1
|
So H, Cheng I, Chow E, Wu Q, Li M, Hung V, Qin L, Wong CK, Tam LS. Erosion regression in patients with rheumatoid arthritis after upadacitinib-a pilot study using high resolution peripheral quantitative computed tomography. Rheumatology (Oxford) 2025; 64:1723-1731. [PMID: 39288322 DOI: 10.1093/rheumatology/keae506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES To evaluate whether inhibition of Janus kinases (JAK) 1 could lead to erosion repair on high-resolution peripheral quantitative CT (HR-pQCT) in patients with active RA. METHODS This was a prospective, non-randomized pilot study. We enrolled 20 adult patients with active RA with ≥1 bone erosion on HR-pQCT. They were given upadacitinib 15 mg once daily for 24 weeks. HR-pQCT of the metacarpophalangeal joint was performed at baseline and 24-week. The serum bone biomarkers level was evaluated before and after treatment. Twenty age-and-sex matched RA patients from another study treated with conventional synthetic DMARDs (csDMARDs) were included as active controls. RESULTS Nineteen patients in the upadacitinib group completed the study procedures. After 24 weeks, despite similar improvement in disease activity, a reversed trend in the mean erosion volume change on HR-pQCT was observed comparing the upadacitinib and active control group (upadacitinib group: -0.23 ± 3.26 mm3vs control group: 1.32 ± 6.05 mm3, P = 0.131). A greater proportion of erosions in the upadacitinib group demonstrated regression (27% vs 12%, P = 0.085). Using general estimating equation (GEE), the use of upadacitinib was significantly associated with erosion regression (OR: 3.61, 95% CI: 1.00-13.00, P = 0.049) after adjusting for the difference in disease duration. The serum levels of bone resorption markers reduced after upadacitinib treatment. No new safety signal was noted. CONCLUSION Despite a similar improvement in RA disease activity after upadacitinib compared with csDMARDs, a differential regression of erosion on HR-pQCT was observed in patients received upadacitinib. The potential role of JAK1 inhibition in erosion repair should be investigated.
Collapse
Affiliation(s)
- Ho So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Isaac Cheng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Evelyn Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qihan Wu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Li
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vivian Hung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lai-Shan Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Yadav P, Wairkar S. Tofacitinib in focus: Fascinating voyage from conventional formulations to novel delivery systems. Int J Pharm 2025; 671:125253. [PMID: 39842741 DOI: 10.1016/j.ijpharm.2025.125253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Tofacitinib, a Janus kinase (JAK) inhibitor, has emerged as a primary therapeutic agent for managing autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, dermatitis and ulcerative colitis. By inhibiting the phosphorylation of JAK enzymes, tofacitinib prevents their activation within the JAK-STAT signaling pathway, which is vital for inflammatory responses. However, the tofacitinib delivery presents significant challenges, including pH-dependent solubility, poor permeability and susceptibility to oral degradation. This review provides an in-depth analysis of current and emerging formulations to enhance the delivery and efficiency of tofacitinib. This review highlights the physicochemical, pharmacodynamic and pharmacokinetic properties of tofacitinib. Additionally, it discusses various strategies, including oral modified release formulations, topical/transdermal delivery utilizing lipid-based and polymeric systems, and parenteral delivery systems. Recent advancements in nanotechnology, such as liposomes, micelles, keratinocyte exosomes, proposomes, proglycosomes, transethosomes, squalenyl nanoparticles and lyotropic liquid crystalline nanoparticles, are explored as potential nanocarriers to existing delivery constraints. The development of advanced tofacitinib delivery systems can address the challenges in its delivery and improve therapeutic outcomes and patient compliance, paving the way for enhanced treatment strategies in autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Priti Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
3
|
Kurumazaki M, Ogawa N, Kobayashi M, Ikejiri F, Kanasaki K. A Case of Severe Hypocalcemia During JAK1/2 Inhibitor Therapy for Myelofibrosis in a Patient with Liver Cirrhosis. Intern Med 2025:4723-24. [PMID: 39814384 DOI: 10.2169/internalmedicine.4723-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
We herein report a 56-year-old man with severe hypocalcemia during ruxolitinib therapy for myelofibrosis transitioning from JAK2 mutation-positive polycythemia vera. Blood transfusions were administered every one to two weeks for ruxolitinib-induced anemia. Blood tests revealed hypocalcemia with low TRACP-5b, 25-hydroxyvitamin D (25 (OH) D), and 1,25-dihydroxyvitamin D3 (1,25 (OH) 2 D3) levels within the lower reference range. Intact-PTH levels were relatively low compared to calcium levels. Severe hypocalcemia with ruxolitinib is rare and may be caused by a combination of factors, impaired vitamin D activation due to liver or renal insufficiency, accumulation of calcium-chelating agents from blood transfusions, and inadequate compensatory response to PTH.
Collapse
Affiliation(s)
- Mayuna Kurumazaki
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| | - Noriko Ogawa
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| | - Mariko Kobayashi
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| | | | - Keizo Kanasaki
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| |
Collapse
|
4
|
Xu X, Jin W, Chang R, Ding X. Research progress of SREBP and its role in the pathogenesis of autoimmune rheumatic diseases. Front Immunol 2024; 15:1398921. [PMID: 39224584 PMCID: PMC11366632 DOI: 10.3389/fimmu.2024.1398921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune rheumatic diseases comprise a group of immune-related disorders characterized by non-organ-specific inflammation. These diseases include systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ankylosing spondylitis (AS), gout, among others. Typically involving the hematologic system, these diseases may also affect multiple organs and systems. The pathogenesis of autoimmune rheumatic immune diseases is complex, with diverse etiologies, all associated with immune dysfunction. The current treatment options for this type of disease are relatively limited and come with certain side effects. Therefore, the urgent challenge remains to identify novel therapeutic targets for these diseases. Sterol regulatory element-binding proteins (SREBPs) are basic helix-loop-helix-leucine zipper transcription factors that regulate the expression of genes involved in lipid and cholesterol biosynthesis. The expression and transcriptional activity of SREBPs can be modulated by extracellular stimuli such as polyunsaturated fatty acids, amino acids, glucose, and energy pathways including AKT-mTORC and AMP-activated protein kinase (AMPK). Studies have shown that SREBPs play roles in regulating lipid metabolism, cytokine production, inflammation, and the proliferation of germinal center B (GCB) cells. These functions are significant in the pathogenesis of rheumatic and immune diseases (Graphical abstract). Therefore, this paper reviews the potential mechanisms of SREBPs in the development of SLE, RA, and gout, based on an exploration of their functions.
Collapse
Affiliation(s)
| | | | | | - Xinghong Ding
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Kiełbowski K, Plewa P, Bratborska AW, Bakinowska E, Pawlik A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int J Mol Sci 2024; 25:8327. [PMID: 39125897 PMCID: PMC11311960 DOI: 10.3390/ijms25158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| |
Collapse
|
6
|
Sarikaya Solak S, Yelgen Ilyas H. Tofacitinib: a successful treatment option for SAPHO syndrome. Int J Dermatol 2024; 63:671-674. [PMID: 38357788 DOI: 10.1111/ijd.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/10/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Affiliation(s)
- Sezgi Sarikaya Solak
- Faculty of Medicine, Department of Dermatology, Trakya University, Edirne, Turkey
| | - Hande Yelgen Ilyas
- Faculty of Medicine, Department of Dermatology, Trakya University, Edirne, Turkey
| |
Collapse
|
7
|
Kim BJ, Thiemann A, Dietz B, Beck K. Refractory Ulcerative Colitis With Associated Synovitis, Acne, Pustulosis, Hyperostosis, Osteitis Syndrome Successfully Treated With Tofacitinib. ACG Case Rep J 2024; 11:e01342. [PMID: 38638203 PMCID: PMC11025703 DOI: 10.14309/crj.0000000000001342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome is a rare inflammatory condition associated with inflammatory bowel disease. Limited data exist on standardized management. We report a case of refractory SAPHO syndrome and ulcerative colitis (UC) treated successfully with tofacitinib. A 54-year-old man with UC presented with an intractable headache. A diagnosis of SAPHO syndrome was made based on the finding of sterile osteitis in the skull base and persistent severe UC. Symptoms, imaging, and endoscopy revealed persistent UC and osteitis despite multiple therapies. Tofacitinib was initiated and clinical remission was achieved. Tofacitinib is an effective treatment of refractory inflammatory bowel disease and SAPHO syndrome.
Collapse
Affiliation(s)
- Bryan J. Kim
- Department of Medicine, University of California, San Francisco, CA
| | - Anna Thiemann
- Department of Medicine, California Pacific Medical Center, CA
| | - Brett Dietz
- Department of Rheumatology, University of California, San Francisco, CA
| | - Kendall Beck
- Department of Gastroenterology and Hepatology, University of California, San Francisco, CA
| |
Collapse
|
8
|
Simon D, Minopoulou I, Kemenes S, Bayat S, Tascilar K, Mutlu MY, Valor-Méndez L, Krönke G, Hueber AJ, Schett G, Kleyer A. Baricitinib Improves Bone Properties and Biomechanics in Patients With Rheumatoid Arthritis: Results of the Prospective Interventional BARE BONE Trial. Arthritis Rheumatol 2023; 75:1923-1934. [PMID: 37229650 DOI: 10.1002/art.42617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is characterized by erosive joint damage, deterioration of bone mass, and biomechanics. Preclinical evidence suggests a beneficial effect of Janus kinase inhibition (JAKi) on bone properties, but clinical data are scarce to date. In this study, we evaluated the effect of JAKi through baricitinib (BARI) on 1) volumetric bone mineral density (vBMD), bone microstructure, biomechanics, and erosion repair and 2) synovial inflammation in RA patients. METHODS Prospective, single-arm, interventional, open-label, single-center phase 4 study in RA patients with pathological bone status and clinical indication of JAKi (BARE BONE trial). Participants received BARI (4 mg/day) over 52 weeks. To assess bone properties and synovial inflammation, high-resolution computed tomography scans and magnetic resonance imaging were performed at baseline (BL), week 24, and week 52. Clinical response and safety were monitored. RESULTS Thirty RA patients were included. BARI significantly improved disease activity (Disease Activity Score in 28 joints using the erythrocyte sedimentation rate: 4.82 ± 0.90 to 2.71 ± 0.83) and synovial inflammation (RAMRIS synovitis score: 5.3 [4.2] to 2.7 [3.5]). We observed a significant improvement in trabecular vBMD with a mean change of 6.11 mgHA/mm3 (95% confidence interval [95% CI] 0.01-12.26). Biomechanical properties also improved with mean change from baseline in estimated stiffness of 2.28 kN/mm (95% CI 0.30-4.25) and estimated failure load of 98.8 N (95% CI 15.9-181.7). The number and size of erosions in the metacarpal joints remained stable. No new safety signals with BARI treatment were observed. CONCLUSION Bones of RA patients improve with BARI therapy, as shown by an increase in trabecular bone mass and an improvement of biomechanical properties.
