1
|
Zhou X, Zhao X, Dong H, Gao Y. Chrysene contribution to bronchial asthma: Activation of TRPA1 disrupts bronchial epithelial barrier via ERK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117095. [PMID: 39395376 DOI: 10.1016/j.ecoenv.2024.117095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Elevated polycyclic aromatic hydrocarbon (PAH) levels are associated with exacerbation of asthma. Chrysene is one of the most prevalent unsubstituted PAHs in the environment. Transient receptor potential ankyrin 1 (TRPA1) can be used as a chemoreceptor to detect inhaled stimuli and plays an important role in the occurrence and deterioration of asthma. Whether exposure to a high concentration of chrysene in the environment can activate TRPA1 and contribute to the development of asthma, potentially through the dysfunction of the bronchial epithelial barrier, remains unclear. METHODS A cell-based assay was performed to verify the downregulation of the expression of E-cadherin and tight junction (TJ) proteins by chrysene in bronchial epithelial cells to explore the role of chrysene-mediated TRPA1 activation in the regulation of TJ protein expression through the extracellular signal-regulated protein kinase (ERK) pathway. Animal tests were conducted to determine whether chrysene could enhance airway hyperresponsiveness (AHR) induced by house dust mites (HDMs) and disrupt barrier function, thereby contributing to asthma. RESULTS The cell-based assay revealed that chrysene could disrupt the function of the bronchial epithelial barrier and decrease the expression levels of E-cadherin, zonula occludens-1 (ZO-1), occludin, and claudin-5 through the ERK pathway. Chrysene induced airway epithelial barrier dysfunction primarily through TRPA1 instead of transient receptor potential vanilloid 1. TRPA1 knockdown was able to attenuate chrysene-induced downregulation of TJ protein expression and downregulate ERK activation (p-ERK). Compared with exposure to HDM alone, coexposure to chrysene and HDM resulted in an increased incidence of AHR, disruption of barrier function, and eosinophilic inflammatory responses in a mouse model of asthma. Coexposure to chrysene and HDM increased TRPA1 expression. The animal test verified that the TRPA1 inhibitor HC030031 could suppress chrysene and HDM-induced asthma in mice. CONCLUSIONS Our findings showed that chrysene contributed to the breakdown of the function of the bronchial epithelial barrier through the TRPA1-ERK axis and therefore acted as an adjuvant to contribute to asthma.
Collapse
Affiliation(s)
- Xinjia Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoyu Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Han Dong
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuan Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
2
|
Dhasmana A, Dhasmana S, Agarwal S, Khan S, Haque S, Jaggi M, Yallapu MM, Chauhan SC. Integrative big transcriptomics data analysis implicates crucial role of MUC13 in pancreatic cancer. Comput Struct Biotechnol J 2023; 21:2845-2857. [PMID: 37216018 PMCID: PMC10192752 DOI: 10.1016/j.csbj.2023.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Big data analysis holds a considerable influence on several aspects of biomedical health science. It permits healthcare providers to gain insights from large and complex datasets, leading to improvements in the understanding, diagnosis, medication, and restraint of pathological conditions including cancer. The incidences of pancreatic cancer (PanCa) are sharply rising, and it will become the second leading cause of cancer related deaths by 2030. Various traditional biomarkers are currently in use but are not optimal in sensitivity and specificity. Herein, we determine the role of a new transmembrane glycoprotein, MUC13, as a potential biomarker of pancreatic ductal adenocarcinoma (PDAC) by using integrative big data mining and transcriptomic approaches. This study is helpful to identify and appropriately segment the data related to MUC13, which are scattered in various data sets. The assembling of the meaningful data, representation strategy was used to investigate the MUC13 associated information for the better understanding regarding its structural, expression profiling, genomic variants, phosphorylation motifs, and functional enrichment pathways. For further in-depth investigation, we have adopted several popular transcriptomic methods like DEGseq2, coding and non-coding transcript, single cell seq analysis, and functional enrichment analysis. All these analyzes suggest the presence of three nonsense MUC13 genomic transcripts, two protein transcripts, short MUC13 (s-MUC13, non-tumorigenic or ntMUC13), and long MUC13 (L-MUC13, tumorigenic or tMUC13), several important phosphorylation sites in tMUC13. Altogether, this data confirms that importance of tMUC13 as a potential biomarker, therapeutic target of PanCa, and its significance in pancreatic pathobiology.
