1
|
Meléndez DC, Laniewski N, Jusko TA, Qiu X, Paige Lawrence B, Rivera-Núñez Z, Brunner J, Best M, Macomber A, Leger A, Kannan K, Miller RK, Barrett ES, O'Connor TG, Scheible K. In utero exposure to per - and polyfluoroalkyl substances (PFAS) associates with altered human infant T helper cell development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317489. [PMID: 39606350 PMCID: PMC11601683 DOI: 10.1101/2024.11.18.24317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Environmental exposures to chemical toxicants during gestation and infancy can dysregulate multiple developmental processes, causing lifelong effects. There is compelling evidence of PFAS-associated immunotoxicity in adults and children. However, the effect of developmental PFAS exposure on infant T-cell immunity is unreported, and, if present, could be implicated in immune-related health outcomes. Objectives We seek to model longitudinal changes in CD4+ T-cell subpopulations from birth through 12 months and their association with in-utero PFAS exposure and postnatal CD4+ T-cell frequencies and functions. Methods Maternal-infant dyads were recruited as part of the UPSIDE-ECHO cohort during the first trimester between 2015 and 2019 in Rochester, New York; dyads were followed through the infant's first birthday. Maternal PFAS concentrations (PFOS, PFOA, PFNA, and PFHXS) were quantified in serum during the second trimester using high-performance liquid chromatography and tandem mass spectrometry. Infant lymphocyte frequencies were assessed at birth, 6- and 12-months using mass cytometry and high-dimensional clustering methods. Linear mixed-effects models were employed to analyze the relationship between maternal PFAS concentrations and CD4+ T-cell subpopulations (n=200). All models included a PFAS and age interaction and were adjusted for parity, infant sex, and pre-pregnancy body mass index. Results In-utero PFAS exposure correlated with multiple CD4+ T-cell subpopulations in infants. The greatest effect sizes were seen in T-follicular helper (Tfh) and T-helper 2 (Th2) cells at 12 months. A log 2 -unit increase in PFOS was associated with lower Tfh [0.17% (95%CI: -0.30, -0.40)] and greater Th2 [0.27% (95%CI: 0.18, 0.35)] cell percentages at 12 months. Similar trends were observed for PFOA, PFNA, and PFHXS. Discussion Maternal PFAS exposures correlate with cell-specific changes in the infant T-cell compartment, including key CD4+ T-cell subpopulations that play central roles in coordinating well-regulated, protective immunity. Future studies into the role of PFAS-associated T-cell distribution and risk of adverse immune-related health outcomes in children are warranted.
Collapse
|
2
|
Wang S, Dong Y, Zhai L, Bai Y, Yang Y, Jia L. Decreased Treg cells induced by bisphenol A is associated with up-regulation of PI3K/Akt/mTOR signaling pathway and Foxp3 DNA methylation in spleen of adolescent mice. CHEMOSPHERE 2024; 357:141957. [PMID: 38641296 DOI: 10.1016/j.chemosphere.2024.141957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The current study aimed to explore whether bisphenol A (BPA) exposure aggravated the decrease in Tregs induced by ovalbumin (OVA) in adolescent female mouse models of asthma, and whether the process was associated with mTOR-mediated signaling pathways and DNA methylation levels. A total of 40 female C57BL/6 mice at the age of four weeks were used and divided into five groups after 1 week of domestication. Each group consisted of eight mice: the control group, OVA group, OVA + BPA (0.1 μg mL-1) group, OVA + BPA (0.2 μg mL-1) group, and OVA + BPA (0.4 μg mL-1) group. Results revealed that Foxp3 protein levels decreased in the spleens of mice exposed to BPA compared to those in the OVA group. After an elevation in BPA dose, the mRNAs of methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) were gradually upregulated. The mechanism was related to the activity of TLR4/NF-κB and PI3K/Akt/mTOR signaling pathways and the enhancement of Foxp3 DNA methylation. Our results, collectively, provided a new view for studying the mechanisms underlying BPA exposure-induced immune dysfunction. Investigation of the regulatory mechanisms of DNA methylation in the abnormal Th immune response caused by BPA exposure could help reveal the causes and molecular mechanisms underlying the high incidence of allergic diseases in children in recent years.
