1
|
Qi C, Lu Z, Gu Y, Bao X, Xiong B, Liu GQ. Zn(OTf) 2-catalyzed intra- and intermolecular selenofunctionalization of alkenes under mild conditions. RSC Adv 2024; 14:23147-23151. [PMID: 39040696 PMCID: PMC11262084 DOI: 10.1039/d4ra04266b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Zn(OTf)2-catalyzed intra- and intermolecular selenofunctionalization of alkenes was achieved with electrophilic N-phenylselenophthalimide. This method provides straightforward and efficient access to various seleno-substituted heterocycles and vicinal Se heteroatom-disubstituted molecules under mild conditions. This reaction is compatible with various substrates/functional groups, and preliminary studies on the reaction mechanistic were also conducted.
Collapse
Affiliation(s)
- Cong Qi
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University Nantong 226019 People's Republic of China
| | - Zhaogong Lu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University Nantong 226019 People's Republic of China
| | - Yuyang Gu
- School of Medicine, Nantong University Nantong 226019 People's Republic of China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University Nantong 226019 People's Republic of China
| | - Biao Xiong
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University Nantong 226019 People's Republic of China
| | - Gong-Qing Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University Nantong 226019 People's Republic of China
| |
Collapse
|
2
|
Bhanja R, Kanti Bera S, Mal P. Sustainable Synthesis through Catalyst-Free Photoinduced Cascaded Bond Formation. Chem Asian J 2024; 19:e202400279. [PMID: 38717944 DOI: 10.1002/asia.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Indexed: 06/12/2024]
Abstract
The beginning of photochemical reactions revolutionized synthetic chemistry through sustainable practices. This review explores cutting-edge developments in leveraging light-induced processes for generating cascaded C-C and C-hetero bonds without catalysts. Significantly, catalyst-free photoinduced methodologies have garnered considerable attention, especially in the creation of varied heterocyclic frameworks for drug design and the synthesis of natural products. The article delves into underlying mechanisms, addresses limitations, and evaluates various methodologies, emphasizing the potential of photocatalyst and transition metal-free photochemical reactions to enhance sustainability. Divided into two sections, it covers recent strides in C-C and C-heteroatom and multiple C-heteroatom bond formation reactions.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| |
Collapse
|
3
|
do Carmo Pinheiro R, Souza Marques L, Ten Kathen Jung J, Nogueira CW, Zeni G. Recent Progress in Synthetic and Biological Application of Diorganyl Diselenides. CHEM REC 2024; 24:e202400044. [PMID: 38976862 DOI: 10.1002/tcr.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Indexed: 07/10/2024]
Abstract
Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.
Collapse
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Luiza Souza Marques
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| |
Collapse
|
4
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
5
|
Hosseininezhad S, Ramazani A. Recent advances in the application of alkynes in multicomponent reactions. RSC Adv 2024; 14:278-352. [PMID: 38173570 PMCID: PMC10759206 DOI: 10.1039/d3ra07670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Alkynes have two active positions to carry out chemical reactions: C[triple bond, length as m-dash]C and C-H. These two positions are involved and activated in different reactions using different reagents. In this study, we investigated the reactions of alkynes that are involved in multi-component reactions through the C-C and C-H positions and examined the progress and gaps of each reaction by carefully studying the mechanism of the reactions. Firstly, we investigated and analyzed the reactions involving the C[triple bond, length as m-dash]C position of alkynes, including the reactions between derivatives of alkynes with RN3, sulfur compounds (RSO2R', DMSO, S8, DABCO(SO2)2 and DABSO), barbituric acids, aldehydes and amines, COOH, α-diazoesters or ketones, and isocyanides. Then, we examined and analyzed the important reactions involving the C-H position of alkynes and the progress and gaps in these reactions, including the reaction between alkyne derivatives with amines and aldehydes for the synthesis of propargylamines, the reaction between alkynes with CO2 and the reaction between alkynes with CO.