Collapse
Affiliation(s)
- David Simon
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, and Deutsches Zentrum Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ioanna Minopoulou
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, and Deutsches Zentrum Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephan Kemenes
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, and Deutsches Zentrum Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sara Bayat
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, and Deutsches Zentrum Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Koray Tascilar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, and Deutsches Zentrum Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melek Yalcin Mutlu
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, and Deutsches Zentrum Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Larissa Valor-Méndez
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, and Deutsches Zentrum Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, and Deutsches Zentrum Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Axel J Hueber
- Division of Rheumatology, Klinikum Nürnberg, Paracelsus Medical University, Nürnberg, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, and Deutsches Zentrum Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, and Deutsches Zentrum Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Godoi MA, Camilli AC, Gonzales KGA, Costa VB, Papathanasiou E, Leite FRM, Guimarães-Stabili MR. JAK/STAT as a Potential Therapeutic Target for Osteolytic Diseases. Int J Mol Sci 2023; 24:10290. [PMID: 37373437 PMCID: PMC10299676 DOI: 10.3390/ijms241210290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Several cytokines with major biological functions in inflammatory diseases exert their functions through the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction pathway. JAKs phosphorylate the cytoplasmic domain of the receptor, inducing the activation of its substrates, mainly the proteins known as STATs. STATs bind to these phosphorylated tyrosine residues and translocate from the cytoplasm to the nucleus, further regulating the transcription of several genes that regulate the inflammatory response. The JAK/STAT signaling pathway plays a critical role in the pathogenesis of inflammatory diseases. There is also increasing evidence indicating that the persistent activation of the JAK/STAT signaling pathway is related to several inflammatory bone (osteolytic) diseases. However, the specific mechanism remains to be clarified. JAK/STAT signaling pathway inhibitors have gained major scientific interest to explore their potential in the prevention of the destruction of mineralized tissues in osteolytic diseases. Here, our review highlights the importance of the JAK/STAT signaling pathway in inflammation-induced bone resorption and presents the results of clinical studies and experimental models of JAK inhibitors in osteolytic diseases.
Collapse
Affiliation(s)
- Mariely A. Godoi
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara 14801-385, Brazil; (M.A.G.)
| | - Angelo C. Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara 14801-385, Brazil; (M.A.G.)
| | - Karen G. A. Gonzales
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara 14801-385, Brazil; (M.A.G.)
| | - Vitória B. Costa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara 14801-385, Brazil; (M.A.G.)
| | - Evangelos Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA;
| | - Fábio R. M. Leite
- National Dental Research Institute Singapore, National Dental Centre, Singapore 168938, Singapore;
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Morgana R. Guimarães-Stabili
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara 14801-385, Brazil; (M.A.G.)
| |
Collapse
|
10
|
Zhao JH, Ma S, Li CY, Zhang HC, Zhao LJ, Zhang ZY. Clinically approved small-molecule drugs for the treatment of rheumatoid arthritis. Eur J Med Chem 2023; 256:115434. [PMID: 37148849 DOI: 10.1016/j.ejmech.2023.115434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune ailment that is typified by the development of pannus, proliferation of synovial lining cells, microvascular neogenesis, infiltration of interstitial inflammatory cells, and destruction of cartilage and bone tissue. The disease not only imposes physical pain and economic burden on patients, but also results in a significant decline in their quality of life, rendering it a leading cause of disability. General treatment and drugs are commonly employed to alleviate the condition and symptoms of RA. Cyclooxygenase (COX), janus kinase (JAK), glucocorticoid receptor (GR) et al. have been identified as the main therapeutic targets for RA. This article provides a comprehensive review of the clinical applications and synthetic routes of 26 representative drugs for the treatment of RA, with the aim of facilitating the discovery of more effective new drugs for the treatment of this debilitating disease.
Collapse
Affiliation(s)
- Jian-Hui Zhao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Shuai Ma
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Chao-Yuan Li
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Hong-Chao Zhang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Li-Jie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zi-Yan Zhang
- Department of Orthopedics, The second Hospital, Jilin University, Changchun, 130021, China.
| |
Collapse
|
11
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
12
|
Chuang KC, Lai YW, Ko CH, Yen CC, Chen HL, Lan YW, Chen CF, Chen W, Chen CM. Therapeutic effects of kefir peptides on adjuvant-induced arthritis in rats through anti-inflammation and downregulation of matrix metalloproteinases. Life Sci 2023; 317:121411. [PMID: 36682523 DOI: 10.1016/j.lfs.2023.121411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
AIMS Rheumatoid arthritis (RA) is a chronic autoimmune disease. Its pathological features are synovial inflammation, bone erosion, and joint structural damages. Our previous studies have shown that kefir peptides (KPs) can reduce cardiovascular disease, osteoporosis and renal inflammation. In this study, we further evaluate the efficacy of KPs on adjuvant-induced arthritis (AIA) in a rat model. MAIN METHODS After the 14th day of adjuvant induction, rats were subsequently orally administered KPs (83 or 166 mg/day/kg) or tofacitinib (6.2 mg/day/kg) for 14 days. On the 28th day, the rats were anesthetized with isoflurane for ultrasonic, in vivo imaging system (IVIS), and radiographic imaging and then sacrificed for ankle tissues collection and analysis. In vitro, IL-1β-treated human synovial cells (SW982) were subjected to anti-arthritis mechanism study in the presence of KPs. KEY FINDINGS The results of ultrasonography, radiograph, histology, the expression of matrix metalloproteinases (MMPs), inflammatory cytokines and RANKL/OPG ratio demonstrated decreasing severity of synovitis and bone erosion in the ankle joints after KPs treatment. Activation of the NF-κB and MAPK pathways was significantly reduced in KPs treated AIA group. Furthermore, KPs attenuated IL-1β-induced inflammatory cytokine production and the expression of MMPs in a human synovial cell line SW982. These results demonstrated that KPs alleviated adjuvant-induced arthritis in rats by inhibiting IL-1β-related inflammation and MMPs production. SIGNIFICANCE We concluded that KPs can exhibit anti-inflammatory effects by reducing the levels of macrophage-related inflammatory cytokines and MMPs, thus alleviating bone erosion in the ankle joint and constituting a potential therapeutic strategy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Kai-Cheng Chuang
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yun-Wen Lai
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Hua Ko
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Hsiao-Ling Chen
- Department of Biomedical Sciences, Department of Bioresources, Da-Yeh University, Changhwa 515, Taiwan
| | - Ying-Wei Lan
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH, USA
| | - Chien-Fu Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, The Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
13
|
Yari S, Kikuta J, Shigyo H, Miyamoto Y, Okuzaki D, Furusawa Y, Minoshima M, Kikuchi K, Ishii M. JAK inhibition ameliorates bone destruction by simultaneously targeting mature osteoclasts and their precursors. Inflamm Regen 2023; 43:18. [PMID: 36869390 PMCID: PMC9983229 DOI: 10.1186/s41232-023-00268-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is characterized by chronic inflammation and resultant cartilage/bone destruction because of aberrantly activated osteoclasts. Recently, novel treatments with several Janus kinase (JAK) inhibitors have been shown to successfully ameliorate arthritis-related inflammation and bone erosion, although their mechanisms of action for limiting bone destruction remain unclear. Here, we examined the effects of a JAK inhibitor on mature osteoclasts and their precursors by intravital multiphoton imaging. METHODS Inflammatory bone destruction was induced by local injection of lipopolysaccharides into transgenic mice carrying reporters for mature osteoclasts or their precursors. Mice were treated with the JAK inhibitor, ABT-317, which selectively inhibits the activation of JAK1, and then subjected to intravital imaging with multiphoton microscopy. We also used RNA sequencing (RNA-Seq) analysis to investigate the molecular mechanism underlying the effects of the JAK inhibitor on osteoclasts. RESULTS The JAK inhibitor, ABT-317, suppressed bone resorption by blocking the function of mature osteoclasts and by targeting the migratory behaviors of osteoclast precursors to the bone surface. Further exhaustive RNA-Seq analysis demonstrated that Ccr1 expression on osteoclast precursors was suppressed in the JAK inhibitor-treated mice; the CCR1 antagonist, J-113863, altered the migratory behaviors of osteoclast precursors, which led to the inhibition of bone destruction under inflammatory conditions. CONCLUSIONS This is the first study to determine the pharmacological actions by which a JAK inhibitor blocks bone destruction under inflammatory conditions; this inhibition is beneficial because of its dual effects on both mature osteoclasts and immature osteoclast precursors.
