Collapse
Affiliation(s)
- Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Alexander V Misharin
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Angelica K Gierut
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Rana Saber
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - G Kenneth Haines
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06510
| | - Jack Hutcheson
- Division of Rheumatology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Stephen M Hedrick
- Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093; and
| | - Chandra Mohan
- Division of Rheumatology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - G Scott Budinger
- Division of Pulmonary and Critical Care, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
| |
Collapse
|
44
|
Yu X, Wei B, Dai Y, Zhang M, Wu J, Xu X, Jiang G, Zheng S, Zhou L. Genetic polymorphism of interferon regulatory factor 5 (IRF5) correlates with allograft acute rejection of liver transplantation. PLoS One 2014; 9:e94426. [PMID: 24788560 PMCID: PMC4005731 DOI: 10.1371/journal.pone.0094426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/16/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although liver transplantation is one of the most efficient curative therapies of end stage liver diseases, recipients may suffer liver graft loss opst-operation. IRF-5, a member of Interferon Regulatory Factors, functions as a key regulator in TLR4 cascade, and is capable of inducing inflammatory cytokines. Although TLR4 has been proved to contribute to acute allograft rejection, including after liver transplantation, the correlation between IRF5 gene and acute rejection has not been elucidated yet. METHODS The study enrolled a total of 289 recipients, including 39 females and 250 males, and 39 recipients developed acute allograft rejection within 6 months post-transplantation. The allograft rejections were diagnosed by liver biopsies. Genome DNA of recipients was extracted from pre-operative peripheral blood. Genotyping of IRF-5, including rs3757385, rs752637 and rs11761199, was performed, followed by SNP frequency and Hardy-Weinberg equilibrium analysis. RESULTS The genetic polymorphism of rs3757385 was found associated with acute rejection. G/G homozygous individuals were at higher risk of acute rejection, with a P value of 0.042 (OR = 2.34 (1.07-5.10)). CONCLUSIONS IRF5, which transcriptionally activates inflammatory cytokines, is genetically associated with acute rejection and might function as a risk factor for acute rejection of liver transplantations.
Collapse
Affiliation(s)
- Xiaobo Yu
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bajin Wei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Dai
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoping Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
45
|
Interferon-regulatory factors determine macrophage phenotype polarization. Mediators Inflamm 2013; 2013:731023. [PMID: 24379524 PMCID: PMC3863528 DOI: 10.1155/2013/731023] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 01/09/2023] Open
Abstract
The mononuclear phagocyte system regulates tissue homeostasis as well as all phases of tissue injury and repair. To do so changing tissue environments alter the phenotype of tissue macrophages to assure their support for sustaining and amplifying their respective surrounding environment. Interferon-regulatory factors are intracellular signaling elements that determine the maturation and gene transcription of leukocytes. Here we discuss how several among the 9 interferon-regulatory factors contribute to macrophage polarization.
Collapse
|
46
|
Clark DN, Read RD, Mayhew V, Petersen SC, Argueta LB, Stutz LA, Till RE, Bergsten SM, Robinson BS, Baumann DG, Heap JC, Poole BD. Four Promoters of IRF5 Respond Distinctly to Stimuli and are Affected by Autoimmune-Risk Polymorphisms. Front Immunol 2013; 4:360. [PMID: 24223576 PMCID: PMC3819785 DOI: 10.3389/fimmu.2013.00360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/23/2013] [Indexed: 01/18/2023] Open
Abstract
Introduction: Autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis affect millions of people worldwide. Interferon regulatory factor 5 (IRF5) contains polymorphisms associated with these autoimmune diseases. Two of these functional polymorphisms are found upstream of the IRF5 gene. rs2004640, which is a single nucleotide polymorphism and the CGGGG insertion/deletion (indel) were studied. IRF5 uses four different promoters for its four first exons: 1A, 1B, 1C, and 1D. Each promoter was analyzed, including functional differences due to the autoimmune-risk polymorphisms. Results: IRF5 promoters were analyzed using ChIP-Seq data (ENCODE database) and the FactorBook database to define transcription factor binding sites. To verify promoter activity, the promoters were cloned into luciferase plasmids. Each construct exhibited luciferase activity. Exons 1A and 1D contain putative PU.1 and NFkB binding sites. Imiquimod, a Toll-like receptor 7 (TLR7) ligand, was used to activate these transcription factors. IRF5 levels were doubled after imiquimod treatment (p < 0.001), with specific increases in the 1A promoter (2.2-fold, p = 0.03) and 1D promoter (2.8-fold, p = 0.03). A putative binding site for p53, which affects apoptosis, was found in the promoter for exon 1B. However, site-directed mutagenesis of the p53 site showed no effect in a reporter assay. Conclusion: The IRF5 exon 1B promoter has been characterized, and the responses of each IRF5 promoter to TLR7 stimulation have been determined. Changes in promoter activity and gene expression are likely due to specific and distinct transcription factors that bind to each promoter. Since high expression of IRF5 contributes to the development of autoimmune disease, understanding the source of increased IRF5 levels is key to understanding autoimmune etiology.
