1
|
Chen P, Ye B, Lin C, Zhang C, Chen J, Li L. Exploration of the mechanism of tetramethoxyflavone in treating osteoarthritis based on network pharmacology and molecular docking. Tzu Chi Med J 2025; 37:99-108. [PMID: 39850388 PMCID: PMC11753527 DOI: 10.4103/tcmj.tcmj_77_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 01/25/2025] Open
Abstract
Objectives This study aimed to explore the potential mechanisms of TMF (5,7,3',4'-tetramethoxyflavone) in treating osteoarthritis (OA) using network pharmacology and molecular docking. Materials and Methods Databases including SwissTargetPrediction, BATMAN-TCM, PharmMapper, TargetNet, SuperPred, and SEA were utilized to screen the targets of TMF. "OA" was used as the disease keyword to predict OA-related genes through GeneCards, Therapeutic Target Database, PharmGKB, Online Mendelian Inheritance in Man, and Comparative Toxicogenomics Database. The Venn diagram was employed to identify the intersection of predicted targets between TMF and OA as potential targets for TMF in treating OA. The intersection targets were input into the STRING 12.0 online database to construct a protein-protein interaction (PPI) network and identify core targets. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Metascape V3.5 online database platform. Finally, molecular docking between TMF and core targets was conducted using AutoDockTools 1.5.6. Results A total of 228 intersection targets for TMF treating OA were obtained, and PPI network analysis identified 5 core targets: STAT3, SRC, CTNNB1, EGFR, and AKT1. GO enrichment analysis yielded 2736 results, while KEGG analysis identified 203 pathways. Most elated GO and KEGG items of TMF in treating OA may include hormonal responses, antiviral and anticancer effects, anti-inflammation, phosphorus metabolism, phosphate metabolism, nitrogen compound responses, cancer-related pathways, PI3K-Akt signaling pathway, and MAPK signaling pathway. Molecular docking revealed good binding affinities between TMF and all core targets except STAT3. Conclusion TMF might act on multiple targets and activate diverse pathways to intervene in OA, revealing the molecular processes involved in TMF treatment of OA.
Collapse
Affiliation(s)
- Ping Chen
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Baibai Ye
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Cheng Lin
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chenning Zhang
- Department of Pharmacy, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jia Chen
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Linfu Li
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Xu Z, Su P, Zhou X, Zheng Z, Zhu Y, Wang Q. Exploring the mechanism of action of Modified Simiao Powder in the treatment of osteoarthritis: an in-silico study. Front Med (Lausanne) 2024; 11:1422306. [PMID: 39493720 PMCID: PMC11527633 DOI: 10.3389/fmed.2024.1422306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Osteoarthritis (OA) is the most common form of arthritis and the leading musculoskeletal disorders in adults. Modified Simiao Powder (MSMP) has been widely used in the treatment of OA with remarkable clinical ecaciousness. Objective This study aimed to elucidate underlying mechanisms of MSMP in OA by employing network pharmacology, molecular docking, and molecular dynamics simulations, due to the unclear mode of action. Methods Bioinformatic analysis was used to evaluate the major chemical constituents of MSMP, determine prospective target genes, and screen genes associated with OA. Network pharmacology methods were then applied to identify the crucial target genes of MSMP in OA treatment. Further analyses included gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. These key targets within the pertinent pathways was further confirmed by molecular docking, binding energy evaluation, and molecular dynamics simulations. Results Network pharmacology analysis identified an MSMP component-target-pathway network comprising 11 central active compounds, 25 gene targets, and 12 biological pathways. Discussion These findings imply that the therapeutic effects of MSMP was potentially mediated by targeting several pivotal genes, such as androgen receptor (AR), NFKB1, AKT1, MAPK1, and CASP3, and regulating some pathways, including lipid metabolism and atherosclerosis, the AGE-RAGE signaling pathway in diabetic complications, the PI3K-Akt signaling pathway, fluid shear stress, atherosclerosis, and Kaposi's sarcoma-associated herpesvirus infection. Molecular docking assessments demonstrated that these compounds of MSMP, such as berberine, kaempferol, quercetin, and luteolin, exhibit high binding anities to AR and AKT1. Molecular dynamics simulations validated the interactions between these compounds and targets. Conclusion The therapeutic effect of MSMP likely attributed to the modulation of multiple pathways, including lipid metabolism, atherosclerosis, the AGE-RAGE signaling pathway, and the PI3K-Akt signaling pathway, by the active components such as berberine, kaempferol, luteolin, and quercetin. Especially, their actions on target genes like AR and AKT1 contribute to the therapeutic benefits of MSMP observed in the treatment of OA.
Collapse
Affiliation(s)
- Zhouhengte Xu
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pingping Su
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiahui Zhou
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Zhihui Zheng
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yibo Zhu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinglai Wang
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
3
|
Cao S, Wei Y, Yue Y, Xiong A, Zeng H. Zooming in and Out of Programmed Cell Death in Osteoarthritis: A Scientometric and Visualized Analysis. J Inflamm Res 2024; 17:2479-2498. [PMID: 38681072 PMCID: PMC11055561 DOI: 10.2147/jir.s462722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
During the past decade, mounting evidence has increasingly linked programmed cell death (PCD) to the progression and development of osteoarthritis (OA). There is a significant need for a thorough scientometric analysis that recapitulates the relationship between PCD and OA. This study aimed to collect articles and reviews focusing on PCD in OA, extracting data from January 1st, 2013, to October 31st, 2023, using the Web of Science. Various tools, including VOSviewer, CiteSpace, Pajek, Scimago Graphica, and the R package, were employed for scientometric and visualization analyses. Notably, China, the USA, and South Korea emerged as major contributors, collectively responsible for more than 85% of published papers and significantly influencing research in this field. Among different institutions, Shanghai Jiao Tong University, Xi'an Jiao Tong University, and Zhejiang University exhibited the highest productivity. Prolific authors included Wang Wei, Wang Jing, and Zhang Li. Osteoarthritis and Cartilage had the most publications in this area. Keywords related to PCD in OA prominently highlighted 'chondrocytes', 'inflammation', and 'oxidative stress', recognized as pivotal mechanisms contributing to PCD within OA. This study presents the first comprehensive scientometric analysis, offering a broad perspective on the knowledge framework and evolving patterns concerning PCD in relation to OA over the last decade. Such insights can aid researchers in comprehensively understanding this field and provide valuable directions for future explorations.
Collapse
Affiliation(s)
- Siyang Cao
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Yihao Wei
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Yaohang Yue
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Ao Xiong
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hui Zeng
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Shangguan H, Huang X, Lin J, Chen R. Knockdown of Kmt2d leads to growth impairment by activating the Akt/β-catenin signaling pathway. G3 (BETHESDA, MD.) 2024; 14:jkad298. [PMID: 38263533 PMCID: PMC10917512 DOI: 10.1093/g3journal/jkad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
The KMT2D variant-caused Kabuki syndrome (KS) is characterized by short stature as a prominent clinical characteristic. The initiation and progression of body growth are fundamentally influenced by chondrocyte proliferation. Uncertainty persists regarding the possibility that KMT2D deficiency affects growth by impairing chondrocyte proliferation. In this study, we used the CRISPR/Cas13d technique to knockdown kmt2d in zebrafish embryos and lentivirus to create a stable Kmt2d gene knockdown cell line in chondrocytes (ATDC5 cells). We also used CCK8 and flow cytometric studies, respectively, to determine proliferation and cell cycle state. The relative concentrations of phosphorylated Akt (ser473), phosphorylated β-catenin (ser552), and cyclin D1 proteins in chondrocytes and zebrafish embryos were determined by using western blots. In addition, Akt inhibition was used to rescue the phenotypes caused by kmt2d deficiency in chondrocytes, as well as a zebrafish model that was generated. The results showed that a knockdown of kmt2d significantly decreased body length and resulted in aberrant cartilage development in zebrafish embryos. Furthermore, the knockdown of Kmt2d in ATDC5 cells markedly increased proliferation and accelerated the G1/S transition. In addition, the knockdown of Kmt2d resulted in the activation of the Akt/β-catenin signaling pathway in ATDC5 cells. Finally, Akt inhibition could partly rescue body length and chondrocyte development in the zebrafish model. Our study demonstrated that KMT2D modulates bone growth conceivably via regulation of the Akt/β-catenin pathway.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Xiaozhen Huang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Jinduan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| |
Collapse
|
5
|
You H, Song S, Liu D, Ren T, Yin SJ, Wu P, Mao J. Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:59-72. [PMID: 38154965 PMCID: PMC10762491 DOI: 10.4196/kjpp.2024.28.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.