Collapse
Affiliation(s)
- Shinya Yari
- grid.136593.b0000 0004 0373 3971Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan. .,WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan. .,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| | - Hotaka Shigyo
- grid.136593.b0000 0004 0373 3971Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871 Japan
| | - Yu Miyamoto
- grid.136593.b0000 0004 0373 3971Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- grid.136593.b0000 0004 0373 3971WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | - Masafumi Minoshima
- grid.136593.b0000 0004 0373 3971Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Kazuya Kikuchi
- grid.136593.b0000 0004 0373 3971WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan. .,WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan. .,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| |
Collapse
|
14
|
Hansen KE, Mortezavi M, Nagy E, Wang C, Connell CA, Radi Z, Litman HJ, Adami G, Rossini M. Fracture in clinical studies of tofacitinib in rheumatoid arthritis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221142346. [PMID: 36601090 PMCID: PMC9806361 DOI: 10.1177/1759720x221142346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background Preclinical data suggest that tofacitinib would protect bone health in patients with rheumatoid arthritis (RA). Objective To assess fracture risk in tofacitinib RA clinical trials. Design Post hoc analysis. Methods We analyzed pooled data of phase I/II/III and long-term extension studies ('P123LTE cohort'), pooled data of placebo-controlled portions of phase III studies (phase III placebo-controlled cohort), and data from ORAL Surveillance [phase IIIb/IV randomized, open-label trial evaluating tofacitinib 5/10 mg twice daily (BID) vs tumor necrosis factor inhibitor (TNFi) in patients ⩾ 50 years with ⩾ 1 additional cardiovascular risk factor]. Results In the phase III placebo-controlled cohort, incidence rates (IRs) [95% confidence interval (CI)] of fracture were 2.11 (1.09-3.68), 2.56 (1.23-4.71), and 4.43 (1.78-9.12) per 100 patient-years (PYs) for tofacitinib 5 mg BID, tofacitinib 10 mg BID, and placebo, respectively [tofacitinib 5 mg BID vs placebo: hazard ratio (HR) (95% CI) = 0.55(0.18-1.65); tofacitinib 10 mg BID vs placebo: HR (95% CI) = 0.72 (0.26-2.01)]. In P123LTE, IRs (95% CI) were 2.62 (2.29-2.99) and 2.26 (2.02-2.52) per 100 PY for average tofacitinib 5 and 10 mg BID, respectively. In ORAL Surveillance, IRs (95% CI) were 2.79 (2.34-3.30), 2.87 (2.40-3.40), and 2.27 (1.87-2.74) per 100 PY for tofacitinib 5 mg BID, tofacitinib 10 mg BID, and TNFi, respectively. In ORAL Surveillance, the risk of fracture was numerically higher than TNFi for tofacitinib 5 mg BID [HR (95% CI) = 1.23 (0.96-1.58)] and tofacitinib 10 mg BID [HR (95% CI) = 1.26 (0.97-1.62)]. In ORAL Surveillance, independent predictors of all and osteoporotic fractures with tofacitinib or TNFi included age ⩾ 65, female sex, history of fracture/osteoporosis, and baseline oral corticosteroid use. Conclusion This post hoc analysis showed numerically lower fracture risk with tofacitinib versus placebo and numerically greater risk versus TNFi. We did not identify any tofacitinib-specific predictors of fractures, and predictors of fracture were generally aligned with prior literature in the general population and patients with RA. Patients with fracture risk factors should be adequately monitored and treated. Clinical trial registration NCT00960440, NCT00847613, NCT00814307, NCT00856544, NCT00853385, NCT01039688, NCT02187055, NCT02831855, NCT00413699, NCT00147498, NCT00413660, NCT00550446, NCT00603512, NCT00687193, NCT00661661, NCT01164579, NCT00976599, NCT01059864, NCT01359150, NCT01262118, NCT01484561, NCT02281552, NCT02147587, NCT02092467.
Collapse
Affiliation(s)
- Karen E. Hansen
- Division of Rheumatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | | - Giovanni Adami
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Maurizio Rossini
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
15
|
The effect of disease-modifying antirheumatic drugs (DMARDs) on bone homeostasis in rheumatoid arthritis (RA) patients. Inflammopharmacology 2022; 31:689-697. [PMID: 36348208 DOI: 10.1007/s10787-022-01088-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
The autoimmune disease known as rheumatoid arthritis (RA) has been linked to the deterioration of bone. Bone erosion is a hallmark of RA and is linked to the severity of the disease as well as a poor functional result. Erosion of periarticular cortical bone is a common feature seen on plain radiographs of patients with RA. This characteristic feature is the result of excessive bone resorption and inadequate formation of bone. It has been determined that there is a complex interaction between the inflammatory condition seen in RA and bone destruction. Increased knowledge of the pathways and other mechanisms involved in osteoclastogenesis has resulted from advances in both animal and clinical investigations. Also, Biological and targeted medicines have modified RA's bone metabolism. Here, we provide a narrative overview of the literature on the pathomechanisms of bone structure involved in biological and targeted treatments for RA and also, the clinical implications of disease-modifying antirheumatic drugs (DMARDs) are discussed. In light of the fact that these newer treatments present patients with RA with new possibilities for disease improvement and symptom control, it is imperative that additional rigorous evidence be gathered to provide a clinical reference for both patients and their treating physicians.
Collapse
|
16
|
Khanna D, Padilla C, Tsoi LC, Nagaraja V, Khanna PP, Tabib T, Kahlenberg JM, Young A, Huang S, Gudjonsson JE, Fox DA, Lafyatis R. Tofacitinib blocks IFN-regulated biomarker genes in skin fibroblasts and keratinocytes in a systemic sclerosis trial. JCI Insight 2022; 7:e159566. [PMID: 35943798 PMCID: PMC9536259 DOI: 10.1172/jci.insight.159566] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDSystemic sclerosis (SSc) is an autoimmune, connective tissue disease characterized by vasculopathy and fibrosis of the skin and internal organs.METHODSWe randomized 15 participants with early diffuse cutaneous SSc to tofacitinib 5 mg twice a day or matching placebo in a phase I/II double-blind, placebo-controlled trial. The primary outcome measure was safety and tolerability at or before week 24. To understand the changes in gene expression associated with tofacitinib treatment in each skin cell population, we compared single-cell gene expression in punch skin biopsies obtained at baseline and 6 weeks following the initiation of treatment.RESULTSTofacitinib was well tolerated; no participants experienced grade 3 or higher adverse events before or at week 24. Trends in efficacy outcome measures favored tofacitnib. Baseline gene expression in fibroblast and keratinocyte subpopulations indicated IFN-activated gene expression. Tofacitinib inhibited IFN-regulated gene expression in SFRP2/DPP4 fibroblasts (progenitors of myofibroblasts) and in MYOC/CCL19, representing adventitial fibroblasts (P < 0.05), as well as in the basal and keratinized layers of the epidermis. Gene expression in macrophages and DCs indicated inhibition of STAT3 by tofacitinib (P < 0.05). No clinically meaningful inhibition of T cells and endothelial cells in the skin tissue was observed.CONCLUSIONThese results indicate that mesenchymal and epithelial cells of a target organ in SSc, not the infiltrating lymphocytes, may be the primary focus for therapeutic effects of a Janus kinase inhibitor.TRIAL REGISTRATIONClinicalTrials.gov NCT03274076.FUNDINGPfizer, NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) R01 AR070470, NIH/NIAMS K24 AR063120, Taubman Medical Research Institute and NIH P30 AR075043, and NIH/NIAMS K01 AR072129.
Collapse
Affiliation(s)
- Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristina Padilla
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vivek Nagaraja
- Division of Rheumatology, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Puja P Khanna
- Division of Rheumatology, Department of Internal Medicine, and
- VA Medical Center, Ann Arbor, Michigan, USA
| | - Tracy Tabib
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Amber Young
- Division of Rheumatology, Department of Internal Medicine, and
| | - Suiyuan Huang
- University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David A Fox
- Division of Rheumatology, Department of Internal Medicine, and
| | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Combination of Dexamethasone and Tofacitinib Reduces Xenogeneic MSC-Induced Immune Responses in a Mouse Model of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081882. [PMID: 36009433 PMCID: PMC9405531 DOI: 10.3390/biomedicines10081882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
We have recently reported on how transplantation of human mesenchymal stem cells (MSCs) into the mouse parenchyma generated immune responses. To facilitate the clinical translation of MSC-based AD therapy, the safety and efficacy of human derived MSCs (hMSCs) must be confirmed in the pre-clinical stage. Thus, it is imperative to investigate measures to reduce immune responses exerted via xenotransplantation. In this study, immunosuppressants were co-administered to mice that had received injections of hMSCs into the parenchyma. Prior to performing experiments using transgenic AD mice (5xFAD), varying immunosuppressant regimens were tested in wild-type (WT) mice and the combination of dexamethasone and tofacitinib (DexaTofa) revealed to be effective in enhancing the persistence of hMSCs. According to transcriptome sequencing and immunohistochemical analyses, administration of DexaTofa reduced immune responses generated via transplantation of hMSCs in the parenchyma of 5xFAD mice. Significant mitigation of amyloid burden, however, was not noted following transplantation of hMSCs alone or hMSCs with DexaTofa. The efficacy of the immunosuppressant regimen should be tested in multiple AD mouse models to promote its successful application and use in AD stem cell therapy.
Collapse
|
18
|
Xie W, Huang H, Zhang Z. Off-label use of tofacitinib: a potential treatment option for SAPHO syndrome. Ann Rheum Dis 2022; 81:e91. [PMID: 32527865 DOI: 10.1136/annrheumdis-2020-217854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Hong Huang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| |
Collapse
|
19
|
Cheng W, Li F, Tian J, Xie X, Chen JW, Peng XF, Tang Q, Ge Y. New Insights in the Treatment of SAPHO Syndrome and Medication Recommendations. J Inflamm Res 2022; 15:2365-2380. [PMID: 35444448 PMCID: PMC9013916 DOI: 10.2147/jir.s353539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Abstract
Synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome is a rare autoinflammatory disease characterized by dermatological disorders and osteoarticular inflammatory lesions. This article reviews the application of biologics and other treatments based on the therapeutic target and the size of molecules in SAPHO syndrome. We found that drugs, especially biologics, have different effects on bone, joint, and skin damage. This may relate to the different inflammatory pathways involved in the osteoarticular and cutaneous symptoms in SAPHO patients. In this study, we provide stratified medication recommendations for SAPHO syndrome. Patients with osteoarticular symptoms can consider tumor necrosis factor blockers, JAK inhibitor, interleukin (IL)-1 inhibitor, and IL-17 inhibitor. Patients with cutaneous symptoms should consider IL-17 and JAK inhibitors. Apremilast, Tripterygium wilfordii Hook F, and bisphosphonates are other effective treatments.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Fen Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Xi Xie
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Jin-Wei Chen
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Xiao-Fei Peng
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Qi Tang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Yan Ge
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China
- Correspondence: Yan Ge, Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People’s Republic of China, Email
| |
Collapse
|
20
|
Soós B, Szentpétery Á, Raterman HG, Lems WF, Bhattoa HP, Szekanecz Z. Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases. Nat Rev Rheumatol 2022; 18:249-257. [PMID: 35273387 DOI: 10.1038/s41584-022-00764-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/17/2022]
Abstract
Generalized bone loss (osteoporosis) and fragility fractures can occur in rheumatic and musculoskeletal diseases including rheumatoid arthritis and spondyloarthritis (SpA; including ankylosing spondylitis and psoriatic arthritis). In addition, rheumatoid arthritis can involve localized, periarticular bone erosion and, in SpA, local (pathological) bone formation can occur. The RANK-RANKL-osteoprotegerin axis and the Wnt-β-catenin signalling pathway (along with its inhibitors sclerostin and Dickkopf 1) have been implicated in inflammatory bone loss and formation, respectively. Targeted therapies including biologic DMARDs and Janus kinase (JAK) inhibitors can stabilize bone turnover and inhibit radiographic joint damage, and potentially also prevent generalized bone loss. Targeted therapies interfere at various points in the mechanisms of local and generalized bone changes in systemic rheumatic diseases, and they effect biomarkers of bone resorption and formation, bone mass and risk of fragility fractures. Studies on the effects of targeted therapies on rates of fragility fracture are scarce. The efficacy of biologic DMARDs for arresting bone formation in axial SpA is debated. Improved understanding of the most relevant therapeutic targets and identification of important targeted therapies could lead to the preservation of bone in inflammatory rheumatic and musculoskeletal diseases.