Collapse
Affiliation(s)
- Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- Himalayan School of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| | | | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| |
Collapse
|
3
|
Srivastava N, Srivastava M, Alhazmi A, Mohammad A, Khan S, Pal DB, Haque S, Singh R, Mishra PK, Gupta VK. Sustainable green approach to synthesize Fe 3O 4/α-Fe 2O 3 nanocomposite using waste pulp of Syzygium cumini and its application in functional stability of microbial cellulases. Sci Rep 2021; 11:24371. [PMID: 34934128 PMCID: PMC8692407 DOI: 10.1038/s41598-021-03776-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Synthesis of nanomaterials following green routes have drawn much attention in recent years due to the low cost, easy and eco-friendly approaches involved therein. Therefore, the current study is focused towards the synthesis of Fe3O4/α-Fe2O3 nanocomposite using waste pulp of Jamun (Syzygium cumini) and iron nitrate as the precursor of iron in an eco-friendly way. The synthesized Fe3O4/α-Fe2O3 nanocomposite has been extensively characterized through numerous techniques to explore the physicochemical properties, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, Ultraviolet-Vis spectroscopy, field emission scanning electron microscope, high resolution transmission electron microscope and vibrating sample magnetometer. Further, efficiency of the Fe3O4/α-Fe2O3 nanocomposite has been evaluated to improve the incubation temperature, thermal/pH stability of the crude cellulase enzymes obtained from the lab isolate fungal strain Cladosporium cladosporioides NS2 via solid state fermentation. It is found that the presence of 0.5% Fe3O4/α-Fe2O3 nanocomposite showed optimum incubation temperature and thermal stability in the long temperature range of 50-60 °C for 15 h along with improved pH stability in the range of pH 3.5-6.0. The presented study may have potential application in bioconversion of waste biomass at high temperature and broad pH range.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P., 221005, India.
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P., 221005, India
| | - Alaa Alhazmi
- Department of Medical Laboratory Technology, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Faculty of Medicine, Bursa Uludağ University, Görükle Campus, Nilüfer, Bursa, 16059, Turkey
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, New Delhi, Delhi, 110052, India
| | - P K Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P., 221005, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
4
|
Gao Y, Zhou X, Zhou Y, Zhang W, Zhao L. Chrysene accelerates the proceeding of chronic obstructive pulmonary disease with the aggravation of inflammation and apoptosis in cigarette smoke exposed mice. Hum Exp Toxicol 2020; 40:1031-1044. [PMID: 33345606 DOI: 10.1177/0960327120979343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chrysene, one of the basic polycyclic aromatic hydrocarbons (PAHs), has been reported to make damages to human health and living environment. Chronic obstructive pulmonary disease (COPD) is a progressive disorder with high morbidity and mortality. To investigate the role of chrysene in the development of COPD, male C57BL/6 mice were exposed to the cigarette smoke (CS) followed with the administration of chrysene. Morphological analyses indicated that chrysene caused earlier and severer pathological changes in CS-exposed mice. Besides, CS-exposed mice with chrysene treatment showed obvious collagen deposition, elevated α-smooth muscle actin (α-SMA) expression and reduced E-cadherin abundance at earlier stage, which suggested the acceleration and aggravation of pulmonary fibrosis. Moreover, quantification of leukocytes and pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and lung tissues implied that chrysene significantly exacerbated the proceeding of inflammation in CS-exposed mice. Furthermore, significantly increased apoptotic rates, augmented expressions of apoptotic related proteins and highly expressed TRPV1 were determined in CS-exposed mice with chrysene treatment, which indicated the association between COPD pathogenesis and TRPV1 channel. In summary, our findings elucidate that chrysene accelerates the development of COPD in a murine model with new molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xinjia Zhou