Collapse
Affiliation(s)
- Seyedmohammad Hosseininezhad
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
6
|
Ogawa A, Yamamoto Y. Multicomponent Reactions between Heteroatom Compounds and Unsaturated Compounds in Radical Reactions. Molecules 2023; 28:6356. [PMID: 37687185 PMCID: PMC10488953 DOI: 10.3390/molecules28176356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In this mini-review, we present our concepts for designing multicomponent reactions with reference to a series of sequential radical reactions that we have developed. Radical reactions are well suited for the design of multicomponent reactions due to their high functional group tolerance and low solvent sensitivity. We have focused on the photolysis of interelement compounds with a heteroatom-heteroatom single bond, which readily generates heteroatom-centered radicals, and have studied the photoinduced radical addition of interelement compounds to unsaturated compounds. First, the background of multicomponent radical reactions is described, and basic concepts and methodology for the construction of multicomponent reactions are explained. Next, examples of multicomponent reactions involving two interelement compounds and one unsaturated compound are presented, as well as examples of multicomponent reactions involving one interelement compound and two unsaturated compounds. Furthermore, multicomponent reactions involving intramolecular cyclization processes are described.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan;
| |
Collapse
|
7
|
Synthesis and Application Dichalcogenides as Radical Reagents with Photochemical Technology. Molecules 2023; 28:molecules28041998. [PMID: 36838986 PMCID: PMC9963440 DOI: 10.3390/molecules28041998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Dichalcogenides (disulfides and diselenides), as reactants for organic transformations, are important and widely used because of their potential to react with nucleophiles, electrophilic reagents, and radical precursors. In recent years, in combination with photochemical technology, the application of dichalcogenides as stable radical reagents has opened up a new route to the synthesis of various sulfur- and selenium-containing compounds. In this paper, synthetic strategies for disulfides and diselenides and their applications with photochemical technology are reviewed: (i) Cyclization of dichalcogenides with alkenes and alkynes; (ii) direct selenylation/sulfuration of C-H/C-C/C-N bonds; (iii) visible-light-enabled seleno- and sulfur-bifunctionalization of alkenes/alkynes; and (iv) Direct construction of the C(sp)-S bond. In addition, the scopes, limitations, and mechanisms of some reactions are also described.
Collapse
|
8
|
Dankert F, Gupta P, Wellnitz T, Baumann W, Hering-Junghans C. Deoxygenation of chalcogen oxides EO 2 (E = S, Se) with phospha-Wittig reagents. Dalton Trans 2022; 51:18642-18651. [PMID: 36448405 DOI: 10.1039/d2dt03703c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In here we present the deoxygenation of the chalcogen oxides EO2 (E = S, Se) with R-P(PMe3), so-called phospha-Wittig reagents. The reaction of DABSO (DABCO·2SO2) with R-P(PMe3) (R = Mes*, 2,4,6-tBu3-C6H2; MesTer, 2,6-(2,4,6-Me3-C6H2)2-C6H3) resulted in the formation of thiadiphosphiranes (RP)2S (1:R), while selenadiphosphiranes (RP)2Se (2:R) were afforded with SeO2, both accompanied by the formation of OPMe3. Utilizing the sterically more encumbered DipTer-P(PMe3) (DipTer = 2,6-(2,6-iPr2-C6H3)2-C6H3) a different selectivity was observed and (DipTerP)2Se (2:DipTer) along with [Se(μ-PDipTer)]2 (3:DipTer) were isolated as the Se-containing species in the reaction with SeO2. Interestingly, the reaction with DABSO (or with equimolar ratios of SeO2 at elevated temperatures) gave rise to the formation of the OPMe3-stabilized dioxophosphorane (phosphinidene dioxide) DipTerP(O)2-OPMe3 (4:DipTer) as the main product. This contrasting reactivity can be rationalized by two potential pathways in the reaction with EO2: (i) a Wittig-type pathway and (ii) a pathway involving oxygenation of the phospha-Wittig reagents and release of SO. Thus, phospha-Wittig reagents are shown to be useful synthetic tools for the metal-free deoxygenation of EO2 (E = S, Se).
Collapse
Affiliation(s)
- Fabian Dankert
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str.3a, 18059 Rostock, Germany.
| | - Priyanka Gupta
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str.3a, 18059 Rostock, Germany.
| | - Tim Wellnitz
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str.3a, 18059 Rostock, Germany.
| | - Wolfgang Baumann
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str.3a, 18059 Rostock, Germany.
| | | |
Collapse
|
9
|
Petek N, Brodnik H, Reiser O, Štefane B. Copper- and Photoredox-Catalyzed Cascade to Trifluoromethylated Divinyl Sulfones. J Org Chem 2022; 88:6538-6547. [DOI: 10.1021/acs.joc.2c02422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nejc Petek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Helena Brodnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Protti S, Fagnoni M. Recent Advances in Light-Induced Selenylation. ACS ORGANIC & INORGANIC AU 2022; 2:455-463. [PMID: 36855533 PMCID: PMC9955339 DOI: 10.1021/acsorginorgau.2c00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Selenium-containing organic molecules have recently found a plethora of applications, ranging from organic synthesis to pharmacology and material sciences. In view of these concepts, the development of mild, efficient, and general protocols for the formation of C-Se bonds is desirable, and light induced approaches are appealing ways. The aim of this Review is to provide the reader with the most recent examples of light promoted selenylation processes.