Collapse
Affiliation(s)
- Hankun You
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Siyuan Song
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Deren Liu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Tongsen Ren
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Song Jiang Yin
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Peng Wu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Jun Mao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| |
Collapse
|
6
|
Zhang Y, Huang H, Chen H, Zhang P, Liu Y, Gan Y, Yan X, Xie B, Liu H, He B, Tang J, Shen G, Jiang X. Unearths IFNB1 immune infiltrates in SOP-related ossification of ligamentum flavum pathogenesis. Heliyon 2023; 9:e16722. [PMID: 37303521 PMCID: PMC10248278 DOI: 10.1016/j.heliyon.2023.e16722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Ossification of ligamentum flavum (OLF) is a hidden, indolent disease condition with variable unexplained etiology and pathology. Growing evidences show a correlation between senile osteoporosis (SOP) and OLF, but the fundamental relationship between SOP and OLF remains unclear. Therefore, the purpose of this work is to investigate unique SOP-related genes and their potential functions in OLF. Methods Gene Expression Omnibus (GEO) database was utilized to gather the mRNA expression data (GSE106253) and then analyzed by R software. A variety of methods, including ssGSEA, machine learning (LASSO and SVM-RFE), GO and KEGG enrichment, PPI network, transcription factor enrichment analysis (TFEA), GSEA and xCells were employed to verified the critical genes and signaling pathways. Furthermore, ligamentum flavum cells were cultured and used in vitro to identify the expression of the core genes. Results The preliminary identification of 236 SODEGs revealed their involvement in BP pathways associated with ossification, inflammation, and immune response, including the TNF signaling pathway, PI3K/AKT signaling pathway and osteoclast differentiation. Four down-regulated genes (SERPINE1, SOCS3, AKT1, CCL2) and one up-regulated gene (IFNB1) were among the five hub SODEGs that were validated. Additionally, they were performed by ssGSEA and xCell to show the relationship of immune cells infiltrating in OLF. The most fundamental gene, IFNB1, which was only found in the classical ossification- and inflammation-related pathways, suggested that it may affect OLF via regulating the inflammatory response. In vitro experiment, we found that IFNB1 expression was dramatically higher in cells cocultured with osteogenic induction than in controls. Conclusion As far as we are concerned, this is the first observation using transcriptome data mining to reveal distinct SOP-related gene profiles between OLF and normal controls. Five hub SODEGs were ultimately found using bioinformatics algorithms and experimental verification. These genes may mediate intricate inflammatory/immune responses or signaling pathways in the pathogenesis of OLF, according to the thorough functional annotations. Since IFNB1 was discovered to be a key gene and was connected to numerous immune infiltrates in OLF, it is possible that IFNB1 expression has a substantial impact on the pathogenesis of OLF. Our research will give rise to new possibilities for potential therapeutics that target SOP reverent genes and immune-associated pathways in OLF.
Collapse
Affiliation(s)
- You Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hongwei Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- People's Hospital of Yang Jiang, Yang Jiang 529500, China
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanchi Gan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xianwei Yan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bin Xie
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hao Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bowen He
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jingjing Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gengyang Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaobing Jiang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
7
|
Paesa M, Alejo T, Garcia-Alvarez F, Arruebo M, Mendoza G. New insights in osteoarthritis diagnosis and treatment: Nano-strategies for an improved disease management. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1844. [PMID: 35965293 DOI: 10.1002/wnan.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 11/07/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint pathology that has become a predominant cause of disability worldwide. Even though the origin and evolution of OA rely on different factors that are not yet elucidated nor understood, the development of novel strategies to treat OA has emerged in the last years. Cartilage degradation is the main hallmark of the pathology though alterations in bone and synovial inflammation, among other comorbidities, are also involved during OA progression. From a molecular point of view, a vast amount of signaling pathways are implicated in the progression of the disease, opening up a wide plethora of targets to attenuate or even halt OA. The main purpose of this review is to shed light on the recent strategies published based on nanotechnology for the early diagnosis of the disease as well as the most promising nano-enabling therapeutic approaches validated in preclinical models. To address the clinical issue, the key pathways involved in OA initiation and progression are described as the main potential targets for OA prevention and early treatment. Furthermore, an overview of current therapeutic strategies is depicted. Finally, to solve the drawbacks of current treatments, nanobiomedicine has shown demonstrated benefits when using drug delivery systems compared with the administration of the equivalent doses of the free drugs and the potential of disease-modifying OA drugs when using nanosystems. We anticipate that the development of smart and specific bioresponsive and biocompatible nanosystems will provide a solid and promising basis for effective OA early diagnosis and treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Monica Paesa
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
| | - Teresa Alejo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
| | - Felicito Garcia-Alvarez
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Department of Orthopedic Surgery & Traumatology, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Gracia Mendoza
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
8
|
Stage-Dependent Activity and Pro-Chondrogenic Function of PI3K/AKT during Cartilage Neogenesis from Mesenchymal Stromal Cells. Cells 2022; 11:cells11192965. [PMID: 36230927 PMCID: PMC9563299 DOI: 10.3390/cells11192965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Differentiating mesenchymal stromal cells (MSCs) into articular chondrocytes (ACs) for application in clinical cartilage regeneration requires a profound understanding of signaling pathways regulating stem cell chondrogenesis and hypertrophic degeneration. Classifying endochondral signals into drivers of chondrogenic speed versus hypertrophy, we here focused on insulin/insulin-like growth factor 1 (IGF1)-induced phosphoinositide 3-kinase (PI3K)/AKT signaling. Aware of its proliferative function during early but not late MSC chondrogenesis, we aimed to unravel the late pro-chondrogenic versus pro-hypertrophic PI3K/AKT role. PI3K/AKT activity in human MSC and AC chondrogenic 3D cultures was assessed via Western blot detection of phosphorylated AKT. The effects of PI3K inhibition with LY294002 on chondrogenesis and hypertrophy were assessed via histology, qPCR, the quantification of proteoglycans, and alkaline phosphatase activity. Being repressed by ACs, PI3K/AKT activity transiently rose in differentiating MSCs independent of TGFβ or endogenous BMP/WNT activity and climaxed around day 21. PI3K/AKT inhibition from day 21 on equally reduced chondrocyte and hypertrophy markers. Proving important for TGFβ-induced SMAD2 phosphorylation and SOX9 accumulation, PI3K/AKT activity was here identified as a required stage-dependent driver of chondrogenic speed but not of hypertrophy. Thus, future attempts to improve MSC chondrogenesis will depend on the adequate stimulation and upregulation of PI3K/AKT activity to generate high-quality cartilage from human MSCs.
Collapse
|
9
|
Pang T, Liu C, Yao J, Li J, Li Z, Lou H, Lei S, Zhang J, Dong L, Wang Y. Mechanisms of the Bushen Huoxue formula in the treatment of osteoarthritis based on network pharmacology-molecular targets. Medicine (Baltimore) 2022; 101:e29345. [PMID: 35960090 PMCID: PMC9371512 DOI: 10.1097/md.0000000000029345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Osteoarthritis is a common degenerative disease with a high incidence, high disability rate, and poor prognosis. Clinical studies have shown that Bushen Huoxue formula can relieve joint swelling and pain and improve limb function and joint mobility, but there is a lack of high-quality scientific basis. Using network pharmacology and molecular docking technology to study the mechanism of Bushen Huoxue formula in the treatment of osteoarthritis. METHODS First, the active ingredients and corresponding target predictions of the formula were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and the China National Knowledge Infrastructure. Meanwhile, the osteoarthritis disease targets were obtained through the genome annotation database platform (GeneCards) and the DrugBank database, and the target proteins obtained above were standardized using the Uniprot (https://www.uniprot.org) database standardization of names. Then, the Venn diagram was created by taking the intersection of the active ingredient and the target of the disease, and the "active ingredient-target" network was constructed and analyzed using Cytoscape 3.7.2 software. At the same time, the intersecting targets were imported into the Search Tool for the Retrieval of Interaction Gene/Proteins database to build a protein-protein interaction network and to screen the core targets; the intersecting targets were visualized by using the Database for Annotation, Visualization and Integrated Discovery 6.8 database for gene ontology functional analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and construct the "active ingredient-target-pathway" network. Finally, the main active ingredients of the formula for tonifying the kidney and invigorating the blood were validated by molecular docking with the core targets. RESULTS A total of 194 active ingredients and 365 targets of the Bushen Huoxue formula were collected, 776 targets for osteoarthritis diseases and 96 targets for the intersection of active ingredients and diseases. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis yielded 104 relevant pathways, including tumor necrosis factor signaling pathways, cancer signaling pathways, nucleotide-binding oligomerization domain-like receptor signaling pathways, Toll-like receptors signaling pathways, and osteoclast differentiation, apoptosis, T-cell receptor signaling pathway, and other related pathways. The molecular docking results showed good binding of the main active ingredients to the core targets. CONCLUSION This study shows that the treatment of osteoarthritis involves multicomponent, multitarget, and multipathway processes. The mechanism of anti-inflammatory, antioxidant, inhibition of cartilage matrix degradation, and reduction of subchondral bone destruction may be an important mechanism for the therapeutic effect.
