1
|
Gomez A, Lindblom J, Parodis I, Bertsias G. Treat-to-target in SLE: is serology important? Results from an integrated analysis of five randomized clinical trials of belimumab. Rheumatology (Oxford) 2025; 64:3598-3605. [PMID: 39985454 DOI: 10.1093/rheumatology/keaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
OBJECTIVES DORIS remission, based on clinical activity, and lupus low disease activity state (LLDAS), which includes serological markers, are protective targets in SLE. However, it remains unclear whether their prognostic impact is influenced by serum anti-dsDNA and complement levels. METHODS We analysed data from five phase III trials (BLISS-52, BLISS-76, BLISS-SC, BLISS-NEA, EMBRACE) totalling 45 254 monthly visits. Generalized linear models evaluated the effects of DORIS/LLDAS-with or without active serology-on the risk for severe (BILAG ≥1A/2B) and renal (BILAG A/B) flares. Organ damage was also assessed. RESULTS Normal serology occurred in 544/1871 (29.1%) DORIS and 1879/4760 (39.5%) LLDAS visits. Using no-DORIS as reference, DORIS with anti-dsDNA(-) or normal/high C3/C4 demonstrated stronger protection against severe flares (odds ratio [OR] 0.042 [95% CI: 0.005, 0.331] and 0.216 [95% CI: 0.094, 0.494], respectively) compared with DORIS with anti-dsDNA(+) or low C3/C4 (OR 0.511 [95% CI: 0.284, 0.919] and 0.528 [95% CI: 0.261, 1.067]). Similarly, LLDAS with normal serology showed greater risk-reduction in severe flares compared with LLDAS with active serology, especially low C3/C4. For renal flares, DORIS with serological activity carried ∼6-fold higher risk compared with combined clinical/serological remission (OR 5.94 [95% CI: 1.26, 28.04]). Damage accrual was lowest in patients with sustained DORIS and ≥1 visit showing anti-dsDNA(-) (0.8%) or normal C3/C4 (1.8%). CONCLUSION Normal serology enhances the protection of DORIS and LLDAS against severe and renal SLE flares, possible reflecting deeper states of disease control. Patients with recently active disease who meet clinical targets but have persistently abnormal serology may require close monitoring to minimize flare-risk.
Collapse
Affiliation(s)
- Alvaro Gomez
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - George Bertsias
- Rheumatology and Clinical Immunology, University of Crete Medical School, Heraklion, Greece
- Division of Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| |
Collapse
|
2
|
Stea ED, Pugliano M, Gualtierotti R, Mazzucato M, Santangelo L, Annicchiarico G, Berardelli A, Bianchi S, Bogliolo L, Chiandotto P, Cirino G, De Iaco F, De Rosa S, Dentali F, Facchin P, Favalli EG, Fiorin F, Giarratano A, Laterza C, Macrì F, Mancuso M, Padovani A, Pasini A, Scopinaro AM, Sebastiani GD, Sesti G, Susi B, Torsello A, Vezzoni C, Zanlari L, Gesualdo L, De Luca A. Multidisciplinary consensus on the diagnosis and management of patients with atypical Hemolytic Uremic Syndrome (complement-mediated TMA): Recommendations from Italian scientific societies, patient associations and regulators. Pharmacol Res 2025; 216:107714. [PMID: 40204022 DOI: 10.1016/j.phrs.2025.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Atypical Hemolytic Uremic Syndrome (aHUS) is a severe, systemic, rare disease (RD) that can occur in people of all ages, and is associated with high rates of morbidity and mortality. Because the management of patients with aHUS can be difficult, more effective strategies should be implemented. Faculty members from several Italian Scientific Societies, Patient Associations and Regional Institutional Experts on RDs met to discuss aHUS management within a multidisciplinary team (MDT), using a Delphi process to develop consensus recommendations. Consensus (≥70 % agreement by faculty members) was reached on 51 statements with the aim of improving patient management and outcomes. These statements provide a unified framework for the differential diagnosis of aHUS, prompt recognition of the pathology, referral to RD reference centers, selecting between treatment relapse prevention measures options, patient management by a MDT and improving the overall awareness of aHUS. Despite the broad scope of the consensus statements, several unmet needs in the management of patients with aHUS were identified, including diagnostic suspicion, rapid genetic investigations, regular review of the centers of expertise (considering the number of treated patients), permanent clinical referral in treatment centers and widespread expertise among adult and pediatric specialists. We hope that this standardized framework will form the basis of the "digital ecosystem" concept and development of possible information technology solutions to assist the MDT involved in the management of patients with aHUS.
Collapse
Affiliation(s)
- Emma Diletta Stea
- Unit of Nephrology, Dialysis and Transplantation, Fondazione I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy.
| | - Mariateresa Pugliano
- Immunohematology and Transfusion Medicine Unit, Department of Transfusion Medicine and Hematology, Milano Nord Grande Ospedale Metropolitano Niguarda, Milan, Italy.
| | - Roberta Gualtierotti
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, S.C. Medicina - Emostasi e Trombosi, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Pace 9, 20122, Milan, Italy.
| | - Monica Mazzucato
- Coordinamento Malattie Rare Regione Veneto, Padua University Hospital, Via Giustiniani 2, Padua 35128, Italy.
| | - Luisa Santangelo
- Pediatric Nephrology and Dialysis Unit, Giovanni XXIII Pediatric Hospital, via Giovanni Amendola 207, Bari 70125, Italy.
| | - Giuseppina Annicchiarico
- Coordinamento Malattie Rare Regione Puglia - Strategic Regional Agency for Health and Social Affairs (AReSS Puglia), Lungomare Nazario Sauro 33, 70121 Bari, Italy.
| | - Alfredo Berardelli
- Department of Human Neuroscience, Viale Università 30, Roma, Italia; NEUROMED IRCCS, Pozzilli (IS), via Atinense 18, Pozzilli, Isernia 86077, Italia..
| | - Stefano Bianchi
- Società Italiana di Nefrologia (SIN Nefrologia), via dell'Università 11, 00185 Rome, Italy.
| | - Laura Bogliolo
- Division of Rheumatology, IRCCS Policlinico San Matteo Foundation, Viale Camillo Golgi 19, 27100 Pavia, Italy.