Collapse
|
11
|
Shaaban S, El-Lateef HMA, Khalaf MM, Gouda M, Youssef I. One-Pot Multicomponent Polymerization, Metal-, and Non-Metal-Catalyzed Synthesis of Organoselenium Compounds. Polymers (Basel) 2022; 14:polym14112208. [PMID: 35683881 PMCID: PMC9182861 DOI: 10.3390/polym14112208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
The one-pot multicomponent synthetic strategy of organoselenium compounds represents an alternative and robust protocol to the conventional multistep methods. During the last decade, a potential advance has been made in this domain. This review discusses the latest advances in the polymerization, metal, and metal-free one-pot multicomponent synthesis of organoselenium compounds.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.M.A.E.-L.); (M.M.K.); (M.G.)
- Department of Chemistry, Organic Chemistry Division, College of Science, Mansoura University, Mansoura 11432, Egypt
- Correspondence: or (S.S.); (I.Y.)
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.M.A.E.-L.); (M.M.K.); (M.G.)
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.M.A.E.-L.); (M.M.K.); (M.G.)
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.M.A.E.-L.); (M.M.K.); (M.G.)
| | - Ibrahim Youssef
- Department of Chemistry, Organic Chemistry Division, College of Science, Mansoura University, Mansoura 11432, Egypt
- Transcranial Focused Ultrasound Laboratory, UTSW Medical Center, Dallas, TX 75390, USA
- Neuroradiology and Neuro-Intervention Section, Department of Radiology, UTSW Medical Center, Dallas, TX 75390, USA
- Correspondence: or (S.S.); (I.Y.)
| |
Collapse
|
12
|
Azeredo JB, Penteado F, Nascimento V, Sancineto L, Braga AL, Lenardao EJ, Santi C. "Green Is the Color": An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules 2022; 27:1597. [PMID: 35268698 PMCID: PMC8911681 DOI: 10.3390/molecules27051597] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Organoselenium compounds have been successfully applied in biological, medicinal and material sciences, as well as a powerful tool for modern organic synthesis, attracting the attention of the scientific community. This great success is mainly due to the breaking of paradigm demonstrated by innumerous works, that the selenium compounds were toxic and would have a potential impact on the environment. In this update review, we highlight the relevance of these compounds in several fields of research as well as the possibility to synthesize them through more environmentally sustainable methodologies, involving catalytic processes, flow chemistry, electrosynthesis, as well as by the use of alternative energy sources, including mechanochemical, photochemistry, sonochemical and microwave irradiation.
Collapse
Affiliation(s)
- Juliano B. Azeredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Uruguaiana 97501-970, RS, Brazil;
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Vanessa Nascimento
- Laboratório SupraSelen, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niteroi 24020-150, RJ, Brazil
| | - Luca Sancineto
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| | - Antonio L. Braga
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianopolis 88040-900, SC, Brazil;
| | - Eder João Lenardao
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Claudio Santi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| |
Collapse
|
13
|
Ma C, Xie J, Zeng X, Wei Z, Wei Y. Radical-mediated carboselenation of terminal alkynes under mild conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo01024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free radical carboselenation of terminal alkynes is developed for the synthesis of (E)-γ-seleno-substituted allyl nitriles with excellent regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Chixiao Ma
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| | - Jingli Xie
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| | - Xianghua Zeng
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Zheyu Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
14
|
Zhou X, Zhang N, Li Y, Mo Z, Ma X, Chen Y, Xu Y. Metal-free synthesis of 3-sulfonyl-5-selanyl-4a,8a-dihydro-2H-chromen-6(5H)-ones via visible light driven intermolecular cascade cyclization of alkyne-tethered cyclohexadienones and selenosulfonates. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Davoodi E, Tahanpesar E, Massah AR. Dual Copper (II) Complex Supported on Diatomite as a Novel and Green Catalyst for the Synthesis of Dihydropyrano[3;2‐b]Chromenediones and Aminopyranopyrans. ChemistrySelect 2021. [DOI: 10.1002/slct.202101771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Elham Davoodi
- Department of Chemistry Ahvaz Branch Islamic Azad University Ahvaz Iran
- Department of Chemistry Khuzestan Science and Research Branch Islamic Azad University Ahvaz Iran
| | - Elham Tahanpesar
- Department of Chemistry Ahvaz Branch Islamic Azad University Ahvaz Iran
| | - Ahmad Reza Massah
- Department of Chemistry Shahreza Branch Islamic Azad University Shahreza, Isfahan 86145-311 Iran
| |
Collapse
|
16
|
