1
|
Ge M, Sun W, Xu T, Yang R, Zhang K, Li J, Zhao Z, Gong M, Fu W. Multi-omics analysis of synovial tissue and fluid reveals differentially expressed proteins and metabolites in osteoarthritis. J Transl Med 2025; 23:285. [PMID: 40050855 PMCID: PMC11887128 DOI: 10.1186/s12967-025-06310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/23/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Knee osteoarthritis is a common degenerative joint disease involving multiple pathological processes, including energy metabolism, cartilage repair, and osteogenesis. To investigate the alterations in critical metabolic pathways and differential proteins in osteoarthritis patients through metabolomic and proteomic analyses and to explore the potential mechanisms underlying synovial osteogenesis during osteoarthritis progression. METHODS Metabolomics was used to analyze metabolites in the synovial fluid and synovium of osteoarthritis patients (osteoarthritis group: 10; control group: 10), whereas proteomics was used to examine differential protein expression. Alkaline phosphatase activity was assessed to evaluate osteogenesis. RESULTS Upregulation of the tricarboxylic acid cycle: Significant upregulation of the tricarboxylic acid cycle in the synovial fluid and synovium of osteoarthritis patients indicated increased energy metabolism and cartilage repair activity. Arginine metabolism and collagen degradation: Elevated levels of ornithine, proline, and hydroxyproline in the synovial fluid reflect active collagen degradation and metabolism, contributing to joint cartilage breakdown. Abnormal Phenylalanine Metabolism: Increased phenylalanine and tyrosine metabolite levels in osteoarthritis patients suggest their involvement in cartilage destruction and osteoarthritis progression. Synovial osteogenesis: Increased expression of type I collagen in the synovium and elevated alkaline phosphatase activity confirmed the occurrence of osteogenesis, potentially driven by the differentiation of synovial fibroblasts, mesenchymal stem cells, and hypertrophic chondrocytes. Relationships between differential proteins and osteogenesis: FN1 and TGFBI are closely associated with synovial osteogenesis, while the upregulation of energy metabolism pathways provides the energy source for osteogenic transformation. CONCLUSIONS Alterations in energy metabolism, cartilage repair, and osteogenic mechanisms are critical. The related metabolites and proteins have potential as diagnostic and therapeutic targets for osteoarthritis.
Collapse
Affiliation(s)
- Minghao Ge
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weihao Sun
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Beijing Jishuitan Hospital, Capital Medical, 31 Dongjiekou East Street, Xicheng District, Beijing, 110000, China
| | - Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Runze Yang
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Li
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Obeidat AM, Kim SY, Burt KG, Hu B, Li J, Ishihara S, Xiao R, Miller RE, Little C, Malfait AM, Scanzello CR. A standardized approach to evaluation and reporting of synovial histopathology in two surgically induced murine models of osteoarthritis. Osteoarthritis Cartilage 2024; 32:1273-1282. [PMID: 38823432 PMCID: PMC11408105 DOI: 10.1016/j.joca.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVE Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for reporting of synovial histopathology in mouse models of OA. METHODS Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue), and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations. Inter-reader agreement of each feature score was determined. RESULTS There was acceptable to very good agreement when using 3-4 individual readers. After DMM and PMX, expected medial predominant changes in hyperplasia and cellularity were observed, with fibrosis noted at 12 weeks post-PMX. Synovial changes were consistent from section to section in the mid-joint area. When comparing stains, H&E and T-blue resulted in better agreement compared to Saf-O stain. CONCLUSIONS To account for the pathologic and anatomic variability in synovial pathology and allow for a more standardized evaluation that can be compared across studies, we recommend evaluating a minimum set of 3 pathological features at standardized anatomic areas. Further, we suggest reporting individual feature scores separately before relying on a single summed "synovitis" score. H&E or T-blue are preferred, inter-reader agreement for each feature should be considered.
Collapse
Affiliation(s)
- Alia M Obeidat
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Sung Yeon Kim
- University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia, PA 19104, United States.
| | - Kevin G Burt
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Department of Orthopaedic Surgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Baofeng Hu
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Pediatrics Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
| | - Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Christopher Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW 2065, Australia.
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
3
|
Haubruck P, Heller R, Blaker CL, Clarke EC, Smith SM, Burkhardt D, Liu Y, Stoner S, Zaki S, Shu CC, Little CB. Streamlining quantitative joint-wide medial femoro-tibial histopathological scoring of mouse post-traumatic knee osteoarthritis models. Osteoarthritis Cartilage 2023; 31:1602-1611. [PMID: 37716405 DOI: 10.1016/j.joca.2023.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVES Histological scoring remains the gold-standard for quantifying post-traumatic osteoarthritis (ptOA) in animal models, allowing concurrent evaluation of numerous joint tissues. Available systems require scoring multiple sections/joint making analysis laborious and expensive. We investigated if a single section allowed equivalent quantitation of pathology in different joint tissues and disease stages, in three ptOA models. METHOD Male 10-12-week-old C57BL/6 mice underwent surgical medial-meniscal-destabilization, anterior-cruciate-ligament (ACL) transection, non-invasive-ACL-rupture, or served as sham-surgical, non-invasive-ACL-strain, or naïve/non-operated controls. Mice (n = 12/group) were harvested 1-, 4-, 8-, and 16-week post-intervention. Serial sagittal toluidine-blue/fast-green stained sections of the medial-femoro-tibial joint (n = 7/joint, 84 µm apart) underwent blinded scoring of 40 histology-outcomes. We evaluated agreement between single-slide versus entire slide-set maximum or median scores (weighted-kappa), and sensitivity/specificity of single-slide versus median/maximum to detect OA pathology. RESULTS A single optimal mid-sagittal section showed excellent agreement with median (weighted-kappa 0.960) and maximum (weighted-kappa 0.926) scores. Agreement for individual histology-outcomes was high with only 19/240 median and 15/240 maximum scores having a weighted-kappa ≤0.4, the majority of these (16/19 and 11/15) in control groups. Statistically-significant histology-outcome differences between ptOA models and their controls detected with the entire slide-set were reliably reproduced using a single slide (sensitivity >93.15%, specificity >93.10%). The majority of false-negatives with single-slide scoring were meniscal and subchondral bone histology-outcomes (89%) and occurred in weeks 1-4 post-injury (84%). CONCLUSION A single mid-sagittal slide reduced the time needed to score diverse histopathological changes by 87% without compromising the sensitivity or specificity of the analysis, across a variety of ptOA models and time-points.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, D-69118 Heidelberg, Germany; Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Raban Heller
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, D-69118 Heidelberg, Germany; Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Bundeswehr Hospital Berlin, Clinic of Traumatology and Orthopaedics, D-10115 Berlin, Germany
| | - Carina L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia; Murray Maxwell Biomechanics Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Susan M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Daniel Burkhardt
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Yolanda Liu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Shihani Stoner
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia; Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia
| | - Cindy C Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| |
Collapse
|
4
|
Obeidat AM, Kim SY, Burt KG, Hu B, Li J, Ishihara S, Xiao R, Miller RE, Little C, Malfait AM, Scanzello CR. Recommendations For a Standardized Approach to Histopathologic Evaluation of Synovial Membrane in Murine Models of Experimental Osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562259. [PMID: 37904981 PMCID: PMC10614774 DOI: 10.1101/2023.10.14.562259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for synovial histopathology in mouse models of OA. Methods Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue) and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations in the medial and lateral compartments. Inter-reader reliability of each feature was determined. Results There was acceptable to very good agreement between raters. After DMM, increased hyperplasia and cellularity and a trend towards increased fibrosis were observed 6 weeks after DMM in the medial locations, and persisted up to 16 weeks. In the PMX model, cellularity and hyperplasia were evident in both medial and lateral compartments while fibrotic changes were largely seen on the medial side. Synovial changes were consistent from section to section in the mid-joint area mice. H&E, T-blue, and Saf-O stains resulted in comparable reliability. Conclusions To allow for a standard evaluation that can be implemented and compared across labs and studies, we recommend using 3 readers to evaluate a minimum set of 3 pathological features at standardized anatomic areas. Pre-defining areas to be scored, and reliability for each pathologic feature should be considered.
Collapse
Affiliation(s)
- Alia M Obeidat
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Sung Yeon Kim
- University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia PA 19104
| | - Kevin G Burt
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Department of Orthopaedic Surgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| | - Baofeng Hu
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pediatrics Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Christopher Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago IL
| | - Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia PA 19104
- Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
5
|
Guo P, Li H, Wang X, Li X, Li X. PG545 Prevents Osteoarthritis Development by Regulating PI3K/AKT/mTOR Signaling and Activating Chondrocyte Autophagy. Pharmacology 2023; 108:576-588. [PMID: 37820587 DOI: 10.1159/000532078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/16/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is a degenerative disease common in the elderly and is characterized by joint pain, swelling, and restricted movement. In recent years, heparanase has been reported to play an important role in the development of osteoarthritic cartilage. PG545 is a heparan sulfate mimetic with heparanase inhibitory activity. In this study, the therapeutic effects and possible mechanisms of PG545 were investigated in a chondrocyte injury model induced by interleukin-1β (IL -1β). METHODS Following treatment with PG545 or the autophagy inhibitor 3-methyladenine (3-MA), chondrocyte viability was detected using Cell Counting Kit-8 and fluorescein diacetate/propidium iodide double staining. The apoptosis rate of chondrocytes was determined by flow cytometry. Expression of light chain 3 and P62 was monitored by immunofluorescence labeling. Western blot, lentivirus infection with red fluorescent protein and green fluorescent protein, and quantitative real-time polymerase chain reaction were used to determine the expression levels of chondrocyte markers, apoptosis-related factors, autophagy proteins, and key proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. The expression and activity of stress-specific enzymes such as malondialdehyde, superoxide dismutase, and catalase (CAT) were investigated. Chondrocytes with ATG5 knockdown were used to investigate the relationship between the therapeutic effect of PG545 and autophagy. The therapeutic effect of PG545 was verified in vivo. RESULTS PG545 had a significant protective effect on chondrocytes by reducing oxidative stress, apoptosis, and degradation of chondrocytes and increasing chondrocyte proliferation. PG545 was effective in inducing autophagy in IL-1β-treated cells, while 3-MA attenuated the effect. The PI3K/Akt/mTOR pathway may be involved in the promotion of autophagy and OA treatment by PG545. CONCLUSION PG545 was able to restore impaired autophagy and autophagic flux via the PI3K/Akt/mTOR pathway, thereby delaying the progression of OA, suggesting that PG545 may be a novel therapeutic approach for OA.
