1
|
Panda SK, H M NK, Takawale P. Embryo-fetal developmental toxicity of carbamazepine administered orally in wistar rat. Reprod Toxicol 2024; 129:108665. [PMID: 39009194 DOI: 10.1016/j.reprotox.2024.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Carbamazepine is an anticonvulsant medication commonly used to treat epilepsy and other neurological disorders. The purpose of this study was to assess the impact of carbamazepine on prenatal development, including maternal-fetal, external, visceral, and skeletal toxicity. Additionally, the study aimed to investigate the effects of orally administered Carbamazepine at a lower dose range in Wistar rats. Pregnant female rats were randomly distributed into control (G1) group administered with distilled water orally (n=8), low dose (G2) group administered at 25 mg/kg, intermediate dose (G3) group at 50 mg/kg, and high dose (G4) group at 100 mg/kg through oral gavage from gestation day (GD) 5-19. Pregnant female rats were scheduled to necropsy on gestation day (GD) 20. During the evaluation, the uterus was observed for number of live or viable fetuses, dead fetuses, early resorptions, late resorptions, number of corpora lutea and the sex ratio (m/f) per litter. Further, fetuses were subjected to materno-fetal examination which included observation for placenta, amniotic fluid, and umbilical cord followed by external evaluation. Additionally, half of the fetuses were subjected to visceral, craniofacial evaluation and other half of the fetuses were subjected to skeletal evaluation by double staining method using Alcian Blue for cartilages and Alizarin Red S for bones. It was observed that there was a significant decrease in the rate of pregnancy in the intermediate dose (G3) group and in high dose (G4) group when compared with the control group. Moreover, treatment with the Carbamazepine caused significant increase in fetal malformations such as dilation of lateral and third ventricle in brain, in intermediate dose (G3) group and high dose (G4) group when compared with the control (G1) group, dilation of ureters in high dose (G4) group. Fetal skeletal malformations like bent and nodulated ribs were also observed in intermediate dose (G3) group. Existing research substantially supports the claim that carbamazepine can cause teratogenic effects and prenatal development toxicity even at a lower dose range.
Collapse
Affiliation(s)
- Subham Kumar Panda
- Department of Developmental and Reproductive Toxicology, Vipragen Biosciences Private Limited, Mysuru, Karnataka, India.
| | - Naveen Kumar H M
- Department of Developmental and Reproductive Toxicology, Vipragen Biosciences Private Limited, Mysuru, Karnataka, India
| | - Pradeep Takawale
- Department of Developmental and Reproductive Toxicology, Vipragen Biosciences Private Limited, Mysuru, Karnataka, India
| |
Collapse
|
2
|
Roos P, Anggasta C, Piersma AH, van Meer PJK, Theunissen PT. Evaluation of rat and rabbit embryofetal development studies with pharmaceuticals: the added value of a second species. Crit Rev Toxicol 2024; 54:619-633. [PMID: 39093553 DOI: 10.1080/10408444.2024.2374281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024]
Abstract
Embryofetal development (EFD) studies are performed to characterize risk of drugs in pregnant women and on embryofetal development. In line with the ICH S5(R3) guideline, these studies are generally conducted in one rodent and one non-rodent species, commonly rats and rabbits. However, the added value of conducting EFD studies in two species to risk assessment is debatable. In this study, rat and rabbit EFD studies were evaluated to analyze the added value of a second species. Information on rat and rabbit EFD studies conducted for human pharmaceuticals submitted for marketing authorization to the European Medicines Agency between 2004 and 2022 was collected from the database of the Dutch Medicines Evaluation Board, along with EFD studies conducted for known human teratogens. In total, 369 compounds were included in the database. For 55.6% of the compounds similar effects were observed in rat and rabbit EFD studies. Discordance was observed for 44.6% of compounds. Discordance could often be explained based on occurrence of maternal toxicity or the compound's mechanism of action. For other compounds, discordance was considered of limited clinical relevance due to high exposure margins or less concerning EFD toxicity. For 6.2%, discordance could not be explained and was considered clinically relevant. Furthermore, for specific therapeutic classes, concordance between rat and rabbit could vary. In conclusion, in many cases the added value of conducting EFD studies in two species is limited. These data could help identify scenarios in which (additional) EFD studies could be waived or create a weight-of-evidence model to determine the need for (additional) EFD studies.