Collapse
Affiliation(s)
- Simeng Wang
- Institute for International Health Professions Education and Research, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110022, PR China.
| | - Lingling Zhai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yinglong Bai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yilong Yang
- Department of Health Policy and Management, School of Public Health, Hangzhou Normal University, NO. 2318 Yuhangtang Road, Yuhang District, Hangzhou, Zhejiang, 311121, PR China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
3
|
Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, Bellingham M, Evans NP, Auchus R, Padmanabhan V. Developmental programming: Impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165674. [PMID: 37495149 PMCID: PMC10568064 DOI: 10.1016/j.scitotenv.2023.165674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated pasture are characterized by reproductive and metabolic disruptions. OBJECTIVE To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative stress milieus, in a fetal sex-specific manner. METHODS Ewes were maintained before mating and through gestation on pastures fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were used to test for differences between control and BTP groups (n = 15/group) and between groups based on fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. RESULTS Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP ewes compared to Controls, while the proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10. DISCUSSION These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - L Zeng
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - S Pennathur
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - R Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - K D Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - R Auchus
- Departments of Pharmacology & Internal medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Liang W, Wang X, Xie N, Yan H, Ma H, Liu M, Kong W, Zhu Z, Bai W, Xiang H. Short-term associations of PM 2.5 and PM 2.5 constituents with immune biomarkers: A panel study in people living with HIV/AIDS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120743. [PMID: 36442818 DOI: 10.1016/j.envpol.2022.120743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Studies on associations of fine particulate matter (PM2.5) with immunity in people living with HIV/AIDS (PLWHA) were absent. We aimed to explore whether changes of immune biomarkers were associated with short-term exposure to PM2.5 in PLWHA. Based on a panel study in Wuhan, we selected 163 PLWHA as participants with up to 4 repeated visits from March 2020 to January 2021. Immune biomarkers, including CD4+T cell count, CD8+T cell count, HIV viral load (VL) and CD4+T/CD8+T ratio were tested for all participants at each visit. Residential exposures of PM2.5 and PM2.5 constituents for each participant were assessed using spatial-temporal models. Linear mixed-effect models and general linear mixed models were applied to evaluate the associations between PM2.5 and immune biomarkers. To estimate the combined effect of PM2.5 constituents, weighted quantile sum regression and Bayesian kernel machine regression were employed. Each 10 μg/m3 increase of 7-day average PM2.5 concentrations was associated with an 8.75 cells/mm3 (95%CI: -15.55, -1.98) decrease in CD4+T cell count and a 92% (OR: 1.92, 95%CI: 1.43, 2.58) increased odds ratio of detectable HIV VL. However, the odds ratio of inverted CD4+T/CD8+T was only positively associated with PM2.5 concentrations at lag2 day (OR:1.27, 95%CI:1.02, 1.57). CD4+T may be a potential mediator between PM2.5 and detectable HIV VL with 3.83% mediated proportion. Besides, the combined effect of PM2.5 chemical constituents indicated that NO3- and SO42- were the main constituents in reducing CD4+T cell count and increasing odds ratio of detectable HIV VL. Our finding revealed that short-term exposure to PM2.5 was negatively associated with CD4+T cell count but positively related to the odds ratio of detectable HIV VL in PLWHA. This research may provide new evidence in associations between PM2.5 and immune biomarkers as well as improving prognosis of PLWHA.