Collapse
Affiliation(s)
- Tingting Pang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Chang Liu
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Junjie Yao
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiahui Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Zhongxu Li
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Huijuan Lou
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Siyuan Lei
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiangchun Zhang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Li Dong
- Department of Rehabilitation Medicine College, Changchun University of Chinese Medicine, Changchun, China
| | - Yufeng Wang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yufeng Wang, Department of Tuina, Traditional Chinese Medicine Hospital of Jinlin Province, Changchun 130000, China (e-mail: )
| |
Collapse
|
10
|
Xiang C, Liao Y, Chen Z, Xiao B, Zhao Z, Li A, Xia Y, Wang P, Li H, Xiao T. Network Pharmacology and Molecular Docking to Elucidate the Potential Mechanism of Ligusticum Chuanxiong Against Osteoarthritis. Front Pharmacol 2022; 13:854215. [PMID: 35496280 PMCID: PMC9050356 DOI: 10.3389/fphar.2022.854215] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Osteoarthritis (OA) is a degenerative disease which serious affects patients. Ligusticum chuanxiong (CX) has been shown to have a certain curative effect on osteoarthritis in traditional Chinese medicine therapy. This study is based on network pharmacology and molecular docking technology to explore the potential mechanism of CX. Methods: Components of CX to treat osteoarthritis were screened in the TCMSP database and targets were predicted by the PharmMapper database, the osteoarthritis targets were collected from the GeneCards database, and intersection genes were found to be the possible targets of CX anti-OA. The STRING database and Cytoscape software were utilized for protein-protein interaction analysis and further screening of core targets. The Metascape database was used for KEGG and GO enrichment analyses. Then, the top 10 pathways were selected to construct “drug-compound-target-pathway-disease” network analysis. Finally, molecular docking was used to analyze the binding affinity of seven compounds with core targets and TNF-α. Results: Seven compounds with 253 non-repetitive targets of CX were screened from the TCMSP database and 60 potential intersection targets of CX anti-OA were found. PPI network analysis showed that the core targets were ALB, AKT1, IGF1, CASP3, MAPK1, ANXA5, and MAPK14, while GO and KEGG pathway enrichment analyses showed that the relevant biological processes involved in the treatment of osteoarthritis by CX might include the MAPK cascade and reactive oxygen species metabolic process. The KEGG pathway analysis result was mainly associated with the MAPK signaling pathway and PI3K-AKT signaling pathway. We further docked seven ingredients with MAPK1 and MAPK14 enriched in the MAPK pathway, and TNF-α as the typical inflammatory cytokine. The results also showed good binding affinity, especially FA, which may be the most important component of CX anti-OA. Conclusion: Our research revealed the potential mechanism of CX in the treatment of OA, and our findings can also pave the way for subsequent basic experimental verification and a new research direction.
Collapse
Affiliation(s)
- Cheng Xiang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yilin Liao
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuoyuan Chen
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyue Zhao
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Aoyu Li
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Xia
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Pingxiao Wang
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hui Li, ; Tao Xiao,
| | - Tao Xiao
- Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hui Li, ; Tao Xiao,
| |
Collapse
|
11
|
Microstructural and histomorphological features of osteophytes in late-stage human knee osteoarthritis with varus deformity. Joint Bone Spine 2022; 89:105353. [DOI: 10.1016/j.jbspin.2022.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
|
12
|
Chen L, Ni Z, Huang J, Zhang R, Zhang J, Zhang B, Kuang L, Sun X, Zhang D, Su N, Qi H, Yang J, Jin M, Luo F, Chen H, Zhou S, Du X, Ouyang J, Wang Z, Xie Y, Tan Q, Chen L. Long term usage of dexamethasone accelerating accelerates the initiation of osteoarthritis via enhancing chondrocyte apoptosis and the extracellular matrix calcification and apoptosis of chondrocytes. Int J Biol Sci 2021; 17:4140-4153. [PMID: 34803488 PMCID: PMC8579451 DOI: 10.7150/ijbs.64152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic application of glucocorticoids is an essential anti-inflammatory and immune-modulating therapy for severe inflammatory or autoimmunity conditions. However, its long-term effects on articular cartilage of patients' health need to be further investigated. In this study, we studied the effects of dexamethasone (Dex) on the homeostasis of articular cartilage and the progress of destabilization of medial meniscus (DMM)-induced osteoarthritis (OA) in adult mice. Long-term administration of Dex aggravates the proteoglycan loss of articular cartilage and drastically accelerates cartilage degeneration under surgically induced OA conditions. In addition, Dex increases calcium content in calcified cartilage layer of mice and the samples from OA patients with a history of long-term Dex treatment. Moreover, long term usage of Dex results in decrease subchondral bone mass and bone density. Further studies showed that Dex leads to calcification of extracellular matrix of chondrocytes partially through activation of AKT, as well as promotes apoptosis of chondrocytes in calcified cartilage layer. Besides, Dex weakens the stress-response autophagy with the passage of time. Taken together, our data indicate that long-term application of Dex may predispose patients to OA and or even accelerate the OA disease progression development of OA patients.
Collapse
Affiliation(s)
- Liang Chen
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Department of orthopedic, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junlan Huang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruobin Zhang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinfan Zhang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liang Kuang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Nan Su
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Huabing Qi
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siru Zhou
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Ouyang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zuqiang Wang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Zhu X, Guo W. Meta-Analyses of Multiple Gene Expression Profiles to Screen Hub Genes Related to Osteoarthritis. Public Health Genomics 2021; 24:267-279. [PMID: 34340232 DOI: 10.1159/000517308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/15/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This study aimed to screen and validate the crucial genes involved in osteoarthritis (OA) and explore its potential molecular mechanisms. METHODS Four expression profile datasets related to OA were downloaded from the Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) from 4 microarray patterns were identified by the meta-analysis method. The weighted gene co-expression network analysis (WGCNA) method was used to investigate stable modules most related to OA. In addition, a protein-protein interaction (PPI) network was built to explore hub genes in OA. Moreover, OA-related genes and pathways were retrieved from Comparative Toxicogenomics Database (CTD). RESULTS A total of 1,136 DEGs were identified from 4 datasets. Based on these DEGs, WGCNA further explored 370 genes included in the 3 OA-related stable modules. A total of 10 hub genes were identified in the PPI network, including AKT1, CDC42, HLA-DQA2, TUBB, TWISTNB, GSK3B, FZD2, KLC1, GUSB, and RHOG. Besides, 5 pathways including "Lysosome," "Pathways in cancer," "Wnt signaling pathway," "ECM-receptor interaction" and "Focal adhesion" in CTD and enrichment analysis and 5 OA-related hub genes (including GSK3B, CDC42, AKT1, FZD2, and GUSB) were identified. CONCLUSION In this study, the meta-analysis was used to screen the central genes associated with OA in a variety of gene expression profiles. Three OA-related modules (green, turquoise, and yellow) containing 370 genes were identified through WGCNA. It was discovered through the gene-pathway network that GSK3B, CDC42, AKT1, FZD2, and GUSB may be key genes related to the progress of OA and may become promising therapeutic targets.
Collapse
Affiliation(s)
- Xianyang Zhu
- Department of Orthopedics, Taizhou People's Hospital, Taizhou, China
| | - Wen Guo
- Department of Orthopedics, Taizhou People's Hospital, Taizhou, China
| |
Collapse
|
14
|
Arias C, Saavedra N, Leal K, Vásquez B, Abdalla DSP, Salazar LA. Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats. Int J Mol Sci 2020; 21:ijms21228607. [PMID: 33203108 PMCID: PMC7697851 DOI: 10.3390/ijms21228607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a cellular mechanism that protects cells from stress by digesting non-functional cellular components. In the cartilage, chondrocytes depend on autophagy as a principal mechanism to maintain cellular homeostasis. This protective role diminishes prior to the structural damage that normally occurs during aging. Considering that aging is the main risk factor for osteoarthritis, evaluating the expression of genes associated with autophagy in senescent cartilage might allow for the identification of potential therapeutic targets for treatment. Thus, we studied two groups of young and senescent rats. A histological analysis of cartilage and gene expression quantification for autophagy-related genes were performed. In aged cartilage, morphological changes were observed, such as an increase in cartilage degeneration as measured by the modified Mankin score, a decrease in the number of chondrocytes and collagen II (Col2a1), and an increase in matrix metalloproteinase 13 (Mmp13). Moreover, 84 genes associated with autophagy were evaluated by a PCR array analysis, and 15 of them were found to be significantly decreased with aging. Furthermore, an in silico analysis based on by two different bioinformatics software tools revealed that several processes including cellular homeostasis, autophagosome assembly, and aging—as well as several biological pathways such as autophagy, insulin-like growth factor 1 (IGF-1) signaling, PI3K (phosphoinositide 3-kinase)/AKT (serine/threonine kinase) signaling, and mammalian target of rapamycin (mTOR) signaling—were enriched. In conclusion, the analysis identified some potential targets for osteoarthritis treatment that would allow for the development of new therapeutic strategies for this chronic disease.
Collapse
Affiliation(s)
- Consuelo Arias
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (C.A.); (N.S.); (K.L.)