Collapse
Affiliation(s)
- Puck Roos
- Dutch Medicines Evaluation Board, Utrecht, the Netherlands
| | | | - Aldert H Piersma
- Centre for Health Protection, Dutch Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Peter J K van Meer
- Dutch Medicines Evaluation Board, Utrecht, the Netherlands
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Peter T Theunissen
- Dutch Medicines Evaluation Board, Utrecht, the Netherlands
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Turker Yavas F, Coskun U. The Foraminal Indices of the Rat Scapula. Anat Histol Embryol 2024; 53:e13104. [PMID: 39206506 DOI: 10.1111/ahe.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The nutritive arteries of bones may be injured due to fracture or surgical procedures. Therefore, there are some studies focused on the location of the nutrient foramen (NF) of bones. Rats are the most preferred animals in experimental studies. The purpose of this study is to expose the locational variations of the NF on the rat (Sprague Dawley) scapula. A total of 60 adult rat scapulae (from 16 male and 14 female rats) were used. The diameters of NFs were measured. The length, width, and distances of the NF to the proximal and cranial edges were measured. Foraminal indices were also calculated. It was determined that the average number of NF per scapula was 1.8. The location of the NFs was 52% on the medial aspect and 48% on the lateral aspect. On the medial aspect of the scapula, NFs were frequently found ventrally, on the neck region of the scapula. Laterally, 40 NFs were found in the ventral region of the infraspinatus fossa and only 12 in the ventral region of the supraspinatus fossa. Longitudinal foraminal index 95% confidence intervals were 74.25-79.18 (lateral) and 71.70-75.97 (medial). Transversal foraminal index 95% confidence intervals were 40.98-45.02 (lateral) and 42.91-46.07 (medial). Diameter of the NF 95% confidence interval was 0.21-0.39 mm. The locational knowledge of the NF can be utilized in anatomical or experimental surgery studies. The cranial and proximal edges of the rat scapula may be palpable; surgeons may palpate these regions and easily evaluate the location of the NFs.
Collapse
Affiliation(s)
- Firuze Turker Yavas
- Department of Anatomy, Faculty of Veterinary Medicine, University of Aydın Adnan Menderes, Aydın, Turkey
| | - Umut Coskun
- Faculty of Veterinary Medicine, University of Aydın Adnan Menderes, Aydın, Turkey
| |
Collapse
|
4
|
Colnot T, Dekant W. Grouping of short alkyl-chain branched carboxylic acids for developmental toxicity. Regul Toxicol Pharmacol 2024; 151:105662. [PMID: 38866176 DOI: 10.1016/j.yrtph.2024.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Read-across (RAx) and grouping of chemicals into categories are well-known concepts in toxicology. Recently, ECHA proposed a grouping approach for branched-chain carboxylic acids (BCAs) including more than 60 branched-chain saturated carboxylic acids for hazard identification. Grouping was based only on structural considerations. Due to developmental effects of two members, ECHA postulated that "all short carbon chain acids … are likely reproductive and developmental toxicants". This work analyzes available data for BCAs. The number of compounds in the group can be significantly reduced by eliminating metal and organic salts of BCAs, compounds of unknown or variable composition, and complex reaction products or biological materials (UVCB compounds). For the resulting reduced number of compounds, grouping is supported by similar physicochemical data and expected similar biotransformation. However, analysis of adverse effects for compounds in the group and mechanistic information show that BCAs, as a class, do not cause developmental effects in rats. Rather, developmental toxicity is limited to selected BCAs with specific structures that share a common mode of action (histone deacetylase inhibition). Thus, the proposed grouping is unreasonably wide and the more detailed analyses show that structural similarity alone is not sufficient for grouping branched-chain carboxylic acids for developmental toxicity.