Collapse
Affiliation(s)
- Daniel N Clark
- Department of Microbiology and Molecular Biology, Brigham Young University , Provo, UT , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Alonso-Perez E, Fernandez-Poceiro R, Lalonde E, Kwan T, Calaza M, Gomez-Reino JJ, Majewski J, Gonzalez A. Identification of three new cis-regulatory IRF5 polymorphisms: in vitro studies. Arthritis Res Ther 2013; 15:R82. [PMID: 23941291 PMCID: PMC3978921 DOI: 10.1186/ar4262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 08/13/2013] [Indexed: 01/18/2023] Open
Abstract
Background Polymorphisms in the interferon regulatory factor 5 (IRF5) gene are associated with susceptibility to systemic lupus erythematosus, rheumatoid arthritis and other diseases through independent risk and protective haplotypes. Several functional polymorphisms are already known, but they do not account for the protective haplotypes that are tagged by the minor allele of rs729302. Methods Polymorphisms in linkage disequilibrium (LD) with rs729302 or particularly associated with IRF5 expression were selected for functional screening, which involved electrophoretic mobility shift assays (EMSAs) and reporter gene assays. Results A total of 54 single-nucleotide polymorphisms in the 5' region of IRF5 were genotyped. Twenty-four of them were selected for functional screening because of their high LD with rs729302 or protective haplotypes. In addition, two polymorphisms were selected for their prominent association with IRF5 expression. Seven of these twenty-six polymorphisms showed reproducible allele differences in EMSA. The seven were subsequently analyzed in gene reporter assays, and three of them showed significant differences between their two alleles: rs729302, rs13245639 and rs11269962. Haplotypes including the cis-regulatory polymorphisms correlated very well with IRF5 mRNA expression in an analysis based on previous data. Conclusion We have found that three polymorphisms in LD with the protective haplotypes of IRF5 have differential allele effects in EMSA and in reporter gene assays. Identification of these cis-regulatory polymorphisms will allow more accurate analysis of transcriptional regulation of IRF5 expression, more powerful genetic association studies and deeper insight into the role of IRF5 in disease susceptibility.