Collapse
Affiliation(s)
- Boglárka Soós
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Szentpétery
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Medical Sciences, Rheumatology, Uppsala University Hospital, Uppsala, Sweden
| | | | - Willem F Lems
- Amsterdam Rheumatology and Immunology Centre, Amsterdam, Netherlands
| | - Harjit P Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
21
|
Maeda K, Yoshida K, Nishizawa T, Otani K, Yamashita Y, Okabe H, Hadano Y, Kayama T, Kurosaka D, Saito M. Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. Int J Mol Sci 2022; 23:2871. [PMID: 35270012 PMCID: PMC8911191 DOI: 10.3390/ijms23052871] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease characterized by a variety of symptoms and pathologies often presenting with polyarthritis. The primary symptom in the initial stage is joint swelling due to synovitis. With disease progression, cartilage and bone are affected to cause joint deformities. Advanced osteoarticular destruction and deformation can cause irreversible physical disabilities. Physical disabilities not only deteriorate patients' quality of life but also have substantial medical economic effects on society. Therefore, prevention of the progression of osteoarticular destruction and deformation is an important task. Recent studies have progressively improved our understanding of the molecular mechanism by which synovitis caused by immune disorders results in activation of osteoclasts; activated osteoclasts in turn cause bone destruction and para-articular osteoporosis. In this paper, we review the mechanisms of bone metabolism under physiological and RA conditions, and we describe the effects of therapeutic intervention against RA on bone.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Ken Yoshida
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Tetsuro Nishizawa
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Kazuhiro Otani
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Yu Yamashita
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Hinako Okabe
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Yuka Hadano
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Tomohiro Kayama
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| |
Collapse
|
22
|
Cramer A, Galvão I, Venturini de Sá N, Gaio P, Fernanda de Melo Oliveira N, Rates Gonzaga Santos M, Henrique Campolina-Silva G, Vinicius Santos Valiate B, Rezende Souza F, Dantas Cassali G, Martins Teixeira M, Almeida Amaral F, Simão Machado F. Role of Suppressor of cytokine signaling 2 during the development and resolution of an experimental arthritis. Cell Immunol 2022; 372:104476. [PMID: 35033752 DOI: 10.1016/j.cellimm.2021.104476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/15/2021] [Accepted: 12/31/2021] [Indexed: 01/31/2023]
|
23
|
Sugahara S, Hanaoka K, Emori T, Takeshita N, Fujii Y, Nakano M, Suzuki T, Takahashi J, Nakamura Y. Peficitinib improves bone fragility by recovering bone turnover imbalance in arthritic mice. J Pharmacol Sci 2022; 148:134-141. [PMID: 34924117 DOI: 10.1016/j.jphs.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Peficitinib, a pan-JAK inhibitor, is known to suppress the activation of fibroblast-like synoviocytes (FLSs) and thereby reduces joint inflammation associated with rheumatoid arthritis (RA). However, the effect on osteoporosis in RA remains to be elucidated. In this study, the effect of peficitinib or etanercept on joint inflammation, and consequently decreased bone mineral density (BMD) was evaluated in mice with collagen-induced arthritis (CIA). Additionally, the effect on RANKL production from osteoblasts differentiated from the mesenchymal stem cells of RA patients was evaluated. Administration of peficitinib for established CIA ameliorated arthritis and improved BMD in the femoral metaphysis, but not in the femoral diaphysis. Conversely, etanercept suppressed an increase in synovial inflammatory markers but did not improve arthritic conditions or the reduction of BMD in either region. All elevated bone formation and bone resorption markers were decreased with peficitinib but only partially decreased with etanercept. Furthermore, production of RANKL by human osteoblasts was suppressed by peficitinib but enhanced by etanercept. Unlike etanercept, peficitinib is thought to increase BMD by ameliorating the high bone turnover associated with RA states, resulting in improvement of bone fragility. Our data provide evidence that peficitinib would be expected to show efficacy for osteoporosis associated with RA.
Collapse
Affiliation(s)
- Shingo Sugahara
- Drug Discovery Research, Astellas Pharma Inc, Tsukuba, Ibaraki, Japan
| | - Kaori Hanaoka
- Drug Discovery Research, Astellas Pharma Inc, Tsukuba, Ibaraki, Japan
| | - Takashi Emori
- Drug Discovery Research, Astellas Pharma Inc, Tsukuba, Ibaraki, Japan
| | - Nobuaki Takeshita
- Drug Discovery Research, Astellas Pharma Inc, Tsukuba, Ibaraki, Japan
| | - Yasutomo Fujii
- Drug Discovery Research, Astellas Pharma Inc, Tsukuba, Ibaraki, Japan
| | - Masaki Nakano
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takako Suzuki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.
| |
Collapse
|
24
|
Totoson P, Peyronnel C, Quirié A, Pédard M, Cefis M, Bermont L, Prigent-Tessier A, Prati C, Tournier M, Wendling D, Marie C, Demougeot C. Tofacitinib improved peripheral endothelial dysfunction and brain-derived neurotrophic factor levels in the rat adjuvant-induced arthritis model. Fundam Clin Pharmacol 2021; 36:363-374. [PMID: 34661311 DOI: 10.1111/fcp.12731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/12/2021] [Indexed: 01/10/2023]
Abstract
This study aimed to explore the effect of Tofacitinib on endothelial dysfunction and cerebral levels of brain-derived neurotrophic factor (BDNF) in the adjuvant-induced arthritis (AIA) rat model. Tofacitinib (10 mg/kg twice a day) or vehicle was administered from the first signs of inflammation. Arthritis scores were daily monitored while other parameters including endothelial function assessed from aortic rings, radiographic scores, blood pressure, heart rate, circulating levels of triglycerides, cholesterol, and interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-17A, and cerebral BDNF levels were determined after 3 weeks of treatment. A group of non-AIA rats served as controls. In AIA rats, as compared with vehicle, Tofacitinib significantly reduced arthritis and radiographic scores, decreased total cholesterol and low-density lipoprotein cholesterol (LDL-C), but changed neither blood pressure nor heart rate and proinflammatory cytokines levels. It also fully restored acetylcholine (Ach)-induced relaxation (p < 0.05) through increased nitric oxide (NO) synthase activity, reduced BH4 deficiency and O2 -° production, decreased cyclo-oxygenase-2 (COX-2)/arginase activities, and enhanced endothelium-derived hyperpolarizing factor (EDHF) production. These effects translated into a decrease in atherogenic index and an elevation of BDNF levels in the prefrontal cortex (p < 0.05) and hippocampus (p < 0.001). The present study identified Tofacitinib as an efficient therapeutic option to reduce cardiovascular risk and improve BDNF-dependent cognition in arthritis.
Collapse
Affiliation(s)
- Perle Totoson
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Célian Peyronnel
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Sciences de Santé, Dijon, France
| | - Martin Pédard
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Sciences de Santé, Dijon, France
| | - Marina Cefis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Sciences de Santé, Dijon, France
| | - Laurent Bermont
- Service de Biochimie médicale, CHRU Besançon, Besançon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Sciences de Santé, Dijon, France
| | - Clément Prati
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France.,Service de Rhumatologie, CHRU Besançon, Besançon, France
| | - Maude Tournier
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Daniel Wendling
- Service de Rhumatologie, CHRU Besançon, Besançon, France.,EA 4266 "Agents Pathogènes et Inflammation", EPILAB, Université Bourgogne Franche-Comté, Besançon, France
| | - Christine Marie
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Sciences de Santé, Dijon, France
| | - Céline Demougeot
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
25
|
Kondo N, Kuroda T, Kobayashi D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222010922. [PMID: 34681582 PMCID: PMC8539723 DOI: 10.3390/ijms222010922] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic systemic inflammation causing progressive joint damage that can lead to lifelong disability. The pathogenesis of RA involves a complex network of various cytokines and cells that trigger synovial cell proliferation and cause damage to both cartilage and bone. Involvement of the cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 is central to the pathogenesis of RA, but recent research has revealed that other cytokines such as IL-7, IL-17, IL-21, IL-23, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-1β, IL-18, IL-33, and IL-2 also play a role. Clarification of RA pathology has led to the development of therapeutic agents such as biological disease-modifying anti-rheumatic drugs (DMARDs) and Janus kinase (JAK) inhibitors, and further details of the immunological background to RA are emerging. This review covers existing knowledge regarding the roles of cytokines, related immune cells and the immune system in RA, manipulation of which may offer the potential for even safer and more effective treatments in the future.
Collapse
Affiliation(s)
- Naoki Kondo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata City 951-8510, Japan;
| | - Takeshi Kuroda
- Health Administration Center, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City 950-2181, Japan
- Correspondence: ; Tel.: +81-25-262-6244; Fax: +81-25-262-7517
| | - Daisuke Kobayashi
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata City 951-8510, Japan;
| |
Collapse
|
26
|
Hamar A, Szekanecz Z, Pusztai A, Czókolyová M, Végh E, Pethő Z, Bodnár N, Gulyás K, Horváth Á, Soós B, Bodoki L, Bhattoa HP, Nagy G, Tajti G, Panyi G, Szekanecz É, Domján A, Hodosi K, Szántó S, Szűcs G, Szamosi S. Effects of one-year tofacitinib therapy on bone metabolism in rheumatoid arthritis. Osteoporos Int 2021; 32:1621-1629. [PMID: 33559714 PMCID: PMC8376736 DOI: 10.1007/s00198-021-05871-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
UNLABELLED Janus kinase (JAK) inhibitors are used to treat rheumatoid arthritis (RA). We assessed the effects of tofacitinib on bone density and bone markers in association with clinical and laboratory parameters in RA. Tofacitinib stabilized bone density and resulted in a positive balance of bone turnover. INTRODUCTION Janus kinase (JAK) inhibitors emerged as new therapeutic options in rheumatoid arthritis (RA). We have little information on how it affects areal and volumetric bone mineral density (BMD) and bone turnover markers. The aim of this study was to assess the effects of 1-year tofacitinib therapy on bone metabolism in RA. METHODS Thirty RA patients with active disease were treated with either 5 mg bid or 10 mg bid tofacitinib for 12 months. We determined DAS28, CRP, IgM rheumatoid factor (RF), and anti-cyclic citrullinated peptide (CCP) levels, as well as serum levels of sclerostin, osteocalcin (OC), P1NP, DKK-1, OPG, RANKL, and 25-hydroxy-vitamin D3. Areal and volumetric BMD were assessed by DXA and peripheral quantitative CT (QCT), respectively. RESULTS Twenty-six patients (13 on each arm) completed the study. Tofacitinib was clinically effective by suppressing DAS28, CRP, and HAQ. This was accompanied by the attenuation of further bone loss. Tofacitinib therapy significantly increased OC, OPG, and vitamin D3, while decreased CTX levels (p < 0.05). Age and multiple bone markers (OC, CTX, P1NP, RANKL) inversely correlated with L2-4 and femoral neck BMD by DXA. CRP, DAS28, and RANKL inversely determined volumetric BMD by QCT. Age, CRP, anti-CCP, and DKK-1 influenced the effects of tofacitinib therapy on BMD changes. CONCLUSIONS One-year tofacitinib treatment stabilized BMD in RA patients and resulted in a positive balance of bone turnover as indicated by bone biomarkers. Further studies are needed to evaluate the potential beneficial effects of JAK inhibitors on inflammatory bone loss.