Collapse
|
5
|
Shearer J, Wolfe G, Khaliq M, Kaufman B, Sampath A, Warfield KL, Ramstedt U, Treston A. Reproductive and developmental toxicology studies of iminosugar UV-4. Reprod Toxicol 2022; 114:9-21. [DOI: 10.1016/j.reprotox.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
|
6
|
Catlin NR, Bowman CJ, Campion SN, Lewis EM, Nowland WS, Stethem C, Cappon GD. The postnatal resolution of developmental toxicity induced by pharmacological diacylglycerol acyltransferase 2 (DGAT2) inhibition during gestation in rats. Toxicol Sci 2022; 189:225-236. [PMID: 35866640 DOI: 10.1093/toxsci/kfac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ervogastat (PF-06865571) is a small molecule diacylglycerol acyltransferase 2 (DGAT2) inhibitor being developed for the oral treatment of non-alcoholic steatohepatitis (NASH) with liver fibrosis. DGAT2 is a key enzyme in triglyceride synthesis in tissues and in regulating energy metabolism. Fertility and developmental toxicity studies with ervogastat were conducted in female rats and rabbits. There were no effects on female rat fertility or rabbit embryo-fetal development. Administration of ervogastat to pregnant rats during organogenesis reduced fetal weight and caused higher incidences of bent bones in fetuses that were shown to resolve by postnatal day 28 and were therefore considered to be transient variations secondary to developmental delay. Extended dosing in rats through the end of gestation and lactation (pre- and post-natal development study) caused impaired skin development, reduced offspring viability and growth retardation. The spectrum of developmental effects in rats is consistent with the intended pharmacology (altered triglyceride metabolism) and the transient nature of the skeletal findings, along with the late gestational window of sensitivity for the effects on skin barrier development, reduce the concern for potential adverse developmental effects following unintended early gestational exposure to ervogastat in humans where treatment can be discontinued once pregnancy is determined.
Collapse
Affiliation(s)
- Natasha R Catlin
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Christopher J Bowman
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Sarah N Campion
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Elise M Lewis
- Charles River Laboratories, Inc, Safety Assessment, Horsham, PA, USA
| | - William S Nowland
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Christine Stethem
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Gregg D Cappon
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| |
Collapse
|
7
|
Castanho NRCM, de Oliveira RA, Batista BL, Freire BM, Lange C, Lopes AM, Jozala AF, Grotto D. Comparative Study on Lead and Copper Biosorption Using Three Bioproducts from Edible Mushrooms Residues. J Fungi (Basel) 2021; 7:jof7060441. [PMID: 34073030 PMCID: PMC8228708 DOI: 10.3390/jof7060441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/05/2022] Open
Abstract
Agricultural waste products can be used as biosorbents for bioremediation once they are low-cost and high-efficient in pollutants removal. Thus, waste products from mushroom farming such as cutting and substrate of Lentinula edodes (popularly known as shiitake) and Agaricus bisporus (also known as champignon) were evaluated as biosorbents for metallic contaminants copper (Cu) and lead (Pb). Shiitake and champignon stalks, and shiitake substrate (medium in which shiitake was cultivated) were dried, grounded, characterized and experimented to remove Cu and Pb from contaminated water. The Sips model was used to establish the adsorption isotherms. Regarding Cu, champignon stalks have the best removal efficiency (43%), followed by substrate and stalks of shiitake (37 and 30%, respectively). Pb removals were similar among three residues (from 72 to 83%), with the champignon stalks standing out. The maximum adsorption capacities (qmax) for Cu in shiitake and champignon stalks were 22.7 and 31.4 mg/g−1, respectively. For Pb, qmax for shiitake and champignon stalks, and shiitake substrate were 130.0, 87.0 and 84.0 mg/g−1, respectively. The surface morphology of the champignon stalks revealed an organized and continuous structure. After an interaction with metals, the stalk of champignon accumulated the metal ions into interstices. Mushroom residues showed a relevant adsorption efficiency, especially for Pb. Mushroom farming waste are a very low-cost and promising alternative for removing toxic heavy metals from aquatic environment.
Collapse
Affiliation(s)
| | - Renan A. de Oliveira
- University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (N.R.C.M.C.); (R.A.d.O.)
| | - Bruno L. Batista
- Center of Natural and Human Sciences, Federal University of ABC, Santo André 09210-170, SP, Brazil; (B.L.B.); (B.M.F.); (C.L.)
| | - Bruna M. Freire
- Center of Natural and Human Sciences, Federal University of ABC, Santo André 09210-170, SP, Brazil; (B.L.B.); (B.M.F.); (C.L.)
| | - Camila Lange
- Center of Natural and Human Sciences, Federal University of ABC, Santo André 09210-170, SP, Brazil; (B.L.B.); (B.M.F.); (C.L.)
| | - André M. Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, SP, Brazil;
| | - Angela F. Jozala
- University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (N.R.C.M.C.); (R.A.d.O.)