Collapse
Affiliation(s)
- Peiyu Guo
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua Li
- Department of Sport Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuming Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingguo Li
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Li
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Thulson E, Davis ES, D’Costa S, Coryell PR, Kramer NE, Mohlke KL, Loeser RF, Diekman BO, Phanstiel DH. 3D chromatin structure in chondrocytes identifies putative osteoarthritis risk genes. Genetics 2022; 222:iyac141. [PMID: 36099032 PMCID: PMC9713432 DOI: 10.1093/genetics/iyac141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies have identified over 100 loci associated with osteoarthritis risk, but the majority of osteoarthritis risk variants are noncoding, making it difficult to identify the impacted genes for further study and therapeutic development. To address this need, we used a multiomic approach and genome editing to identify and functionally characterize potential osteoarthritis risk genes. Computational analysis of genome-wide association studies and ChIP-seq data revealed that chondrocyte regulatory loci are enriched for osteoarthritis risk variants. We constructed a chondrocyte-specific regulatory network by mapping 3D chromatin structure and active enhancers in human chondrocytes. We then intersected these data with our previously collected RNA-seq dataset of chondrocytes responding to fibronectin fragment, a known osteoarthritis trigger. Integration of the 3 genomic datasets with recently reported osteoarthritis genome-wide association study variants revealed a refined set of putative causal osteoarthritis variants and their potential target genes. One of the putative target genes identified was SOCS2, which was connected to a putative causal variant by a 170-kb loop and is differentially regulated in response to fibronectin fragment. CRISPR-Cas9-mediated deletion of SOCS2 in primary human chondrocytes from 3 independent donors led to heightened expression of inflammatory markers after fibronectin fragment treatment. These data suggest that SOCS2 plays a role in resolving inflammation in response to cartilage matrix damage and provides a possible mechanistic explanation for its influence on osteoarthritis risk. In total, we identified 56 unique putative osteoarthritis risk genes for further research and potential therapeutic development.
Collapse
Affiliation(s)
- Eliza Thulson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Susan D’Costa
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Philip R Coryell
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicole E Kramer
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard F Loeser
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian O Diekman
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Douglas H Phanstiel
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Zhao XX, Xie WQ, Xiao WF, Li HZ, Naranmandakh S, Bruyere O, Reginster JY, Li YS. Perlecan: Roles in osteoarthritis and potential treating target. Life Sci 2022; 312:121190. [PMID: 36379311 DOI: 10.1016/j.lfs.2022.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease, affecting hundreds of millions of people globally, which leads to a high cost of treatment and further medical care and an apparent decrease in patient prognosis. The recent view of OA pathogenesis is that increased vascularity, bone remodeling, and disordered turnover are influenced by multivariate risk factors, such as age, obesity, and overloading. The view also reveals the gap between the development of these processes and early stage risk factors. This review presents the latest research on OA-related signaling pathways and analyzes the potential roles of perlecan, a typical component of the well-known protective structure against osteoarthritic pericellular matrix (PCM). Based on the experimental results observed in end-stage OA models, we summarized and analyzed the role of perlecan in the development of OA. In normal cartilage, it plays a protective role by maintaining the integrin of PCM and sequesters growth factors. Second, perlecan in cartilage is required to not only activate vascular epithelium growth factor receptor (VEGFR) signaling of endothelial cells for vascular invasion and catabolic autophagy, but also for different signaling pathways for the catabolic and anabolic actions of chondrocytes. Finally, perlecan may participate in pain sensitization pathways.
Collapse
Affiliation(s)
- Xiao-Xuan Zhao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Wen-Qing Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wen-Feng Xiao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Heng-Zhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Sukhbaatar district, 14201 Ulaanbaatar, Mongolia
| | - Olivier Bruyere
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium
| | - Jean-Yves Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium.
| | - Yu-Sheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
8
|
Wang L, Xu P, Xu Y, Cui R, Yang Y, Zou Z, Du H, Zhu C, Zhang G, Han T, Lin N. A discovery of clinically approved Panlongqi Tablet for repositioning to treat osteoarthritis by inhibiting PI3K/AKT activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154360. [PMID: 35964457 DOI: 10.1016/j.phymed.2022.154360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Panlongqi Tablet (PLQT) is a Chinese patent drug composed of 29 kinds of traditional Chinese medicines. Clinical practice has shown that PLQT can relieve osteoarthritis-caused joint pain, but its effects and mechanisms in other pathological links of osteoarthritis have not been characterized. PURPOSE The purpose of this study is to reposition the pharmacodynamic effects of PLQT through network pharmacology analysis combined with experimental validation, and also to preliminarily explore its possible mechanism. METHODS On the basis of integrating the relevant targets of PLQT in multiple drug databases and osteoarthritis-related targets in the disease database, an interaction network of related genes was constructed. The hub candidate targets of PLQT in the treatment of osteoarthritis were determined by calculating the main network topological characteristics, The specific functions and pathways of these targets acting on osteoarthritis were modularly analyzed. In addition, the modified Hulth-induced rat model of osteoarthritis and IL-1β-induced in vitro model of osteoarthritis were established to further validate the potential efficacy and possible mechanism of PLQT. RESULTS A total of 138 key targets related to osteoarthritis were selected based on topological parameters, and their biological functions were mainly enriched in four over-expressed modules of cartilage degeneration, inflammatory response, immune response, and subchondral bone metabolism. The hub candidate targets had the highest enrichment degree in the TLR4-RAC1-PIK3CA-Akt-NFκB signaling axis of the PI3K/Akt signaling pathway. In vivo results showed that PLQT treatment significantly inhibited the degeneration of proteoglycan and collagen in the cartilage of osteoarthritis rats, suppressed chondrocyte apoptosis, and reduced the Mankin score of joints. Moreover, PLQT alleviated synovial inflammation, reduced the Krenn score of synovium, inhibited the formation of osteophytes in osteoarthritis rats, reduced the bone mineral density (BMD), fractional bone volume (BV/TV), and trabecular thickness (Tb.Th.), as well as increased the trabecular separation (Tb.Sp.) of subchondral bone and the thickness of the subchondral bone plate (SBP.Th.). PLQT suppressed the expressions of TLR4, RAC1, PIK3CA, p-Akt, MMP-13, and ADAMTS-5 in the cartilage, and inhibited the expression of NFκB p65 in the chondrogenic nucleus. Meanwhile, as downstream effector factors of the predictive pathways, the levels of serum interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO), and prostaglandin E2 (PGE2) were decreased after PLQT treatment. In vitro results also showed that PLQT could inhibit the expression of key proteins and downstream effector factors of the signaling axis, and this inhibition disappeared when pathway agonists were added. CONCLUSION PLQT exerted pharmacological effects on the key pathological links of osteoarthritis including chondrocyte apoptosis, extracellular matrix degradation, inflammation, and subchondral bone metabolism by inhibiting the TLR4-RAC1-PIK3CA-Akt-NFκB axis-related proteins.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan 750004, PR China
| | - Panyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Ying Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China.
| | - Ruiqin Cui
- Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan 750004, PR China
| | - Yibo Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Zhao Zou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Hanqian Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Chunyan Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Guoxin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Tengfei Han
- Shanxi Panlong Pharmaceutical Group Co., Ltd, No.2801, Ba LiuEr Road, Baqiao District, Shanxi 710000, PR China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China.
| |
Collapse
|
9
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
10
|
Vincent TL, McClurg O, Troeberg L. The Extracellular Matrix of Articular Cartilage Controls the Bioavailability of Pericellular Matrix-Bound Growth Factors to Drive Tissue Homeostasis and Repair. Int J Mol Sci 2022; 23:6003. [PMID: 35682681 PMCID: PMC9181404 DOI: 10.3390/ijms23116003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
The extracellular matrix (ECM) has long been regarded as a packing material; supporting cells within the tissue and providing tensile strength and protection from mechanical stress. There is little surprise when one considers the dynamic nature of many of the individual proteins that contribute to the ECM, that we are beginning to appreciate a more nuanced role for the ECM in tissue homeostasis and disease. Articular cartilage is adapted to be able to perceive and respond to mechanical load. Indeed, physiological loads are essential to maintain cartilage thickness in a healthy joint and excessive mechanical stress is associated with the breakdown of the matrix that is seen in osteoarthritis (OA). Although the trigger by which increased mechanical stress drives catabolic pathways remains unknown, one mechanism by which cartilage responds to increased compressive load is by the release of growth factors that are sequestered in the pericellular matrix. These are heparan sulfate-bound growth factors that appear to be largely chondroprotective and displaced by an aggrecan-dependent sodium flux. Emerging evidence suggests that the released growth factors act in a coordinated fashion to drive cartilage repair. Thus, we are beginning to appreciate that the ECM is the key mechano-sensor and mechano-effector in cartilage, responsible for directing subsequent cellular events of relevance to joint health and disease.