Collapse
Affiliation(s)
- A Hamar
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Z Szekanecz
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - A Pusztai
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - M Czókolyová
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - E Végh
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Z Pethő
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - N Bodnár
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - K Gulyás
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Á Horváth
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - B Soós
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - L Bodoki
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - H P Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - É Szekanecz
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Domján
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - K Hodosi
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - S Szántó
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Sports Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Szűcs
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - S Szamosi
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
27
|
Kim SK, Jung UH, Kim JW, Choe JY. The beneficial effect of baricitinib on ultrasound-detected synovial inflammation and bone damage in rheumatoid arthritis: Preliminarily data from single center-based observational study for 24 weeks. Medicine (Baltimore) 2021; 100:e26739. [PMID: 34397713 PMCID: PMC8322478 DOI: 10.1097/md.0000000000026739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/25/2021] [Indexed: 01/04/2023] Open
Abstract
Baricitinib is a Janus kinase (JAK) inhibitor that selectively blocks against JAK1 and JAK2 signaling. This study aimed to determine the effect of baricitinib on disease activity based on musculoskeletal ultrasound in patients with rheumatoid arthritis (RA).A total of 20 patients with RA receiving baricitinib for 24 weeks were assessed. Ultrasound scores of gray scale and power Doppler synovitis, joint effusion, and bone erosion in each patient were assessed between baseline and 24 weeks for 27 affected joints. Disease activity in RA was evaluated using the disease activity score for 28-joint count with erythrocyte sediment rate (DAS28-ESR), simplified disease activity index (SDAI), and clinical disease activity index (CDAI).Treatment with baricitinib for 12 weeks and 24 weeks significantly decreased disease activity composites such as DAS28-ESR, SDAI, and CDAI (P < .001 for all). Treatment with baricitinib for 24 weeks improved ultrasound-detected gray-scale and power Doppler synovitis and joint effusion compared to baseline (P = .002, P = .030, and P = .002, respectively). Bone erosion scores were not different between baseline and 24 weeks (P = .317). There were no differences in ultrasound abnormalities for improvement based on DAS28-ESR. Changes in power Doppler score were significantly associated with changes in DAS28-ESR (β = 0.590, P = .044), but not SDAI and CDAI.This study demonstrates that baricitinib treatment has a favorable effect on ultrasound-detected abnormalities including synovitis and bone erosion in patients with RA.
Collapse
|
28
|
Adam S, Simon N, Steffen U, Andes FT, Scholtysek C, Müller DIH, Weidner D, Andreev D, Kleyer A, Culemann S, Hahn M, Schett G, Krönke G, Frey S, Hueber AJ. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci Transl Med 2021; 12:12/530/eaay4447. [PMID: 32051226 DOI: 10.1126/scitranslmed.aay4447] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Janus kinase (JAK)-mediated cytokine signaling has emerged as an important therapeutic target for the treatment of inflammatory diseases such as rheumatoid arthritis (RA). Accordingly, JAK inhibitors compose a new class of drugs, among which tofacitinib and baricitinib have been approved for the treatment of RA. Periarticular bone erosions contribute considerably to the pathogenesis of RA. However, although the immunomodulatory aspect of JAK inhibition (JAKi) is well defined, the current knowledge of how JAKi influences bone homeostasis is limited. Here, we assessed the effects of the JAK inhibitors tofacitinib and baricitinib on bone phenotype (i) in mice during steady-state conditions or in mice with bone loss induced by (ii) estrogen-deficiency (ovariectomy) or (iii) inflammation (arthritis) to evaluate whether effects of JAKi on bone metabolism require noninflammatory/inflammatory challenge. In all three models, JAKi increased bone mass, consistent with reducing the ratio of receptor activator of NF-κB ligand/osteoprotegerin in serum. In vitro, effects of tofacitinib and baricitinib on osteoclast and osteoblast differentiation were analyzed. JAKi significantly increased osteoblast function (P < 0.05) but showed no direct effects on osteoclasts. Additionally, mRNA sequencing and ingenuity pathway analyses were performed in osteoblasts exposed to JAKi and revealed robust up-regulation of markers for osteoblast function, such as osteocalcin and Wnt signaling. The anabolic effect of JAKi was illustrated by the stabilization of β-catenin. In humans with RA, JAKi induced bone-anabolic effects as evidenced by repair of arthritic bone erosions. Results support that JAKi is a potent therapeutic tool for increasing osteoblast function and bone formation.
Collapse
Affiliation(s)
- Susanne Adam
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Nils Simon
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Ulrike Steffen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Fabian T Andes
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Carina Scholtysek
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Dorothea I H Müller
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Daniela Weidner
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Darja Andreev
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Arnd Kleyer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Stephan Culemann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany.,Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Madelaine Hahn
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Georg Schett
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Gerhard Krönke
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Silke Frey
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany. .,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Axel J Hueber
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
29
|
Degboé Y, Sunzini F, Sood S, Bozec A, Sokolova MV, Zekovic A, McInnes IB, Schett G, Goodyear CS. Apremilast Inhibits Inflammatory Osteoclastogenesis. Rheumatology (Oxford) 2021; 61:452-461. [PMID: 33788924 DOI: 10.1093/rheumatology/keab315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Psoriatic arthritis (PsA) is associated with bone erosion and inflammation-induced bone loss, which are mediated by osteoclasts and modulated by inflammatory cytokines. Apremilast (a selective phosphodiesterase 4 inhibitor) is efficacious in PsA and acts by inhibiting cytokine production. However, there are no direct data informing whether and how apremilast affects osteoclast formation in humans. METHODS Osteoclastogenic cytokine production by activated human peripheral blood mononuclear cells (PBMCs) was measured in the presence and absence of apremilast. Effects of apremilast on osteoclast differentiation were tested (i) in co-cultures of activated PBMCs and human CD14+ blood monocytes as well as (ii) in CD14+ blood monocytes stimulated with activated-PBMCs supernatant, TNF or IL-17A. Bone resorption was measured on OsteoAssay plates. Effects of apremilast on ex vivo osteoclast differentiation were compared in PsA, pre-PsA and psoriasis patients as well as in healthy controls. RESULTS Apremilast significantly impaired the expression of key osteoclastogenic cytokines in activated PBMCs. Furthermore, apremilast dose-dependently and significantly inhibited activated PBMC-driven osteoclast differentiation, and ex-vivo osteoclast differentiation of PBMCs derived from PsA and pre-PsA patients, but not from psoriasis patients or healthy controls. TNF and IL-17A-enhanced osteoclastogenesis and osteolytic activity of CD14+ blood monocytes from PsA patients was also significantly inhibited by apremilast. Finally, apremilast inhibited expression of the key osteoclast fusion protein DC-STAMP. CONCLUSION Phosphodiesterase-4 targeting by apremilast not only inhibits osteoclastogenic cytokine production, but also directly suppresses inflammation-driven osteoclastogenesis. These data provide initial evidence that apremilast has the potential to provide a direct bone protective effect in PsA.
Collapse
Affiliation(s)
- Yannick Degboé
- Institute of Infection, Inflammation & Immunity, Glasgow, UK.,Toulouse University Hospital, Toulouse, France
| | - Flavia Sunzini
- Institute of Infection, Inflammation & Immunity, Glasgow, UK
| | - Shatakshi Sood
- Institute of Infection, Inflammation & Immunity, Glasgow, UK
| | - Aline Bozec
- Department of Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, 91054, Germany
| | - Maria V Sokolova
- Department of Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, 91054, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, 91054, Germany
| | - Ana Zekovic
- Department of Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, 91054, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, 91054, Germany
| | - Iain B McInnes
- Institute of Infection, Inflammation & Immunity, Glasgow, UK
| | - Georg Schett
- Department of Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, 91054, Germany.,Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, 91054, Germany
| | - Carl S Goodyear
- Institute of Infection, Inflammation & Immunity, Glasgow, UK
| |
Collapse
|
30
|
Liu P, Wu S, Dong Z. Identification of the metabolites of tofacitinib in liver microsomes by liquid chromatography combined with high resolution mass spectrometry. Biomed Chromatogr 2021; 35:e5081. [PMID: 33522621 DOI: 10.1002/bmc.5081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 01/25/2023]
Abstract
Tofacitinib is an orally available Janus kinase inhibitor. The aim of this study was to investigate the metabolism of tofacitinib in mouse, rat, monkey, and human liver microsomes fortified with β-nicotinamide adenine dinucleotide phosphate tetrasodium salt and uridine diphosphate glucuronic acid. The biotransformation was executed at a temperature of 37°C for 60 min, and the samples were analyzed by ultra-high performance liquid chromatography combined with high-resolution mass spectrometry (UHPLC-HRMS) operated in positive electrospray ionization mode. The structures of the metabolites were elucidated according to their retention times, accurate masses, and MS/MS spectra. Under the current conditions, a total of 13 metabolites, including 1 glucuronide conjugate, were detected and structurally proposed. Oxygenation of the pyrrolopyrimidine ring, oxygenation of piperidine ring, N-demethylation, oxygenation of piperidine ring side chain, and glucuronidation were the primary metabolic pathways of tofacitinib. Among the tested species, tofacitinib showed significant species difference. Compared with other species, rat showed similar metabolic profiles to those of humans. The present study provides some new information regarding the metabolism of tofacitinib in animals and humans, which would bring us considerable benefits for the subsequent studies focusing on the pharmacological effect and toxicity of this drug.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pharmacy, The Third Affiliated Hospital of Shandong First Medical University, The Fourth People's Hospital of Jinan, Jinan, China
| | - Shuang Wu
- Department of Pharmacy, The Third Affiliated Hospital of Shandong First Medical University, The Fourth People's Hospital of Jinan, Jinan, China
| | - Zhaoqin Dong
- Department of Pharmacy, The Third Affiliated Hospital of Shandong First Medical University, The Fourth People's Hospital of Jinan, Jinan, China
| |
Collapse
|
31
|
Wang Z, Zhan C, Zeng F, Wu S. A biopolymer-based and inflammation-responsive nanodrug for rheumatoid arthritis treatment via inhibiting JAK-STAT and JNK signalling pathways. NANOSCALE 2020; 12:23013-23027. [PMID: 33191426 DOI: 10.1039/d0nr05551d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease associated with progressive disability, systemic complications, and poor prognosis. The improved understanding of the roles of immune signaling pathway inhibitors has shed light on designing new and more effective approaches for RA treatment. In this work, an inflammation-responsive and molecularly targeted drug system has been developed for RA therapy. The drug carrier was synthesized by covalently grafting hydrophobic cholesterol (Chol) molecules onto a hydrophilic chondroitin sulfate (CS) chain via the inflammation-responsive diselenide bonds (SeSe). The resultant amphiphilic polymer CSSeSeChol readily forms nanoparticles (NPs) and encapsulates two kinase inhibitors tofacitinib and SP600125 in aqueous media. Upon administration into the RA mouse model, the nanodrug accumulates in RA lesions and releases the inhibitors for regulating the JAK-STAT and JNK pathways. As a result, the nanodrug exhibits satisfactory efficacy in RA treatment by suppressing the expression of relevant pro-inflammatory cytokines, blocking the activation of osteoclasts and providing protection for cartilage and joints.