- Correspondence: (A.F.J.); (D.G.); Tel.: +55-15-2101-7104 (A.F.J. & D.G.); Fax: +55-15-2101-7000 (A.F.J. & D.G.)
| | - Denise Grotto
- University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (N.R.C.M.C.); (R.A.d.O.)
- Correspondence: (A.F.J.); (D.G.); Tel.: +55-15-2101-7104 (A.F.J. & D.G.); Fax: +55-15-2101-7000 (A.F.J. & D.G.)
| |
Collapse
|
8
|
Taylor AA, Tsuji JS, Garry MR, McArdle ME, Goodfellow WL, Adams WJ, Menzie CA. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. ENVIRONMENTAL MANAGEMENT 2020; 65:131-159. [PMID: 31832729 PMCID: PMC6960211 DOI: 10.1007/s00267-019-01234-y] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/23/2019] [Indexed: 05/18/2023]
Abstract
Decades of study indicate that copper oral exposures are typically not a human health concern. Ingesting high levels of soluble copper salts can cause acute gastrointestinal symptoms and, in uncommon cases, liver toxicity in susceptible individuals with repeated exposure. This focused toxicological review evaluated the current literature since the last comprehensive reviews (2007-2010). Our review identified limitations in the existing United States and international guidance for determining an oral reference dose (RfD) for essential metals like copper. Instead, an alternative method using categorical regression analysis to develop an optimal dose that considers deficiency, toxicity, and integrates information from human and animal studies was reviewed for interpreting an oral RfD for copper. We also considered subchronic or chronic toxicity from genetic susceptibility to copper dysregulation leading to rare occurrences of liver and other organ toxicity with elevated copper exposure. Based on this approach, an oral RfD of 0.04 mg Cu/kg/day would be protective of acute or chronic toxicity in adults and children. This RfD is also protective for possible genetic susceptibility to elevated copper exposure and allows for background dietary exposures. This dose is not intended to be protective of patients with rare genetic disorders for copper sensitivity within typical nutritional intake ranges, nor is it protective for those with excessive supplement intake. Less soluble mineral forms of copper in soil have reduced bioavailability as compared with more soluble copper in water and diet, which should be considered in using this RfD for risk assessments of copper.
Collapse
Affiliation(s)
- Alicia A Taylor
- Exponent, Inc., 475 14th Street, Suite 400, Oakland, CA, 94612, USA
| | - Joyce S Tsuji
- Exponent, Inc., 15375 SE 30th Place, Suite 250, Bellevue, WA, 98027, USA
| | - Michael R Garry
- Exponent, Inc., 15375 SE 30th Place, Suite 250, Bellevue, WA, 98027, USA
| | - Margaret E McArdle
- Exponent, Inc., One Mill and Main Place, Suite 150, Maynard, MA, 01754, USA
| | | | - William J Adams
- Red Cap Consulting, 7760 North Boulder Drive, Lake Point, UT, 84074, USA
| | - Charles A Menzie
- Exponent, Inc., 1800 Diagonal Road, Suite 500, Alexandria, VA, 22314, USA
| |
Collapse
|
9
|
FEMA GRAS assessment of natural flavor complexes: Citrus-derived flavoring ingredients. Food Chem Toxicol 2018; 124:192-218. [PMID: 30481573 DOI: 10.1016/j.fct.2018.11.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication is the first in a series and summarizes the evaluation of 54 Citrus-derived NFCs using the procedure outlined in Smith et al. (2005) and updated in Cohen et al. (2018) to evaluate the safety of naturally-occurring mixtures for their intended use as flavoring ingredients. The procedure relies on a complete chemical characterization of each NFC intended for commerce and organization of each NFC's chemical constituents into well-defined congeneric groups. The safety of the NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of members of the congeneric groups and the NFC under evaluation. As a result of the application of the procedure, 54 natural flavor complexes derived from botanicals of the Citrus genus were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavoring ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
|
10
|
Williams AL, Bates CA, Pace ND, Leonhard MJ, Chang ET, DeSesso JM. Impact of chloroform exposures on reproductive and developmental outcomes: A systematic review of the scientific literature. Birth Defects Res 2018; 110:1267-1313. [PMID: 30350414 DOI: 10.1002/bdr2.1382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/26/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022]
Abstract