Collapse
Affiliation(s)
- Tonia L. Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Oliver McClurg
- Norwich Medical School, University of East Anglia, Norwich, Norwich NR4 7UQ, UK; (O.M.); (L.T.)
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Norwich, Norwich NR4 7UQ, UK; (O.M.); (L.T.)
| |
Collapse
|
11
|
Hayes AJ, Farrugia BL, Biose IJ, Bix GJ, Melrose J. Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Front Cell Dev Biol 2022; 10:856261. [PMID: 35433700 PMCID: PMC9010944 DOI: 10.3389/fcell.2022.856261] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Brooke L. Farrugia
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Ifechukwude J. Biose
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
12
|
Regulation of FGF-2, FGF-18 and Transcription Factor Activity by Perlecan in the Maturational Development of Transitional Rudiment and Growth Plate Cartilages and in the Maintenance of Permanent Cartilage Homeostasis. Int J Mol Sci 2022; 23:ijms23041934. [PMID: 35216048 PMCID: PMC8872392 DOI: 10.3390/ijms23041934] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to highlight the roles of perlecan in the regulation of the development of the rudiment developmental cartilages and growth plate cartilages, and also to show how perlecan maintains permanent articular cartilage homeostasis. Cartilage rudiments are transient developmental templates containing chondroprogenitor cells that undergo proliferation, matrix deposition, and hypertrophic differentiation. Growth plate cartilage also undergoes similar changes leading to endochondral bone formation, whereas permanent cartilage is maintained as an articular structure and does not undergo maturational changes. Pericellular and extracellular perlecan-HS chains interact with growth factors, morphogens, structural matrix glycoproteins, proteases, and inhibitors to promote matrix stabilization and cellular proliferation, ECM remodelling, and tissue expansion. Perlecan has mechanotransductive roles in cartilage that modulate chondrocyte responses in weight-bearing environments. Nuclear perlecan may modulate chromatin structure and transcription factor access to DNA and gene regulation. Snail-1, a mesenchymal marker and transcription factor, signals through FGFR-3 to promote chondrogenesis and maintain Acan and type II collagen levels in articular cartilage, but prevents further tissue expansion. Pre-hypertrophic growth plate chondrocytes also express high Snail-1 levels, leading to cessation of Acan and CoI2A1 synthesis and appearance of type X collagen. Perlecan differentially regulates FGF-2 and FGF-18 to maintain articular cartilage homeostasis, rudiment and growth plate cartilage growth, and maturational changes including mineralization, contributing to skeletal growth.
Collapse
|
13
|
Boos MA, Lamandé SR, Stok KS. Multiscale Strain Transfer in Cartilage. Front Cell Dev Biol 2022; 10:795522. [PMID: 35186920 PMCID: PMC8855033 DOI: 10.3389/fcell.2022.795522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
The transfer of stress and strain signals between the extracellular matrix (ECM) and cells is crucial for biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, growth, and homeostasis. In cartilage tissue, the heterogeneity in spatial variation of ECM molecules leads to a depth-dependent non-uniform strain transfer and alters the magnitude of forces sensed by cells in articular and fibrocartilage, influencing chondrocyte metabolism and biochemical response. It is not fully established how these nonuniform forces ultimately influence cartilage health, maintenance, and integrity. To comprehend tissue remodelling in health and disease, it is fundamental to investigate how these forces, the ECM, and cells interrelate. However, not much is known about the relationship between applied mechanical stimulus and resulting spatial variations in magnitude and sense of mechanical stimuli within the chondrocyte’s microenvironment. Investigating multiscale strain transfer and hierarchical structure-function relationships in cartilage is key to unravelling how cells receive signals and how they are transformed into biosynthetic responses. Therefore, this article first reviews different cartilage types and chondrocyte mechanosensing. Following this, multiscale strain transfer through cartilage tissue and the involvement of individual ECM components are discussed. Finally, insights to further understand multiscale strain transfer in cartilage are outlined.
Collapse
Affiliation(s)
- Manuela A. Boos
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Shireen R. Lamandé
- Musculoskeletal Research, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kathryn S. Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kathryn S. Stok,
| |
Collapse
|
14
|
Clement-Lacroix P, Little CB, Smith MM, Cottereaux C, Merciris D, Meurisse S, Mollat P, Touitou R, Brebion F, Gosmini R, De Ceuninck F, Botez I, Lepescheux L, van der Aar E, Christophe T, Vandervoort N, Blanqué R, Comas D, Deprez P, Amantini D. Pharmacological characterization of GLPG1972/S201086, a potent and selective small-molecule inhibitor of ADAMTS5. Osteoarthritis Cartilage 2022; 30:291-301. [PMID: 34626798 DOI: 10.1016/j.joca.2021.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) is a key enzyme in degradation of cartilage in osteoarthritis (OA). We report the pharmacological characterization of GLPG1972/S201086, a new, potent and selective small-molecule ADAMTS5 inhibitor. METHODS Potency and selectivity of GLPG1972/S201086 for ADAMTS5 were determined using fluorescently labeled peptide substrates. Inhibitory effects of GLPG1972/S201086 on interleukin-1α-stimulated glycosaminoglycan release in mouse femoral head cartilage explants and on interleukin-1β-stimulated release of an ADAMTS5-derived aggrecan neoepitope (quantified with ELISA) in human articular cartilage explants were determined. In the destabilization of the medial meniscus (DMM) mouse and menisectomized (MNX) rat models, effects of oral GLPG1972/S201086 on relevant OA histological and histomorphometric parameters were evaluated. RESULTS GLPG1972/S201086 inhibited human and rat ADAMTS5 (IC50 ± SD: 19 ± 2 nM and <23 ± 1 nM, respectively), with 8-fold selectivity over ADAMTS4, and 60->5,000-fold selectivity over other related proteases in humans. GLPG1972/S201086 dose-dependently inhibited cytokine-stimulated aggrenolysis in mouse and human cartilage explants (100% at 20 μM and 10 μM, respectively). In DMM mice, GLPG1972/S201086 (30-120 mg/kg b.i.d) vs vehicle reduced femorotibial cartilage proteoglycan loss (23-37%), cartilage structural damage (23-39%) and subchondral bone sclerosis (21-36%). In MNX rats, GLPG1972/S201086 (10-50 mg/kg b.i.d) vs vehicle reduced cartilage damage (OARSI score reduction, 6-23%), and decreased proteoglycan loss (∼27%) and subchondral bone sclerosis (77-110%). CONCLUSIONS GLPG1972/S201086 is a potent, selective and orally available ADAMTS5 inhibitor, demonstrating significant protective efficacy on both cartilage and subchondral bone in two relevant in vivo preclinical OA models.
Collapse
Affiliation(s)
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, University of Sydney, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St Leonards, NSW, Australia.
| | - M M Smith
- Raymond Purves Bone and Joint Research Laboratories, University of Sydney, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St Leonards, NSW, Australia.
| | | | | | | | - P Mollat
- Galapagos SASU, Romainville, France.
| | - R Touitou
- Galapagos SASU, Romainville, France.
| | - F Brebion
- Galapagos SASU, Romainville, France.
| | - R Gosmini
- Galapagos SASU, Romainville, France.
| | | | - I Botez
- Institut de Recherches Servier, France.
| | | | | | | | | | - R Blanqué
- Galapagos SASU, Romainville, France.
| | - D Comas
- Galapagos SASU, Romainville, France.
| | - P Deprez
- Galapagos SASU, Romainville, France.
| | | |
Collapse
|
15
|
Impact of perlecan, a core component of basement membrane, on regeneration of cartilaginous tissues. Acta Biomater 2021; 135:13-26. [PMID: 34454085 DOI: 10.1016/j.actbio.2021.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
As an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, biomechanical properties, and interactive ligands-which together contribute to the effect Pln has on cartilaginous tissue development. We also review how the signaling pathways of Pln affect cartilage development and scrutinize the potential application of Pln to divisions of cartilage regeneration, spanning vascularization, stem cell differentiation, and biomaterial improvement. The aim of this review is to deepen our understanding of the spatial and temporal interactions that occur between Pln and cartilaginous tissue and ultimately apply Pln in scaffold design to improve cell-based cartilage engineering and regeneration. STATEMENT OF SIGNIFICANCE: As a key component of the basement membrane, Pln plays a critical role in tissue development and repair. Recent findings suggest that Pln existing in the pericellular matrix surrounding mature chondrocytes is actively involved in cartilage regeneration and functionality. We propose that Pln is essential to developing an in vitro matrix niche within biological scaffolds for cartilage tissue engineering.
Collapse
|
16
|
Heparan Sulfate Deficiency in Cartilage: Enhanced BMP-Sensitivity, Proteoglycan Production and an Anti-Apoptotic Expression Signature after Loading. Int J Mol Sci 2021; 22:ijms22073726. [PMID: 33918436 PMCID: PMC8038223 DOI: 10.3390/ijms22073726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) represents one major cause of disability worldwide still evading efficient pharmacological or cellular therapies. Severe degeneration of extracellular cartilage matrix precedes the loss of mobility and disabling pain perception in affected joints. Recent studies showed that a reduced heparan sulfate (HS) content protects cartilage from degradation in OA-animal models of joint destabilization but the underlying mechanisms remained unclear. We aimed to clarify whether low HS-content alters the mechano-response of chondrocytes and to uncover pathways relevant for HS-related chondro-protection in response to loading. Tissue-engineered cartilage with HS-deficiency was generated from rib chondrocytes of mice carrying a hypomorphic allele of Exostosin 1 (Ext1), one of the main HS-synthesizing enzymes, and wildtype (WT) littermate controls. Engineered cartilage matured for 2 weeks was exposed to cyclic unconfined compression in a bioreactor. The molecular loading response was determined by transcriptome profiling, bioinformatic data processing, and qPCR. HS-deficient chondrocytes expressed 3-6% of WT Ext1-mRNA levels. Both groups similarly raised Sox9, Col2a1 and Acan levels during maturation. However, HS-deficient chondrocytes synthesized and deposited 50% more GAG/DNA. TGFβ and FGF2-sensitivity of Ext1gt/gt chondrocytes was similar to WT cells but their response to BMP-stimulation was enhanced. Loading induced similar activation of mechano-sensitive ERK and P38-signaling in WT and HS-reduced chondrocytes. Transcriptome analysis reflected regulation of cell migration as major load-induced biological process with similar stimulation of common (Fosl1, Itgα5, Timp1, and Ngf) as well as novel mechano-regulated genes (Inhba and Dhrs9). Remarkably, only Ext1-hypomorphic cartilage responded to loading by an expression signature of negative regulation of apoptosis with pro-apoptotic Bnip3 being selectively down-regulated. HS-deficiency enhanced BMP-sensitivity, GAG-production and fostered an anti-apoptotic expression signature after loading, all of which may protect cartilage from load-induced erosion.