| | - Paolo Chiandotto
- Progetto Alice Associazione per la lotta alla SEU, Via Gaetano Donizetti, 24/C, 20866, Carnate, Italy.
| | - Giuseppe Cirino
- Department of Pharmacy, University Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Fabio De Iaco
- Medicina Emergenza Urgenza 1, Ospedale Maria Vittoria, Via Cibrario 72, ASL Città di Torino, Turin, Italy.
| | - Silvia De Rosa
- Centre for Medical Sciences, University of Trento, Via S. Maria Maddalena 1, 38122, Trento, Italy.
| | - Francesco Dentali
- Department of Medicine and Surgery, Insubria University, Via Ravasi, 2, 21100, Varese, Italy.
| | - Paola Facchin
- Coordinamento Malattie Rare Regione Veneto, Padua University Hospital, Via Giustiniani 2, Padua 35128, Italy.
| | - Ennio Giulio Favalli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milan, Italy; Department of Rheumatology and Medical Sciences, ASST Gaetano Pini-CTO, Piazza Cardinal Ferrari 1, 20122, Milan, Italy.
| | - Francesco Fiorin
- Transfusion Medicine Department ULSS 8 Berica, V. le Rodolfi 31, 31100, Vicenza, Italy.
| | - Antonino Giarratano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me. Pre. C. C.), University of Palermo, via Liborio Giuffrè 5, 90127, Palermo, Italy; Department of Anesthesia, Analgesia, Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, Palermo, Italy.
| | - Claudia Laterza
- Coordinamento Malattie Rare Regione Puglia - Strategic Regional Agency for Health and Social Affairs (AReSS Puglia), Lungomare Nazario Sauro 33, 70121 Bari, Italy.
| | - Francesco Macrì
- Federazione delle Società Medico-Scientifiche Italiane (FISM), via Luigi Casanova 1, 20125, Milan, Italy.
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine Neurological Institute, University of Pisa, 56100, Pisa, Italy.
| | - Alessandro Padovani
- Unità di Neurologia, Dipartimento Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, 25123, Brescia, Italy.
| | - Andrea Pasini
- Pediatric Nephrology and Dialysis Unit, IRCCS AOU of Bologna, via Massarenti 11, 40138, Bologna, Italy.
| | | | | | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, via Giorgio Nicola Papanicolau, 00189, Rome, Italy.
| | - Beniamino Susi
- DEA, Ospedale S. Paolo, Largo donatori di sangue 1, Civitavecchia, 00053 Rome, Italy.
| | - Antonio Torsello
- School of Medicine and Surgery, University Milano-Bicocca, via Cadore 48, Monza 20900, Italy.
| | - Cinzia Vezzoni
- Progetto Alice Associazione per la lotta alla SEU, Via Gaetano Donizetti, 24/C, 20866, Carnate, Italy.
| | - Luca Zanlari
- Department of Internal Medicine, Fiorenzuola d'Arda Hospital, AUSL Piacenza, via Roma 29, 29017, Fiorenzuola (PC), Italy.
| | - Loreto Gesualdo
- Federazione delle Società Medico-Scientifiche Italiane (FISM), via Luigi Casanova 1, 20125, Milan, Italy.
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4 - Campus, 70125, Bari, Italy.
| |
Collapse
|
3
|
Ruthsatz T, Wymann S, Velkoska E, Mansour M, Schu D, Lichtfuss M, Rossato P, FitzPatrick M, Hosback S, Dyson A, Herzog E, Martin K, Dietrich B, Hardy MP. Preclinical safety and efficacy of the recombinant CR1 drug product CSL040 in rats and cynomolgus monkeys. Toxicol Appl Pharmacol 2025; 495:117191. [PMID: 39647511 DOI: 10.1016/j.taap.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
CSL040 is a soluble, recombinant fragment of the complement receptor 1 (CR1) extracellular domain that acts as an inhibitor of all three pathways of the complement system. Systemic toxicity, toxicokinetics (TK), and pharmacodynamics (PD) of CSL040 were assessed in two-week intravenous (IV) bolus studies in Han Wistar rats and cynomolgus monkeys. Recovery from any effects was evaluated during a four-week recovery period. Daily repeat-dose administration for 2 weeks at doses of up to 500 mg/kg CSL040 IV was well tolerated in rats and cynomolgus monkeys, leading to a no observed adverse effect level (NOAEL) of 500 mg/kg for both species. Safety pharmacology parameters such as electrophysiology of the heart, blood pressure, heart rate, and respiratory rate measurements, and general toxicological readouts were considered unaffected by CSL040 treatment. Anti-drug antibodies (ADAs) were observed in all cynomolgus monkeys and in some rats at the highest dose of CSL040, but with no effect on pharmacokinetics (PK), supportive of adequate exposure levels as required for a safety assessment. All three complement pathways were inhibited dose-dependently by CSL040. Additionally, no effect on cytokine levels by CSL040 was detected in vitro using a cytokine release assay. These non-clinical studies with CSL040 demonstrated PD activity consistent with its mode of action, adequate PK properties, and a safety profile supporting a phase 1 clinical strategy. A small follow-up study comparing the PK/PD effects of CSL040 following IV and subcutaneous (SC) administration also suggested that the latter route of administration might be a viable alternative to IV administration.