Collapse
Affiliation(s)
- Ziqian Wang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China.
| | | | | | | |
Collapse
|
32
|
Damerau A, Gaber T, Ohrndorf S, Hoff P. JAK/STAT Activation: A General Mechanism for Bone Development, Homeostasis, and Regeneration. Int J Mol Sci 2020; 21:E9004. [PMID: 33256266 PMCID: PMC7729940 DOI: 10.3390/ijms21239004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway serves as an important downstream mediator for a variety of cytokines, hormones, and growth factors. Emerging evidence suggests JAK/STAT signaling pathway plays an important role in bone development, metabolism, and healing. In this light, pro-inflammatory cytokines are now clearly implicated in these processes as they can perturb normal bone remodeling through their action on osteoclasts and osteoblasts at both intra- and extra-articular skeletal sites. Here, we summarize the role of JAK/STAT pathway on development, homeostasis, and regeneration based on skeletal phenotype of individual JAK and STAT gene knockout models and selective inhibition of components of the JAK/STAT signaling including influences of JAK inhibition in osteoclasts, osteoblasts, and osteocytes.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Timo Gaber
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Sarah Ohrndorf
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
| | - Paula Hoff
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Endokrinologikum Berlin am Gendarmenmarkt, 10117 Berlin, Germany
| |
Collapse
|
33
|
Sanpaolo ER, Rotondo C, Cici D, Corrado A, Cantatore FP. JAK/STAT pathway and molecular mechanism in bone remodeling. Mol Biol Rep 2020; 47:9087-9096. [PMID: 33099760 PMCID: PMC7674338 DOI: 10.1007/s11033-020-05910-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022]
Abstract
JAK/STAT signaling pathway is involved in many diseases, including autoimmune diseases, which are characterized by a close interconnection between immune and bone system. JAK/STAT pathway is involved in bone homeostasis and plays an important role in proliferation and differentiation of some cell types, including osteoblasts and osteoclasts. Different molecules, such as cytokines, hormones, and growth factors are responsible for the activation of the JAK/STAT pathway, which leads, at the nuclear level, to start DNA transcription of target genes. Bone cells and remodeling process are often influenced by many cytokines, which act as strong stimulators of bone formation and resorption. Our aim, through careful research in literature, has been to provide an overview of the role of the JAK/STAT pathway in bone remodeling and on bone cells, with a focus on cytokines involved in bone turnover through this signal cascade. The JAK/STAT pathway, through the signal cascade activation mediated by the interaction with many cytokines, acts on bone cells and appears to be involved in bone remodeling process. However, many other studies are needed to completely understand the molecular mechanism underlying these bone process.
Collapse
Affiliation(s)
- Eliana Rita Sanpaolo
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy.
| | - Cinzia Rotondo
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Daniela Cici
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Ada Corrado
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Francesco Paolo Cantatore
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| |
Collapse
|
34
|
Li Y, Huo J, Cao Y, Yu M, Zhang Y, Li Z, Li C, Zhang W. Efficacy of tofacitinib in synovitis, acne, pustulosis, hyperostosis and osteitis syndrome: a pilot study with clinical and MRI evaluation. Ann Rheum Dis 2020; 79:1255-1257. [PMID: 32332076 DOI: 10.1136/annrheumdis-2020-217250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Yueting Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jianwei Huo
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yihan Cao
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meiyan Yu
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yanan Zhang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhaohui Li
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Li
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| |
Collapse
|
35
|
Gambari L, Grassi F, Roseti L, Grigolo B, Desando G. Learning from Monocyte-Macrophage Fusion and Multinucleation: Potential Therapeutic Targets for Osteoporosis and Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21176001. [PMID: 32825443 PMCID: PMC7504439 DOI: 10.3390/ijms21176001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive bone resorption by osteoclasts (OCs) covers an essential role in developing bone diseases, such as osteoporosis (OP) and rheumatoid arthritis (RA). Monocytes or macrophages fusion and multinucleation (M-FM) are key processes for generating multinucleated mature cells with essential roles in bone remodelling. Depending on the phenotypic heterogeneity of monocyte/macrophage precursors and the extracellular milieu, two distinct morphological and functional cell types can arise mature OCs and giant cells (GCs). Despite their biological relevance in several physiological and pathological responses, many gaps exist in our understanding of their formation and role in bone, including the molecular determinants of cell fusion and multinucleation. Here, we outline fusogenic molecules during M-FM involved in OCs and GCs formation in healthy conditions and during OP and RA. Moreover, we discuss the impact of the inflammatory milieu on modulating macrophages phenotype and their differentiation towards mature cells. Methodological approach envisaged searches on Scopus, Web of Science Core Collection, and EMBASE databases to select relevant studies on M-FM, osteoclastogenesis, inflammation, OP, and RA. This review intends to give a state-of-the-art description of mechanisms beyond osteoclastogenesis and M-FM, with a focus on OP and RA, and to highlight potential biological therapeutic targets to prevent extreme bone loss.
Collapse
Affiliation(s)
| | | | - Livia Roseti
- Correspondence: (L.R.); (B.G.); Tel.: +39-051-6366090 (B.G.)
| | | | | |
Collapse
|
36
|
Chimenti MS, D’Antonio A, Conigliaro P, Ferrigno S, Vendola A, Ferraioli M, Triggianese P, Costa L, Caso F, Perricone R. An Update for the Clinician on Biologics for the Treatment of Psoriatic Arthritis. Biologics 2020; 14:53-75. [PMID: 32903867 PMCID: PMC7445514 DOI: 10.2147/btt.s260754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory arthropathy typically associated with psoriasis (PsO). The pathogenesis is strictly related to the association among the presence of genetic risk alleles and innate and acquired immune response with dramatic consequences on bone remodeling. Clinically, PsA patients may present heterogenicity of articular and periarticular manifestations that may be associated with the presence of comorbidities making treatment decision challenging in patients management. The identification of patient-targeted therapies is still a critical issue. Actually, several biological and synthetic drugs are promising in terms of efficacy and safety profile. National and international treatment recommendations support clinicians in the decision of the best treatment, although they may have limits basically related to updates and different outcomes included in the clinical studies evaluated. The aim of this narrative review is therefore to give guidance for clinicians for PsA patients treatment. For this purpose, we evaluated evidence on biological therapies efficacy used for PsA treatment. Specifically, we reviewed data on biological therapies, Janus kinases (JAK) inhibitors, and drugs with a new mechanism of action that are part of the treatment pipeline. The concept of "switching" and "swapping" is also described, as well as data concerning special populations such as pregnant women and elderly patients.
Collapse
Affiliation(s)
- Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Arianna D’Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sara Ferrigno
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Vendola
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Ferraioli
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Costa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University Federico II, Naples, Italy
| | - Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University Federico II, Naples, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
37
|
Sims NA. The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology. Exp Mol Med 2020; 52:1185-1197. [PMID: 32788655 PMCID: PMC8080635 DOI: 10.1038/s12276-020-0445-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Bone growth and the maintenance of bone structure are controlled by multiple endocrine and paracrine factors, including cytokines expressed locally within the bone microenvironment and those that are elevated, both locally and systemically, under inflammatory conditions. This review focuses on those bone-active cytokines that initiate JAK–STAT signaling, and outlines the discoveries made from studying skeletal defects caused by induced or spontaneous modifications in this pathway. Specifically, this review describes defects in JAK1, STAT3, and SOCS3 signaling in mouse models and in humans, including mutations designed to modify these pathways downstream of the gp130 coreceptor. It is shown that osteoclast formation is generally stimulated indirectly by these pathways through JAK1 and STAT3 actions in inflammatory and other accessory cells, including osteoblasts. In addition, in bone remodeling, osteoblast differentiation is increased secondary to stimulated osteoclast formation through an IL-6-dependent pathway. In growth plate chondrocytes, STAT3 signaling promotes the normal differentiation process that leads to bone lengthening. Within the osteoblast lineage, STAT3 signaling promotes bone formation in normal physiology and in response to mechanical loading through direct signaling in osteocytes. This activity, particularly that of the IL-6/gp130 family of cytokines, must be suppressed by SOCS3 for the normal formation of cortical bone. Maintaining normal bone structure and strength depends on a group of signaling proteins called cytokines that bind to receptor molecules on cell surfaces. Natalie Sims at St. Vincent’s Institute of Medical Research and The University of Melbourne in Australia reviews the role of cytokines in a specific signaling pathway in bone development and disease. Two of the proteins in this pathway respond to cytokine activity, whereas the third inhibits the cytokines’ effects. Studies in mice and humans have identified links between specific bone defects and spontaneous or experimentally induced mutations in the genes that code for the three proteins. The review covers the significance of recent findings to several types of cells that form new bone, degrade bone as part of normal bone turnover, and sustain the structure of bone and cartilage.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Ibrahim SSA, Salama MA, Selima E, Shehata RR. Sitagliptin and tofacitinib ameliorate adjuvant induced arthritis via modulating the cross talk between JAK/STAT and TLR-4/NF-κB signaling pathways. Life Sci 2020; 260:118261. [PMID: 32795539 DOI: 10.1016/j.lfs.2020.118261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
AIMS Rheumatoid arthritis is an autoimmune systemic disorder causing pain, swelling, stiffness, and disability in various joints. This work was designed to evaluate the effect of sitagliptin and tofacitinib on Janus kinase (JAK)/signaling transducer and activator of transcription (STAT) and toll like receptor (TLR-4)/nuclear factor kappa B (NF-κB) signaling pathways in adjuvant induced arthritis in rats. MATERIALS AND METHODS Severity of arthritis was evaluated and serum was analyzed for inflammatory mediators. The mRNA and protein expression level of the most important members of the two signaling pathways were determined. Lipid profile, transaminases and renal function parameters were assessed. KEY FINDINGS Sitagliptin and tofacitinib significantly decreased the level of inflammatory parameters, the mRNA and protein expression level of the members of JAK/STAT and TLR-4/NF-κB pathways with more prominent effect of sitagliptin on TLR-4/NF-κB pathway and more expected obvious effect of tofacitinib on JAK/STAT pathway. The combination offered additional anti-inflammatory effect by inhibiting the cross talk between these pathways as inhibition of NF-κB activation decreased the serum level of IL-6 preventing the activation of STAT-3 in tibiotarsal tissues. SIGNIFICANCE The combination of tofacitinib and sitagliptin normalized serum lipids and blood glucose level which could offer protection against cardiovascular diseases and caused partial reversal of serum transaminases and creatinine levels which can protect against tofacitinb's related hepato and nephrotoxicity. We could conclude that the combination of Sitagliptin with tofacitinib can offer synergistic anti-inflammatory effect and more protective action against side effects of tofacitinib.