- Carrera de Kinesiología, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Av. Alemania 1090, Temuco 4810101, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (C.A.); (N.S.); (K.L.)
| | - Karla Leal
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (C.A.); (N.S.); (K.L.)
| | - Bélgica Vásquez
- Facultad de Ciencias de la Salud, Universidad de Tarapacá, Av. General Velásquez 1775, Arica 1000007, Chile;
| | - Dulcineia S. P. Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, Avenida Professor Lineu Prestes 580, São Paulo CEP 05508-000, SP, Brazil;
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile; (C.A.); (N.S.); (K.L.)
- Correspondence: ; Tel.: +56-45-259-6724
| |
Collapse
|
15
|
FN1 promotes chondrocyte differentiation and collagen production via TGF-β/PI3K/Akt pathway in mice with femoral fracture. Gene 2020; 769:145253. [PMID: 33098939 DOI: 10.1016/j.gene.2020.145253] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/17/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022]
Abstract
Fibronectin (FN) functions as a potent stimulator of osteogenic differentiation, and bone fracture healing. In FN family, FN1 acts as an interactive protein gene product to mediate chondrocyte adhesion. However, its effect on fracture healing remains elusive. Therefore, we aimed to investigate the involvement of FN1 in fracture healing. Hard callus formations were found at fracture site with thicker periosteum in lateral cortical bone area outside the fracture site in model mice. The decreased number of osteogenic cells in the middle of the callus region and increased extracellular matrix were suggestive of successful induction. Immunoblotting and RT-qPCR revealed that expression of FN1 was increased in tissues of fracture mice. As displayed by Safranin-fast green staining hematoxylin-eosin staining, the overexpression of FN1 at fracture site promoted osteoid formation and chondrocyte differentiation. The stimulating role of FN1 in collagen production was evidenced by increased levels of Col2, Col1, ColX, Osteonectin, and Osteocalcin and enhanced BMD, BV, BV/TV and Tb.Th values verified by immunoblotting and immunohistochemical staining. Additionally, the upregulation of FN1 contributed to promoted TGF-β, c-Caspase-9/t-Caspase-9 ratio and NF-κB p65 protein expression as well as lowered p-PI3K/PI3K and p-AKT/AKT ratios, implying the positive correlation between FN1 and the TGF-β/PI3K/Akt signaling pathway. The key findings of the present study provided evidence indicating that overexpression of FN1 contributes to fracture healing by activation of the TGF-β/PI3K/Akt signaling pathway.
Collapse
|
16
|
Chen Y, Huang L, Dong Y, Tao C, Zhang R, Shao H, Shen H. Effect of AKT1 (p. E17K) Hotspot Mutation on Malignant Tumorigenesis and Prognosis. Front Cell Dev Biol 2020; 8:573599. [PMID: 33123537 PMCID: PMC7573235 DOI: 10.3389/fcell.2020.573599] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
The substitution of the seventeenth amino acid glutamate by lysine in the homologous structural domain of the Akt1 gene pleckstrin is a somatic cellular mutation found in breast, colorectal, and ovarian cancers, named p. Glu17Lys or E17K. In recent years, a growing number of studies have suggested that this mutation may play a unique role in the development of tumors. In this review article, we describe how AKT1(E17K) mutations stimulate downstream signals that cause cells to emerge transformed; we explore the differential regulation and function of E17K in different physiological and pathological settings; and we also describe the phenomenon that E17K impedes tumor growth by interfering with growth-promoting and chemotherapy-resistant AKT1lowQCC generation, an intriguing finding that mutants may prolong tumor patient survival by activating feedback mechanisms and disrupting transcription. This review is intended to provide a better understanding of the role of AKT1(E17K) in cancer and to inform the development of AKT1(E17K)-based antitumor strategies.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lan Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongjian Dong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The identification of genes mutated in the different malformations provides insight into the etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. A few familial forms of vascular anomalies exist, but most cases occur sporadically. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The use of Next Generating Sequencing for high throughput and "deep" screening of both blood and lesional DNA and RNA has been instrumental in detecting such low frequency somatic changes. The number of novel causative mutations identified for many vascular anomalies has soared within a 10-year period. The discovery of such genes aided in unraveling a holistic overview of the pathogenic mechanisms, by which in vitro and in vivo models could be generated, and opening the doors to development of more effective treatments that do not address just symptoms. Moreover, as many mutations and the implicated signaling pathways are shared with cancers, current oncological therapies could potentially be repurposed for the treatment of vascular anomalies.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium; WELBIO (Walloon Excellence in Lifesciences and Biotechnology), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
18
|
Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis. Sci Rep 2020; 10:13477. [PMID: 32778777 PMCID: PMC7418027 DOI: 10.1038/s41598-020-68302-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/12/2020] [Indexed: 01/17/2023] Open
Abstract
Osteoarthritis (OA) affects nearly 10% of the population of the United States and other industrialized countries and, at present, short of surgical joint replacement, there is no therapy available that can reverse the progression of the disease. Adenosine, acting at its A2A receptor (A2AR), is a critical autocrine factor for maintenance of cartilage homeostasis and here we report that injection of liposomal suspensions of either adenosine or a selective A2AR agonist, CGS21680, significantly reduced OA cartilage damage in a murine model of obesity-induced OA. The same treatment also improved swelling and preserved cartilage in the affected knees in a rat model of established post-traumatic OA (PTOA). Differential expression analysis of mRNA from chondrocytes harvested from knees of rats with PTOA treated with liposomal A2AR agonist revealed downregulation of genes associated with matrix degradation and upregulation of genes associated with cell proliferation as compared to liposomes alone. Studies in vitro and in affected joints demonstrated that A2AR ligation increased the nuclear P-SMAD2/3/P-SMAD1/5/8 ratio, a change associated with repression of terminal chondrocyte differentiation. These results strongly suggest that targeting the A2AR is an effective approach to treat OA.
Collapse
|
19
|
Wang W, Rigueur D, Lyons KM. TGFβ as a gatekeeper of BMP action in the developing growth plate. Bone 2020; 137:115439. [PMID: 32442550 PMCID: PMC7891678 DOI: 10.1016/j.bone.2020.115439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
The ligands that comprise the Transforming Growth Factor β superfamily highly govern the development of the embryonic growth plate. Members of this superfamily activate canonical TGFβ and/or BMP (Bone Morphogenetic Protein) signaling pathways. How these pathways interact with one another is an area of active investigation. These two signaling pathways have been described to negatively regulate one another through crosstalk involving Smad proteins, the primary intracellular effectors of canonical signaling. More recently, a mechanism for regulation of the BMP pathway through TGFβ and BMP receptor interactions has been described. Here in this review, we demonstrate examples of how TGFβ is a gatekeeper of BMP action in the developing growth plate at both the receptor and transcriptional levels.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Diana Rigueur
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Karen M Lyons
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America; Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
20
|
Venot Q, Canaud G. [Segmental overgrowth syndromes and therapeutic strategies]. Med Sci (Paris) 2020; 36:235-242. [PMID: 32228842 DOI: 10.1051/medsci/2020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Overgrowth syndromes are a large group of rare disorders characterized by generalized or segmental excessive growth. Segmental overgrowth syndromes are mainly due to genetic anomalies appearing during the embryogenesis and leading to mosaicism. The numbers of patients with segmental overgrowth with an identified molecular defect has dramatically increased following the recent advances in molecular genetic using next-generation sequencing approaches. This review discusses various syndromes and pathways involved in segmental overgrowth syndromes and presents actual and future therapeutic strategies.
Collapse
Affiliation(s)
- Quitterie Venot
- Inserm U1151, Institut Necker Enfants Malades, 75015 Paris, France
| | - Guillaume Canaud
- Inserm U1151, Institut Necker Enfants Malades, 75015 Paris, France - Service d'Hypercroissance Pathologique, Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, 75015 Paris, France - Université de Paris, Paris, France
| |
Collapse
|
21
|
Yurube T, Ito M, Kakiuchi Y, Kuroda R, Kakutani K. Autophagy and mTOR signaling during intervertebral disc aging and degeneration. JOR Spine 2020; 3:e1082. [PMID: 32211593 PMCID: PMC7084057 DOI: 10.1002/jsp2.1082] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Degenerative disc disease is a highly prevalent, global health problem that represents the primary cause of back pain and is associated with neurological disorders, including radiculopathy, myelopathy, and paralysis, resulting in worker disability and socioeconomic burdens. The intervertebral disc is the largest avascular organ in the body, and degeneration is suspected to be linked to nutritional deficiencies. Autophagy, the process through which cells self-digest and recycle damaged components, is an important cell survival mechanism under stress conditions, especially nutrient deprivation. Autophagy is negatively controlled by the mammalian target of rapamycin (mTOR) signaling pathway. mTOR is a serine/threonine kinase that detects nutrient availability to trigger the activation of cell growth and protein synthesis pathways. Thus, resident disc cells may utilize autophagy and mTOR signaling to cope with harsh low-nutrient conditions, such as low glucose, low oxygen, and low pH. We performed rabbit and human disc cell and tissue studies to elucidate the involvement and roles played by autophagy and mTOR signaling in the intervertebral disc. In vitro serum and nutrient deprivation studies resulted in decreased disc cell proliferation and metabolic activity and increased apoptosis and senescence, in addition to increased autophagy. The selective RNA interference-mediated and pharmacological inhibition of mTOR complex 1 (mTORC1) was protective against inflammation-induced disc cellular apoptosis, senescence, and extracellular matrix catabolism, through the induction of autophagy and the activation of the Akt-signaling network. Although temsirolimus, a rapamycin derivative with improved water solubility, was the most effective mTORC1 inhibitor tested, dual mTOR inhibitors, capable of blocking multiple mTOR complexes, did not rescue disc cells. In vivo, high levels of mTOR-signaling molecule expression and phosphorylation were observed in human intermediately degenerated discs and decreased with age. A mechanistic understanding of autophagy and mTOR signaling can provide a basis for the development of biological therapies to treat degenerative disc disease.