Collapse
Affiliation(s)
- Wei Liang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Xia Wang
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Nianhua Xie
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Han Yan
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Hongfei Ma
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Manqing Liu
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Wenhua Kong
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Zerong Zhu
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Wenjuan Bai
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
5
|
Ozen M, Aghaeepour N, Marić I, Wong RJ, Stevenson DK, Jantzie LL. Omics approaches: interactions at the maternal-fetal interface and origins of child health and disease. Pediatr Res 2023; 93:366-375. [PMID: 36216868 PMCID: PMC9549444 DOI: 10.1038/s41390-022-02335-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
Immunoperinatology is an emerging field. Transdisciplinary efforts by physicians, physician-scientists, basic science researchers, and computational biologists have made substantial advancements by identifying unique immunologic signatures of specific diseases, discovering innovative preventative or treatment strategies, and establishing foundations for individualized neonatal intensive care of the most vulnerable neonates. In this review, we summarize the immunobiology and immunopathology of pregnancy, highlight omics approaches to study the maternal-fetal interface, and their contributions to pregnancy health. We examined the importance of transdisciplinary, multiomic (such as genomics, transcriptomics, proteomics, metabolomics, and immunomics) and machine-learning strategies in unraveling the mechanisms of adverse pregnancy, neonatal, and childhood outcomes and how they can guide the development of novel therapies to improve maternal and neonatal health. IMPACT: Discuss immunoperinatology research from the lens of omics and machine-learning approaches. Identify opportunities for omics-based approaches to delineate infection/inflammation-associated maternal, neonatal, and later life adverse outcomes (e.g., histologic chorioamnionitis [HCA]).
Collapse
Affiliation(s)
- Maide Ozen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivana Marić
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren L Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Thompson González N, Ong J, Luo L, MacKenzie D. Chronic Community Exposure to Environmental Metal Mixtures Is Associated with Selected Cytokines in the Navajo Birth Cohort Study (NBCS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14939. [PMID: 36429656 PMCID: PMC9690552 DOI: 10.3390/ijerph192214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/10/2023]
Abstract
Many tribal populations are characterized by health disparities, including higher rates of infection, metabolic syndrome, and cancer-all of which are mediated by the immune system. Members of the Navajo Nation have suffered chronic low-level exposure to metal mixtures from uranium mine wastes for decades. We suspect that such metal and metalloid exposures lead to adverse health effects via their modulation of immune system function. We examined the relationships between nine key metal and metalloid exposures (in blood and urine) with 11 circulating biomarkers (cytokines and CRP in serum) in 231 pregnant Navajo women participating in the Navajo Birth Cohort Study. Biomonitored levels of uranium and arsenic species were considerably higher in participants than NHANES averages. Each biomarker was associated with a unique set of exposures, and arsenic species were generally immunosuppressive (decreased cellular and humoral stimulating cytokines). Overall, our results suggest that environmental metal and metalloid exposures modulate immune status in pregnant Navajo women, which may impact long-term health outcomes in mothers and their children.
Collapse
Affiliation(s)
- Nicole Thompson González
- Integrative Anthropological Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA
- Academic Science Education and Research Training Program, Health Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jennifer Ong
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Li Luo
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| | - Debra MacKenzie