Collapse
Affiliation(s)
| | | | - Eman Selima
- Department of Pharmacology, Medical Research Institute, Alexandria, Egypt
| | | |
Collapse
|
39
|
Guo J, Wang LY, Wu J, Xu LF, Sun M. The JAK2 inhibitor AG490 regulates the Treg/Th17 balance and alleviates DSS-induced intestinal damage in IBD rats. Clin Exp Pharmacol Physiol 2020; 47:1374-1381. [PMID: 32215928 DOI: 10.1111/1440-1681.13311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/26/2023]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unclear, and it is currently believed that an imbalance in regulatory T (Treg) cells/T helper 17 cells (Th17 cells) is related to the occurrence and development of IBD. Recently, the JAK2 inhibitor AG490 has been used in animal models such as rheumatoid arthritis and bronchial asthma models and shown to exert immunoregulatory functions that improve disorder in the Treg/Th17 cell balance. This study aimed to evaluate the effect of AG490 on the intestinal inflammatory process in an IBD rat model. A dextran sulfate sodium (DSS)-induced IBD rat model was established, and disease activity index (DAI) scores were calculated. The histopathological damage score was determined by haematoxylin-eosin (H&E) staining. Treg/Th17 cells in the spleen were detected by flow cytometry. The levels of interleukin (IL)-10, IL-6 and IL-17A were detected by enzyme-linked immunosorbent assay (ELISA). AG490 attenuated DSS-induced IBD injury by regulating the Treg/Th17 balance and related cytokine secretion to reduce the DAI and colonic tissue damage. Thus, AG490 may be a new method for effective treatment of IBD.
Collapse
Affiliation(s)
- Jing Guo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li-Yun Wang
- Department of Neonatology, The First People's Hospital of Lianyungang/The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Jie Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling-Fen Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mei Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Gwak EH, Yoo HY, Kim SH. Effects of Diabetes Mellitus on the Disposition of Tofacitinib, a Janus Kinase Inhibitor, in Rats. Biomol Ther (Seoul) 2020; 28:361-369. [PMID: 32209733 PMCID: PMC7327145 DOI: 10.4062/biomolther.2020.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Tofacitinib, a Janus kinase inhibitor, was developed for the treatment of rheumatoid arthritis. Recently, it has been associated with an increased change in arthritis development in patients with diabetes. Herein, we evaluated the pharmacokinetics of tofacitinib after intravenous (10 mg/kg) and oral (20 mg/kg) administration to rats with streptozotocin-induced diabetes mellitus and control rats. Following intravenous administration of tofacitinib to rats with streptozotocin-induced diabetes mellitus, area under the plasma concentration-time curve from time zero to infinity of tofacitinib was significantly smaller (33.6%) than that of control rats. This might be due to the faster hepatic intrinsic clearance (112%) caused by an increase in the hepatic cytochrome P450 (CYP) 3A1(23) and the faster hepatic blood flow rate in rats with streptozotocin-induced diabetes mellitus than in control rats. Following oral administration, area under the plasma concentration-time curve from time zero to infinity of tofacitinib was also significantly smaller (55.5%) in rats with streptozotocin-induced diabetes mellitus than that in control rats. This might be due to decreased absorption caused by the higher expression of P-glycoprotein and the faster intestinal metabolism caused by the higher expression of intestinal CYP3A1(23), which resulted in the decreased bioavailability of tofacitinib (33.0%) in rats with streptozotocin-induced diabetes mellitus. In summary, our findings indicate that diabetes mellitus affects the absorption and metabolism of tofacitinib, causing faster metabolism and decreased intestinal absorption in rats with streptozotocin-induced diabetes mellitus.
Collapse
Affiliation(s)
- Eun Hye Gwak
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hee Young Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - So Hee Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
41
|
Singh S, Singh S. JAK-STAT inhibitors: Immersing therapeutic approach for management of rheumatoid arthritis. Int Immunopharmacol 2020; 86:106731. [PMID: 32590315 DOI: 10.1016/j.intimp.2020.106731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis is a world leading cause of musculoskeletal disease. With the introduction of biological agents as treatment alternatives the clinical possibilities have grown exponentially. Currently most common Disease-modifying anti-rheumatic drugs (DMARDs) treatment option involves intravenous or subcutaneous injection, and some patients struggle to respond to DMARDs or lose their primary reaction. An oral drug formulation with lowered costs of manufacturing and flexibility for healthcare workers to preferably perform treatment will result in decreased healthcare expenditures and increased medication compliance. The JAK-STAT inhibitors, a new class of small molecules drugs, fulfills these criteria and has recently shown efficacy in rheumatoid arthritis. Here we give a summary of how JAK-STAT inhibitors function and a detailed review of current clinical trials. Convincing clinical results suggest that therapeutic inhibition of the JAK proteins can effectively modulate a complex cytokine-driven inflammation.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, Hajipur, Bihar, India.
| | - Shantanu Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, Hajipur, Bihar, India
| |
Collapse
|
42
|
Cantini F, Blandizzi C, Niccoli L, Petrone L, Goletti D. Systematic review on tuberculosis risk in patients with rheumatoid arthritis receiving inhibitors of Janus Kinases. Expert Opin Drug Saf 2020; 19:861-872. [PMID: 32552289 DOI: 10.1080/14740338.2020.1774550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Janus kinases inhibitors (anti-JAKs), including tofacitinib, baricitinib, upadacitinib, and filgotinib, represent a new class of synthetic targeted drugs for the treatment of rheumatoid arthritis (RA). In this review, the risk of active tuberculosis (TB) occurrence in patients receiving anti-JAKs was assessed. The literature on this topic, updated to 29 February 2020 was reviewed. Overall, 40 reports (22 tofacitinib, 10 baricitinib, 5 upadacitinib, 3 filgotinib) were examined. A low frequency, not exceeding 0.25%, of active TB cases in patients were exposed to anti-JAKs. Only 1 of 89 recorded cases in tofactinib and baricitinib exposure occurred in countries at intermediate or high TB risk, and most of the cases probably were due to first mycobacterium tuberculosis (Mtb) exposure. Although no cases were observed in patients receiving upadacitinib and filgotinib, long-term trials and data from real-life are required to more precisely address the TB risk associated with the two drugs. AREAS COVERED Discussion on the TB risk associated with anti-JAKs, and on the need for accurate evaluation of host-related risk factors in high risk countries. EXPERT OPINION Available data on anti-JAKs suggest a negligible risk of active TB occurrence in low endemic areas.
Collapse
Affiliation(s)
| | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Laura Niccoli
- Rheumatology Department, Hospital of Prato , Prato, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS , Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS , Rome, Italy
| |
Collapse
|
43
|
Emori T, Kasahara M, Sugahara S, Hashimoto M, Ito H, Narumiya S, Higashi Y, Fujii Y. Role of JAK-STAT signaling in the pathogenic behavior of fibroblast-like synoviocytes in rheumatoid arthritis: Effect of the novel JAK inhibitor peficitinib. Eur J Pharmacol 2020; 882:173238. [PMID: 32561292 DOI: 10.1016/j.ejphar.2020.173238] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS) play a crucial role in the pathogenesis of RA. RA-FLS display passive pro-inflammatory responses and self-directed aggressive responses, such as pro-inflammatory mediator production, reduced apoptosis and formation of a thickened synovial lining. Evidence suggests a role for Janus kinase (JAK)-signal transducer and transcriptional activator (STAT) signaling in the passive response but the aggressive behavior of RA-FLS is poorly understood. The pharmacologic effects of the novel JAK inhibitor, peficitinib, on cytokine-induced intracellular signaling and self-directed aggressive behavior of RA-FLS (e.g., increased expression of apoptosis-resistant genes and sodium nitroprusside-induced apoptosis) were investigated and compared with approved JAK inhibitors. RA-FLS assembly to form a lining-like structure and pro-inflammatory mediator production was investigated in three-dimensional (3D)-micromass culture. Peficitinib inhibited STAT3 phosphorylation in RA-FLS following induction by interferon (IFN)-α2b, IFN-γ, interleukin (IL)-6, oncostatin M, and leukemia inhibitory factor in a concentration-related manner, and was comparable to approved JAK inhibitors, tofacitinib and baricitinib. Peficitinib and tofacitinib suppressed autocrine phosphorylation of STAT3 and expression of apoptosis-resistant genes, and promoted cell death. In 3D-micromass culture, peficitinib reduced multi-layered RA-FLS cells to a thin monolayer, an effect less pronounced with tofacitinib. Both compounds attenuated production of vascular endothelial growth factor-A, matrix metalloproteinases, IL-6 and tumor necrosis factor superfamily-11. This study confirmed the pathogenic role of uncontrolled JAK-STAT signaling in the aggressive and passive responses of RA-FLS that are critical for RA progression. The novel JAK inhibitor peficitinib suppressed the pro-inflammatory behavior of RA-FLS, accelerated cell death and abrogated thickening of the synovium.
Collapse
Affiliation(s)
- Takashi Emori
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukiga-oka, Tsukuba, Ibaraki, 305-8585, Japan.
| | - Michiko Kasahara
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukiga-oka, Tsukuba, Ibaraki, 305-8585, Japan; Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Shingo Sugahara
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukiga-oka, Tsukuba, Ibaraki, 305-8585, Japan.