Collapse
Affiliation(s)
| | - Sandra Wymann
- CSL Biologics Research Centre, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | | | | | - Daniel Schu
- CSL Behring Innovation GmbH, Marburg, Germany
| | | | | | | | | | | | - Eva Herzog
- CSL Behring LLC, 1020 First Avenue, King of Prussia, PA, USA
| | | | | | | |
Collapse
|
4
|
Cole MA, Ranjan N, Gerber GF, Pan XZ, Flores-Guerrero D, McNamara G, Chaturvedi S, Sperati CJ, McCrae KR, Brodsky RA. Complement biosensors identify a classical pathway stimulus in complement-mediated thrombotic microangiopathy. Blood 2024; 144:2528-2545. [PMID: 39357054 PMCID: PMC11862816 DOI: 10.1182/blood.2024025850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT Complement-mediated thrombotic microangiopathy (CM-TMA) or hemolytic uremic syndrome, previously identified as atypical hemolytic uremic syndrome, is a TMA characterized by germ line variants or acquired antibodies to complement proteins and regulators. Building upon our prior experience with the modified Ham (mHam) assay for ex vivo diagnosis of complementopathies, we have developed an array of cell-based complement "biosensors" by selective removal of complement regulatory proteins (CD55 and CD59, CD46, or a combination thereof) in an autonomously bioluminescent HEK293 cell line. These biosensors can be used as a sensitive method for diagnosing CM-TMA and monitoring therapeutic complement blockade. Using specific complement pathway inhibitors, this model identifies immunoglobulin M (IgM)-driven classical pathway stimulus during both acute disease and in many patients during clinical remission. This provides a potential explanation for ∼50% of patients with CM-TMA who lack an alternative pathway "driving" variant and suggests at least a subset of CM-TMA is characterized by a breakdown of IgM immunologic tolerance.
Collapse
Affiliation(s)
- Michael A. Cole
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Nikhil Ranjan
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Gloria F. Gerber
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Xiang-Zuo Pan
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | | | - George McNamara
- Ross Fluorescence Imaging Center, Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shruti Chaturvedi
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - C. John Sperati
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Keith R. McCrae
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Robert A. Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Kesarwani V, Bukhari MH, Kahlenberg JM, Wang S. Urinary complement biomarkers in immune-mediated kidney diseases. Front Immunol 2024; 15:1357869. [PMID: 38895123 PMCID: PMC11184941 DOI: 10.3389/fimmu.2024.1357869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The complement system, an important part of the innate system, is known to play a central role in many immune mediated kidney diseases. All parts of the complement system including the classical, alternative, and mannose-binding lectin pathways have been implicated in complement-mediated kidney injury. Although complement components are thought to be mainly synthesized in the liver and activated in the circulation, emerging data suggest that complement is synthesized and activated inside the kidney leading to direct injury. Urinary complement biomarkers are likely a better reflection of inflammation within the kidneys as compared to traditional serum complement biomarkers which may be influenced by systemic inflammation. In addition, urinary complement biomarkers have the advantage of being non-invasive and easily accessible. With the rise of therapies targeting the complement pathways, there is a critical need to better understand the role of complement in kidney diseases and to develop reliable and non-invasive biomarkers to assess disease activity, predict treatment response and guide therapeutic interventions. In this review, we summarized the current knowledge on urinary complement biomarkers of kidney diseases due to immune complex deposition (lupus nephritis, primary membranous nephropathy, IgA nephropathy) and due to activation of the alternative pathway (C3 glomerulopathy, thrombotic microangiography, ANCA-associated vasculitis). We also address the limitations of current research and propose future directions for the discovery of urinary complement biomarkers.
Collapse
Affiliation(s)
- Vartika Kesarwani
- Division of Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Muhammad Hamza Bukhari
- Department of Medicine, Johns Hopkins Howard County Medical Center, Columbia, MD, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Medicine, University of Michigan, Columbia, MI, United States
| | - Shudan Wang
- Division of Rheumatology, Department of Medicine, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
6
|
Cole MA, Ranjan N, Gerber GF, Pan XZ, Flores-Guerrero D, Chaturvedi S, Sperati CJ, McCrae KR, Brodsky RA. Complement Biosensors Identify a Classical Pathway Stimulus in Complement-Mediated Hemolytic Uremic Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596475. [PMID: 38854038 PMCID: PMC11160691 DOI: 10.1101/2024.05.29.596475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Complement-mediated hemolytic uremic syndrome (CM-HUS) is a thrombotic microangiopathy characterized by germline variants or acquired antibodies to complement proteins and regulators. Building upon our prior experience with the modified Ham (mHam) assay for ex vivo diagnosis of complementopathies, we have developed an array of cell-based complement "biosensors'' by selective removal of complement regulatory proteins (CD55 and CD59, CD46, or a combination thereof) in an autonomously bioluminescent HEK293 cell line. These biosensors can be used as a sensitive method for diagnosing CM-HUS and monitoring therapeutic complement blockade. Using specific complement pathway inhibitors, this model identifies IgM-driven classical pathway stimulus during both acute disease and in many patients during clinical remission. This provides a potential explanation for ~50% of CM-HUS patients who lack an alternative pathway "driving" variant and suggests at least a subset of CM-HUS is characterized by a breakdown of IgM immunologic tolerance. Key Points CM-HUS has a CP stimulus driven by polyreactive IgM, addressing the mystery of why 40% of CM-HUS lack complement specific variantsComplement biosensors and the bioluminescent mHam can be used to aid in diagnosis of CM-HUS and monitor complement inhibitor therapy.
Collapse
|
7
|
Salvati L, Palterer B, Lazzeri E, Vivarelli E, Amendola M, Allinovi M, Caroti L, Mazzoni A, Lasagni L, Emmi G, Cavigli E, Del Carria M, Di Pietro L, Scavone M, Cammelli D, Lavorini F, Tomassetti S, Rosi E, Parronchi P. Presentation and progression of MPO-ANCA interstitial lung disease. J Transl Autoimmun 2024; 8:100235. [PMID: 38445024 PMCID: PMC10912625 DOI: 10.1016/j.jtauto.2024.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
The association between MPO-ANCA-associated vasculitis (AAV) and interstitial lung disease (ILD) has been well established. Pulmonary fibrosis may coexist with, follow, or even precede the diagnosis of AAV, and its presence adversely affects the prognosis. The optimal approach to investigating ANCA in patients with ILD remains a subject of ongoing debate. Here we aim to describe presentation and progression of MPO-ANCA ILD. We conducted a retrospective evaluation of a cohort of individuals diagnosed with MPO-ANCA ILD, with or without accompanying renal impairment, at the Immunology and Cell Therapy Unit, Careggi University Hospital, Florence, Italy, between June 2016 and June 2022. Clinical records, imaging studies, pathologic examinations, and laboratory test results were collected. Among the 14 patients identified with MPO-ANCA ILD, we observed a significant association between MPO-ANCA titers assessed at the time of ILD diagnosis and renal involvement. Renal impairment in these cases often manifested as subclinical or slowly progressive kidney damage. Interestingly, complement C3 deposits were consistently found in all renal biopsy specimens, thereby suggesting the potential for novel therapeutic targets in managing renal complications associated with MPO-ANCA ILD. The presentation of MPO-ANCA vasculitis as ILD can be the first and only clinical manifestation. MPO-ANCA levels at ILD diagnosis could warn on the progression to renal involvement in patients with MPO-ANCA ILD, hence caution is needed because renal disease can be subclinical or smoldering.