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Xiao Q, Lü Z, Zhu Z, Zhang D, Shen J, Huang M, Chen X, Yang J, Huang X, Rao M, Lu S. Exposure to polycyclic aromatic hydrocarbons and the associations with oxidative stress in waste incineration plant workers from South China. CHEMOSPHERE 2022; 303:135251. [PMID: 35688192 DOI: 10.1016/j.chemosphere.2022.135251] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Waste incineration is one of the most common emission sources of polycyclic aromatic hydrocarbons (PAHs), causing potential occupational exposure in waste incineration workers. However, relative investigations among waste incineration plant workers are still very limited, particularly in China. Therefore, we collected urine specimens from 77 workers in a waste incineration plant as the exposed group, and 101 residents as the control group in Shenzhen, China. Nine mono-hydroxylated PAH metabolites (OH-PAHs) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured, and their internal relationships were explored. The urinary levels of most OH-PAHs and 8-OHdG in the exposed group exhibited high levels versus another group (p < 0.05). We found negative associations between OH-PAHs and 8-OHdG in the control group (p < 0.05), while most of OH-PAHs were not associated with 8-OHdG in the exposed group, which indicated that the exposure to waste incineration could enlarge the level of individual oxidative stress damage. Nevertheless, PAHs were less likely to trigger obvious health risks in exposed workers through estimation of human intake and exposure risks. This study provides a reference for occupational PAH exposure and strengthen the need of health monitoring among incineration workers.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhanlu Lü
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Junchun Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Manting Rao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
PM2.5-Related Neonatal Infections: A Global Burden Study from 1990 to 2019. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095399. [PMID: 35564793 PMCID: PMC9105282 DOI: 10.3390/ijerph19095399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Background: Long-term exposure to fine particulate matter (PM2.5) may increase the risk of neonatal infections. To show the effects of PM2.5 on neonatal infections as well as the trends of the effect, we studied the burden measured by the age-standardized mortality rate (ASMR) and the age-standardized disability-adjusted life years rate (ASDR) and its trends with the socio-demographic index in 192 countries and regions from 1990 to 2019. Methods: This is a retrospective study that uses the Global Burden of Disease Study 2019 database. The age-standardized mortality rate and age-standardized disability-adjusted life years rate are used to measure the burden of PM2.5-related neonatal infections in different countries and regions. The annual percentage changes and the average annual percentage changes are used to reflect the trends over the years (1990–2019) and are calculated using a Joinpoint model. The relationship of the socio-demographic index with the ASMR and ASDR is calculated and described using Gaussian process regression. Results: With the rapid increase in the global annual average of PM2.5, the global burden of PM2.5-related neonatal infections has increased since 1990, especially in early neonates, boys, and low-middle SDI regions. Globally, the ASMR and ASDR of PM2.5-related neonatal infections in 2019 were 0.21 (95% CI: 0.14, 0.31) and 19.06 (95% CI: 12.58, 27.52) per 100,000 people, respectively. From 1990 to 2019, the ASMR and ASDR increased by 72.58% and 73.30%, and their average annual percentage changes were 1.9 (95% CI: 1.3, 2.6) and 2.0 (95% CI: 1.3, 2.6), respectively. When the socio-demographic index was more than 0.60, it was negatively related to the burden of PM2.5-related neonatal infections. Surprisingly, the burden in low SDI regions was lower than it was in low-middle and middle SDI regions, while high-middle and high-SDI regions showed decreasing trends. Interpretation: Boys bore a higher PM2.5-related neonatal burden, with male fetuses being more likely to be affected by prenatal exposure to PM2.5 and having less of a biological survival advantage. Poverty was the root cause of the burden. Higher SDI countries devoted more resources to improving air quality, the coverage of medical services, the accessibility of institutional delivery, and timely referral to reduce the disease burden. The burden in low SDI regions was lower than that in low-middle and middle SDI regions. One reason was that the benefits of medical services were lower than the harm to health caused by environmental pollution in low-middle and middle SDI regions. Moreover, the underreporting of data is more serious in low SDI countries. Conclusions: In the past 30 years, the global burden of PM2.5-related neonatal infections has increased, especially in early neonates, boys, and low-middle SDI regions. The huge difference compared to higher SDI countries means that lower SDI countries have a long way to go to reduce the disease burden. Policy makers should appropriately allocate medical resources to boys and early newborns and pay more attention to data under-reporting in low SDI countries. In addition, it is very necessary to promulgate policies to prevent and control air pollution in countries with large and increasing exposure to PM2.5 pollution.