- Department of Otolaryngology Head and Neck Surgery, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Zhou
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Zhang
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
5
|
Dhasmana A, Dhasmana A, H HY, Farasani A, Habibullah M, Alshammary FL, Khan S, Haque S, Lohani M. Tobacco Smoke Carcinogens Induce DNA Repair Machinery Function Loss: Protection by Carbon Nanotubes. Asian Pac J Cancer Prev 2020; 21:3099-3108. [PMID: 33112573 PMCID: PMC7798159 DOI: 10.31557/apjcp.2020.21.10.3099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE DNA damage is a continuous process occurring within the cells caused by intrinsic and extrinsic factors, but it gets repaired regularly. If the DNA repair process is faulty, the incidences of damages/mutations can accumulate in cells resulting in cell transformation. It is hypothesized that the negative variations in DNA repair pathways in even at one point viz. genetic, translational or posttranslational stage may fairly be crucial for the beginning and development of carcinogenesis. Therefore, we investigated the potential of tobacco specific nitrosamines (TSNs) related carcinogens to interact with the enzymes involved in DNA repair mechanisms in the current study. METHODS The derivatives of cigarettes' smoke like NNK and NNAL are very well known and recognized carcinogens. Therefore, almost 120 enzymes playing crucial role in the DNA repair process have been analysed for their reactivity with NNK and NNAL. RESULTS The molecular docking study helped to screen out, 07 possible DNA repair enzyme targets for NNK, and 12for NNAL. Present study revealed the loss of activity of DNA repair enzymes in the presence of NNK and NNAL, and this accumulation may induce the tendency of DNA damage which can lead the transformation of exposed normal cells in to cancerous cells. This study also demonstrated the protective potential of nanoparticles like SWCNTs/MWCNTs against TSN's induced toxicity; here SWCNT against NNK (-17.16 Kcal/Mol) and MWCNT against NNK -17.01 Kcal/Mol were showing maximum binding affinities than the known biomolecular target of NNK 1UGH (Uracil-DNA glycosylase,-7.82Kcal/Mol). CONCLUSION CNTs can be applied as chemo-preventive agents against environmental and tobacco induced carcinogens owing to their scavenging potential and warrants for in vivo and in vitro experimental validation of the results obtained from the present study. .
Collapse
Affiliation(s)
- Anukriti Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun (Uttarakhand), India.
| | - Anupam Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun (Uttarakhand), India.
- University of Texas Rio Grande Valley, McAllen, United States of America.
| | - Hobani Yahya H
- Dean, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Abdullah Farasani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Mahmoud Habibullah
- Emergency Medical Services Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Freah L Alshammary
- Department of Preventative Dental Sciences, College of Dentistry, Hail University, Hail, Saudi Arabia.
| | - Saif Khan
- Department of Preventative Dental Sciences, College of Dentistry, Hail University, Hail, Saudi Arabia.
| | - Shafiul Haque
- Research and Scientific Studies Unit, Faculty of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Mohtashim Lohani
- Emergency Medical Services Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
- Medical Research centre, Faculty of Applied Medical Sciences, Jazan University, Jazan, KSA.
