1
|
Trujillo E, Angulo C. Plant-Made Vaccines Targeting Enteric Pathogens-Safe Alternatives for Vaccination in Developing Countries. Biotechnol Bioeng 2025; 122:457-480. [PMID: 39620322 DOI: 10.1002/bit.28876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 02/11/2025]
Abstract
Enteric diseases by pathogenic organisms are one of the leading causes of death worldwide, particularly in low-income countries. Despite antibiotics, access to clean water and vaccination are the most economically affordable options to prevent those infections and their health consequences. Vaccines, such as those approved for rotavirus and cholera, have played a key role in preventing several enteric diseases. However, vaccines for other pathogens are still in clinical trials. Distribution and cost remain significant barriers to vaccine access in developing regions due to poor healthcare infrastructure, cold-chain requirements, and high production costs. Plant-made vaccines offer a promising alternative to address these challenges. Plants can be easily grown, lowering production costs, and can be administered in oral forms, potentially eliminating cold-chain dependency. Although there are some promising prototypes of vaccines produced in plants, challenges remain, including yields and achieving sufficient immunogenicity. This review aims to describe common enteric pathogens and available vaccines, followed by a strategic summary of plant-made vaccine development and a discussion of plant-made enteric vaccine prototypes. Trends to overcome the key challenges for plant-made vaccines are identified and placed in perspective for the development of affordable and effective vaccines for populations at the highest risk of enteric diseases.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
2
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
3
|
Wang J, Wang J, Chang X, Shang J, Wang Y, Ma Q, Shen L. Rapid Detection of Streptococcus mutans Using an Integrated Microfluidic System with Loop-Mediated Isothermal Amplification. J Microbiol Biotechnol 2023; 33:1101-1110. [PMID: 37280774 PMCID: PMC10468681 DOI: 10.4014/jmb.2304.04026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Streptococcus mutans is the primary causative agent of caries, which is one of the most common human diseases. Thus, rapid and early detection of cariogenic bacteria is critical for its prevention. This study investigated the combination of loop-mediated isothermal amplification (LAMP) and microfluid technology to quantitatively detect S. mutans. A low-cost, rapid microfluidic chip using LAMP technology was developed to amplify and detect bacteria at 2.2-2.2 × 106 colony-forming units (CFU)/ml and its detection limits were compared to those of standard polymerase chain reaction. A visualization system was established to quantitatively determine the experimental results, and a functional relationship between the bacterial concentration and quantitative results was established. The detection limit of S. mutans using this microfluidic chip was 2.2 CFU/ml, which was lower than that of the standard approach. After quantification, the experimental results showed a good linear relationship with the concentration of S. mutans, thereby confirming the effectiveness and accuracy of the custom-made integrated LAMP microfluidic system for the detection of S. mutans. The microfluidic system described herein may represent a promising simple detection method for the specific and rapid testing of individuals at risk of caries.
Collapse
Affiliation(s)
- Jingfu Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, P.R.China
- Department of Stomatology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, P.R.China
| | - Jingyi Wang
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, P.R.China
| | - Xin Chang
- Outpatient Department, The Ninth Retired Cadres Retreat of Liaoning Military Command, 176 Dongbei Road, Shenyang 110044, P.R.China
| | - Jin Shang
- Department of Stomatology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, P.R.China
| | - Yuehui Wang
- Department of Stomatology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, P.R.China
| | - Qin Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, P.R.China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, P.R.China
| |
Collapse
|
4
|
Yu YB, Liu Y, Li S, Yang XY, Guo Z. The pH-responsive zeolitic imidazolate framework nanoparticle as a promising immune-enhancing adjuvant for anti-caries vaccine. J Dent 2023; 130:104413. [PMID: 36634754 DOI: 10.1016/j.jdent.2023.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Streptococcus mutans (S. mutans) is the main aetiologic bacterium of dental caries, whose protein antigen (PAc) has been administered as an anti-caries vaccine. In addition, several fusion proteins or PAc combined with adjuvants were used as anti-caries vaccines to improve the relatively weak immunogenicity of PAc. However, there are no nanoparticle-based adjuvants with good biocompatibility, excellent biodegradability, or the high loading performance of antigens used for anti-caries vaccines. This study aimed to prepare an innovative nanoparticle-based anti-caries vaccine and evaluate immune responses elicited by this vaccine in vitro and in vivo. METHODS In this study, an anti-caries vaccine was prepared by an antigen of recombinant protein PAc from S. mutans and an adjuvant of zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) synthesized using a hydrothermal method. Then, mice were administrated intranasally by ZIF-8@PAc vaccine, and immune responses were evaluated. RESULTS ZIF-8 NPs not only greatly improved the internalization of the antigen but also released the PAc protein after degradation of ZIF-8 NPs in lysosomes for the further processing and presentation of antigen-presenting cells. In addition, ZIF-8@PAc induced significantly more potent PAc-specific serum IgG and saliva IgA antibodies, a higher splenocyte proliferation index, higher levels of the cytokines IL-4, IL-6, IL-10, IL-17A and IFN-γ, and a higher percentage of mature DCs and CD4+ memory T cells in vivo. CONCLUSIONS The ZIF-8 NPs, as an anti-caries vaccine adjuvant-assisted antigen PAc, elicit significantly potent immune responses, aiding in the further prevention of dental caries. CLINICAL SIGNIFICANCE Vaccine immunotherapy is an attractive strategy for prevention and treatment of dental caries. The ZIF-8@PAc vaccine can induce significantly high level of immune responses in this study, which indicates great potential for prevention and treatment of caries.