Collapse
|
9
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
10
|
Sun K, Song Y, He F, Jing M, Tang J, Liu R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145403. [PMID: 33582342 DOI: 10.1016/j.scitotenv.2021.145403] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most widely distributed persistent organic pollutants (POPs) in the environmental media. PAHs have been widely concerned due to their significant health risk and adverse effects to human and animals. Currently, the main sources of PAHs in the environment are the incomplete combustion of fossil fuels, as well as municipal waste incineration and agricultural non-surface source emissions. In this work, the scope of our attention includes 16 typical PAHs themselves without involving their metabolites and industrial by-products. Exposure of human and animals to PAHs can lead to a variety of adverse effects, including carcinogenicity and teratogenicity, genotoxicity, reproductive- and endocrine-disrupting effects, immunotoxicity and neurotoxicity, the type and severity of which depend on a variety of factors. On the other hand, the regulatory effect of microplastics (MPs) on the bio-toxicity and bioaccumulation capacity of PAHs has now gradually attracted attention. We critically reviewed the adsorption capacity and mechanisms of MPs on PAHs as well as the effects of MPs on PAHs toxicity, thus highlighting the importance of paying attention to the joint bio-toxicity caused by PAHs-MPs interactions. In addition, due to the extensive nature of the common exposure pathway of PAHs and ultraviolet ray, an accurate understanding of biological processes exposed to both PAHs and UV light is necessary to develop effective protective strategies. Finally, based on the above critical review, we highlighted the research gaps and pointed out the priority of further studies.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province 250022, China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
11
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
12
|
Hahn J, Gold DR, Coull BA, McCormick MC, Finn PW, Perkins DL, Rifas Shiman SL, Oken E, Kubzansky LD. Air Pollution, Neonatal Immune Responses, and Potential Joint Effects of Maternal Depression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5062. [PMID: 34064967 PMCID: PMC8150899 DOI: 10.3390/ijerph18105062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/23/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Prenatal maternal exposure to air pollution may cause adverse health effects in offspring, potentially through altered immune responses. Maternal psychosocial distress can also alter immune function and may increase gestational vulnerability to air pollution exposure. We investigated whether prenatal exposure to air pollution is associated with altered immune responses in cord blood mononuclear cells (CBMCs) and potential modification by maternal depression in 463 women recruited in early pregnancy (1999-2001) into the Project Viva longitudinal cohort. We estimated black carbon (BC), fine particulate matter (PM2.5), residential proximity to major roadways, and near-residence traffic density, averaged over pregnancy. Women reported depressive symptoms in mid-pregnancy (Edinburgh Postnatal Depression Scale) and depression history by questionnaire. Immune responses were assayed by concentrations of three cytokines (IL-6, IL-10, and TNF-α), in unstimulated or stimulated (phytohemagglutinin (PHA), cockroach extract (Bla g 2), house dust mite extract (Der f 1)) CBMCs. Using multivariable linear or Tobit regression analyses, we found that CBMCs production of IL-6, TNF-a, and IL-10 were all lower in mothers exposed to higher levels of PM2.5 during pregnancy. A suggestive but not statistically significant pattern of lower cord blood cytokine concentrations from ever (versus never) depressed women exposed to PM2.5, BC, or traffic was also observed and warrants further study.
Collapse
Affiliation(s)
- Jill Hahn
- Department of Social and Behavioral Sciences, The Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (M.C.M.); (L.D.K.)
| | - Diane R. Gold
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Marie C. McCormick
- Department of Social and Behavioral Sciences, The Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (M.C.M.); (L.D.K.)
| | - Patricia W. Finn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - David L. Perkins
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sheryl L. Rifas Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA; (S.L.R.S.); (E.O.)
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA; (S.L.R.S.); (E.O.)
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, The Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (M.C.M.); (L.D.K.)