AIMS We assessed the animal and epidemiological data to determine if chloroform exposure causes developmental and/or reproductive toxicity. RESULTS AND DISCUSSION Initial scoping identified developmental toxicity as the primary area of concern. At levels producing maternal toxicity in rats and mice, chloroform caused decrements in fetal weights and associated delays in ossification. In a single mouse inhalation study, exposure to a high concentration of chloroform was associated with small fetuses and increased cleft palate. However, oral exposure of mice to chloroform at a dose 4 times higher was negative for cleft palate; multiple inhalation studies in rats were also negative. Epidemiologic data on low birth weight and small for gestational age were generally equivocal, preventing conclusions from being drawn for humans. The animal data also show evidence of very early (peri-implantation) total litter losses at very high exposure levels. This effect is likely maternally mediated rather than a direct effect on the offspring. Finally, the epidemiologic data indicate a possible association of higher chloroform exposure with lower risk of preterm birth (<37 weeks gestation). CONCLUSIONS The available animal data suggest that exposures lower than those causing maternal toxicity should be without developmental effects in the offspring. Also, most studies in humans rely on group-level geographic exposure data, providing only weak epidemiologic evidence for an association with development outcomes and fail to establish a causal role for chloroform in the induction of adverse developmental outcomes at environmentally relevant concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | - John M DeSesso
- Exponent, Inc., Alexandria, Virginia.,Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
11
|
DeSesso JM, Scialli AR. Bone development in laboratory mammals used in developmental toxicity studies. Birth Defects Res 2018; 110:1157-1187. [PMID: 29921029 DOI: 10.1002/bdr2.1350] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 01/12/2023]
Abstract
Evaluation of the skeleton in laboratory animals is a standard component of developmental toxicology testing. Standard methods of performing the evaluation have been established, and modification of the evaluation using imaging technologies is under development. The embryology of the rodent, rabbit, and primate skeleton has been characterized in detail and summarized herein. The rich literature on variations and malformations in skeletal development that can occur in the offspring of normal animals and animals exposed to test articles in toxicology studies is reviewed. These perturbations of skeletal development include ossification delays, alterations in number, shape, and size of ossification centers, and alterations in numbers of ribs and vertebrae. Because the skeleton is undergoing developmental changes at the time fetuses are evaluated in most study designs, transient delays in development can produce apparent findings of abnormal skeletal structure. The determination of whether a finding represents a permanent change in embryo development with adverse consequences for the organism is important in study interpretation. Knowledge of embryological processes and schedules can assist in interpretation of skeletal findings.
Collapse
|
12
|
Cardoso BS, Machado KB, de Paula JR, de Paula JAM, Cuvinel WDM, Amaral VCS. Developmental toxicity evaluation of Pimenta pseudocaryophyllus
(Gomes) Landrum, (E
)-methyl isoeugenol chemotype, in Wistar rats. Birth Defects Res 2017; 109:1292-1300. [DOI: 10.1002/bdr2.1075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Bruce Soares Cardoso
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde (CAPS); Universidade Estadual de Goiás; Campus Anápolis de Ciências Exatas e Tecnológicas, Anápolis Brasil
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos; Universidade Estadual de Goiás - Campus Anápolis de Ciências Exatas e Tecnológicas; Anápolis Brasil
| | - Katia Borges Machado
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos; Universidade Estadual de Goiás - Campus Anápolis de Ciências Exatas e Tecnológicas; Anápolis Brasil
| | | | - Joelma Abadia Marciano de Paula
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde (CAPS); Universidade Estadual de Goiás; Campus Anápolis de Ciências Exatas e Tecnológicas, Anápolis Brasil
| | - Wilson de Melo Cuvinel
- Pontifícia Universidade Católica de Goiás, Departamento de Biomedicina e Farmácia; Goiânia Brasil
| | - Vanessa Cristiane Santana Amaral
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde (CAPS); Universidade Estadual de Goiás; Campus Anápolis de Ciências Exatas e Tecnológicas, Anápolis Brasil
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos; Universidade Estadual de Goiás - Campus Anápolis de Ciências Exatas e Tecnológicas; Anápolis Brasil
| |
Collapse
|
13
|