Collapse
Affiliation(s)
- Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Boaz Palterer
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Lazzeri
- Department of Clinical and Experimental Biomedical Sciences, Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Emanuele Vivarelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marina Amendola
- Pneumology and Intensive Care Unit, Careggi University Hospital, Florence, Italy
| | - Marco Allinovi
- Nephrology Unit, Careggi University Hospital, Florence, Italy
| | - Leonardo Caroti
- Nephrology Unit, Careggi University Hospital, Florence, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy
| | - Laura Lasagni
- Department of Clinical and Experimental Biomedical Sciences, Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Edoardo Cavigli
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Marco Del Carria
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Linda Di Pietro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mariangela Scavone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Cammelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Pneumology and Intensive Care Unit, Careggi University Hospital, Florence, Italy
| | - Sara Tomassetti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interventional Pulmonology Unit, Careggi University Hospital, Florence, Italy
| | - Elisabetta Rosi
- Pneumology and Intensive Care Unit, Careggi University Hospital, Florence, Italy
| | - Paola Parronchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Immunology and Cell Therapy Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
8
|
Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024; 24:118-141. [PMID: 37670180 DOI: 10.1038/s41577-023-00926-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host-pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.
Collapse
Affiliation(s)
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Tang A, Zhao X, Tao T, Xie D, Xu B, Huang Y, Li M. Unleashing the power of complement activation: unraveling renal damage in human anti-glomerular basement membrane disease. Front Immunol 2023; 14:1229806. [PMID: 37781380 PMCID: PMC10540768 DOI: 10.3389/fimmu.2023.1229806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Anti-glomerular basement membrane (GBM) disease is a rare but life-threatening autoimmune disorder characterized by rapidly progressive glomerulonephritis with or without pulmonary hemorrhage. Renal biopsies of anti-GBM patients predominantly show linear deposition of IgG and complement component 3 (C3), indicating a close association between antigen-antibody reactions and subsequent complement activation in the pathogenesis of the disease. All three major pathways of complement activation, including the classical, lectin, and alternative pathways, are involved in human anti-GBM disease. Several complement factors, such as C3, C5b-9, and factor B, show a positive correlation with the severity of the renal injury and act as risk factors for renal outcomes. Furthermore, compared to patients with single positivity for anti-GBM antibodies, individuals who are double-seropositive for anti-neutrophil cytoplasmic antibody (ANCA) and anti-GBM antibodies exhibit a unique clinical phenotype that lies between ANCA-associated vasculitis (AAV) and anti-GBM disease. Complement activation may serve as a potential "bridge" for triggering both AAV and anti-GBM conditions. The aim of this article is to provide a comprehensive review of the latest clinical evidence regarding the role of complement activation in anti-GBM disease. Furthermore, potential therapeutic strategies targeting complement components and associated precautions are discussed, to establish a theoretical basis for complement-targeted therapies.
Collapse
Affiliation(s)
- Anqi Tang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Tao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dengpiao Xie
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Hatchell D, Alshareef M, Vasas T, Guglietta S, Borucki D, Guo C, Mallah K, Eskandari R, Tomlinson S. A role for P-selectin and complement in the pathological sequelae of germinal matrix hemorrhage. J Neuroinflammation 2023; 20:143. [PMID: 37322469 PMCID: PMC10273747 DOI: 10.1186/s12974-023-02828-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Germinal matrix hemorrhage is a devastating disease of pre-term infancy commonly resulting in post-hemorrhagic hydrocephalus, periventricular leukomalacia, and subsequent neurocognitive deficits. We demonstrate vascular expression of the adhesion molecule P-selectin after GMH and investigate a strategy to specifically target complement inhibition to sites of P-selectin expression to mitigate the pathological sequelae of GMH. METHODS We prepared two fusion proteins consisting of different anti-P-selectin single chain antibodies (scFv's) linked to the complement inhibitor Crry. One scFv targeting vehicle (2.12scFv) blocked the binding of P-selectin to its PSGL-1 ligand expressed on leukocytes, whereas the other targeting vehicle (2.3scFv) bound P-selectin without blocking ligand binding. Post-natal C57BL/6 J mice on day 4 (P4) were subjected to collagenase induced-intraventricular hemorrhage and treated with 2.3Psel-Crry, 2.12Psel-Crry, or vehicle. RESULTS Compared to vehicle treatment, 2.3Psel-Crry treatment after induction of GMH resulted in reduced lesion size and mortality, reduced hydrocephalus development, and improved neurological deficit measurements in adolescence. In contrast, 2.12Psel-Crry treatment resulted in worse outcomes compared to vehicle. Improved outcomes with 2.3Psel-Crry were accompanied by decreased P-selectin expression, and decreased complement activation and microgliosis. Microglia from 2.3Psel-Crry treated mice displayed a ramified morphology, similar to naïve mice, whereas microglia in vehicle treated animals displayed a more ameboid morphology that is associated with a more activated status. Consistent with these morphological characteristics, there was increased microglial internalization of complement deposits in vehicle compared to 2.3Psel-Crry treated animals, reminiscent of aberrant C3-dependent microglial phagocytosis that occurs in other (adult) types of brain injury. In addition, following systemic injection, 2.3Psel-Crry specifically targeted to the post-GMH brain. Likely accounting for the unexpected finding that 2.12Psel-Crry worsens outcome following GMH was the finding that this construct interfered with coagulation in this hemorrhagic condition, and specifically with heterotypic platelet-leukocyte aggregation, which express P-selectin and PSGL-1, respectively. CONCLUSIONS GMH induces expression of P-selectin, the targeting of which with a complement inhibitor protects against pathogenic sequelae of GMH. A dual functioning construct with both P-selectin and complement blocking activity interferes with coagulation and worsens outcomes following GMH, but has potential for treatment of conditions that incorporate pathological thrombotic events, such as ischemic stroke.