| |
Collapse
|
6
|
Rai V, Aggarwal SK, Verma SS, Awasthee N, Dhasmana A, Aggarwal S, Das SN, Nair MS, Yadav S, Gupta SC. Epoxyazadiradione exhibit activities in head and neck squamous cell carcinoma by targeting multiple pathways. Apoptosis 2020; 25:763-782. [PMID: 32894380 DOI: 10.1007/s10495-020-01633-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 12/24/2022]
Abstract
The head and neck squamous cell carcinoma (HNSCC) constitute about 90% of all head and neck cancers. HNSCC falls in the top 10 cancers in men globally. Epoxyazadiradione (EPA) and Azadiradione (AZA) are the limonoids derived from the medicinal plant Azadirachta indica (popularly known as Neem). Whether or not the limonoids exhibit activities against HNSCC and the associated mechanism remains elusive. Herein, we demonstrate that EPA exhibits stronger activity in HNSCC in comparison to AZA. The limonoids obeyed the Lipinski's rule of 5. EPA exhibited activities in a variety of HNSCC lines like suppression of the proliferation and the induction of apoptosis. The limonoid suppressed the level of proteins associated with anti-apoptosis (survivin, Bcl-2, Bcl-xL), proliferation (cyclin D1), and invasion (MMP-9). Further, the expression of proapoptotic Bax and caspase-9 cleavage was induced by the limonoid. Exposure of EPA induced reactive oxygen species (ROS) generation in the FaDu cells. N-acetyl-L-cysteine (ROS scavenger) abrogated the down-regulation of tumorigenic proteins caused by EPA exposure. EPA induced NOX-5 while suppressing the expression of programmed death-ligand 1 (PD-L1). Further, hydrogen peroxide induced NF-κB-p65 nuclear translocation and EPA inhibited the translocation. Finally, EPA modulated the expression of lncRNAs in HNSCC lines. Overall, these results have shown that EPA exhibit activities against HNSCC by targeting multiple cancer related signalling molecules. Currently, we are evaluating the efficacy of this molecule in mice models.
Collapse
Affiliation(s)
- Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sushil Kumar Aggarwal
- Department of Otorhinolaryngology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Sumit Singh Verma
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anupam Dhasmana
- Department of Biosciences, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, 248 016, India
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, USA
| | - Sadhna Aggarwal
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Satya N Das
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- Emeritus Scientist, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Mangalam S Nair
- Division of Organic Chemistry, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Sanjay Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Raebareli, 229405, India
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Dhasmana A, Uniyal S, Anukriti, Kashyap VK, Somvanshi P, Gupta M, Bhardwaj U, Jaggi M, Yallapu MM, Haque S, Chauhan SC. Topological and system-level protein interaction network (PIN) analyses to deduce molecular mechanism of curcumin. Sci Rep 2020; 10:12045. [PMID: 32694520 PMCID: PMC7374742 DOI: 10.1038/s41598-020-69011-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Curcumin is an important bioactive component of turmeric and also one of the important natural products, which has been investigated extensively. The precise mode of action of curcumin and its impact on system level protein networks are still not well studied. To identify the curcumin governed regulatory action on protein interaction network (PIN), an interectome was created based on 788 key proteins, extracted from PubMed literatures, and constructed by using STRING and Cytoscape programs. The PIN rewired by curcumin was a scale-free, extremely linked biological system. MCODE plug-in was used for sub-modulization analysis, wherein we identified 25 modules; ClueGo plug-in was used for the pathway’s enrichment analysis, wherein 37 enriched signalling pathways were obtained. Most of them were associated with human diseases groups, particularly carcinogenesis, inflammation, and infectious diseases. Finally, the analysis of topological characteristic like bottleneck, degree, GO term/pathways analysis, bio-kinetics simulation, molecular docking, and dynamics studies were performed for the selection of key regulatory proteins of curcumin-rewired PIN. The current findings deduce a precise molecular mechanism that curcumin might exert in the system. This comprehensive in-silico study will help to understand how curcumin induces its anti-cancerous, anti-inflammatory, and anti-microbial effects in the human body.