Collapse
|
48
|
RNA-Seq for enrichment and analysis of IRF5 transcript expression in SLE. PLoS One 2013; 8:e54487. [PMID: 23349905 PMCID: PMC3548774 DOI: 10.1371/journal.pone.0054487] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022] Open
Abstract
Polymorphisms in the interferon regulatory factor 5 (IRF5) gene have been consistently replicated and shown to confer risk for or protection from the development of systemic lupus erythematosus (SLE). IRF5 expression is significantly upregulated in SLE patients and upregulation associates with IRF5-SLE risk haplotypes. IRF5 alternative splicing has also been shown to be elevated in SLE patients. Given that human IRF5 exists as multiple alternatively spliced transcripts with distinct function(s), it is important to determine whether the IRF5 transcript profile expressed in healthy donor immune cells is different from that expressed in SLE patients. Moreover, it is not currently known whether an IRF5-SLE risk haplotype defines the profile of IRF5 transcripts expressed. Using standard molecular cloning techniques, we identified and isolated 14 new differentially spliced IRF5 transcript variants from purified monocytes of healthy donors and SLE patients to generate an IRF5 variant transcriptome. Next-generation sequencing was then used to perform in-depth and quantitative analysis of full-length IRF5 transcript expression in primary immune cells of SLE patients and healthy donors by next-generation sequencing. Evidence for additional alternatively spliced transcripts was obtained from de novo junction discovery. Data from these studies support the overall complexity of IRF5 alternative splicing in SLE. Results from next-generation sequencing correlated with cloning and gave similar abundance rankings in SLE patients thus supporting the use of this new technology for in-depth single gene transcript profiling. Results from this study provide the first proof that 1) SLE patients express an IRF5 transcript signature that is distinct from healthy donors, 2) an IRF5-SLE risk haplotype defines the top four most abundant IRF5 transcripts expressed in SLE patients, and 3) an IRF5 transcript signature enables clustering of SLE patients with the H2 risk haplotype.
Collapse
|
49
|
The COP9 signalosome interacts with and regulates interferon regulatory factor 5 protein stability. Mol Cell Biol 2012; 33:1124-38. [PMID: 23275442 DOI: 10.1128/mcb.00802-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factor interferon regulatory factor 5 (IRF5) exerts crucial functions in the regulation of host immunity against extracellular pathogens, DNA damage-induced apoptosis, death receptor signaling, and macrophage polarization. Tight regulation of IRF5 is thus warranted for an efficient response toward extracellular stressors and for limiting autoimmune and inflammatory responses. Here we report that the COP9 signalosome (CSN), a general modulator of diverse cellular and developmental processes, associates constitutively with IRF5 and promotes its protein stability. The constitutive CSN/IRF5 interaction was identified using proteomics and confirmed by endogenous immunoprecipitations. The CSN/IRF5 interaction occurred on the carboxyl and amino termini of IRF5; a single internal deletion from amino acids 455 to 466 (Δ455-466) was found to significantly reduce IRF5 protein stability. CSN subunit 3 (CSN3) was identified as a direct interacting partner of IRF5, and knockdown of this subunit with small interfering RNAs resulted in enhanced degradation. Degradation was further augmented by knockdown of CSN1 and CSN3 together. The ubiquitin E1 inhibitor UBEI-41 or the proteasome inhibitor MG132 prevented IRF5 degradation, supporting the idea that its stability is regulated by the ubiquitin-proteasome system. Importantly, activation of IRF5 by the death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resulted in enhanced degradation via loss of the CSN/IRF5 interaction. This study defines CSN to be a new interacting partner of IRF5 that controls its stability.
Collapse
|
50
|
Interferon regulatory factor 5 in the pathogenesis of systemic lupus erythematosus. Clin Dev Immunol 2012; 2012:780436. [PMID: 23251221 PMCID: PMC3509422 DOI: 10.1155/2012/780436] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/31/2012] [Accepted: 09/12/2012] [Indexed: 01/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple genetic risk factors, high levels of interferon alpha (IFN-α), and the production of autoantibodies against components of the cell nucleus. Interferon regulatory factor 5 (IRF5) is a transcription factor which induces the transcription of IFN-α and other cytokines, and genetic variants of IRF5 have been strongly linked to SLE pathogenesis. IRF5 functions downstream of Toll-like receptors and other microbial pattern-recognition receptors, and immune complexes made up of SLE-associated autoantibodies seem to function as a chronic endogenous stimulus to this pathway. In this paper, we discuss the physiologic role of IRF5 in immune defense and the ways in which IRF5 variants may contribute to the pathogenesis of human SLE. Recent data regarding the role of IRF5 in both serologic autoimmunity and the overproduction of IFN-α in human SLE are summarized. These data support a model in which SLE-risk variants of IRF5 participate in a “feed-forward” mechanism, predisposing to SLE-associated autoantibody formation, and subsequently facilitating IFN-α production downstream of Toll-like receptors stimulated by immune complexes composed of these autoantibodies.
Collapse
|