Collapse
Affiliation(s)
- You-Bo Yu
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China; Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, College of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Ying Liu
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, College of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Sha Li
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, College of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xiao-Yan Yang
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, College of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Zhong Guo
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
5
|
Gaobotse G, Venkataraman S, Mmereke KM, Moustafa K, Hefferon K, Makhzoum A. Recent Progress on Vaccines Produced in Transgenic Plants. Vaccines (Basel) 2022; 10:1861. [PMID: 36366370 PMCID: PMC9698746 DOI: 10.3390/vaccines10111861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 01/15/2024] Open
Abstract
The development of vaccines from plants has been going on for over two decades now. Vaccine production in plants requires time and a lot of effort. Despite global efforts in plant-made vaccine development, there are still challenges that hinder the realization of the final objective of manufacturing approved and safe products. Despite delays in the commercialization of plant-made vaccines, there are some human vaccines that are in clinical trials. The novel coronavirus (SARS-CoV-2) and its resultant disease, coronavirus disease 2019 (COVID-19), have reminded the global scientific community of the importance of vaccines. Plant-made vaccines could not be more important in tackling such unexpected pandemics as COVID-19. In this review, we explore current progress in the development of vaccines manufactured in transgenic plants for different human diseases over the past 5 years. However, we first explore the different host species and plant expression systems during recombinant protein production, including their shortcomings and benefits. Lastly, we address the optimization of existing plant-dependent vaccine production protocols that are aimed at improving the recovery and purification of these recombinant proteins.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Kamogelo M. Mmereke
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Khaled Moustafa
- The Arabic Preprint Server/Arabic Science Archive (ArabiXiv)
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| |
Collapse
|
6
|
Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2020; 124:274-349. [PMID: 32811666 DOI: 10.1016/j.prosdent.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/20/2023]
Abstract
This comprehensive review of the 2019 restorative dental literature is offered to inform busy dentists regarding remarkable publications and noteworthy progress made in the profession. Developed by the Scientific Investigation Committee of the American Academy of Restorative Dentistry, each author brings discipline-specific expertise to 1 of 8 sections of the report: (1) prosthodontics; (2) periodontics, alveolar bone, and peri-implant tissues; (3) implant dentistry; (4) dental materials and therapeutics; (5) occlusion and temporomandibular disorders; (6) sleep-related breathing disorders; (7) oral medicine and oral and maxillofacial surgery; and (8) dental caries and cariology. The report targets important information likely to influence day-to-day dental treatment decisions. Each review is not intended to stand alone but to update interested readers so that they may visit source material when greater detail is desired. As the profession moves toward evidence-based clinical decision-making, an incredible volume of potentially valuable dental literature continues to increase. It is the intention of this review and its authors to provide assistance in negotiating the extensive dental literature published in 2019. It is our hope that readers find this work useful in the clinical management of dental patients.
Collapse
|
7
|
Patel M. Dental caries vaccine: are we there yet? Lett Appl Microbiol 2019; 70:2-12. [PMID: 31518435 DOI: 10.1111/lam.13218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
Dental caries, caused by Streptococcus mutans, is a common infection. Caries vaccine has been under investigation for the last 40 years. Many in vitro and in vivo studies and some human clinical trials have determined many pertinent aspects regarding vaccine development. The virulence determinants of Strep. mutans, such as Ag I/II, responsible for adherence to surfaces, glucosyltransferase, responsible for the production of glucan, and the glucan-binding protein, responsible for the attachment of glucan to surfaces, have been known to elicit an antigen-specific immune response. It is also known that more than one antigen or a functional part of the genome responsible for these virulence determinants provide a better host response compared with the monogenic vaccine or complete genome of a specific antigen. To enhance the host response, the use of adjuvants has been studied and the routes of antigen administration have been investigated. In recent years, some promising vaccines such as pGJA-P/VAX, LT derivative/Pi39-512 , KFD2-rPAc and SBR/GBR-CMV-nirB have been developed and tested in animals. New virulence targets need to be explored. Multicentre collaborative studies and human clinical trials are required and some interest from funders and public health experts should be generated to overcome this hurdle. SIGNIFICANCE AND IMPACT OF THE STUDY: Dental caries is an irreversible, multifactorial opportunistic infection. The treatment is costly, making it a public health problem. Despite many years of promising laboratory research, animal studies and clinical trials, there is no commercially available vaccine today. The research objectives have become more refined from lessons learnt over the years. Multigenic DNA/recombinant vaccines, using the best proved adjuvants with a delivery system for the nasal or sublingual route, should be developed and researched with multicentre collaborative efforts. In addition, new vaccine targets can be identified. To overcome the economic hurdle, funders and public health interest should be stimulated.
Collapse
Affiliation(s)
- M Patel
- Department of Oral Biological Sciences, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|