Collapse
Affiliation(s)
- Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Swati Uniyal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Anukriti
- Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Vivek Kumar Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj,, New Delhi, India
| | - Meenu Gupta
- Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Uma Bhardwaj
- Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.
| |
Collapse
|
8
|
Kesari KK, Dhasmana A, Shandilya S, Prabhakar N, Shaukat A, Dou J, Rosenholm JM, Vuorinen T, Ruokolainen J. Plant-Derived Natural Biomolecule Picein Attenuates Menadione Induced Oxidative Stress on Neuroblastoma Cell Mitochondria. Antioxidants (Basel) 2020; 9:antiox9060552. [PMID: 32630418 PMCID: PMC7346164 DOI: 10.3390/antiox9060552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Several bioactive compounds are in use for the treatment of neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Historically, willow (salix sp.) bark has been an important source of salisylic acid and other natural compounds with anti-inflammatory, antipyretic and analgesic properties. Among these, picein isolated from hot water extract of willow bark, has been found to act as a natural secondary metabolite antioxidant. The aim of this study was to investigate the unrevealed pharmacological action of picein. In silico studies were utilized to direct the investigation towards the neuroprotection abilities of picein. Our in vitro studies demonstrate the neuroprotective properties of picein by blocking the oxidative stress effects, induced by free radical generator 2-methyl-1,4-naphthoquinone (menadione, MQ), in neuroblastoma SH-SY5Y cells. Several oxidative stress-related parameters were evaluated to measure the protection for mitochondrial integrity, such as mitochondrial superoxide production, mitochondrial activity (MTT), reactive oxygen species (ROS) and live-cell imaging. A significant increase in the ROS level and mitochondrial superoxide production were measured after MQ treatment, however, a subsequent treatment with picein was able to mitigate this effect by decreasing their levels. Additionally, the mitochondrial activity was significantly decreased by MQ exposure, but a follow-up treatment with picein recovered the normal metabolic activity. In conclusion, the presented results demonstrate that picein can significantly reduce the level of MQ-induced oxidative stress on mitochondria, and thereby plays a role as a potent neuroprotectant.
Collapse
Affiliation(s)
- Kavindra Kumar Kesari
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| | - Anupam Dhasmana
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78539, USA;
- Department of Biosciences, Swami Rama Himalayan University, Dehradun 248016, India
| | - Shruti Shandilya
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (N.P.); (J.M.R.)
| | - Ahmed Shaukat
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
| | - Jinze Dou
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (N.P.); (J.M.R.)
| | - Tapani Vuorinen
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| |
Collapse
|
9
|
Lin H, Hu B, He X, Mao J, Wang Y, Wang J, Zhang T, Zheng J, Peng Y, Zhang F. Overcoming Taxol-resistance in A549 cells: A comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem Pharmacol 2020; 171:113733. [DOI: 10.1016/j.bcp.2019.113733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
|
10
|
Isodeoxyelephantopin, a Sesquiterpene Lactone Induces ROS Generation, Suppresses NF-κB Activation, Modulates LncRNA Expression and Exhibit Activities Against Breast Cancer. Sci Rep 2019; 9:17980. [PMID: 31784542 PMCID: PMC6884568 DOI: 10.1038/s41598-019-52971-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/24/2019] [Indexed: 01/23/2023] Open
Abstract
The sesquiterpene lactones, Isodeoxyelephantopin (IDET) and Deoxyelephantopin (DET) are known to exhibit activities against some cancer types. The activities of these lactones against breast cancer and the molecular bases is not known. We examined the efficacy of lactones in breast cancer preclinical model. Although both lactones exhibited drug like properties, IDET was relatively effective in comparison to DET. IDET suppressed the proliferation of both invasive and non-invasive breast cancer cell lines. IDET also suppressed the colony formation and migration of breast cancer cells. The assays for Acridine Orange (AO)/Propidium Iodide (PI) staining, cell cycle distribution, phosphatidylserine externalization and DNA laddering suggested the apoptosis inducing potential of IDET. The treatment with IDET also induced an accumulation of cells in the sub-G1 and G2/M phases. The exposure of breast cancer cells to the lactone was associated with a depolarization in mitochondrial membrane potential, and cleavage of caspase and PARP. The lactone induced reactive oxygen species (ROS) generation in breast cancer cells. Further, the use of N-acetyl cysteine (NAC) suppressed IDET induced ROS generation and apoptosis. The NF-κB-p65 nuclear translocation induced by okadaic acid (OA) was suppressed by the sesquiterpene. IDET also suppressed the expression of NF-κB regulated tumorigenic proteins, and induced the expression of proapoptotic gene (Bax) in cancer cells. While the expression of oncogenic lncRNAs was suppressed, the tumor suppressor lncRNAs were induced by the sesquiterpene. Collectively, the modulation of multiple cell signaling molecules by IDET may contribute to its activities in breast cancer cells.