Collapse
Affiliation(s)
- Takashi Yurube
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Masaaki Ito
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yuji Kakiuchi
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Ryosuke Kuroda
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Kenichiro Kakutani
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
22
|
LIU MIN, ALHARBI MOHAMMED, GRAVES DANA, YANG SHUYING. IFT80 Is Required for Fracture Healing Through Controlling the Regulation of TGF-β Signaling in Chondrocyte Differentiation and Function. J Bone Miner Res 2020; 35:571-582. [PMID: 31643106 PMCID: PMC7525768 DOI: 10.1002/jbmr.3902] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Primary cilia are essential cellular organelles that are anchored at the cell surface membrane to sense and transduce signaling. Intraflagellar transport (IFT) proteins are indispensable for cilia formation and function. Although major advances in understanding the roles of these proteins in bone development have been made, the mechanisms by which IFT proteins regulate bone repair have not been identified. We investigated the role of the IFT80 protein in chondrocytes during fracture healing by creating femoral fractures in mice with conditional deletion of IFT80 in chondrocytes utilizing tamoxifen inducible Col2α1-CreER mice. Col2α1cre IFT80f/f mice had smaller fracture calluses than IFT80f/f (control) mice. The max-width and max-callus area were 31% and 48% smaller than those of the control mice, respectively. Col2α1cre IFT80f/f mice formed low-density/porous woven bony tissue with significantly lower ratio of bone volume, Trabecular (Tb) number and Tb thickness, and greater Tb spacing compared to control mice. IFT80 deletion significantly downregulated the expression of angiogenesis markers-VEGF, PDGF and angiopoietin and inhibited fracture callus vascularization. Mechanistically, loss of IFT80 in chondrocytes resulted in a decrease in cilia formation and chondrocyte proliferation rate in fracture callus compared to the control mice. Meanwhile, IFT80 deletion downregulated the TGF-β signaling pathway by inhibiting the expression of TGF-βI, TGF-βR, and phosphorylation of Smad2/3 in the fracture callus. In primary chondrocyte cultures in vitro, IFT80 deletion dramatically reduced chondrocyte proliferation, cilia assembly, and chondrogenic gene expression and differentiation. Collectively, our findings demonstrate that IFT80 and primary cilia play an essential role in fracture healing, likely through controlling chondrocyte proliferation and differentiation, and the TGF-β signaling pathway. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- MIN LIU
- Dept. of Anatomy and Cell Biology, University of
Pennsylvania, Philadelphia, PA
| | - MOHAMMED ALHARBI
- Dept. of Endodontics, Faculty of Dentistry, King Abdulaziz
University, Saudi Arabia
| | - DANA GRAVES
- Dept. of Periodontics, School of Dental Medicine,
University of Pennsylvania, Philadelphia, PA
| | - SHUYING YANG
- Dept. of Anatomy and Cell Biology, University of
Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Xie J, Lin J, Wei M, Teng Y, He Q, Yang G, Yang X. Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice. Bone Res 2019; 7:23. [PMID: 31646013 PMCID: PMC6804644 DOI: 10.1038/s41413-019-0062-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/25/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is an age-related disorder that is strongly associated with chondrocyte senescence. The causal link between disruptive PTEN/Akt signaling and chondrocyte senescence and the underlying mechanism are unclear. In this study, we found activated Akt signaling in human OA cartilage as well as in a mouse OA model with surgical destabilization of the medial meniscus. Genetic mouse models mimicking sustained Akt signaling in articular chondrocytes via PTEN deficiency driven by either Col2a1-Cre or Col2a1-CreERT2 developed OA, whereas restriction of Akt signaling reversed the OA phenotypes in PTEN-deficient mice. Mechanistically, prolonged activation of Akt signaling caused an accumulation of reactive oxygen species and triggered chondrocyte senescence as well as a senescence-associated secretory phenotype, whereas chronic administration of the antioxidant N-acetylcysteine suppressed chondrocyte senescence and mitigated OA progression in PTEN-deficient mice. Therefore, inhibition of Akt signaling by PTEN is required for the maintenance of articular cartilage. Disrupted Akt signaling in articular chondrocytes triggers oxidative stress-induced chondrocyte senescence and causes OA.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Jingting Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Min Wei
- 2Department of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Qi He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| |
Collapse
|
24
|
Kakiuchi Y, Yurube T, Kakutani K, Takada T, Ito M, Takeoka Y, Kanda Y, Miyazaki S, Kuroda R, Nishida K. Pharmacological inhibition of mTORC1 but not mTORC2 protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism through Akt and autophagy induction. Osteoarthritis Cartilage 2019; 27:965-976. [PMID: 30716534 DOI: 10.1016/j.joca.2019.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that integrates nutrients to execute cell growth. We hypothesized that mTOR is influential in the intervertebral disc-largest avascular, low-nutrient organ. Our objective was to identify the optimal mTOR inhibitor for treating human degenerative disc disease. DESIGN mTOR complex 1 (mTORC1) regulates p70/ribosomal S6 kinase (p70/S6K), negatively regulates autophagy, and is controlled by Akt. Akt is controlled by phosphatidylinositol 3-kinase (PI3K) and mTOR complex 2 (mTORC2). mTORC1 inhibitors-rapamycin, temsirolimus, everolimus, and curcumin, mTORC1&mTORC2 inhibitor-INK-128, PI3K&mTOR inhibitor-NVP-BEZ235, and Akt inhibitor-MK-2206-were applied to human disc nucleus pulposus (NP) cells. mTOR signaling, autophagy, apoptosis, senescence, and matrix metabolism were evaluated. RESULTS mTORC1 inhibitors decreased p70/S6K but increased Akt phosphorylation, promoted autophagy with light chain 3 (LC3)-II increases and p62/sequestosome 1 (p62/SQSTM1) decreases, and suppressed pro-inflammatory interleukin-1 beta (IL-1β)-induced apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positivity (versus rapamycin, 95% confidence interval (CI) -0.431 to -0.194; temsirolimus, 95% CI -0.529 to -0.292; everolimus, 95% CI -0.477 to -0.241; curcumin, 95% CI -0.248 to -0.011) and poly (ADP-ribose) polymerase (PARP) and caspase-9 cleavage, senescent senescence-associated beta-galactosidase (SA-β-gal) positivity (versus rapamycin, 95% CI -0.437 to -0.230; temsirolimus, 95% CI -0.534 to -0.327; everolimus, 95% CI -0.485 to -0.278; curcumin, 95% CI -0.210 to -0.003) and p16/INK4A expression, and catabolic matrix metalloproteinase (MMP) release and activation. Meanwhile, dual mTOR inhibitors decreased p70/S6K and Akt phosphorylation without enhanced autophagy and suppressed apoptosis, senescence, and matrix catabolism. MK-2206 counteracted protective effects of temsirolimus. Additional disc-tissue analysis found relevance of mTOR signaling to degeneration grades. CONCLUSION mTORC1 inhibitors-notably temsirolimus with an improved water solubility-but not dual mTOR inhibitors protect against inflammation-induced apoptosis, senescence, and matrix catabolism in human disc cells, which depends on Akt and autophagy induction.
Collapse
Affiliation(s)
- Y Kakiuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - T Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - K Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - T Takada
- Department of Orthopaedic Surgery, Kenshinkai Kobe Hokuto Hospital, 37-3 Yamada-cho Shimotanigami Aza Umekidani, Kita-ku, Kobe 651-1243, Japan.
| | - M Ito
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Y Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Y Kanda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - S Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - R Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - K Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
25
|
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol 2018; 9:2452. [PMID: 30483246 PMCID: PMC6242950 DOI: 10.3389/fimmu.2018.02452] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective.