Collapse
Affiliation(s)
- Devin Hatchell
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mohammed Alshareef
- Department of Neurological Surgery, Children's Hospital of Colorado, Aurora, CO, USA
| | - Tyler Vasas
- College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia Guglietta
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Davis Borucki
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Chunfang Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ramin Eskandari
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Ralph Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
11
|
Hatchell D, Alshareef M, Vasas T, Guglietta S, Borucki D, Guo C, Mallah K, Eskandari R, Tomlinson S. A Role for P-selectin and Complement in the Pathological Sequelae of Germinal Matrix Hemorrhage. RESEARCH SQUARE 2023:rs.3.rs-2617965. [PMID: 36909595 PMCID: PMC10002788 DOI: 10.21203/rs.3.rs-2617965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Background Germinal Matrix Hemorrhage is a devastating disease of pre-term infancy commonly resulting in post-hemorrhagic hydrocephalus, periventricular leukomalacia, and subsequent neurocognitive deficits. We demonstrate vascular expression of the adhesion molecule P-selectin after GMH and investigate a strategy to specifically target complement inhibition to sites of P-selectin expression to mitigate the pathological sequelae of GMH. Methods We prepared two fusion proteins consisting of different anti-P-selectin single chain antibodies (scFv's) linked to the complement inhibitor Crry. One scFv targeting vehicle (2.12scFv) blocked the binding of P-selectin to its PSGL-1 ligand expressed on leukocytes, whereas the other targeting vehicle (2.3scFv) bound P-selectin without blocking ligand binding. Post-natal mice on day 4 (P4) were subjected to collagenase induced-intraventricular hemorrhage and treated with 2.3Psel-Crry, 2.12Psel-Crry, or vehicle. Results Compared to vehicle treatment, 2.3Psel-Crry treatment after induction of GMH resulted in reduced lesion size and mortality, reduced hydrocephalus development, and improved neurological deficit measurements in adolescence. In contrast, 2.12Psel-Crry treatment resulted in worse outcomes compared to vehicle. Improved outcomes with 2.3Psel-Crry were accompanied by decreased P-selectin expression, and decreased complement activation and microgliosis. Microglia from 2.3Psel-Crry treated mice displayed a ramified morphology, similar to naïve mice, whereas microglia in vehicle treated animals displayed a more ameboid morphology that is associated with a more activated status. Consistent with these morphological characteristics, there was increased microglial internalization of complement deposits in vehicle compared to 2.3Psel-Crry treated animals, reminiscent of aberrant C3-dependent microglial phagocytosis that occurs in other (adult) types of brain injury. Also, following systemic injection, 2.3Psel-Crry specifically targeted to the post-GMH brain. Likely accounting for the unexpected finding that 2.12Psel-Crry worsens outcome following GMH was the finding that this construct interfered with coagulation in this hemorrhagic condition, and specifically with heterotypic platelet-leukocyte aggregation, which express P-selectin and PSGL-1, respectively. Conclusion GMH induces expression of P-selectin, the targeting of which with a complement inhibitor protects against pathogenic sequelae of GMH. A dual functioning construct with both P-selectin and complement blocking activity interferes with coagulation and worsens outcomes following GMH, but has potential for treatment of conditions that incorporate pathological thrombotic events, such as ischemic stroke.
Collapse
|
12
|
Michael M, Bagga A, Sartain SE, Smith RJH. Haemolytic uraemic syndrome. Lancet 2022; 400:1722-1740. [PMID: 36272423 DOI: 10.1016/s0140-6736(22)01202-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/05/2022]
Abstract
Haemolytic uraemic syndrome (HUS) is a heterogeneous group of diseases that result in a common pathology, thrombotic microangiopathy, which is classically characterised by the triad of non-immune microangiopathic haemolytic anaemia, thrombocytopenia, and acute kidney injury. In this Seminar, different causes of HUS are discussed, the most common being Shiga toxin-producing Escherichia coli HUS. Identifying the underlying thrombotic microangiopathy trigger can be challenging but is imperative if patients are to receive personalised disease-specific treatment. The quintessential example is complement-mediated HUS, which once carried an extremely high mortality but is now treated with anti-complement therapies with excellent long-term outcomes. Unfortunately, the high cost of anti-complement therapies all but precludes their use in low-income countries. For many other forms of HUS, targeted therapies are yet to be identified.
Collapse
Affiliation(s)
- Mini Michael
- Division of Pediatric Nephrology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Arvind Bagga
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sarah E Sartain
- Pediatrics-Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Richard J H Smith
- Department of Otolaryngology, Pediatrics and Molecular Physiology & Biophysics, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Fahnoe KC, Liu F, Morgan JG, Ryan ST, Storek M, Stark EG, Taylor FR, Holers VM, Thurman JM, Wawersik S, Kalled SL, Violette SM. Development and Optimization of Bifunctional Fusion Proteins to Locally Modulate Complement Activation in Diseased Tissue. Front Immunol 2022; 13:869725. [PMID: 35784298 PMCID: PMC9244803 DOI: 10.3389/fimmu.2022.869725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sustained complement activation is an underlying pathologic driver in many inflammatory and autoimmune diseases. Currently approved anti-complement therapies are directed at the systemic blockade of complement. Consequently, these therapies provide widespread inhibition of complement pathway activity, beyond the site of ongoing activation and the intended pharmacodynamic (PD) effects. Given the essential role for complement in both innate and adaptive immunity, there is a need for therapies that inhibit complement in diseased tissue while limiting systemic blockade. One potential approach focuses on the development of novel fusion proteins that enable tissue-targeted delivery of complement negative regulatory proteins. These therapies are expected to provide increased potency and prolonged tissue PD, decreased dosing frequency, and the potential for improved safety profiles. We created a library of bifunctional fusion proteins that direct a fragment of the complement negative regulator, complement receptor type 1 (CR1) to sites of tissue injury. Tissue targeting is accomplished through the binding of the fusion protein to complement C3 fragments that contain a surface-exposed C3d domain and which are covalently deposited on tissues where complement is being activated. To that end, we generated a fusion protein that contains an anti-C3d monoclonal antibody recombinantly linked to the first 10 consensus repeats of CR1 (CR11-10) with the intention of delivering high local concentrations of this complement negative regulatory domain to tissue-bound complement C3 fragments iC3b, C3dg and C3d. Biochemical and in vitro characterization identified several fusion proteins that inhibit complement while maintaining the C3d domain binding properties of the parent monoclonal antibody. Preclinical in vivo studies further demonstrate that anti-C3d fusion proteins effectively distribute to injured tissue and reduce C3 fragment deposition for periods beyond 14 days. The in vitro and in vivo profiles support the further evaluation of C3d mAb-CR11-10 as a novel approach to restore proper complement activation in diseased tissue in the absence of continuous systemic complement blockade.