Sonawane AD, Sonawane RA, Ninomiya M, Koketsu M. Diorganyl diselenides: a powerful tool for the construction of selenium containing scaffolds. Dalton Trans 2021; 50:12764-12790. [PMID: 34581339 DOI: 10.1039/d1dt01982a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organoselenium compounds find versatile applications in organic synthesis, materials synthesis, and ligand chemistry. Organoselenium heterocycles are widely studied agents with diverse applications in various biological processes. This review highlights the recent progress in the synthesis of selenium heterocycles using diorganyl diselenides with keen attention on green synthetic approaches, scopes, C-H selanylation, the mechanisms of different reactions and insights into the formation of metal complexes. The C-H selanylation using diorganyl diselenides with different catalysts, bases, transition metals, iodine salts, NIS, hypervalent iodine, and other reagents is summarised. Finally, the diverse binding modes of bis(2/4-pyridyl)diselenide with different metal complexes are also summarised.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Rohini A Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
17
|
Lapcinska S, Dimitrijevs P, Lapcinskis L, Arsenyan P. Visible Light‐Mediated Functionalization of Selenocystine‐Containing Peptides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sindija Lapcinska
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Linards Lapcinskis
- Research Laboratory of Functional Materials Technologies Faculty of Materials Science and Applied Chemistry Riga Technical University P. Valdena 3/7 LV-1048 Riga Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| |
Collapse
|
18
|
Rafique J, Rampon DS, Azeredo JB, Coelho FL, Schneider PH, Braga AL. Light-mediated Seleno-Functionalization of Organic Molecules: Recent Advances. CHEM REC 2021; 21:2739-2761. [PMID: 33656248 DOI: 10.1002/tcr.202100006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023]
Abstract
Organoselenium compounds constitute an important class of substances with applications in the biological, medicinal and material sciences as well as in modern organic synthesis, attracting considerable attention from the scientific community. Therefore, the construction of the C-Se bond via facile, efficient and sustainable strategies to access complex scaffolds from simple substrates are an appealing and hot topic. Visible light can be regarded as an alternative source of energy and is associated with environmentally-friendly processes. Recently, the use of visible-light mediated seleno-functionalization has emerged as an ideal and powerful route to obtain high-value selenylated products, with diminished cost and waste. This approach, involving photo-excited substrates/catalyst and single-electron transfer (SET) between substrates in the presence of visible light has been successfully used in the versatile and direct insertion of organoselenium moieties in activated and unactivated C(sp3 )-H, C(sp2 )-H, C(sp)-H bonds as well as C-heteroatom bonds. In most cases, ease of operation and accessibility of the light source (LEDs or commercial CFL bulbs) makes this approach more attractive and sustainable than the traditional strategies.
Collapse
Affiliation(s)
- Jamal Rafique
- Instituto de Química (INQUI), Universidade Federal de Mato Grosso do Sul -UFMS, Campo Grande, 79074-460, MS -, Brazil
| | - Daniel S Rampon
- Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-990, PR Brazil
| | - Juliano B Azeredo
- Departamento de Farmácia, Universidade Federal do Pampa, Uruguaiana, 97500-970, RS -, Brazil
| | - Felipe L Coelho
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, RS, Brazil
| | - Paulo H Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, RS, Brazil
| | - Antonio L Braga
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
19
|
Liu H, Zhang J, Huang G, Zhou Y, Chen Y, Xu Y. Visible Light‐Promoted Selenylation/Cyclization of Enaminones toward the Formation of 3‐Selanyl‐4H‐Chromen‐4‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001474] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hao‐Yang Liu
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Jia‐Rong Zhang
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Guo‐Bao Huang
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology College of Chemistry and Food Science of Yulin Normal University Yulin 537000 People's Republic of China
| | - Yi‐Huan Zhou
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Yan‐Yan Chen
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Yan‐Li Xu
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology College of Chemistry and Food Science of Yulin Normal University Yulin 537000 People's Republic of China
| |
Collapse
|
20
|
Wu G, Yao Y, Zhang W. An MeSeSO 3Na reagent for oxidative aminoselenomethylation of maleimides. Org Chem Front 2021. [DOI: 10.1039/d1qo01252e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe the design and synthesis of an MeSeSO3Na reagent, which proved to be a versatile selenomethylation reagent for copper-catalyzed aminoselenomethylation of maleimides.