Collapse
|
17
|
Blaker CL, Zaki S, Little CB, Clarke EC. Long-term Effect of a Single Subcritical Knee Injury: Increasing the Risk of Anterior Cruciate Ligament Rupture and Osteoarthritis. Am J Sports Med 2021; 49:391-403. [PMID: 33378213 DOI: 10.1177/0363546520977505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rupture of the anterior cruciate ligament (ACL) is a well-known risk factor for the development of posttraumatic osteoarthritis (PTOA), but patients with the "same injury" can have vastly different trajectories for the onset and progression of disease. Minor subcritical injuries preceding the critical injury event may drive this disparity through preexisting tissue pathologies and sensory changes. PURPOSE To investigate the role of subcritical injury on ACL rupture risk and PTOA through the evaluation of pain behaviors, joint mechanics, and tissue structural change in a mouse model of knee injury. STUDY DESIGN Controlled laboratory study. METHODS Ten-week-old male C57BL/6J mice were allocated to naïve control and subcritical knee injury groups. Injury was induced by a single mechanical compression to the right hindlimb, and mice were evaluated using joint histopathology, anteroposterior joint biomechanics, pain behaviors (mechanical allodynia and hindlimb weightbearing), and isolated ACL tensile testing to failure at 1, 2, 4, or 8 weeks after injury. RESULTS Subcritical knee injury produced focal osteochondral lesions in the patellofemoral and lateral tibiofemoral compartments with no resolution for the duration of the study (8 weeks). These lesions were characterized by focal loss of proteoglycan staining, cartilage structural change, chondrocyte pathology, microcracks, and osteocyte cell loss. Injury also resulted in the rapid onset of allodynia (at 1 week), which persisted over time and reduced ACL failure load (P = .006; mean ± SD, 7.91 ± 2.01 N vs 9.37 ± 1.01 N in naïve controls at 8 weeks after injury), accompanied by evidence of ACL remodeling at the femoral enthesis. CONCLUSION The present study in mice establishes a direct effect of a single subcritical knee injury on the development of specific joint tissue pathologies (osteochondral lesions and progressive weakening of the ACL) and allodynic sensitization. These findings demonstrate a predisposition for secondary critical injuries (eg, ACL rupture) and an increased risk of PTOA onset and progression (structurally and symptomatically). CLINICAL RELEVANCE Subcritical knee injuries are a common occurrence and, based on this study, can cause persistent sensory and structural change. These findings have important implications for the understanding of risk factors of ACL injury and subsequent PTOA, particularly with regard to prevention and management strategies following an often underreported event.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia.,Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, Australia
| |
Collapse
|
18
|
Garcia J, McCarthy HS, Kuiper JH, Melrose J, Roberts S. Perlecan in the Natural and Cell Therapy Repair of Human Adult Articular Cartilage: Can Modifications in This Proteoglycan Be a Novel Therapeutic Approach? Biomolecules 2021; 11:biom11010092. [PMID: 33450893 PMCID: PMC7828356 DOI: 10.3390/biom11010092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Articular cartilage is considered to have limited regenerative capacity, which has led to the search for therapies to limit or halt the progression of its destruction. Perlecan, a multifunctional heparan sulphate (HS) proteoglycan, promotes embryonic cartilage development and stabilises the mature tissue. We investigated the immunolocalisation of perlecan and collagen between donor-matched biopsies of human articular cartilage defects (n = 10 × 2) that were repaired either naturally or using autologous cell therapy, and with age-matched normal cartilage. We explored how the removal of HS from perlecan affects human chondrocytes in vitro. Immunohistochemistry showed both a pericellular and diffuse matrix staining pattern for perlecan in both natural and cell therapy repaired cartilage, which related to whether the morphology of the newly formed tissue was hyaline cartilage or fibrocartilage. Immunostaining for perlecan was significantly greater in both these repair tissues compared to normal age-matched controls. The immunolocalisation of collagens type III and VI was also dependent on tissue morphology. Heparanase treatment of chondrocytes in vitro resulted in significantly increased proliferation, while the expression of key chondrogenic surface and genetic markers was unaffected. Perlecan was more prominent in chondrocyte clusters than in individual cells after heparanase treatment. Heparanase treatment could be a means of increasing chondrocyte responsiveness to cartilage injury and perhaps to improve repair of defects.
Collapse
Affiliation(s)
- John Garcia
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - Helen S. McCarthy
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - Jan Herman Kuiper
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Area Local Health District, St. Leonards, NSW 2065, Australia;
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sally Roberts
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (J.G.); (H.S.M.); (J.H.K.)
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK
- Correspondence: ; Tel.: +44-1-691-404-664
| |
Collapse
|
19
|
Shamdani S, Chantepie S, Flageollet C, Henni-Chebra N, Jouan Y, Eymard F, Hay E, Cohen-Solal M, Papy-Garcia D, Chevalier X, Albanese P. Heparan sulfate functions are altered in the osteoarthritic cartilage. Arthritis Res Ther 2020; 22:283. [PMID: 33287871 PMCID: PMC7722421 DOI: 10.1186/s13075-020-02352-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Heparan sulfate (HS) proteoglycans (PG) may be found at the chondrocyte surface and in the pericellular cartilage matrix, and are involved in cell-cell and cell-matrix interactions. An important function of HS chains is to regulate cell fate through specific interactions with heparin-binding proteins (HBP) modulated by their complex sulfation pattern. Osteoarthritis (OA) is a joint disorder characterized by the degradation of articular cartilaginous extracellular matrix. The aim of this study was to investigate HS structure and functions in osteoarthritic cartilages compared to normal cartilages (controls). METHODS Glycosaminoglycans (GAG) were extracted from human macroscopically normal cartilages (controls, n = 7) and (OA cartilages n = 11). HS were isolated and quantified using the DMMB quantification method. Their structure and functions were then compared using respectively a HPLC analysis and HBP binding tests and their phenotypic effects on murine chondrocytes were studied by RQ-PCR. Statistical analyzes were performed using a one-way ANOVA followed by a Dunnett's test or a t test for pairwise comparisons. RESULTS In OA, HS were characterized by increased sulfation levels compared to controls. Moreover, the capacity of these HS to bind HBP involved in the OA pathophysiological process such as FGF2 and VEGF was reduced. Chondroitin sulfates and keratan sulfates regulated these binding properties. Finally, HS from OA cartilages induced the mRNA levels of catabolic markers such as MMP3, MMP13, and TS4 and inhibited the mRNA levels of anabolic markers such as COL2, ACAN, SOX9, and VEGF in murine articular chondrocytes. CONCLUSION The sulfation of HS chains was increased in OA cartilages with changes in HBP binding properties and biological effects on chondrocyte phenotypes. Thus, modified HS present in altered cartilages could be a novel therapeutic target in OA.
Collapse
Affiliation(s)
- Sara Shamdani
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France
| | - Sandrine Chantepie
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France
| | - Camille Flageollet
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France
| | - Nadia Henni-Chebra
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France
| | - Yohann Jouan
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré,, Creteil, F-94010, France.,BIOSCAR Inserm U1132, Université de Paris, F-75010, Paris, France
| | - Florent Eymard
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France.,INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, Créteil, 75010, France
| | - Eric Hay
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré,, Creteil, F-94010, France.,BIOSCAR Inserm U1132, Université de Paris, F-75010, Paris, France
| | - Martine Cohen-Solal
- INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré,, Creteil, F-94010, France.,BIOSCAR Inserm U1132, Université de Paris, F-75010, Paris, France.,Université de Paris (UFR de Médecine), Paris, 75010, France
| | - Dulce Papy-Garcia
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France
| | - Xavier Chevalier
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France.,INSERM, UMR-S 1132 Bioscar, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, Créteil, 75010, France
| | - Patricia Albanese
- Univ Paris Est Creteil, Gly-CRRET, Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Créteil, F-94010, France.
| |
Collapse
|
20
|
Chery DR, Han B, Zhou Y, Wang C, Adams SM, Chandrasekaran P, Kwok B, Heo SJ, Enomoto-Iwamoto M, Lu XL, Kong D, Iozzo RV, Birk DE, Mauck RL, Han L. Decorin regulates cartilage pericellular matrix micromechanobiology. Matrix Biol 2020; 96:1-17. [PMID: 33246102 DOI: 10.1016/j.matbio.2020.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
In cartilage tissue engineering, one key challenge is for regenerative tissue to recapitulate the biomechanical functions of native cartilage while maintaining normal mechanosensitive activities of chondrocytes. Thus, it is imperative to discern the micromechanobiological functions of the pericellular matrix, the ~ 2-4 µm-thick domain that is in immediate contact with chondrocytes. In this study, we discovered that decorin, a small leucine-rich proteoglycan, is a key determinant of cartilage pericellular matrix micromechanics and chondrocyte mechanotransduction in vivo. The pericellular matrix of decorin-null murine cartilage developed reduced content of aggrecan, the major chondroitin sulfate proteoglycan of cartilage and a mild increase in collagen II fibril diameter vis-à-vis wild-type controls. As a result, decorin-null pericellular matrix showed a significant reduction in micromodulus, which became progressively more pronounced with maturation. In alignment with the defects of pericellular matrix, decorin-null chondrocytes exhibited decreased intracellular calcium activities, [Ca2+]i, in both physiologic and osmotically evoked fluidic environments in situ, illustrating impaired chondrocyte mechanotransduction. Next, we compared [Ca2+]i activities of wild-type and decorin-null chondrocytes following enzymatic removal of chondroitin sulfate glycosaminoglycans. The results showed that decorin mediates chondrocyte mechanotransduction primarily through regulating the integrity of aggrecan network, and thus, aggrecan-endowed negative charge microenvironment in the pericellular matrix. Collectively, our results provide robust genetic and biomechanical evidence that decorin is an essential constituent of the native cartilage matrix, and suggest that modulating decorin activities could improve cartilage regeneration.
