1
|
Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface. Int J Mol Sci 2023; 24:ijms24065182. [PMID: 36982255 PMCID: PMC10048878 DOI: 10.3390/ijms24065182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Implantable brain–computer interfaces (BCIs) are crucial tools for translating basic neuroscience concepts into clinical disease diagnosis and therapy. Among the various components of the technological chain that increases the sensing and stimulation functions of implanted BCI, the interface materials play a critical role. Carbon nanomaterials, with their superior electrical, structural, chemical, and biological capabilities, have become increasingly popular in this field. They have contributed significantly to advancing BCIs by improving the sensor signal quality of electrical and chemical signals, enhancing the impedance and stability of stimulating electrodes, and precisely modulating neural function or inhibiting inflammatory responses through drug release. This comprehensive review provides an overview of carbon nanomaterials’ contributions to the field of BCI and discusses their potential applications. The topic is broadened to include the use of such materials in the field of bioelectronic interfaces, as well as the potential challenges that may arise in future implantable BCI research and development. By exploring these issues, this review aims to provide insight into the exciting developments and opportunities that lie ahead in this rapidly evolving field.
Collapse
|
2
|
Liu Z, Yan J, Ma H, Hu T, Wang J, Shi Y, Xu J, Chen K, Yu L. Ab Initio Design, Shaping, and Assembly of Free-Standing Silicon Nanoprobes. NANO LETTERS 2021; 21:2773-2779. [PMID: 33729811 DOI: 10.1021/acs.nanolett.0c04804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Free-standing silicon nanoprobes (SiNPs) are critical tools for intracellular bioelectrical signal recording, while a scalable fabrication of these tiny SiNPs with ab initio geometry designs has not been possible. In this work, we demonstrate a novel growth shaping of slim Si nanowires (SiNWs) into SiNPs with sharp tips (curvature radii <300 nm), tunable angles of 30°, 60°, to 120° and even programmable triangle/circular shapes. A precise growth integration of orderly single, double, and quadruple SiNPs at prescribed locations enables convenient electrode connection, transferring and mounting these tiny tips onto movable arms to serve as long-protruding (over 4-20 μm) nanoprobes. Mechanical flexibility, resilience, and field-effect sensing functionality of the SiNPs were systematically testified in liquid nanodroplet and cell environments. This highly reliable and economic manufacturing of advanced SiNPs holds a strong potential to boost and open up the market implementations of a wide range of intracellular sensing, monitoring, and editing applications.
Collapse
Affiliation(s)
- Zongguang Liu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Jiang Yan
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Haiguang Ma
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Tiancheng Hu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Junzhuan Wang
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Yi Shi
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
3
|
Sun Y, Dong T, Yu L, Xu J, Chen K. Planar Growth, Integration, and Applications of Semiconducting Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903945. [PMID: 31746050 DOI: 10.1002/adma.201903945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Silicon and other inorganic semiconductor nanowires (NWs) have been extensively investigated in the last two decades for constructing high-performance nanoelectronics, sensors, and optoelectronics. For many of these applications, these tiny building blocks have to be integrated into the existing planar electronic platform, where precise location, orientation, and layout controls are indispensable. In the advent of More-than-Moore's era, there are also emerging demands for a programmable growth engineering of the geometry, composition, and line-shape of NWs on planar or out-of-plane 3D sidewall surfaces. Here, the critical technologies established for synthesis, transferring, and assembly of NWs upon planar surface are examined; then, the recent progress of in-plane growth of horizontal NWs directly upon crystalline or patterned substrates, constrained by using nanochannels, an epitaxial interface, or amorphous thin film precursors is discussed. Finally, the unique capabilities of planar growth of NWs in achieving precise guided growth control, programmable geometry, composition, and line-shape engineering are reviewed, followed by their latest device applications in building high-performance field-effect transistors, photodetectors, stretchable electronics, and 3D stacked-channel integration.
Collapse
Affiliation(s)
- Ying Sun
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Taige Dong
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
4
|
Welch Award in Chemistry:A. P. Alivisatos and C. M. Lieber / Wilhelm Exner Medal:J. M. DeSimone / Ernst Schering Prize:P. Cramer. Angew Chem Int Ed Engl 2019; 58:17907. [DOI: 10.1002/anie.201912789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Welch Award in Chemie:A. P. Alivisatos und C. M. Lieber / Wilhelm‐Exner‐Medaille:J. M. DeSimone / Ernst‐Schering‐Preis:P. Cramer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Yang N, Wang Z, Xu J, Gui L, Tang Z, Zhang Y, Yi M, Yue S, Xu S. Multifunctional Freestanding Microprobes for Potential Biological Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2328. [PMID: 31137584 PMCID: PMC6567016 DOI: 10.3390/s19102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/20/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022]
Abstract
Deep-level sensors for detecting the local temperatures of inner organs and tissues of an animal are rarely reported. In this paper, we present a method to fabricate multifunctional micro-probes with standard cleanroom procedures, using a piece of stainless-steel foil as the substrate. On each of the as-fabricated micro-probes, arrays of thermocouples made of Pd-Cr thin-film stripes with reliable thermal sensing functions were built, together with Pd electrode openings for detecting electrical signals. The as-fabricated sword-shaped freestanding microprobes with length up to 30 mm showed excellent mechanical strength and elastic properties when they were inserted into the brain and muscle tissues of live rats, as well as suitable electrochemical properties and, therefore, are promising for potential biological applications.