Collapse
Affiliation(s)
- Kelly C. Fahnoe
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
- *Correspondence: Kelly C. Fahnoe,
| | - Fei Liu
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | | | - Sarah T. Ryan
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | - Michael Storek
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | | | - Fred R. Taylor
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Joshua M. Thurman
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, United States
| | - Stefan Wawersik
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | - Susan L. Kalled
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | | |
Collapse
|
14
|
Al-Moujahed A, Velez G, Vu JT, Lima de Carvalho JR, Levi SR, Bassuk AG, Sepah YJ, Tsang SH, Mahajan VB. Proteomic analysis of autoimmune retinopathy implicates NrCAM as a potential biomarker. OPHTHALMOLOGY SCIENCE 2022; 2:100131. [PMID: 35529077 PMCID: PMC9075676 DOI: 10.1016/j.xops.2022.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
Purpose To identify vitreous molecular biomarkers associated with autoimmune retinopathy (AIR). Design Case-control study. Participants We analyzed six eyes from four patients diagnosed with AIR and eight comparative controls diagnosed with idiopathic macular holes and epiretinal membranes. Methods Vitreous biopsies were collected from the participants and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) or multiplex ELISA. Outcome Measures Protein expression changes were evaluated by 1-way ANOVA (significant p-value <0.05), hierarchical clustering, and pathway analysis to identify candidate protein biomarkers. Results There were 16 significantly upregulated and 17 significantly downregulated proteins in the vitreous of three AIR patients compared to controls. The most significantly upregulated proteins included lysozyme C (LYSC), zinc-alpha-2-glycoprotein (ZA2G), complement factor D (CFAD), transforming growth factor-beta induced protein (BGH3), beta-crystallin B2, and alpha-crystallin A chain. The most significantly downregulated proteins included disco-interacting protein 2 homolog (DIP2C), retbindin (RTBDN), and amyloid beta precursor like protein 2 (APLP2). Pathway analysis revealed that vascular endothelial growth factor (VEGF) signaling was a top represented pathway in the vitreous of AIR patients compared to controls. In comparison to a different cohort of three AIR patients analyzed by multiplex ELISA, a commonly differentially expressed protein was neuronal cell adhesion molecule (NrCAM) with p-values of 0.027 in the LC-MS/MS dataset and 0.035 in the ELISA dataset. Conclusion Protein biomarkers such as NrCAM in the vitreous may eventually help diagnose AIR.
Collapse
Key Words
- autoimmune retinopathy
- nrcam
- proteomics
- retina
- vitreous
- air, autoimmune retinopathy
- elisa, enzyme-linked immunosorbent assay
- erm, epiretinal membrane
- il, interleukin
- imh, idiopathic macular hole
- lc-ms/ms, liquid chromatography-tandem mass spectrometry
- nrcam, neuronal cell adhesion molecule
- rgc, retinal ganglion cell
- rnfl, retinal nerve fiber layer
- tgf-ß, transforming growth factor beta
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ahmad Al-Moujahed
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | - Gabriel Velez
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Jennifer T. Vu
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | | | - Sarah R. Levi
- Department of Ophthalmology, Columbia University, New York, New York
| | | | - Yasir J. Sepah
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York, New York
| | - Vinit B. Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
15
|
Willrich MAV, Braun KMP, Moyer AM, Jeffrey DH, Frazer-Abel A. Complement testing in the clinical laboratory. Crit Rev Clin Lab Sci 2021; 58:447-478. [PMID: 33962553 DOI: 10.1080/10408363.2021.1907297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The complement system is the human's first line of defense against microbial pathogens because of its important housekeeping and infection/inflammation roles. It is composed of a series of soluble and cell-bound proteins that are activated in a cascade effect, similar to the coagulation pathways. There are different pattern recognizing molecules that activate the complement system in response to stimuli or threats, acting through three initiation pathways: classical, lectin, and alternative. All three activation pathways converge at the C3 component and share the terminal pathway. The main outputs of the complement system action are lytic killing of microbes, the release of pro-inflammatory anaphylatoxins, and opsonization of targets. Laboratory testing is relevant in the setting of suspected complement deficiencies, as well as in the emerging number of diseases related to dysregulation (over-activation) of complement. Most common assays measure complement lytic activity and the different complement component concentrations. Specialized testing includes the evaluation of autoantibodies against complement components, activation fragments, and genetic studies. In this review, we cover laboratory testing for complement and the conditions with complement involvement, as well as current challenges in the field.
Collapse
Affiliation(s)
| | - Karin M P Braun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David H Jeffrey
- Exsera Biolabs, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashley Frazer-Abel
- Exsera Biolabs, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
16
|
Palma LMP, Sridharan M, Sethi S. Complement in Secondary Thrombotic Microangiopathy. Kidney Int Rep 2020; 6:11-23. [PMID: 33102952 PMCID: PMC7575444 DOI: 10.1016/j.ekir.2020.10.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Thrombotic microangiopathy (TMA) is a condition characterized by thrombocytopenia and microangiopathic hemolytic anemia (MAHA) with varying degrees of organ damage in the setting of normal international normalized ratio and activated partial thromboplastin time. Complement has been implicated in the etiology of TMA, which are classified as primary TMA when genetic and acquired defects in complement proteins are the primary drivers of TMA (complement-mediated TMA or atypical hemolytic uremic syndrome, aHUS) or secondary TMA, when complement activation occurs in the context of other disease processes, such as infection, malignant hypertension, autoimmune disease, malignancy, transplantation, pregnancy, and drugs. It is important to recognize that this classification is not absolute because genetic variants in complement genes have been identified in patients with secondary TMA, and distinguishing complement/genetic-mediated TMA from secondary causes of TMA can be challenging and lead to potentially harmful delays in treatment. In this review, we focus on data supporting the involvement of complement in aHUS and in secondary forms of TMA associated with malignant hypertension, drugs, autoimmune diseases, pregnancy, and infections. In aHUS, genetic variants in complement genes are found in up to 60% of patients, whereas in the secondary forms, the finding of genetic defects is variable, ranging from almost 60% in TMA associated with malignant hypertension to less than 10% in drug-induced TMA. On the basis of these findings, a new approach to management of TMA is proposed.