Collapse
Affiliation(s)
- Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Ying Zhou
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
21
|
Peng Z, Sun H, Bunpetch V, Koh Y, Wen Y, Wu D, Ouyang H. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials 2020; 268:120555. [PMID: 33285440 DOI: 10.1016/j.biomaterials.2020.120555] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a major cause of disability and socioeconomic loss worldwide. However, the current pharmacological approaches used to treat OA are largely palliative. Being the hallmark of OA, the cartilage extracellular matrix (ECM) destruction and abnormal homeostasis is gaining more attention as a therapeutic target in cartilage regeneration. Moreover, during the progression of OA, the cartilage ECM shows significant pathological alternations, which can be promising biomarkers in identifying the pathological stages of OA. In this review, we summarize the role of abnormal ECM homeostasis in the joint cartilage during OA. Furthermore, we provide an update on the cartilage ECM derived biomarkers and regenerative medicine therapies targeting cartilage ECM which includes preclinical animal models study and clinical trials.
Collapse
Affiliation(s)
- Zhi Peng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Koh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongmei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
22
|
Kawashima K, Ogawa H, Komura S, Ishihara T, Yamaguchi Y, Akiyama H, Matsumoto K. Heparan sulfate deficiency leads to hypertrophic chondrocytes by increasing bone morphogenetic protein signaling. Osteoarthritis Cartilage 2020; 28:1459-1470. [PMID: 32818603 PMCID: PMC7606622 DOI: 10.1016/j.joca.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Exostosin-1 (EXT1) and EXT2 are the major genetic etiologies of multiple hereditary exostoses and are essential for heparan sulfate (HS) biosynthesis. Previous studies investigating HS in several mouse models of multiple hereditary exostoses have reported that aberrant bone morphogenetic protein (BMP) signaling promotes osteochondroma formation in Ext1-deficient mice. This study examined the mechanism underlying the effects of HS deficiency on BMP/Smad signaling in articular cartilage in a cartilage-specific Ext-/- mouse model. METHOD We generated mice with a conditional Ext1 knockout in cartilage tissue (Ext1-cKO mice) using Prg4-Cre transgenic mice. Structural cartilage alterations were histologically evaluated and phospho-Smad1/5/9 (pSmad1/5/9) expression in mouse chondrocytes was analyzed. The effect of pharmacological intervention of BMP signaling using a specific inhibitor was assessed in the articular cartilage of Ext1-cKO mice. RESULTS Hypertrophic chondrocytes were significantly more abundant (P = 0.021) and cartilage thickness was greater in Ext1-cKO mice at 3 months postnatal than in control littermates (P = 0.036 for femur; and P < 0.001 for tibia). However, osteoarthritis did not spontaneously occur before the 1-year follow-up. matrix metalloproteinase (MMP)-13 and adamalysin-like metalloproteinases with thrombospondin motifs(ADAMTS)-5 were upregulated in hypertrophic chondrocytes of transgenic mice. Immunostaining and western blotting revealed that pSmad1/5/9-positive chondrocytes were more abundant in the articular cartilage of Ext1-cKO mice than in control littermates. Furthermore, the BMP inhibitor significantly decreased the number of hypertrophic chondrocytes in Ext1-cKO mice (P = 0.007). CONCLUSIONS HS deficiency in articular chondrocytes causes chondrocyte hypertrophy, wherein upregulated BMP/Smad signaling partially contributes to this phenotype. HS might play an important role in maintaining the cartilaginous matrix by regulating BMP signaling.
Collapse
Affiliation(s)
- K. Kawashima
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - H. Ogawa
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - S. Komura
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - T. Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, 1-1 Yanagido, Gifu, Japan
| | - Y. Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - H. Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | - K. Matsumoto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan,Address correspondence and reprint requests to: K. Matsumoto, Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan. Tel.: 81-58-230-6333; Fax: 81-58-230-6334. (K. Matsumoto)
| |
Collapse
|
23
|
Severmann AC, Jochmann K, Feller K, Bachvarova V, Piombo V, Stange R, Holzer T, Brachvogel B, Esko J, Pap T, Hoffmann D, Vortkamp A. An altered heparan sulfate structure in the articular cartilage protects against osteoarthritis. Osteoarthritis Cartilage 2020; 28:977-987. [PMID: 32315715 PMCID: PMC8422443 DOI: 10.1016/j.joca.2020.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a progressive degenerative disease of the articular cartilage caused by an unbalanced activity of proteases, cytokines and other secreted proteins. Since heparan sulfate (HS) determines the activity of many extracellular factors, we investigated its role in OA progression. METHODS To analyze the role of the HS level, OA was induced by anterior cruciate ligament transection (ACLT) in transgenic mice carrying a loss-of-function allele of Ext1 in clones of chondrocytes (Col2-rtTA-Cre;Ext1e2fl/e2fl). To study the impact of the HS sulfation pattern, OA was surgically induced in mice with a heterozygous (Ndst1+/-) or chondrocyte-specific (Col2-Cre;Ndst1fl/fl) loss-of-function allele of the sulfotransferase Ndst1. OA progression was evaluated using the OARSI scoring system. To investigate expression and activity of cartilage degrading proteases, femoral head explants of Ndst1+/- mutants were analyzed by qRT-PCR, Western Blot and gelatin zymography. RESULTS All investigated mouse strains showed reduced OA scores (Col2-rtTA-Cre;Ext1e2fl/e2fl: 0.83; 95% HDI 0.72-0.96; Ndst1+/-: 0.83, 95% HDI 0.74-0.9; Col2-Cre;Ndst1fl/fl: 0.87, 95% HDI 0.76-1). Using cartilage explant cultures of Ndst1 animals, we detected higher amounts of aggrecan degradation products in wildtype samples (NITEGE 4.24-fold, 95% HDI 1.05-18.55; VDIPEN 1.54-fold, 95% HDI 1.54-2.34). Accordingly, gelatin zymography revealed lower Mmp2 activity in mutant samples upon RA-treatment (0.77-fold, 95% HDI: 0.60-0.96). As expression of major proteases and their inhibitors was not altered, HS seems to regulate cartilage degeneration by affecting protease activity. CONCLUSION A decreased HS content or a reduced sulfation level protect against OA progression by regulating protease activity rather than expression.
Collapse
Affiliation(s)
- A-C Severmann
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - K Jochmann
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - K Feller
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - V Bachvarova
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - V Piombo
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - R Stange
- Zentrum für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster, Germany.
| | - T Holzer
- Center for Biochemistry, Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Germany.
| | - B Brachvogel
- Center for Biochemistry, Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Germany.
| | - J Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research & Training Center, University of California, San Diego, La Jolla, CA, 92093-0687, USA.
| | - T Pap
- Zentrum für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster, Germany.
| | - D Hoffmann
- Department Bioinformatics and Computational Biophysics, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - A Vortkamp
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| |
Collapse
|
24
|
Differential patterns of pathology in and interaction between joint tissues in long-term osteoarthritis with different initiating causes: phenotype matters. Osteoarthritis Cartilage 2020; 28:953-965. [PMID: 32360537 DOI: 10.1016/j.joca.2020.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if osteoarthritis (OA) progression and joint tissue-pathology associations link specific animal models to different human OA phenotypes. DESIGN Male 11-week-old C57BL6 mice had unilateral medial-meniscal-destabilization (DMM) or antigen-induced-arthritis (AIA). Joint tissue histopathology was scored day-3 to week-16. Tissue-pathology associations (corrected for time and at week-16) were determined by partial correlation coefficients, and odds ratios (OR) calculated for likelihood of cartilage damage and joint inflammation by ordinal-logistic-regression. RESULTS Despite distinct temporal patterns of progression, by week-16 joint-wide OA pathology in DMM and AIA was equivalent. Significant pathology associations common to both models included: osteophyte size and maturity (r > 0.4); subchondral bone (SCB) sclerosis and osteophyte maturity (r > 0.25); cartilage erosion and chondrocyte hypertrophy/apoptosis (r > 0.4), SCB sclerosis (r > 0.26), osteophyte size (r > 0.3), and maturity (r > 0.32). DMM-specific associations were between cartilage proteoglycan loss and structural damage (r = 0.56), osteophyte maturity (r = 0.49), size (r = 0.45), and SCB sclerosis (r = 0.28). AIA-specific associations were between SCB sclerosis and chondrocyte hypertrophy/apoptosis (r = 0.40) and osteophyte size (r = 0.37); and synovitis with cartilage structural damage (r = 0.18). No tissue-pathology associations were common to both models at week-16. Increased likelihood of cartilage structural damage was associated with: chondrocyte hypertrophy/apoptosis (OR>1.7), and osteophyte size (OR>2.3) in both models; SCB sclerosis (OR = 2.0) and proteoglycan loss (OR = 2.4) in DMM; and synovitis (OR = 1.2) in AIA. Joint inflammation was associated positively with cartilage proteoglycan loss (OR = 1.4) and inversely with osteophyte size (OR = 0.21) in AIA only. CONCLUSION This study highlights the importance of defining OA-models by initiating mechanisms and progression, not just end-stage joint-tissue pathology.