Collapse
Affiliation(s)
- Arjan van Caam
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | - Madelon Vonk
- Department of Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | | - Peter van Lent
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | |
Collapse
|
26
|
Ripmeester EGJ, Timur UT, Caron MMJ, Welting TJM. Recent Insights into the Contribution of the Changing Hypertrophic Chondrocyte Phenotype in the Development and Progression of Osteoarthritis. Front Bioeng Biotechnol 2018; 6:18. [PMID: 29616218 PMCID: PMC5867295 DOI: 10.3389/fbioe.2018.00018] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is an extremely prevalent age-related condition. The economic and societal burden due to the cost of symptomatic treatment, inability to work, joint replacement, and rehabilitation is huge and increasing. Currently, there are no effective medical therapies that delay or reverse the pathological manifestations of OA. Current treatment options are, without exception, focused on slowing down progression of the disease to postpone total joint replacement surgery for as long as possible and keeping the associated pain and joint immobility manageable. Alterations in the articular cartilage chondrocyte phenotype might be fundamental in the pathological mechanisms of OA development. In many ways, the changing chondrocyte phenotype in osteoarthritic cartilage resembles the process of endochondral ossification as seen, for instance, in developing growth plates. However, the relative contribution of endochondral ossification to the changing chondrocyte phenotype in the development and progression of OA remains poorly described. In this review, we will discuss the current knowledge regarding the cartilage endochondral phenotypic changes occurring during OA development and progression, as well as the molecular and environmental effectors driving these changes. Understanding how these molecular mechanisms determine the chondrocyte cell fate in OA will be essential in enabling cartilage regenerative approaches in future treatments of OA.
Collapse
Affiliation(s)
- Ellen G J Ripmeester
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ufuk Tan Timur
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
27
|
Bijelić N, Belovari T, Stolnik D, Lovrić I, Baus Lončar M. Histomorphometric Parameters of the Growth Plate and Trabecular Bone in Wild-Type and Trefoil Factor Family 3 (Tff3)-Deficient Mice Analyzed by Free and Open-Source Image Processing Software. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:818-825. [PMID: 28784196 DOI: 10.1017/s1431927617000630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Trefoil factor family 3 (Tff3) peptide is present during intrauterine endochondral ossification in mice, and its deficiency affects cancellous bone quality in secondary ossification centers of mouse tibiae. The aim of this study was to quantitatively analyze parameters describing the growth plate and primary ossification centers in tibiae of 1-month-old wild-type and Tff3 knock-out mice (n=5 per genotype) by using free and open-source software. Digital photographs of the growth plates and trabecular bone were processed by open-source computer programs GIMP and FIJI. Histomorphometric parameters were calculated using measurements made with FIJI. Tff3 knock-out mice had significantly smaller trabecular number and significantly larger trabecular separation. Trabecular bone volume, trabecular bone surface, and trabecular thickness showed no significant difference between the two groups. Although such histomorphological differences were found in the cancellous bone structure, no significant differences were found in the epiphyseal plate histomorphology. Tff3 peptide probably has an effect on the formation and quality of the cancellous bone in the primary ossification centers, but not through disrupting the epiphyseal plate morphology. This work emphasizes the benefits of using free and open-source programs for morphological studies in life sciences.
Collapse
Affiliation(s)
- Nikola Bijelić
- 1Department of Histology and Embryology, Faculty of Medicine,University of Osijek,J. Huttlera 4,31000 Osijek,Croatia
| | - Tatjana Belovari
- 1Department of Histology and Embryology, Faculty of Medicine,University of Osijek,J. Huttlera 4,31000 Osijek,Croatia
| | - Dunja Stolnik
- 2Public Health Centre Vinkovci,Kralja Zvonimira 53,32100 Vinkovci,Croatia
| | - Ivana Lovrić
- 1Department of Histology and Embryology, Faculty of Medicine,University of Osijek,J. Huttlera 4,31000 Osijek,Croatia
| | - Mirela Baus Lončar
- 3Department of Molecular Medicine,Institute Ruđer Bošković,Bijenička 54,10000 Zagreb,Croatia
| |
Collapse
|
28
|
Phosphate regulates chondrogenesis in a biphasic and maturation-dependent manner. Differentiation 2017; 95:54-62. [PMID: 28511052 DOI: 10.1016/j.diff.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/18/2017] [Accepted: 04/27/2017] [Indexed: 01/05/2023]
Abstract
Inorganic phosphate (Pi) has been recognized as an important signaling molecule that modulates chondrocyte maturation and cartilage mineralization. However, conclusive experimental evidence for its involvement in early chondrogenesis is still lacking. Here, using high-density monolayer (2D) and pellet (3D) culture models of chondrogenic ATDC5 cells, we demonstrate that the cell response to Pi does not correlate with the Pi concentration in the culture medium but is better predicted by the availability of Pi on a per cell basis (Pi abundance). Both culture models were treated with ITS+, 10mM β-glycerophosphate (βGP), or ITS+/10mM βGP, which resulted in three levels of Pi abundance in cultures: basal (Pi/DNA <10ng/µg), moderate (Pi/DNA=25.3 - 32.3ng/µg), and high abundance (Pi/DNA >60ng/µg). In chondrogenic medium alone, the abundance levels were at the basal level in 2D culture and moderate in 3D cultures. The addition of 10mM βGP resulted in moderate abundance in 2D and high abundance in 3D cultures. Moderate Pi abundance enhanced early chondrogenesis and production of aggrecan and type II collagen whereas high Pi abundance inhibited chondrogenic differentiation and induced rapid mineralization. Inhibition of sodium phosphate transporters reduced phosphate-induced expression of chondrogenic markers. When 3D ITS+/βGP cultures were treated with levamisole to reduce ALP activity, Pi abundance was decreased to moderate levels, which resulted in significant upregulation of chondrogenic markers, similar to the response in 2D cultures. Delay of phosphate delivery until after early chondrogenesis occurs (7 days) no longer enhanced chondrogenesis, but instead accelerated hypertrophy and mineralization. Together, our data highlights the dependence of chondroprogenitor cell response to Pi on its availability to individual cells and the chondrogenic maturation stage of these cells and suggest that appropriate temporal delivery of phosphate to ATDC5 cells in 3D cultures represents a rapid model for mechanistic studies into the effects of exogenous cues on chondrogenic differentiation, chondrocyte maturation, and matrix mineralization.
Collapse
|
29
|
Xu X, Chen H, Zhang Q, Xu J, Shi Q, Wang M. MiR-650 inhibits proliferation, migration and invasion of rheumatoid arthritis synovial fibroblasts by targeting AKT2. Biomed Pharmacother 2017; 88:535-541. [DOI: 10.1016/j.biopha.2017.01.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
|
30
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
31
|
Xu Z, Chen T, Luo J, Ding S, Gao S, Zhang J. Cartilaginous Metabolomic Study Reveals Potential Mechanisms of Osteophyte Formation in Osteoarthritis. J Proteome Res 2017; 16:1425-1435. [PMID: 28166636 DOI: 10.1021/acs.jproteome.6b00676] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteophyte is one of the inevitable consequences of progressive osteoarthritis with the main characteristics of cartilage degeneration and endochondral ossification. The pathogenesis of osteophyte formation is not fully understood to date. In this work, metabolomic approaches were employed to explore potential mechanisms of osteophyte formation by detecting metabolic variations between extracts of osteophyte cartilage tissues (n = 32) and uninvolved control cartilage tissues (n = 34), based on the platform of ultraperformance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, as well as the use of multivariate statistic analysis and univariate statistic analysis. The osteophyte group was significantly separated from the control group by the orthogonal partial least-squares discriminant analysis models, indicating that metabolic state of osteophyte cartilage had been changed. In total, 28 metabolic variations further validated by mass spectrum (MS) match, tandom mass spectrum (MS/MS) match, and standards match mainly included amino acids, sulfonic acids, glycerophospholipids, and fatty acyls. These metabolites were related to some specific physiological or pathological processes (collagen dissolution, boundary layers destroyed, self-restoration triggered, etc.) which might be associated with the procedure of osteophyte formation. Pathway analysis showed phenylalanine metabolism (PI = 0.168, p = 0.004) was highly correlative to this degenerative process. Our findings provided a direction for targeted metabolomic study and an insight into further reveal the molecular mechanisms of ostophyte formation.
Collapse
Affiliation(s)
- Zhongwei Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Jiao Luo
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu 610041, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Sichuan Gao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| | - Jian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| |
Collapse
|
32
|
Kerkhofs J, Leijten J, Bolander J, Luyten FP, Post JN, Geris L. A Qualitative Model of the Differentiation Network in Chondrocyte Maturation: A Holistic View of Chondrocyte Hypertrophy. PLoS One 2016; 11:e0162052. [PMID: 27579819 PMCID: PMC5007039 DOI: 10.1371/journal.pone.0162052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/18/2016] [Indexed: 01/15/2023] Open
Abstract
Differentiation of chondrocytes towards hypertrophy is a natural process whose control is essential in endochondral bone formation. It is additionally thought to play a role in several pathophysiological processes, with osteoarthritis being a prominent example. We perform a dynamic analysis of a qualitative mathematical model of the regulatory network that directs this phenotypic switch to investigate the influence of the individual factors holistically. To estimate the stability of a SOX9 positive state (associated with resting/proliferation chondrocytes) versus a RUNX2 positive one (associated with hypertrophy) we employ two measures. The robustness of the state in canalisation (size of the attractor basin) is assessed by a Monte Carlo analysis and the sensitivity to perturbations is assessed by a perturbational analysis of the attractor. Through qualitative predictions, these measures allow for an in silico screening of the effect of the modelled factors on chondrocyte maintenance and hypertrophy. We show how discrepancies between experimental data and the model’s results can be resolved by evaluating the dynamic plausibility of alternative network topologies. The findings are further supported by a literature study of proposed therapeutic targets in the case of osteoarthritis.