| |
Collapse
|
13
|
Pulmonary immune cell transcriptome changes in double-hit model of BPD induced by chorioamnionitis and postnatal hyperoxia. Pediatr Res 2021; 90:565-575. [PMID: 33446917 PMCID: PMC7808307 DOI: 10.1038/s41390-020-01319-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Preterm infants with bronchopulmonary dysplasia (BPD) have lifelong increased risk of respiratory morbidities associated with environmental pathogen exposure and underlying mechanisms are poorly understood. The resident immune cells of the lung play vital roles in host defense. However, the effect of perinatal events associated with BPD on pulmonary-specific immune cells is not well understood. METHODS We used a double-hit model of BPD induced by prenatal chorioamnionitis followed by postnatal hyperoxia, and performed a global transcriptome analysis of all resident pulmonary immune cells. RESULTS We show significant up-regulation of genes involved in chemokine-mediated signaling and immune cell chemotaxis, and down-regulation of genes involved in multiple T lymphocyte functions. Multiple genes involved in T cell receptor signaling are downregulated and Cd8a gene expression remains downregulated at 2 months of age in spite of recovery in normoxia for 6 weeks. Furthermore, the proportion of CD8a+CD3+ pulmonary immune cells is decreased. CONCLUSIONS Our study has highlighted that perinatal lung inflammation in a double-hit model of BPD results in short- and long-term dysregulation of genes associated with the pulmonary T cell receptor signaling pathway, which may contribute to increased environmental pathogen-associated respiratory morbidities seen in children and adults with BPD. IMPACT In a translationally relevant double-hit model of BPD induced by chorioamnionitis and postnatal hyperoxia, we identified pulmonary immune cell-specific transcriptomic changes and showed that T cell receptor signaling genes are downregulated in short term and long term. This is the first comprehensive report delineating transcriptomic changes in resident immune cells of the lung in a translationally relevant double-hit model of BPD. Our study identifies novel resident pulmonary immune cell-specific targets for potential therapeutic modulation to improve short- and long-term respiratory health of preterm infants with BPD.
Collapse
|
14
|
Wang CM, Jung CR, Chen WT, Hwang BF. Exposure to fine particulate matter (PM 2.5) and pediatric rheumatic diseases. ENVIRONMENT INTERNATIONAL 2020; 138:105602. [PMID: 32120057 DOI: 10.1016/j.envint.2020.105602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Few studies have assessed the association between fine particulate matter (PM2.5) exposure during pregnancy and infancy and pediatric rheumatic diseases (PRDs). The goal of this study was to investigate the association of PM2.5 with PRDs, and to explore sensitive windows of exposure. Therefore, we conducted a cohort-based case-control study to investigate the association between weekly exposure to PM2.5 and PRDs in Taiwan. Our birth cohort consisted of infants born in 2004-2014 (n = 1,991,592) who were followed from conception to the end of 2015. There were 2363 cases of incident PRDs in children, and 23,630 children served as controls using density matching (1:10) based on date of birth, gender, and gestational week. We used a linear mixed effect (LME) model to incorporate the aerosol optical depth (AOD), meteorological variables, and land-use data to predict daily PM2.5 concentrations. We also performed conditional logistic regression with distributed lag non-linear models (DLNMs) to assess the effects of weekly average PM2.5 on PRDs, as well as dose-response relationships. In DLNMs, exposure to PM2.5 during pregnancy (11-40 weeks) or infancy (1-14 weeks after birth) was associated with incident PRDs adjusting for potential confounding factors, and for carbon monoxide and sulfur dioxide. In the dose-response association, the odds ratios of PRDs were significantly increased for PM2.5 exposures between 26 and 54 μg/m3. In addition, exposure to PM2.5 above 81 μg/m3 dramatically increased the risk of PRDs. In conclusions, our study provides new data to suggest that PM2.5 exposure from 11-40 gestational weeks to 1-14 weeks after birth can increase the risk for PRDs in a non-linear dose-response fashion.
Collapse
Affiliation(s)
- Chi-Min Wang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan.
| | - Chau-Ren Jung
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan; Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan.
| | - Wei-Ting Chen
- Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan.
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan; Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
15
|
A perfect storm: fetal inflammation and the developing immune system. Pediatr Res 2020; 87:319-326. [PMID: 31537013 PMCID: PMC7875080 DOI: 10.1038/s41390-019-0582-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Histologic chorioamnionitis is an inflammatory disorder of the placenta that commonly precedes preterm delivery. Preterm birth related to chorioamnionitis and fetal inflammation has been associated with a risk for serious inflammatory complications in infancy. In addition, preterm infants exposed to chorioamnionitis may be more susceptible to infection in the neonatal intensive care unit and possibly later in life. A significant body of work has established an association between chorioamnionitis and inflammatory processes. However, the potential consequences of this inflammation on postnatal immunity are less understood. In this review, we will discuss current knowledge regarding the effects of fetal exposure to inflammation on postnatal immune responses.
Collapse
|