Collapse
|
25
|
Shu CC, Zaki S, Ravi V, Schiavinato A, Smith MM, Little CB. The relationship between synovial inflammation, structural pathology, and pain in post-traumatic osteoarthritis: differential effect of stem cell and hyaluronan treatment. Arthritis Res Ther 2020; 22:29. [PMID: 32059749 PMCID: PMC7023816 DOI: 10.1186/s13075-020-2117-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
Background Synovitis is implicated in the severity and progression of pain and structural pathology of osteoarthritis (OA). Increases in inflammatory or immune cell subpopulations including macrophages and lymphocytes have been reported in OA synovium, but how the particular subpopulations influence symptomatic or structural OA disease progression is unclear. Two therapies, hyaluronan (HA) and mesenchymal stem cells (MSCs), have demonstrated efficacy in some clinical settings: HA acting as device to improve joint function and provide pain relief, while MSCs may have immunomodulatory and disease-modifying effects. We used these agents to investigate whether changes in pain sensitization or structural damage were linked to modulation of the synovial inflammatory response in post-traumatic OA. Methods Skeletally mature C57BL6 male mice underwent medial-meniscal destabilisation (DMM) surgery followed by intra-articular injection of saline, a hyaluronan hexadecylamide derivative (Hymovis), bone marrow-derived stem cells (MSCs), or MSC + Hymovis. We quantified the progression of OA-related cartilage, subchondral bone and synovial histopathology, and associated pain sensitization (tactile allodynia). Synovial lymphocytes, monocyte/macrophages and their subpopulations were quantified by fluorescent-activated cell sorting (FACS), and the expression of key inflammatory mediators and catabolic enzyme genes quantified by real-time polymerase chain reaction (PCR). Results MSC but not Hymovis significantly reduced late-stage (12-week post-DMM) cartilage proteoglycan loss and structural damage. Allodynia was initially reduced by both treatments but significantly better at 8 and 12 weeks by Hymovis. Chondroprotection by MSCs was not associated with specific changes in synovial inflammatory cell populations but rather regulation of post-injury synovial Adamts4, Adamts5, Mmp3, and Mmp9 expression. Reduced acute post-injury allodynia with all treatments coincided with decreased synovial macrophage and T cell numbers, while longer-term effect on pain sensitization with Hymovis was associated with increased M2c macrophages. Conclusions This therapeutic study in mice demonstrated a poor correlation between cartilage, bone or synovium (histo)pathology, and pain sensitization. Changes in the specific synovial inflammatory cell subpopulations may be associated with chronic OA pain sensitization, and a novel target for symptomatic treatment.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Varshini Ravi
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | | | - Margaret M Smith
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|
26
|
Zinc Homeostasis in Bone: Zinc Transporters and Bone Diseases. Int J Mol Sci 2020; 21:ijms21041236. [PMID: 32059605 PMCID: PMC7072862 DOI: 10.3390/ijms21041236] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Zinc is an essential micronutrient that plays critical roles in numerous physiological processes, including bone homeostasis. The majority of zinc in the human body is stored in bone. Zinc is not only a component of bone but also an essential cofactor of many proteins involved in microstructural stability and bone remodeling. There are two types of membrane zinc transporter proteins identified in mammals: the Zrt- and Irt-like protein (ZIP) family and the zinc transporter (ZnT) family. They regulate the influx and efflux of zinc, accounting for the transport of zinc through cellular and intracellular membranes to maintain zinc homeostasis in the cytoplasm and in intracellular compartments, respectively. Abnormal function of certain zinc transporters is associated with an imbalance of bone homeostasis, which may contribute to human bone diseases. Here, we summarize the regulatory roles of zinc transporters in different cell types and the mechanisms underlying related pathological changes involved in bone diseases. We also present perspectives for further studies on bone homeostasis-regulating zinc transporters.
Collapse
|
27
|
Kuang L, Wu J, Su N, Qi H, Chen H, Zhou S, Xiong Y, Du X, Tan Q, Yang J, Jin M, Luo F, Ouyang J, Zhang B, Wang Z, Jiang W, Chen L, Chen S, Wang Z, Liu P, Yin L, Guo F, Deng C, Chen D, Liu C, Xie Y, Ni Z, Chen L. FGFR3 deficiency enhances CXCL12-dependent chemotaxis of macrophages via upregulating CXCR7 and aggravates joint destruction in mice. Ann Rheum Dis 2020; 79:112-122. [PMID: 31662319 DOI: 10.1136/annrheumdis-2019-215696] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This study aims to investigate the role and mechanism of FGFR3 in macrophages and their biological effects on the pathology of arthritis. METHODS Mice with conditional knockout of FGFR3 in myeloid cells (R3cKO) were generated. Gait behaviours of the mice were monitored at different ages. Spontaneous synovial joint destruction was evaluated by digital radiographic imaging and μCT analysis; changes of articular cartilage and synovitis were determined by histological analysis. The recruitment of macrophages in the synovium was examined by immunostaining and monocyte trafficking assay. RNA-seq analysis, Western blotting and chemotaxis experiment were performed on control and FGFR3-deficient macrophages. The peripheral blood from non-osteoarthritis (OA) donors and patients with OA were analysed. Mice were treated with neutralising antibody against CXCR7 to investigate the role of CXCR7 in arthritis. RESULTS R3cKO mice but not control mice developed spontaneous cartilage destruction in multiple synovial joints at the age of 13 months. Moreover, the synovitis and macrophage accumulation were observed in the joints of 9-month-old R3cKO mice when the articular cartilage was not grossly destructed. FGFR3 deficiency in myeloid cells also aggravated joint destruction in DMM mouse model. Mechanically, FGFR3 deficiency promoted macrophage chemotaxis partly through activation of NF-κB/CXCR7 pathway. Inhibition of CXCR7 could significantly reverse FGFR3-deficiency-enhanced macrophage chemotaxis and the arthritic phenotype in R3cKO mice. CONCLUSIONS Our study identifies the role of FGFR3 in synovial macrophage recruitment and synovitis, which provides a new insight into the pathological mechanisms of inflammation-related arthritis.
Collapse
Affiliation(s)
- Liang Kuang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiangyi Wu
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Nan Su
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Huabing Qi
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siru Zhou
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Xiong
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Ouyang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zuqiang Wang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wanling Jiang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liang Chen
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuai Chen
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziming Wang
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Peng Liu
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangjun Yin
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Di Chen
- Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York City, New York, USA
| | - Yangli Xie
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
28
|
Chijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development. Cell Mol Life Sci 2019; 76:3939-3952. [PMID: 31201464 PMCID: PMC11105481 DOI: 10.1007/s00018-019-03191-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
Articular cartilage is formed at the end of epiphyses in the synovial joint cavity and permanently contributes to the smooth movement of synovial joints. Most skeletal elements develop from transient cartilage by a biological process known as endochondral ossification. Accumulating evidence indicates that articular and growth plate cartilage are derived from different cell sources and that different molecules and signaling pathways regulate these two kinds of cartilage. As the first sign of joint development, the interzone emerges at the presumptive joint site within a pre-cartilage tissue. After that, joint cavitation occurs in the center of the interzone, and the cells in the interzone and its surroundings gradually form articular cartilage and the synovial joint. During joint development, the interzone cells continuously migrate out to the epiphyseal cartilage and the surrounding cells influx into the joint region. These complicated phenomena are regulated by various molecules and signaling pathways, including GDF5, Wnt, IHH, PTHrP, BMP, TGF-β, and FGF. Here, we summarize current literature and discuss the molecular mechanisms underlying joint formation and articular development.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
29
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
30
|
Smith SM, Melrose J. Type XI collagen-perlecan-HS interactions stabilise the pericellular matrix of annulus fibrosus cells and chondrocytes providing matrix stabilisation and homeostasis. J Mol Histol 2019; 50:285-294. [PMID: 30993430 DOI: 10.1007/s10735-019-09823-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to ascertain whether, like many cell types in cartilaginous tissues if type XI collagen was a pericellular component of annulus fibrosus (AF) cells and chondrocytes. Fine fibrillar networks were visualised which were perlecan, HS (MAb 10E4) and type XI collagen positive. Heparitinase-III pre-digestion abolished the type XI collagen and 10E4 localisation in these fibrillar assemblies demonstrating a putative HS mediated interaction which localised the type XI collagen. Type XI collagen was confirmed to be present in the Heparitinase III treated AF monolayer media samples by immunoblotting. Heparitinase-III generated ΔHS stub epitopes throughout these fibrillar networks strongly visualised by MAb 3-G-10. Monolayers of murine hip articular chondrocytes from C57BL/6 and Hspg2 exon 3 null mice also displayed pericellular perlecan localisations, however type XI collagen was only evident in the Wild type mice. Perlecan was also immunolocalised in control and murine knee articular cartilage from the two mouse genotypes subjected to a medial meniscal destabilisation procedure which induces OA. This resulted in a severe depletion of perlecan levels particularly in the perlecan exon 3 null mice and was consistent with OA representing a disease of the pericellular matrix. A model was prepared to explain these observations between the NPP type XI collagen domain and HS chains of perlecan domain-I in the pericellular matrix of AF cells which likely contributed to cellular communication, tissue stabilization and the regulation of extracellular matrix homeostasis.