Collapse
Affiliation(s)
- Johan Kerkhofs
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Biomechanics section, KU Leuven, Leuven, Belgium
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
| | - Jeroen Leijten
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Johanna Bolander
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Janine N. Post
- Developmental BioEngineering, MIRA Institute for biomedical technology and technical medicine, University of Twente, Enschede, The Netherlands
| | - Liesbet Geris
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Biomechanics section, KU Leuven, Leuven, Belgium
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
33
|
Yuan X, Yang S. Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation. PLoS One 2015; 10:e0130618. [PMID: 26098911 PMCID: PMC4476593 DOI: 10.1371/journal.pone.0130618] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/21/2015] [Indexed: 11/27/2022] Open
Abstract
Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, United States of America
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, State University of New York, Buffalo, NY, United States of America
| |
Collapse
|
34
|
Wang W, Rigueur D, Lyons KM. TGFβ signaling in cartilage development and maintenance. ACTA ACUST UNITED AC 2015; 102:37-51. [PMID: 24677722 DOI: 10.1002/bdrc.21058] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome-wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, California, 90095
| | | | | |
Collapse
|
35
|
Bradley EW, Carpio LR, Newton AC, Westendorf JJ. Deletion of the PH-domain and Leucine-rich Repeat Protein Phosphatase 1 (Phlpp1) Increases Fibroblast Growth Factor (Fgf) 18 Expression and Promotes Chondrocyte Proliferation. J Biol Chem 2015; 290:16272-80. [PMID: 25953896 DOI: 10.1074/jbc.m114.612937] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 01/14/2023] Open
Abstract
Endochondral ossification orchestrates formation of the vertebrate skeleton and is often induced during disease and repair processes of the musculoskeletal system. Here we show that the protein phosphatase Phlpp1 regulates endochondral ossification. Phlpp1 null mice exhibit decreased bone mass and notable changes in the growth plate, including increased BrdU incorporation and matrix production. Phosphorylation of known Phlpp1 substrates, Akt2, PKC, and p70 S6 kinase, were enhanced in ex vivo cultured Phlpp1(-/-) chondrocytes. Furthermore, Phlpp1 deficiency diminished FoxO1 levels leading to increased expression of Fgf18, Mek/Erk activity, and chondrocyte metabolic activity. Phlpp inhibitors also increased matrix content, Fgf18 production and Erk1/2 phosphorylation. Chemical inhibition of Fgfr-signaling abrogated elevated Erk1/2 phosphorylation and metabolic activity in Phlpp1-null cultures. These results demonstrate that Phlpp1 controls chondrogenesis via multiple mechanisms and that Phlpp1 inhibition could be a strategy to promote cartilage regeneration and repair.
Collapse
Affiliation(s)
| | | | - Alexandra C Newton
- the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Jennifer J Westendorf
- From the Department of Orthopedic Surgery, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905 and
| |
Collapse
|
36
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The majority of these occur sporadically, yet a few are reported to be familial. The identification of genes mutated in the different malformations provides insight into their etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The importance of utilizing Next-Generating Sequencing (NGS) for high-throughput and "deep" screening of both blood and lesional DNA and RNA is thus emphasized, as the somatic changes are present in low quantities. There are several examples where NGS has already accomplished discovering these changes. The identification of all the causative genes and unraveling of a holistic overview of the pathogenic mechanisms should enable generation of in vitro and in vivo models and lead to development of more effective treatments, not only targeted on symptoms.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Laurence M Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Laboratory of Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis. PLoS One 2014; 9:e88287. [PMID: 24516627 PMCID: PMC3917886 DOI: 10.1371/journal.pone.0088287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/10/2014] [Indexed: 12/25/2022] Open
Abstract
Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.
Collapse
|
38
|
Yamabe S, Hirose J, Uehara Y, Okada T, Okamoto N, Oka K, Taniwaki T, Mizuta H. Intracellular accumulation of advanced glycation end products induces apoptosis via endoplasmic reticulum stress in chondrocytes. FEBS J 2013; 280:1617-29. [DOI: 10.1111/febs.12170] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/17/2013] [Accepted: 01/31/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Soichiro Yamabe
- Department of Orthopaedic Surgery; Faculty of Life Sciences; Kumamoto University; Japan
| | - Jun Hirose
- Department of Orthopaedic Surgery; Kumamoto University Hospital; Japan
| | - Yusuke Uehara
- Department of Orthopaedic Surgery; Faculty of Life Sciences; Kumamoto University; Japan
| | - Tatsuya Okada
- Department of Orthopaedic Surgery; Faculty of Life Sciences; Kumamoto University; Japan
| | - Nobukazu Okamoto
- Department of Orthopaedic Surgery; Faculty of Life Sciences; Kumamoto University; Japan
| | - Kiyoshi Oka
- Department of Orthopaedic Surgery; Faculty of Life Sciences; Kumamoto University; Japan
| | - Takuya Taniwaki
- Department of Orthopaedic Surgery; Faculty of Life Sciences; Kumamoto University; Japan
| | - Hiroshi Mizuta
- Department of Orthopaedic Surgery; Faculty of Life Sciences; Kumamoto University; Japan
| |
Collapse
|
39
|
Bradley EW, Carpio LR, Westendorf JJ. Histone deacetylase 3 suppression increases PH domain and leucine-rich repeat phosphatase (Phlpp)1 expression in chondrocytes to suppress Akt signaling and matrix secretion. J Biol Chem 2013; 288:9572-9582. [PMID: 23408427 DOI: 10.1074/jbc.m112.423723] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HDACs epigenetically regulate cellular processes by modifying chromatin and influencing gene expression. We previously reported that conditional deletion of Hdac3 in osteo-chondroprogenitor cells with Osx1-Cre caused severe osteopenia due to abnormal maturation of osteoblasts. The mice were also smaller. To address the abnormal longitudinal growth in these animals, the role of Hdac3 in chondrocyte differentiation was evaluated. We found that Hdac3 is highly expressed in resting and prehypertrophic growth plate chondrocytes, as well as in articular chondrocytes. Hdac3-deficient chondrocytes entered hypertrophy sooner and were smaller than normal chondrocytes. Extracellular matrix production was suppressed as glycosaminoglycan secretion and production of aggrecan, osteopontin, and matrix extracellular phosphoglycoprotein were reduced in Hdac3-deficient chondrocytes. These phenotypes led to the hypothesis that the Akt/mTOR pathway was repressed in these Hdac3-deficient chondrocytes because Akt promotes hypertrophy and matrix production in many tissues. The phosphorylation and activation of Akt, its substrate mTOR, and the mTOR substrate, p70 S6 kinase, were indeed reduced in Hdac3-deficient primary chondrocytes as well as in chondrocytes exposed to HDAC inhibitors. Expression of constitutively active Akt restored phosphorylation of mTOR and p70 S6K and matrix gene expression levels. Reduced phosphorylation of Akt and its substrates in Hdac3-deficient or HDAC inhibitors treated chondrocytes correlated with increased expression of the phosphatase Phlpp1. Hdac3 associated with a Phlpp1 promoter region containing Smad binding elements and was released after TGFβ was added to the culture. These data demonstrate that Hdac3 controls chondrocyte hypertrophy and matrix content by repressing Phlpp1 expression and facilitating Akt activity.
Collapse
Affiliation(s)
| | - Lomeli R Carpio
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota 55905
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
40
|
Andrés-Bergós J, Tardio L, Larranaga-Vera A, Gómez R, Herrero-Beaumont G, Largo R. The increase in O-linked N-acetylglucosamine protein modification stimulates chondrogenic differentiation both in vitro and in vivo. J Biol Chem 2012; 287:33615-28. [PMID: 22859309 PMCID: PMC3460460 DOI: 10.1074/jbc.m112.354241] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/31/2012] [Indexed: 11/06/2022] Open
Abstract
Insulin is an inducer of chondrocyte hypertrophy and growth plate chondrogenesis, although the specific molecular mechanisms behind these effects are mostly unknown. Our aim was to investigate whether insulin-induced chondrocyte hypertrophy occurs through a modification in the amount of O-linked N-acetylglucosamine (O-GlcNAc)-modified proteins and in the expression of the key enzymes of this pathway, O-GlcNAc transferase and O-GlcNAcase (OGA). We also studied if O-GlcNAc accumulation per se, induced by an OGA inhibitor, was able to induce pre-hypertrophic chondrocyte differentiation both in vitro and in vivo. Insulin-induced differentiation of ATDC5 pre-chondrocytes occurred alongside a gradual increase in the accumulation of O-GlcNac-modified proteins (O-GlcNAcylated proteins), as well as an increase in the expression of O-GlcNAc transferase and OGA. In the absence of insulin, O-GlcNAc accumulation induced by thiamet-G, a specific OGA inhibitor, was able to increase the gene expression of differentiation markers, as well as the activity of MMP-2 and -9. Thiamet-G also activated pERK, p-JNK, and p-p38 and the O-GlcNAcylation of Akt. Thiamet-G administration to C57/bl mice induced a significant expansion in the growth plate height and in the hypertrophic zone height. Therefore, our results show that O-GlcNAc glycosylation has chondromodulating activity.