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, 54 Kawara-cho, Shougo-in, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hiromu Ito
- Department of Orthopedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawara-cho, Shougo-in, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Yasuyuki Higashi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukiga-oka, Tsukuba, Ibaraki, 305-8585, Japan.
| | - Yasutomo Fujii
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukiga-oka, Tsukuba, Ibaraki, 305-8585, Japan.
| |
Collapse
|
44
|
Burja B, Mertelj T, Frank-Bertoncelj M. Hi- JAKi-ng Synovial Fibroblasts in Inflammatory Arthritis With JAK Inhibitors. Front Med (Lausanne) 2020; 7:124. [PMID: 32432116 PMCID: PMC7214667 DOI: 10.3389/fmed.2020.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022] Open
Abstract
The Janus kinase (JAK)-Signal transducer and activator of transcription (STAT) pathway is one of the central signaling hubs in inflammatory, immune and cancer cells. Inhibiting the JAK-STAT pathway with JAK inhibitors (jakinibs) constitutes an important therapeutic strategy in cancer and chronic inflammatory diseases like rheumatoid arthritis (RA). FDA has approved different jakinibs for the treatment of RA, including tofacitinib, baricitinib and upadacitinib, and several jakinibs are being tested in clinical trials. Here, we reviewed published studies of jakinib effects on resolving synovial pathology in inflammatory arthritis. We discussed the results of jakinibs on structural joint damage in clinical trials and explored the effects of jakinibs across different in vitro, ex vivo, and in vivo synovial experimental models. We delved rigorously into experimental designs of in vitro fibroblast studies, deconvoluted jakinib efficacy in synovial fibroblasts across diverse experimental conditions and discussed their translatability in vivo. Synovial fibroblasts can readily activate the JAK-STAT signaling pathway in response to cytokine stimulation. We highlighted rather limited effects of jakinibs on the in vitro cultured synovial fibroblasts and inferred that direct and indirect (immune cell-dependent) actions of jakinibs are required to curb the fibroblast pathology in vivo. These actions have not been mimicked optimally in current in vitro experimental designs, where inflammatory stimuli do not naturally clear out with treatment as they do in vivo. While summarizing the broad knowledge of synovial jakinib effects, our review uniquely challenges future study designs to better mimick the jakinib actions in broader cell communities, as occurring in vivo in the inflamed synovium. This can deepen our understanding of collective synovial activities of jakinibs and their therapeutic limitations, thereby fostering jakinib development in arthritis.
Collapse
Affiliation(s)
- Blaž Burja
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland.,Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tonja Mertelj
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | | |
Collapse
|
45
|
Hosseini A, Gharibi T, Marofi F, Javadian M, Babaloo Z, Baradaran B. Janus kinase inhibitors: A therapeutic strategy for cancer and autoimmune diseases. J Cell Physiol 2020; 235:5903-5924. [DOI: 10.1002/jcp.29593] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Arezoo Hosseini
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Tohid Gharibi
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Faroogh Marofi
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Mahsa Javadian
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Zohreh Babaloo
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| |
Collapse
|
46
|
Gaber T, Brinkman ACK, Pienczikowski J, Diesing K, Damerau A, Pfeiffenberger M, Lang A, Ohrndorf S, Burmester GR, Buttgereit F, Hoff P. Impact of Janus Kinase Inhibition with Tofacitinib on Fundamental Processes of Bone Healing. Int J Mol Sci 2020; 21:ijms21030865. [PMID: 32013232 PMCID: PMC7037633 DOI: 10.3390/ijms21030865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Both inflammatory diseases like rheumatoid arthritis (RA) and anti-inflammatory treatment of RA with glucocorticoids (GCs) or non-steroidal anti-inflammatory drugs (NSAIDs) negatively influence bone metabolism and fracture healing. Janus kinase (JAK) inhibition with tofacitinib has been demonstrated to act as a potent anti-inflammatory therapeutic agent in the treatment of RA, but its impact on the fundamental processes of bone regeneration is currently controversially discussed and at least in part elusive. Therefore, in this study, we aimed to examine the effects of tofacitinib on processes of bone healing focusing on recruitment of human mesenchymal stromal cells (hMSCs) into the inflammatory microenvironment of the fracture gap, chondrogenesis, osteogenesis and osteoclastogenesis. We performed our analyses under conditions of reduced oxygen availability in order to mimic the in vivo situation of the fracture gap most optimal. We demonstrate that tofacitinib dose-dependently promotes the recruitment of hMSCs under hypoxia but inhibits recruitment of hMSCs under normoxia. With regard to the chondrogenic differentiation of hMSCs, we demonstrate that tofacitinib does not inhibit survival at therapeutically relevant doses of 10–100 nM. Moreover, tofacitinib dose-dependently enhances osteogenic differentiation of hMSCs and reduces osteoclast differentiation and activity. We conclude from our data that tofacitinib may influence bone healing by promotion of hMSC recruitment into the hypoxic microenvironment of the fracture gap but does not interfere with the cartilaginous phase of the soft callus phase of fracture healing process. We assume that tofacitinib may promote bone formation and reduce bone resorption, which could in part explain the positive impact of tofacitinib on bone erosions in RA. Thus, we hypothesize that it will be unnecessary to stop this medication in case of fracture and suggest that positive effects on osteoporosis are likely.
Collapse
Affiliation(s)
- Timo Gaber
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Antonia Clara Katharina Brinkman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Justyna Pienczikowski
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Karoline Diesing
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Alexandra Damerau
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Moritz Pfeiffenberger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Annemarie Lang
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Sarah Ohrndorf
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Frank Buttgereit
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Paula Hoff
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Endokrinologikum Berlin, 10117 Berlin, Germany
| |
Collapse
|
47
|
Orsolini G, Bertoldi I, Rossini M. Osteoimmunology in rheumatoid and psoriatic arthritis: potential effects of tofacitinib on bone involvement. Clin Rheumatol 2020; 39:727-736. [PMID: 31970549 DOI: 10.1007/s10067-020-04930-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
Chronic inflammation, such as that present in rheumatoid arthritis (RA) and psoriatic arthritis (PsA), leads to aberrations in bone remodeling, which is mediated by several signaling pathways, including the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. In this light, pro-inflammatory cytokines are now clearly implicated in these processes as they can perturb normal bone remodeling through their action on osteoclasts and osteoblasts at both intra- and extra-articular skeletal sites. As a selective inhibitor of JAK1 and JAK3, tofacitinib has the potential to play a role in the management of rheumatic diseases such as RA and PsA. Preclinical studies have demonstrated that tofacitinib can inhibit disturbed osteoclastogenesis in RA, which suggests that targeting the JAK-STAT pathway may help limit bone erosion. Evidence from clinical trials with tofacitinib in RA and PsA is encouraging, as tofacitinib treatment has been shown to decrease articular bone erosion. In this review, the authors summarize current knowledge on the relationship between the immune system and the skeleton before examining the involvement of JAK-STAT signaling in bone homeostasis as well as the available preclinical and clinical evidence on the benefits of tofacitinib on prevention of bone involvement in RA and PsA.Key Points• Chronic inflammation in rheumatoid arthritis (RA) and psoriatic arthritis (PsA) leads to disturbances in bone remodeling• Bone remodeling is mediated by several signaling pathways, including the JAK-STAT pathway• Tofacitinib, a selective inhibitor of JAK1 and JAK3, is active in RA and PsA and may help limit systemic bone loss through inhibiting disturbed osteoclastogenesis• Clinical trials show that tofacitinib reduces articular bone erosion.
Collapse
Affiliation(s)
- Giovanni Orsolini
- Rheumatology Unit, University of Verona, Piazzale Scuro 10, 37134, Verona, Italy
| | | | - Maurizio Rossini
- Rheumatology Unit, University of Verona, Piazzale Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
48
|
Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, Ma H, Wei D, Sun S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol 2020; 80:106210. [PMID: 31972425 DOI: 10.1016/j.intimp.2020.106210] [Citation(s) in RCA: 572] [Impact Index Per Article: 114.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 02/09/2023]
Abstract
The JAK/STAT signaling pathway is an universally expressed intracellular signal transduction pathway and involved in many crucial biological processes, including cell proliferation, differentiation, apoptosis, and immune regulation. It provides a direct mechanism for extracellular factors-regulated gene expression. Current researches on this pathway have been focusing on the inflammatory and neoplastic diseases and related drug. The mechanism of JAK/STAT signaling is relatively simple. However, the biological consequences of the pathway are complicated due to its crosstalk with other signaling pathways. In addition, there is increasing evidence indicates that the persistent activation of JAK/STAT signaling pathway is closely related to many immune and inflammatory diseases, yet the specific mechanism remains unclear. Therefore, it is necessary to study the detailed mechanisms of JAK/STAT signaling in disease formation to provide critical reference for clinical treatments of the diseases. In this review, we focus on the structure of JAKs and STATs, the JAK/STAT signaling pathway and its negative regulators, the associated diseases, and the JAK inhibitors for the clinical therapy.
Collapse
Affiliation(s)
- Ping Xin
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Xiaoyun Xu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Chengjie Deng
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Shuang Liu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Youzhi Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuegang Zhou
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hongxing Ma
- Clinical Laboratory Department, Najing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Najing 211200, China
| | - Donghua Wei
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Shiqin Sun
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China.
| |
Collapse
|
49
|
Shan S, Zhou Y, Yu J, Yang Q, Pan D, Wang Y, Li L, Zhu J, Zhang Y, Huang S, Li Z, Ning Z, Xin L, Lu X. Therapeutic treatment of a novel selective JAK3/JAK1/TBK1 inhibitor, CS12192, in rat and mouse models of rheumatoid arthritis. Int Immunopharmacol 2019; 77:105914. [DOI: 10.1016/j.intimp.2019.105914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
|
50
|
Maruotti N, Corrado A, Rotondo C, Cantatore FP. Janus kinase inhibitors role in bone remodeling. J Cell Physiol 2019; 235:1915-1920. [DOI: 10.1002/jcp.29149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/23/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Nicola Maruotti
- Department of Medical and Surgical Sciences Rheumatology Clinic University of Foggia Medical School Foggia Italy
| | - Addolorata Corrado
- Department of Medical and Surgical Sciences Rheumatology Clinic University of Foggia Medical School Foggia Italy
| | - Cinzia Rotondo
- Department of Medical and Surgical Sciences Rheumatology Clinic University of Foggia Medical School Foggia Italy
| | - Francesco Paolo Cantatore
- Department of Medical and Surgical Sciences Rheumatology Clinic University of Foggia Medical School Foggia Italy
| |
Collapse
|