Collapse
Affiliation(s)
- Susan M Smith
- Raymond Purves Bone and Joint Research Laboratories, Level 10, Kolling Institute of Medical Research B6, The Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Level 10, Kolling Institute of Medical Research B6, The Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia. .,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia. .,Sydney Medical School, Northern, The University of Sydney, St. Leonards, 2065, NSW, Australia. .,Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|
31
|
Elevated hypertrophy, growth plate maturation, glycosaminoglycan deposition, and exostosis formation in the Hspg2 exon 3 null mouse intervertebral disc. Biochem J 2019; 476:225-243. [PMID: 30563944 DOI: 10.1042/bcj20180695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Heparan sulfate (HS) regulates diverse cell signalling events in intervertebral disc development and homeostasis. The aim of the present study was to investigate the effect of ablation of perlecan HS/CS on murine intervertebral disc development. Genetic models carrying mutations in genes encoding HS biosynthetic enzymes have identified multiple roles for HS in tissue homeostasis. In the present study, we utilised an Hspg2 exon 3 null HS/CS-deficient mouse to assess the role of perlecan HS in disc cell regulation. HS makes many important contributions to growth factor sequestration, stabilisation/delivery, and activation of receptors directing cellular proliferation, differentiation, and assembly of extracellular matrix. Perlecan HS/CS-mediated interactions promote extracellular matrix assembly/stabilisation and tissue functional properties, and thus, removal of perlecan HS/CS should affect extracellular matrix function and homeostasis. Hspg2 exon 3 null intervertebral discs accumulated significantly greater glycosaminoglycan in the nucleus pulposus, annulus fibrosus, and vertebral growth plates than C57BL/6 wild-type (WT) I intervertebral discs. Proliferation of intervertebral disc progenitor cells was significantly higher in Hspg2 exon 3 null intervertebral discs, and these cells became hypertrophic by 12 weeks of age and were prominent in the vertebral growth plates but had a disorganised organisation. C57BL/6 WT vertebral growth plates contained regular columnar growth plate chondrocytes. Exostosis-like, ectopic bone formation occurred in Hspg2 exon 3 null intervertebral discs, and differences were evident in disc cell maturation and in matrix deposition in this genotype, indicating that perlecan HS/CS chains had cell and matrix interactive properties which repressively maintained tissue homeostasis in the adult intervertebral disc.
Collapse
|
32
|
Gibor G, Ilan N, Journo S, Sharabi A, Dreyer J, Gertel S, Singh P, Menachem A, Snir N, Elkayam O, Vlodavsky I, Arad U. Heparanase is expressed in adult human osteoarthritic cartilage and drives catabolic responses in primary chondrocytes. Osteoarthritis Cartilage 2018; 26:1110-1117. [PMID: 29803826 DOI: 10.1016/j.joca.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/16/2018] [Accepted: 05/01/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The chondrocytes' pericellular matrix acts as a mechanosensor by sequestering growth factors that are bound to heparan sulfate (HS) proteoglycans. Heparanase is the sole mammalian enzyme with HS degrading endoglycosidase activity. Here, we aimed to ascertain whether heparanase plays a role in modulating the anabolic or catabolic responses of human articular chondrocytes. METHODS Primary chondrocytes were incubated with pro-heparanase and catabolic and anabolic gene expression was analyzed by quantitative polymerase chain reaction (PCR). MMP13 enzymatic activity in the culture medium was measured with a specific fluorescent assay. Extracellular regulated kinase (ERK) phosphorylation was evaluated by Western blot. Human osteoarthritis (OA) cartilage was assessed for heparanase expression by reverse-transcriptase PCR, by Western blot and by a heparanase enzymatic activity assay. RESULTS Cultured chondrocytes rapidly associated with and activated pro-heparanase. Heparanase induced the catabolic genes MMP13 and ADAMTS4 and the secretion of active MMP13, and down-regulated the anabolic genes ACAN and COL2A1. PG545, a HS-mimetic, inhibited the effects of heparanase. Heparanase expression and enzymatic activity were demonstrated in adult human osteoarthritic cartilage. Heparanase induced ERK phosphorylation in cultured chondrocytes and this could be inhibited by PG545, by fibroblast growth factor 2 (FGF2) neutralizing antibodies and by a FGF-receptor inhibitor. CONCLUSIONS Heparanase is active in osteoarthritic cartilage and induces catabolic responses in primary human chondrocytes. This response is due, at least in part, to the release of soluble growth factors such as FGF2.
Collapse
Affiliation(s)
- G Gibor
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - N Ilan
- Cancer and Vascular Biology Research Center, Technion, Haifa, Israel
| | - S Journo
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - A Sharabi
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Dreyer
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - S Gertel
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - P Singh
- Cancer and Vascular Biology Research Center, Technion, Haifa, Israel
| | - A Menachem
- Division of Orthopedics, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - N Snir
- Division of Orthopedics, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - O Elkayam
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - I Vlodavsky
- Cancer and Vascular Biology Research Center, Technion, Haifa, Israel
| | - U Arad
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
33
|
Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 2018; 71-72:40-50. [PMID: 29800616 DOI: 10.1016/j.matbio.2018.05.008] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023]
Abstract
Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been well recognized, it is now becoming apparent that in many cases, the onset of the disease may be initially reflected in the matrix region immediately surrounding the chondrocytes, termed the pericellular matrix (PCM). Growing evidence suggests that the PCM - which along with the enclosed chondrocytes are termed the "chondron" - acts as a critical transducer or "filter" of biochemical and biomechanical signals for the chondrocyte, serving to help regulate the homeostatic balance of chondrocyte metabolic activity in response to environmental signals. Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based diseases such as osteoarthritis. Further study of the structure, function, and composition of the PCM in normal and diseased conditions may provide new insights into the understanding of the pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, United States.
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, United States
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| | - Ingrid Meulenbelt
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
34
|
Tang F, Lord MS, Stallcup WB, Whitelock JM. Cell surface chondroitin sulphate proteoglycan 4 (CSPG4) binds to the basement membrane heparan sulphate proteoglycan, perlecan, and is involved in cell adhesion. J Biochem 2018; 163:399-412. [PMID: 29462330 DOI: 10.1093/jb/mvy008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022] Open
Abstract
Chondroitin sulphate proteoglycan 4 (CSPG4) is a cell surface proteoglycan highly expressed by tumour, perivascular and oligodendrocyte cells and known to be involved cell adhesion and migration. This study showed that CSPG4 was present as a proteoglycan on the cell surface of two melanoma cell lines, MM200 and Me1007, as well as shed into the conditioned medium. CSPG4 from the two melanoma cell lines differed in the amount of chondroitin sulphate (CS) decoration, as well as the way the protein core was fragmented. In contrast, the CSPG4 expressed by a colon carcinoma cell line, WiDr, was predominantly as a protein core on the cell surface lacking glycosaminoglycan (GAG) chains. This study demonstrated that CSPG4 immunopurified from the melanoma cell lines formed a complex with perlecan synthesized by the same cultured cells. Mechanistic studies showed that CSPG4 bound to perlecan via hydrophobic protein-protein interactions involving multiple sites on perlecan including the C-terminal region. Furthermore, this study revealed that CSPG4 interacted with perlecan to support cell adhesion and actin polymerization. Together these data suggest a novel mechanism by which CSPG4 expressing cells might attach to perlecan-rich matrices so as those found in connective tissues and basement membranes.
Collapse
Affiliation(s)
- Fengying Tang
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| | - William B Stallcup
- Tumour Microenvironment and Cancer Immunology Program, Cancer Centre, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John M Whitelock
- Graduate School of Biomedical Engineering, Level 5 Samuels Building, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
35
|
Kung LHW, Ravi V, Rowley L, Angelucci C, Fosang AJ, Bell KM, Little CB, Bateman JF. Cartilage MicroRNA Dysregulation During the Onset and Progression of Mouse Osteoarthritis Is Independent of Aggrecanolysis and Overlaps With Candidates From End-Stage Human Disease. Arthritis Rheumatol 2018; 70:383-395. [DOI: 10.1002/art.40378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/10/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | - Varshini Ravi
- University of Sydney and Royal North Shore Hospital; St. Leonards New South Wales Australia
| | - Lynn Rowley
- Murdoch Children's Research Institute; Parkville Victoria Australia
| | | | - Amanda J. Fosang
- Murdoch Children's Research Institute and University of Melbourne; Parkville Victoria Australia
| | - Katrina M. Bell
- Murdoch Children's Research Institute; Parkville Victoria Australia
| | - Christopher B. Little
- University of Sydney and Royal North Shore Hospital; St. Leonards New South Wales Australia
| | - John F. Bateman
- Murdoch Children's Research Institute and University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
36
|
Okura T, Matsushita M, Mishima K, Esaki R, Seki T, Ishiguro N, Kitoh H. Activated FGFR3 prevents subchondral bone sclerosis during the development of osteoarthritis in transgenic mice with achondroplasia. J Orthop Res 2018; 36:300-308. [PMID: 28520086 DOI: 10.1002/jor.23608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/11/2017] [Indexed: 02/04/2023]
Abstract
The purpose of this study is to investigate the morphometric changes of the subchondral bone during the development of osteoarthritis (OA) in transgenic mice with achondroplasia (Fgfr3ach ) carrying a heterozygous gain-of-function mutation in Fgfr3. Two OA models (spontaneously developed with age: The aging model, and surgically induced by destabilization of the medial meniscus: The DMM model) were established. Articular cartilage, epiphysis, and metaphysis of the knee joint were histologically and morphometrically compared between wild-type mice, and Fgfr3ach mice in both OA models. Articular cartilage degeneration was scored according to the Osteoarthritis Research Society International (OARSI) scoring system. Several morphometric parameters including bone mineral density (BMD), bone volume/tissue volume (BV/TV), trabecular bone thickness (Tb.Th), and subchondral bone thickness in the medial tibial plateau (MTP) (Sb.Th med) were quantified by micro-computed tomography (CT). In the aging model, although there were no significant differences in the OARSI score between wild-type mice and Fgfr3ach mice, Sb.Th med and Tb.Th in the epiphysis significantly increased in wild-type mice. In the DMM model, the OARSI score of the medial compartment was significantly lower in Fgfr3ach mice than in wild-type mice. BMD, BV/TV, and Tb.Th in the epiphysis increased in wild-type mice and unchanged in Fgfr3ach mice, and the Sb.Th med was significantly larger in wild-type mice after surgery. Subchondral sclerosis, which preceded the cartilage degeneration, was inhibited in Fgfr3ach mice. Activated FGFR3 signaling prevented sclerotic changes of the subchondral bone and subsequent cartilage degeneration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:300-308, 2018.