Collapse
Affiliation(s)
| | - Meera Sridharan
- Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
17
|
Mongan D, Ramesar M, Föcking M, Cannon M, Cotter D. Role of inflammation in the pathogenesis of schizophrenia: A review of the evidence, proposed mechanisms and implications for treatment. Early Interv Psychiatry 2020; 14:385-397. [PMID: 31368253 DOI: 10.1111/eip.12859] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/13/2019] [Accepted: 07/14/2019] [Indexed: 12/28/2022]
Abstract
AIM Over the past several decades, there has been a growing research interest in the role of inflammation in the pathogenesis of schizophrenia. This review aims to summarize evidence in support of this relationship, to discuss biological mechanisms that might explain it, and to explore the translational impact by examining evidence from trials of anti-inflammatory and immunomodulatory agents in the treatment of schizophrenia. METHODS This narrative review of the literature summarizes evidence from observational studies, clinical trials and meta-analyses to evaluate the role of inflammation in the pathogenesis of schizophrenia and to discuss associated implications for treatment. RESULTS Epidemiological evidence and animal models support a hypothesis of maternal immune activation during pregnancy, which increases the risk of schizophrenia in the offspring. Several biomarker studies have found associations between classical pro-inflammatory cytokines and schizophrenia. The precise biological mechanisms by which inflammatory processes might contribute to the pathogenesis of schizophrenia remain unclear, but likely include the actions of microglia and the complement system. Importantly, several trials provide evidence that certain anti-inflammatory and immunomodulatory agents show beneficial effects in the treatment of schizophrenia. Nevertheless, there is a need for further precision-focused basic science and translational research. CONCLUSIONS Increasing our understanding of the role of inflammation in schizophrenia will enable novel opportunities for therapeutic and preventative interventions that are informed by the underlying pathogenesis of this complex disorder.
Collapse
Affiliation(s)
- David Mongan
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Mary Cannon
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Cotter
- Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
18
|
Frid MG, Thurman JM, Hansen KC, Maron BA, Stenmark KR. Inflammation, immunity, and vascular remodeling in pulmonary hypertension; Evidence for complement involvement? Glob Cardiol Sci Pract 2020; 2020:e202001. [PMID: 32478115 PMCID: PMC7232865 DOI: 10.21542/gcsp.2020.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary (arterial) hypertension (PH/PAH) is a life-threatening cardiopulmonary disorder. Experimental evidence suggests involvement of inflammatory and autoimmune processes in pathogenesis of PH/PAH, however the triggering and disease-promoting mechanisms remain unknown. The complement system is a key arm of innate immunity implicated in various pro-inflammatory and autoimmune diseases, yet, surprisingly little is known about the role of complement in PH/PAH pathogenesis. The preponderance of the existing data associates complement with PH/PAH via analysis of plasma and does not study the lung directly. Therefore, we aimed to resolve this by analyzing both the mechanisms of local lung-specific complement activation and the correlation of dysregulated plasma complement to clinical outcome in PAH patients. In our recent studies, reviewed herein, we show, for the first time, that immunoglobulin-driven activation of the complement cascade, specifically its alternative pathway, in the pulmonary perivascular areas, is a key mechanism initiating pro-inflammatory processes in the early stage of experimental hypoxic PH (a form of "sterile inflammation"). In human patients with end-stage PAH, we have demonstrated that perivascular deposition of immunoglobulin G (IgG) and activation of the complement cascade are "longitudinally" persistent in the disease. We also showed, using unbiased network analysis, that plasma complement signaling, including again the Alternative pathway, is a prognostic factor of survival in patients with idiopathic PAH (IPAH). Based on these initial findings, we suggest that vascular-specific, immunoglobulin-driven dysregulated complement signaling triggers and maintains pulmonary vascular remodeling and PH. Future experiments in this area would facilitate discoveries on whether complement signaling can serve both as a biomarker and therapeutic target in PH/PAH.
Collapse
Affiliation(s)
- Maria G. Frid
- University of Colorado, Denver, Anschutz Medical Campus, USA
| | | | - Kirk C. Hansen
- University of Colorado, Denver, Anschutz Medical Campus, USA
| | | | | |
Collapse
|
19
|
Ding S, Liu C, Li Y, Liu H, Liu Z, Chen T, Zhang T, Shao Z, Fu R. Expression of C1q in the serum of patients with non‑severe aplastic anemia, and its association with disease severity. Mol Med Rep 2018; 19:1194-1202. [PMID: 30569170 PMCID: PMC6323203 DOI: 10.3892/mmr.2018.9754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/13/2018] [Indexed: 01/04/2023] Open
Abstract
A type of aplastic anemia (AA), non-severe aplastic anemia (NSAA) is defined as AA that does not meet the diagnostic criteria of severe aplastic anemia (SAA). Complement component 1q (C1q) has an important role in the pathogenesis of various autoimmune diseases; however, the role of C1q in the immune pathogenesis of NSAA is not clear. The current study aimed to determine whether C1q has an important role in the pathogenesis of NSAA. Isobaric tags for relative and absolute quantitation (iTRAQ) was used to compare the protein expression in bone marrow mononuclear cells from patients with NSAA and healthy volunteers. Pathway enrichment analysis was performed to determine the biological functions involved in NSAA. The differential expression of C1q was marked compared with other proteins. Subsequently, the concentration of C1q in serum samples was determined using ELISA and the correlation of C1q levels and NSAA severity was evaluated. The serum concentrations of C1q were significantly lower in untreated patients with newly diagnosed NSAA compared with NSAA cases in remission and normal controls. Furthermore, there was no significant difference in C1q concentration between newly diagnosed patients with NSAA and patients with autoimmune hemolytic anemia or immune thrombocytopenia. The serum concentration of C1q in newly diagnosed NSAA was significantly lower in patients with SAA (P<0.0001); whereas, there was no significant difference between the patients with SAA, patients with NSAA remission and normal controls (P>0.05). Additionally, the serum C1q concentration was significantly correlated with granulocyte counts, the level of hemoglobin, platelet counts, reticulocyte percentage and remission in patients with NSAA. The serum C1q concentration was also positively correlated with the myeloid/plasmacytoid dendritic cell ratio, and negatively correlated with the CD4(+)/CD8(+) ratio. These findings suggested that C1q may be a reliable serological marker for monitoring and evaluating disease severity in patients with NSAA. C1q may have an important role in the immune pathogenesis of NSAA.