Collapse
Affiliation(s)
- Jessica Andrés-Bergós
- From the Joint and Bone Research Unit, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain
| | - Lidia Tardio
- From the Joint and Bone Research Unit, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain
| | - Ane Larranaga-Vera
- From the Joint and Bone Research Unit, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain
| | - Rodolfo Gómez
- From the Joint and Bone Research Unit, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain
| | - Gabriel Herrero-Beaumont
- From the Joint and Bone Research Unit, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain
| | - Raquel Largo
- From the Joint and Bone Research Unit, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain
| |
Collapse
|
41
|
Stromal cell-derived factor 1 regulates the actin organization of chondrocytes and chondrocyte hypertrophy. PLoS One 2012; 7:e37163. [PMID: 22623989 PMCID: PMC3356379 DOI: 10.1371/journal.pone.0037163] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/16/2012] [Indexed: 01/07/2023] Open
Abstract
Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF) plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/-) mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/-) mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/-) mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/-) mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/-) mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/-) mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/-) mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/-) mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.
Collapse
|
42
|
Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L, Blumhorst C, Brockmann K, Calder P, Cherman N, Deardorff MA, Everman DB, Golas G, Greenstein RM, Kato BM, Keppler-Noreuil KM, Kuznetsov SA, Miyamoto RT, Newman K, Ng D, O'Brien K, Rothenberg S, Schwartzentruber DJ, Singhal V, Tirabosco R, Upton J, Wientroub S, Zackai EH, Hoag K, Whitewood-Neal T, Robey PG, Schwartzberg PL, Darling TN, Tosi LL, Mullikin JC, Biesecker LG. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 2011; 365:611-9. [PMID: 21793738 PMCID: PMC3170413 DOI: 10.1056/nejmoa1104017] [Citation(s) in RCA: 603] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state. METHODS We performed exome sequencing of DNA from biopsy samples obtained from patients with the Proteus syndrome and compared the resultant DNA sequences with those of unaffected tissues obtained from the same patients. We confirmed and extended an observed association, using a custom restriction-enzyme assay to analyze the DNA in 158 samples from 29 patients with the Proteus syndrome. We then assayed activation of the AKT protein in affected tissues, using phosphorylation-specific antibodies on Western blots. RESULTS Of 29 patients with the Proteus syndrome, 26 had a somatic activating mutation (c.49G→A, p.Glu17Lys) in the oncogene AKT1, encoding the AKT1 kinase, an enzyme known to mediate processes such as cell proliferation and apoptosis. Tissues and cell lines from patients with the Proteus syndrome harbored admixtures of mutant alleles that ranged from 1% to approximately 50%. Mutant cell lines showed greater AKT phosphorylation than did control cell lines. A pair of single-cell clones that were established from the same starting culture and differed with respect to their mutation status had different levels of AKT phosphorylation. CONCLUSIONS The Proteus syndrome is caused by a somatic activating mutation in AKT1, proving the hypothesis of somatic mosaicism and implicating activation of the PI3K-AKT pathway in the characteristic clinical findings of overgrowth and tumor susceptibility in this disorder. (Funded by the Intramural Research Program of the National Human Genome Research Institute.).
Collapse
|
43
|
Ikegami D, Akiyama H, Suzuki A, Nakamura T, Nakano T, Yoshikawa H, Tsumaki N. Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways. Development 2011; 138:1507-19. [PMID: 21367821 DOI: 10.1242/dev.057802] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During endochondral bone formation, Sox9 expression starts in mesenchymal progenitors, continues in the round and flat chondrocyte stages at high levels, and ceases just prior to the hypertrophic chondrocyte stage. Sox9 is important in mesenchymal progenitors for their differentiation into chondrocytes, but its functions post-differentiation have not been determined. To investigate Sox9 function in chondrocytes, we deleted mouse Sox9 at two different steps after chondrocyte differentiation. Sox9 inactivation in round chondrocytes resulted in a loss of Col2a1 expression and in apoptosis. Sox9 inactivation in flat chondrocytes caused immediate terminal maturation without hypertrophy and with excessive apoptosis. Inactivation of Sox9 in the last few cell layers resulted in the absence of Col10a1 expression, suggesting that continued expression of Sox9 just prior to hypertrophy is necessary for chondrocyte hypertrophy. SOX9 knockdown also caused apoptosis of human chondrosarcoma SW1353 cells. These phenotypes were associated with reduced Akt phosphorylation. Forced phosphorylation of Akt by Pten inactivation partially restored Col10a1 expression and cell survival in Sox9(floxdel/floxdel) mouse chondrocytes, suggesting that phosphorylated Akt mediates chondrocyte survival and hypertrophy induced by Sox9. When the molecular mechanism of Sox9-induced Akt phosphorylation was examined, we found that expression of the PI3K subunit Pik3ca (p110α) was decreased in Sox9(floxdel/floxdel) mouse chondrocytes. Sox9 binds to the promoter and enhances the transcriptional activities of Pik3ca. Thus, continued expression of Sox9 in differentiated chondrocytes is essential for subsequent hypertrophy and sustains chondrocyte-specific survival mechanisms by binding to the Pik3ca promoter, inducing Akt phosphorylation.
Collapse
Affiliation(s)
- Daisuke Ikegami
- Departments of Bone and Cartilage Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Plaks V, Berkovitz E, Vandoorne K, Berkutzki T, Damari GM, Haffner R, Dekel N, Hemmings BA, Neeman M, Harmelin A. Survival and size are differentially regulated by placental and fetal PKBalpha/AKT1 in mice. Biol Reprod 2010; 84:537-45. [PMID: 20980686 DOI: 10.1095/biolreprod.110.085951] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The importance of placental circulation is exemplified by the correlation of placental size and blood flow with fetal weight and survival during normal and compromised human pregnancies in such conditions as preeclampsia and intrauterine growth restriction (IUGR). Using noninvasive magnetic resonance imaging, we evaluated the role of PKBalpha/AKT1, a major mediator of angiogenesis, on placental vascular function. PKBalpha/AKT1 deficiency reduced maternal blood volume fraction without affecting the integrity of the fetomaternal blood barrier. In addition to angiogenesis, PKBalpha/AKT1 regulates additional processes related to survival and growth. In accordance with reports in adult mice, we demonstrated a role for PKBalpha/AKT1 in regulating chondrocyte organization in fetal long bones. Using tetraploid complementation experiments with PKBalpha/AKT1-expressing placentas, we found that although placental PKBalpha/AKT1 restored fetal survival, fetal PKBalpha/AKT1 regulated fetal size, because tetraploid complementation did not prevent intrauterine growth retardation. Histological examination of rescued fetuses showed reduced liver blood vessel and renal glomeruli capillary density in PKBalpha/Akt1 null fetuses, both of which were restored by tetraploid complementation. However, bone development was still impaired in tetraploid-rescued PKBalpha/Akt1 null fetuses. Although PKBalpha/AKT1-expressing placentas restored chondrocyte cell number in the hypertrophic layer of humeri, fetal PKBalpha/AKT1 was found to be necessary for chondrocyte columnar organization. Remarkably, a dose-dependent phenotype was exhibited for PKBalpha/AKT1 when examining PKBalpha/Akt1 heterozygous fetuses as well as those complemented by tetraploid placentas. The differential role of PKBalpha/AKT1 on mouse fetal survival and growth may shed light on its roles in human IUGR.
Collapse
Affiliation(s)
- Vicki Plaks
- Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Beier F, Loeser RF. Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J Cell Biochem 2010; 110:573-80. [PMID: 20512918 DOI: 10.1002/jcb.22604] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondrocytes provide the framework for the developing skeleton and regulate long-bone growth through the activity of the growth plate. Chondrocytes in the articular cartilage, found at the ends of bones in diarthroidial joints, are responsible for maintenance of the tissue through synthesis and degradation of the extracellular matrix. The processes of growth, differentiation, cell death and matrix remodeling are regulated by a network of cell signaling pathways in response to a variety of extracellular stimuli. These stimuli consist of soluble ligands, including growth factors and cytokines, extracellular matrix proteins, and mechanical factors that act in concert to regulate chondrocyte function through a variety of canonical and non-canonical signaling pathways. Key chondrocyte signaling pathways include, but are not limited to, the p38, JNK and ERK MAP kinases, the PI-3 kinase-Akt pathway, the Jak-STAT pathway, Rho GTPases and Wnt-beta-catenin and Smad pathways. Modulation of the activity of any of these pathways has been associated with various pathological states in cartilage. This review focuses on the Rho GTPases, the PI-3 kinase-Akt pathway, and some selected aspects of MAP kinase signaling. Most studies to date have examined these pathways in isolation but it is becoming clear that there is significant cross-talk among the pathways and that the overall effects on chondrocyte function depend on the balance in activity of multiple signaling proteins.
Collapse
Affiliation(s)
- Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|