Collapse
Affiliation(s)
- Toshiaki Okura
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenichi Mishima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryusaku Esaki
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Taisuke Seki
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
37
|
Tang J, Su N, Zhou S, Xie Y, Huang J, Wen X, Wang Z, Wang Q, Xu W, Du X, Chen H, Chen L. Fibroblast Growth Factor Receptor 3 Inhibits Osteoarthritis Progression in the Knee Joints of Adult Mice. Arthritis Rheumatol 2017; 68:2432-43. [PMID: 27159076 DOI: 10.1002/art.39739] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Fibroblast growth factor (FGF) signaling is involved in articular cartilage homeostasis. This study was undertaken to investigate the role and mechanisms of FGF receptor 3 (FGFR-3) in the pathogenesis of osteoarthritis (OA) caused by surgery and aging in mice. METHODS FGFR-3 was conditionally deleted or activated in articular chondrocytes in adult mice subjected to surgical destabilization of the medial meniscus (DMM). A mouse model of human achondroplasia was also used to assess the role of FGFR-3 in age-associated spontaneous OA. Knee joint cartilage was histologically evaluated and scored using the Osteoarthritis Research Society International system. The expression of genes associated with articular cartilage maintenance was quantitatively evaluated in hip cartilage explants. The effect of inhibiting Indian hedgehog (IHH) signaling in Fgfr3-deficient explants was analyzed. RESULTS Conditional Fgfr3 deletion in mice aggravated DMM-induced cartilage degeneration. Matrix metalloproteinase 13 and type X collagen levels were up-regulated, while type II collagen levels were down-regulated, in the articular cartilage of these mice. Conversely, FGFR-3 activation attenuated cartilage degeneration induced by DMM surgery and age. IHH signaling and runt-related transcription factor 2 levels in mouse articular chondrocytes were up-regulated in the absence of Fgfr3, while inhibition of IHH signaling suppressed the increases in the expression of Runx2, Mmp13, and other factors in Fgfr3-deficient mouse cartilage explants. CONCLUSION Our findings indicate that FGFR-3 delays OA progression in mouse knee joints at least in part via down-regulation of IHH signaling in articular chondrocytes.
Collapse
Affiliation(s)
- Junzhou Tang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Siru Zhou
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junlan Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xuan Wen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Quan Wang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xu
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
38
|
MicroRNA-29a Counteracts Synovitis in Knee Osteoarthritis Pathogenesis by Targeting VEGF. Sci Rep 2017; 7:3584. [PMID: 28620193 PMCID: PMC5472675 DOI: 10.1038/s41598-017-03616-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/02/2017] [Indexed: 12/11/2022] Open
Abstract
Synovitis contributes to the development of osteoarthritis (OA) of the knee. MicroRNAs regulate joint microenvironment homeostasis and deterioration. This study was undertaken to characterize the actions of microRNA-29a (miR-29a) to synovial remodeling in OA joints. Synovial specimens isolated from patients with end-stage OA knees showed abundant fibrotic matrix and vessel histopathology concomitant with weak miR-29a expression. In vitro, miR-29a knockdown caused synovial fibroblasts to exhibit high expressions of collagen III, TGF-β1, MMP9, MMP13, and ADAMTS5, whereas miR-29a overexpression diminished these joint-deleterious factors. In collagenase-mediated OA pathogenesis, miR-29a-overexpressing transgenic mice showed minor responses to hyperplasia, macrophage infiltration, fibrosis, hyperangiogenesis, and VEGF expression in synovial lesions. These effects mitigated articular cartilage loss and gait aberrance of injured joints. Intra-articular administration of miR-29a precursor lessened the collagenase aggravation of excessive synovial remodeling reactions and thereby sustained joint tissue integrity. miR-29a lowered VEGF production and angiogenic activities in synovial fibroblasts through targeting the 3′-UTR of VEGF. Taken together, miR-29a deficiency exacerbated synovitis pathogenesis in the end-stage OA knees. miR-29a signaling fends off excessive synovial angiogenesis and fibrosis, which delays joint destruction. This study sheds new light on the protective effects against synovial deterioration and the therapeutic advantage of miR-29a in OA knees.
Collapse
|
39
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
40
|
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Royal North Shore Hospital, The University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
41
|
Zhou S, Wang Z, Tang J, Li W, Huang J, Xu W, Luo F, Xu M, Wang J, Wen X, Chen L, Chen H, Su N, Shen Y, Du X, Xie Y, Chen L. Exogenous fibroblast growth factor 9 attenuates cartilage degradation and aggravates osteophyte formation in post-traumatic osteoarthritis. Osteoarthritis Cartilage 2016; 24:2181-2192. [PMID: 27473558 DOI: 10.1016/j.joca.2016.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/24/2016] [Accepted: 07/19/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of the present study is to investigate the effects of exogenous fibroblast growth factor (FGF)9 on the progression of post-traumatic osteoarthritis (OA). DESIGN The expression of FGF9 in articular cartilage with OA is detected by immunohistochemistry (IHC). The effects of intra-articular exogenous FGF9 injection on post-traumatic OA induced by the destabilization of the medial meniscus (DMM) surgery are evaluated. Cartilage changes and osteophyte formation in knee joints are investigated by histological analysis. Changes in subchondral bone are evaluated by microcomputed tomography (micro-CT). The effect of exogenous FGF9 on an interleukin-1β (IL-1β)-induced ex vivo OA model of human articular cartilage tissues is also evaluated. RESULTS FGF9 expression was down-regulated in articular chondrocytes of OA but ectopically induced at sites of osteophyte formation. Intra-articular injection of exogenous FGF9 attenuated articular cartilage degradation in mice after DMM surgery. Exogenous FGF9 suppressed collagen X and MMP13 expressions in OA cartilage, while promoted collagen II expression. Similar results were observed in IL-1β-induced ex vivo OA model. Intra-articular injection of FGF9 had no significant effect on the subchondral bone of knee joints after DMM surgery, but aggravated osteophyte formation. The expressions of SOX9 and collagen II, and cell proliferation were up-regulated at sites of initial osteophyte formation in mice with exogenous FGF9 treatment. CONCLUSIONS Intra-articular injection of exogenous FGF9 delays articular cartilage degradation in post-traumatic OA, while aggravates osteophyte formation.
Collapse
Affiliation(s)
- S Zhou
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Z Wang
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - J Tang
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - W Li
- Department of Military Nursing, School of Nursing, Third Military Medical University, Chongqing 400042, China
| | - J Huang
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - W Xu
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - F Luo
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - M Xu
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - J Wang
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - X Wen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - L Chen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - H Chen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - N Su
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Y Shen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - X Du
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Y Xie
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - L Chen
- Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
42
|
The heparan sulphate deficient Hspg2 exon 3 null mouse displays reduced deposition of TGF-β1 in skin compared to C57BL/6 wild type mice. J Mol Histol 2016; 47:365-74. [PMID: 27098652 DOI: 10.1007/s10735-016-9677-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
This was an observational study where we examined the role of perlecan HS on the deposition of TGF-β1 in C57BL/6 and Hspg2(∆3-/∆3-) perlecan exon 3 null mouse skin. Despite its obvious importance in skin repair and tissue homeostasis no definitive studies have immunolocalised TGF-β1 in skin in WT or Hspg2(∆3-/∆3-) perlecan exon 3 null mice. Vertical parasagittal murine dorsal skin from 3, 6 and 12 week old C57BL/6 and Hspg2(∆3-/∆3-) mice were fixed in neutral buffered formalin, paraffin embedded and 4 μm sections stained with Mayers haematoxylin and eosin (H & E). TGF-β1 was immunolocalised using a rabbit polyclonal antibody, heat retrieval and the Envision NovaRED detection system. Immunolocalisation of TGF-β1 differed markedly in C57BL/6 and Hspg2(∆3-/∆3-) mouse skin, ablation of exon 3 of Hspg2 resulted in a very severe reduction in the deposition of TGF-β1 in skin 3-12 weeks postnatally. The reduced deposition of TGF-β1 observed in the present study would be expected to impact detrimentally on the remodelling and healing capacity of skin in mutant mice compounding on the poor wound-healing properties already reported for perlecan exon 3 null mice due to an inability to signal with FGF-2 and promote angiogenic repair processes. TGF-β1 also has cell mediated effects in tissue homeostasis and matrix stabilisation a reduction in TGF-β1 deposition would therefore be expected to detrimentally impact on skin homeostasis in the perlecan mutant mice.
Collapse
|