Collapse
Affiliation(s)
- Nana Yang
- Key Laboratory for the Physics & Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| | - Zhenhai Wang
- Key Laboratory for the Physics & Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| | - Jingjing Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
- School of Microelectronics, Shandong University, Jinan 250100, China.
| | - Lijiang Gui
- Department of Micro-Nano Fabrication Technology, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhiqiang Tang
- Key Laboratory for the Physics & Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| | - Yuqi Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, China.
| | - Shuanglin Yue
- Key Laboratory for the Physics & Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| | - Shengyong Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Sculpting neurotransmission during synaptic development by 2D nanostructured interfaces. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2521-2532. [DOI: 10.1016/j.nano.2017.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/08/2016] [Accepted: 01/04/2017] [Indexed: 11/23/2022]
|
8
|
Rotenberg MY, Tian B. Talking to cells: semiconductor nanomaterials at the cellular interface. ADVANCED BIOSYSTEMS 2018; 2:1700242. [PMID: 30906852 PMCID: PMC6430216 DOI: 10.1002/adbi.201700242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interface of biological components with semiconductors is a growing field with numerous applications. For example, the interfaces can be used to sense and modulate the electrical activity of single cells and tissues. From the materials point of view, silicon is the ideal option for such studies due to its controlled chemical synthesis, scalable lithography for functional devices, excellent electronic and optical properties, biocompatibility and biodegradability. Recent advances in this area are pushing the bio-interfaces from the tissue and organ level to the single cell and sub-cellular regimes. In this progress report, we will describe some fundamental studies focusing on miniaturizing the bioelectric and biomechanical interfaces. Additionally, many of our highlighted examples involve freestanding silicon-based nanoscale systems, in addition to substrate-bound structures or devices; the former offers new promise for basic research and clinical application. In this report, we will describe recent developments in the interfacing of neuronal and cardiac cells and their networks. Moreover, we will briefly discuss the incorporation of semiconductor nanostructures for interfacing non-excitable cells in applications such as probing intracellular force dynamics and drug delivery. Finally, we will suggest several directions for future exploration.
Collapse
Affiliation(s)
| | - Bozhi Tian
- The James Franck Institute, the University of Chicago, Chicago, IL 60637
- Department of Chemistry, the University of Chicago, Chicago, IL 60637
- The Institute for Biophysical Dynamics, Chicago, IL 60637
| |
Collapse
|
9
|
Scaini D, Ballerini L. Nanomaterials at the neural interface. Curr Opin Neurobiol 2017; 50:50-55. [PMID: 29289930 DOI: 10.1016/j.conb.2017.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/26/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022]
Abstract
Interfacing the nervous system with devices able to efficiently record or modulate the electrical activity of neuronal cells represents the underlying foundation of future theranostic applications in neurology and of current openings in neuroscience research. These devices, usually sensing cell activity via microelectrodes, should be characterized by safe working conditions in the biological milieu together with a well-controlled operation-life. The stable device/neuronal electrical coupling at the interface requires tight interactions between the electrode surface and the cell membrane. This neuro-electrode hybrid represents the hyphen between the soft nature of neural tissue, generating electrical signals via ion motions, and the rigid realm of microelectronics and medical devices, dealing with electrons in motion. Efficient integration of these entities is essential for monitoring, analyzing and controlling neuronal signaling but poses significant technological challenges. Improving the cell/electrode interaction and thus the interface performance requires novel engineering of (nano)materials: tuning at the nanoscale electrode's properties may lead to engineer interfacing probes that better camouflaged with their biological target. In this brief review, we highlight the most recent concepts in nanotechnologies and nanomaterials that might help reducing the mismatch between tissue and electrode, focusing on the device's mechanical properties and its biological integration with the tissue.