Collapse
Affiliation(s)
- Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yujing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Wenliang Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| |
Collapse
|
21
|
Chen H, Yan Y, Zhang N, Mo Z, Xu Y, Chen Y. Visible-Light-Induced Cyclization/Aromatization of 2-Vinyloxy Arylalkynes: Synthesis of Thio-Substituted Dibenzofuran Derivatives. Org Lett 2020; 23:376-381. [DOI: 10.1021/acs.orglett.0c03876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hui Chen
- College of Pharmacy, Guilin Medical University, Guilin 541004, People’s Republic of China
| | - Yunyun Yan
- Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, People’s Republic of China
| | - Niuniu Zhang
- College of Pharmacy, Guilin Medical University, Guilin 541004, People’s Republic of China
| | - Zuyu Mo
- College of Pharmacy, Guilin Medical University, Guilin 541004, People’s Republic of China
| | - Yanli Xu
- College of Pharmacy, Guilin Medical University, Guilin 541004, People’s Republic of China
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People’s Republic of China
| | - Yanyan Chen
- College of Pharmacy, Guilin Medical University, Guilin 541004, People’s Republic of China
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People’s Republic of China
| |
Collapse
|
22
|
Wang Q, Ma XL, Chen YY, Jiang CN, Xu YL. Electrochemical Synthesis of 5-Selenouracil Derivatives by Selenylation of Uracils. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qian Wang
- Pharmacy School of Guilin Medical University; 541004 Guilin China
| | - Xian-Li Ma
- Pharmacy School of Guilin Medical University; 541004 Guilin China
| | - Yan-Yan Chen
- Pharmacy School of Guilin Medical University; 541004 Guilin China
| | - Cai-Na Jiang
- Pharmacy School of Guilin Medical University; 541004 Guilin China
| | - Yan-Li Xu
- Pharmacy School of Guilin Medical University; 541004 Guilin China
| |
Collapse
|
23
|
Sonawane AD, Sonawane RA, Ninomiya M, Koketsu M. Synthesis of Seleno‐Heterocycles
via
Electrophilic/Radical Cyclization of Alkyne Containing Heteroatoms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000490] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Rohini A. Sonawane
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
24
|
Zhou XJ, Liu HY, Mo ZY, Ma XL, Chen YY, Tang HT, Pan YM, Xu YL. Visible-Light-Promoted Selenylative Spirocyclization of Indolyl-ynones toward the Formation of 3-Selenospiroindolenine Anticancer Agents. Chem Asian J 2020; 15:1536-1539. [PMID: 32207240 DOI: 10.1002/asia.202000298] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/20/2020] [Indexed: 12/23/2022]
Abstract
A metal-free and efficient visible-light-induced spirocyclization of indolyl-ynones with diselenides at room temperature under air atmosphere to prepare 3-selenospiroindolenines in moderate to good yields has been developed. The resulting products were tested for in vitro anticancer activity by MTT assay, and compounds 3 c and 3 e showed potent cancer cell-growth inhibition activities.
Collapse
Affiliation(s)
- Xiu-Jie Zhou
- Pharmacy School, Guilin Medical University, 541004, People's Republic of China, Guilin
| | - Hao-Yang Liu
- Pharmacy School, Guilin Medical University, 541004, People's Republic of China, Guilin
| | - Zu-Yu Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 541004, People's Republic of China, Guilin
| | - Xian-Li Ma
- Pharmacy School, Guilin Medical University, 541004, People's Republic of China, Guilin
| | - Yan-Yan Chen
- Pharmacy School, Guilin Medical University, 541004, People's Republic of China, Guilin
| | - Hai-Tao Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 541004, People's Republic of China, Guilin
| | - Ying-Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 541004, People's Republic of China, Guilin
| | - Yan-Li Xu
- Pharmacy School, Guilin Medical University, 541004, People's Republic of China, Guilin
| |
Collapse
|