Collapse
Affiliation(s)
- Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tong Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tian Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
20
|
Kello N, Khoury LE, Marder G, Furie R, Zapantis E, Horowitz DL. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: Case series and review of literature. Semin Arthritis Rheum 2018; 49:74-83. [PMID: 30598332 DOI: 10.1016/j.semarthrit.2018.11.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/25/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Thrombotic microangiopathy (TMA) is a life-threatening, albeit infrequent, complication of systemic lupus erythematosus (SLE) and anti-phospholipid syndrome (APS). Recommendations for the treatment of SLE- and APS-related secondary TMA are currently based solely on case reports and expert opinion. Unfortunately, interventions may not yield timely results or effectively halt the progression of TMA. Since complement activation plays a key role in the pathogenesis of secondary TMA due to SLE, APS, a therapy that targets the complement pathway is an attractive intervention. Eculizumab, a recombinant, fully humanized IgG2/IgG4 monoclonal antibody inhibits C5 activation and is FDA-approved for PNH and atypical HUS (aHUS). However, limited case reports are available on its use in treatment of secondary TMA. CASE PRESENTATION AND RESULTS We present the largest case series to date that includes 9 patients with SLE and/or APS who were successfully treated with eculizumab for refractory secondary TMA. In this case series, we report significant responses in hematology values, renal function and other organs following treatment with eculizumab. At 4 weeks, 75% improvement in platelet counts was observed in 78% of patients. Two-thirds of patients demonstrated >75% improvement of haptoglobin and LDH at four weeks. At 4 weeks, eGFR improved by 25% in half of the patients, and 43% had reductions in proteinuria. Two of 3 patients that required hemodialysis were able to be taken off hemodialysis. CONCLUSION Based on these observations, we suggest that eculizumab may be a potential treatment option for acutely ill patients with secondary TMA due to SLE and/or APS who have failed standard of care. A collective approach is needed to better elucidate the role and optimal timing of eculizumab use in the management of TMA complicating SLE and/or APS.
Collapse
Affiliation(s)
- Nina Kello
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA.
| | - Lara El Khoury
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA
| | - Galina Marder
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA
| | - Richard Furie
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA
| | - Ekaterini Zapantis
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA
| | - Diane Lewis Horowitz
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Suite 302, Great Neck, NY 11021, USA
| |
Collapse
|
21
|
Harris CL, Pouw RB, Kavanagh D, Sun R, Ricklin D. Developments in anti-complement therapy; from disease to clinical trial. Mol Immunol 2018; 102:89-119. [PMID: 30121124 DOI: 10.1016/j.molimm.2018.06.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
The complement system is well known for its role in innate immunity and in maintenance of tissue homeostasis, providing a first line of defence against infection and playing a key role in flagging apoptotic cells and debris for disposal. Unfortunately complement also contributes to pathogenesis of a number of diseases; in some cases driving pathology, and in others amplifying or exacerbating the inflammatory and damaging impact of non-complement disease triggers. The role of complement in pathogenesis of an expanding number of diseases has driven industry and academia alike to develop an impressive arsenal of anti-complement drugs which target different proteins and functions of the complement cascade. Evidence from genetic and biochemical analyses, combined with improved identification of complement biomarkers and supportive data from sophisticated animal models of disease, has driven a drug development landscape in which the indications selected for clinical trial cluster in three 'target' tissues: the kidney, eye and vasculature. While the disease triggers may differ, complement activation and amplification is a common feature in many diseases which affect these three tissues. An abundance of drugs are in clinical development, some show favourable progression whereas others experience significant challenges. However, these hurdles in themselves drive an ever-evolving portfolio of 'next-generation' drugs with improved pharmacokinetic and pharmacodynamics properties. In this review we discuss the indications which are in the drug development 'spotlight' and review the relevant indication validation criteria. We present current progress in clinical trials, highlighting successes and difficulties, and look forward to approval of a wide selection of drugs for use in man which give clinicians choice in mechanistic target, modality and route of delivery.
Collapse
Affiliation(s)
- Claire L Harris
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland
| | - David Kavanagh
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Ruyue Sun
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
22
|
Wilkinson DJ, Arques MDC, Huesa C, Rowan AD. Serine proteinases in the turnover of the cartilage extracellular matrix in the joint: implications for therapeutics. Br J Pharmacol 2018; 176:38-51. [PMID: 29473950 DOI: 10.1111/bph.14173] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/24/2022] Open
Abstract
Cartilage destruction is a key characteristic of arthritic disease, a process now widely established to be mediated by metzincins such as MMPs. Despite showing promise in preclinical trials during the 1990s, MMP inhibitors for the blockade of extracellular matrix turnover in the treatment of cancer and arthritis failed clinically, primarily due to poor selectivity for target MMPs. In recent years, roles for serine proteinases in the proteolytic cascades leading to cartilage destruction have become increasingly apparent, renewing interest in the potential for new therapeutic strategies that utilize pharmacological inhibitors against this class of proteinases. Herein, we describe key serine proteinases with likely importance in arthritic disease and highlight recent advances in this field. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- David J Wilkinson
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Maria Del Carmen Arques
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Carmen Huesa
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, UK
| | - Andrew D Rowan
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|