Collapse
Affiliation(s)
- Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, 265, 34136 Trieste, Italy; Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale, S.S. 14, km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, 265, 34136 Trieste, Italy.
| |
Collapse
|
10
|
Zhang W, Hou C, Li Y, Zhang Q, Wang H. A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow. NANOSCALE 2017; 9:17821-17828. [PMID: 29115330 DOI: 10.1039/c7nr05575g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flexible and multifunctional sensors that continuously detect physical information are urgently required to fabricate wearable materials for health monitoring. This study describes the fabrication and performance of a strong and flexible vessel-like sensor. This electronic vessel consists of a self-supported braided cotton hose substrate, single-walled carbon nanotubes (SWCNTs)/ZnO@polyvinylidene fluoride (PVDF) function arrays and a flexible PVDF function fibrous membrane, and it possesses high mechanical property and accurate physical sensing. The rationally designed tubular structure facilities the detection of the applied temperature and strain and the frequency, pressure, and temperature of pulsed fluids. Therefore, the flexible electronic vessel holds promising potential for applications in wearable or implantable materials for the monitoring of health.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.
| | | | | | | | | |
Collapse
|
11
|
Covalent functionalization of multi-walled carbon nanotubes with spiropyran for high solubility both in water and in non-aqueous solvents. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Abstract
Nano-bioelectronics represents a rapidly expanding interdisciplinary field that combines nanomaterials with biology and electronics and, in so doing, offers the potential to overcome existing challenges in bioelectronics. In particular, shrinking electronic transducer dimensions to the nanoscale and making their properties appear more biological can yield significant improvements in the sensitivity and biocompatibility and thereby open up opportunities in fundamental biology and healthcare. This review emphasizes recent advances in nano-bioelectronics enabled with semiconductor nanostructures, including silicon nanowires, carbon nanotubes, and graphene. First, the synthesis and electrical properties of these nanomaterials are discussed in the context of bioelectronics. Second, affinity-based nano-bioelectronic sensors for highly sensitive analysis of biomolecules are reviewed. In these studies, semiconductor nanostructures as transistor-based biosensors are discussed from fundamental device behavior through sensing applications and future challenges. Third, the complex interface between nanoelectronics and living biological systems, from single cells to live animals, is reviewed. This discussion focuses on representative advances in electrophysiology enabled using semiconductor nanostructures and their nanoelectronic devices for cellular measurements through emerging work where arrays of nanoelectronic devices are incorporated within three-dimensional cell networks that define synthetic and natural tissues. Last, some challenges and exciting future opportunities are discussed.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, United States
| |
Collapse
|
13
|
Gomes CM, Deravi LF. Self-assembling extracellular matrix proteins as materials for the condensation of silica nanostructures. RSC Adv 2016. [DOI: 10.1039/c6ra20911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A synthetic strategy is described to repurpose human extracellular matrix protein binding domains to catalyse the condensation of silica nanostructures in water for a seamlessly integrated biocomposite material.
Collapse
Affiliation(s)
- Conor M. Gomes
- Department of Chemistry
- University of New Hampshire
- Durham
- USA
| | | |
Collapse
|
14
|
A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes. Sci Rep 2015; 5:14100. [PMID: 26365404 PMCID: PMC4568476 DOI: 10.1038/srep14100] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/18/2015] [Indexed: 01/20/2023] Open
Abstract
The development of multi-electrode array platforms for large scale recording of neurons is at the forefront of neuro-engineering research efforts. Recently we demonstrated, at the proof-of-concept level, a breakthrough neuron-microelectrode interface in which cultured Aplysia neurons tightly engulf gold mushroom-shaped microelectrodes (gMμEs). While maintaining their extracellular position, the gMμEs record synaptic- and action-potentials with characteristic features of intracellular recordings. Here we examined the feasibility of using gMμEs for intracellular recordings from mammalian neurons. To that end we experimentally examined the innate size limits of cultured rat hippocampal neurons to engulf gMμEs and measured the width of the “extracellular” cleft formed between the neurons and the gold surface. Using the experimental results we next analyzed the expected range of gMμEs-neuron electrical coupling coefficients. We estimated that sufficient electrical coupling levels to record attenuated synaptic- and action-potentials can be reached using the gMμE-neuron configuration. The definition of the engulfment limits of the gMμEs caps diameter at ≤2–2.5 μm and the estimated electrical coupling coefficients from the simulations pave the way for rational development and application of the gMμE based concept for in-cell recordings from mammalian neurons.
Collapse
|
15
|
Insight into bio-metal interface formation in vacuo: interplay of S-layer protein with copper and iron. Sci Rep 2015; 5:8710. [PMID: 25736576 PMCID: PMC4348631 DOI: 10.1038/srep08710] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/30/2015] [Indexed: 11/08/2022] Open
Abstract
The mechanisms of interaction between inorganic matter and biomolecules, as well as properties of resulting hybrids, are receiving growing interest due to the rapidly developing field of bionanotechnology. The majority of potential applications for metal-biohybrid structures require stability of these systems under vacuum conditions, where their chemistry is elusive, and may differ dramatically from the interaction between biomolecules and metal ions in vivo. Here we report for the first time a photoemission and X-ray absorption study of the formation of a hybrid metal-protein system, tracing step-by-step the chemical interactions between the protein and metals (Cu and Fe) in vacuo. Our experiments reveal stabilization of the enol form of peptide bonds as the result of protein-metal interactions for both metals. The resulting complex with copper appears to be rather stable. In contrast, the system with iron decomposes to form inorganic species like oxide, carbide, nitride, and cyanide.
Collapse
|