Collapse
|
11
|
Investigation of Precise Molecular Mechanistic Action of Tobacco-Associated Carcinogen `NNK´ Induced Carcinogenesis: A System Biology Approach. Genes (Basel) 2019; 10:genes10080564. [PMID: 31357510 PMCID: PMC6723528 DOI: 10.3390/genes10080564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second deadliest disease listed by the WHO. One of the major causes of cancer disease is tobacco and consumption possibly due to its main component, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). A plethora of studies have been conducted in the past aiming to decipher the association of NNK with other diseases. However, it is strongly linked with cancer development. Despite these studies, a clear molecular mechanism and the impact of NNK on various system-level networks is not known. In the present study, system biology tools were employed to understand the key regulatory mechanisms and the perturbations that will happen in the cellular processes due to NNK. To investigate the system level influence of the carcinogen, NNK rewired protein–protein interaction network (PPIN) was generated from 544 reported proteins drawn out from 1317 articles retrieved from PubMed. The noise was removed from PPIN by the method of modulation. Gene ontology (GO) enrichment was performed on the seed proteins extracted from various modules to find the most affected pathways by the genes/proteins. For the modulation, Molecular COmplex DEtection (MCODE) was used to generate 19 modules containing 115 seed proteins. Further, scrutiny of the targeted biomolecules was done by the graph theory and molecular docking. GO enrichment analysis revealed that mostly cell cycle regulatory proteins were affected by NNK.
Collapse
|
12
|
Uniyal S, Dhasmana A, Tyagi A, Muyal JP. ATRA reduces inflammation and improves alveolar epithelium regeneration in emphysematous rat lung. Biomed Pharmacother 2018; 108:1435-1450. [PMID: 30372846 DOI: 10.1016/j.biopha.2018.09.166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Pulmonary emphysema characterized by alveolar wall destruction is resultant of persistent chronic inflammation. All-trans retinoic acid (ATRA) has been reported to reverse elastase-induced emphysema in rats. However, the underlying molecular mechanisms are so far unknown. OBJECTIVE To investigate the therapeutic potential effect of ATRA via the amelioration of the ERK/JAK-STAT pathways in the lungs of emphysematous rats. METHODS In silico analysis was done to find the binding efficiency of ATRA with receptor and ligands of ERK & JAK-STAT pathway. Emphysema was induced by porcine pancreatic elastase in Sprague-Dawley rats and ATRA was supplemented as therapy. Lungs were harvested for histopathological, genomics and proteomics analysis. RESULTS AND DISCUSSION In silico docking, analysis confirms that ATRA interferes with the normal binding of ligands (TNF-α, IL6ST) and receptors (TNFR1, IL6) of ERK/JAK-STAT pathways respectively. ATRA restored the histology, proteases/antiproteases balance, levels of inflammatory markers, antioxidants, expression of candidate genes of ERK and JAK-STAT pathways in the therapy group. CONCLUSION ATRA ameliorates ERK/JAK-STAT pathway in emphysema condition, resulting in alveolar epithelium regeneration. Hence, ATRA may prove to be a potential drug in the treatment of emphysema.
Collapse
Affiliation(s)
- Swati Uniyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, Uttar Pradesh, India.
| | - Anupam Dhasmana
- Himalayan School of Biosciences and Cancer Research Institute, Swami Rama Himalayan University, Dehradun, India.
| | - Amit Tyagi
- Division of Nuclear Medicine, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India.
| | - Jai Prakash Muyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, Uttar Pradesh, India.
| |
Collapse
|