Neal BH, Bus J, Marty MS, Coady K, Williams A, Staveley J, Lamb JC. Weight-of-the-evidence evaluation of 2,4-D potential for interactions with the estrogen, androgen and thyroid pathways and steroidogenesis. Crit Rev Toxicol 2017; 47:345-401. [PMID: 28303741 DOI: 10.1080/10408444.2016.1272094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A comprehensive weight-of-the-evidence evaluation of 2,4-dichlorophenoxyacetic acid (2,4-D) was conducted for potential interactions with the estrogen, androgen and thyroid pathways and with steroidogenesis. This assessment was based on an extensive database of high quality in vitro, in vivo ecotoxicological and in vivo mammalian toxicological studies. Epidemiological studies were also considered. Toxicokinetic data provided the basis for determining rational cutoffs above which exposures were considered irrelevant to humans based on exceeding thresholds for saturation of renal clearance (TSRC); extensive human exposure and biomonitoring data support that these boundaries far exceed human exposures and provide ample margins of exposure. 2,4-D showed no evidence of interacting with the estrogen or androgen pathways. 2,4-D interacts with the thyroid axis in rats through displacement of thyroxine from plasma binding sites only at high doses exceeding the TSRC in mammals. 2,4-D effects on steroidogenesis parameters are likely related to high-dose specific systemic toxicity at doses exceeding the TSRC and are not likely to be endocrine mediated. No studies, including high quality studies in the published literature, predict significant endocrine-related toxicity or functional decrements in any species at environmentally relevant concentrations, or, in mammals, at doses below the TSRC that are relevant for human hazard and risk assessment. Overall, there is no basis for concern regarding potential interactions of 2,4-D with endocrine pathways or axes (estrogen, androgen, steroidogenesis or thyroid), and thus 2,4-D is unlikely to pose a threat from endocrine disruption to wildlife or humans under conditions of real-world exposures.
Collapse
Affiliation(s)
- B H Neal
- a Exponent® , Alexandria , VA , USA
| | - J Bus
- a Exponent® , Alexandria , VA , USA
| | - M S Marty
- b Toxicology & Environmental Research and Consulting, The Dow Chemical Company , Midland , MI , USA
| | - K Coady
- b Toxicology & Environmental Research and Consulting, The Dow Chemical Company , Midland , MI , USA
| | | | | | - J C Lamb
- a Exponent® , Alexandria , VA , USA
| |
Collapse
|
14
|
Baier B, Cordts R, Stei P. Influence of gender and body hemisphere on the occurrence of wavy ribs: An analysis of spontaneous skeletal abnormalities in Wistar rat fetuses. Reprod Toxicol 2016; 63:135-9. [DOI: 10.1016/j.reprotox.2016.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/17/2016] [Accepted: 05/27/2016] [Indexed: 12/26/2022]
|
15
|
Hofmann T, Buesen R, Schneider S, van Ravenzwaay B. Postnatal fate of prenatal-induced fetal alterations in laboratory animals. Reprod Toxicol 2016; 61:177-85. [PMID: 27094378 DOI: 10.1016/j.reprotox.2016.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
Currently it is common practice to evaluate the developmental toxicity hazard of chemicals or pharmaceuticals by evaluation of fetuses after administration of the compound to pregnant animals. These studies are designed to provide possible compound-related fetal changes near term, which are usually classified into malformations or variations. Malformations, but not variations are expected to adversely affect the survival or health. Therefore, classification has striking different regulatory consequences. For categorization as variation reversibility is an important criterion, but it is usually not examined in a standard guideline study. Although this issue has already been recognized long time ago, data dealing with the postnatal reversibility of fetal alterations are still rare. In the current review, literature data, regulatory documents as well as in-house data were compiled. Beside skeletal alterations of skull, vertebral column, ribs, shoulder and pelvic girdle, and extremities, kidney and heart defects are discussed and assessed.
Collapse
Affiliation(s)
- Thomas Hofmann
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany.
| | - Roland Buesen
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | - Steffen Schneider
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | |
Collapse
|
16
|
Morse DC, Henck JW, Bailey SA. Developmental Toxicity Studies with Pregabalin in Rats: Significance of Alterations in Skull Bone Morphology. ACTA ACUST UNITED AC 2016; 107:94-107. [PMID: 27074409 PMCID: PMC6585975 DOI: 10.1002/bdrb.21175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/10/2016] [Indexed: 11/28/2022]
Abstract
Pregabalin was administered to pregnant Wistar rats during organogenesis to evaluate potential developmental toxicity. In an embryo‐fetal development study, compared with controls, fetuses from pregabalin‐treated rats exhibited increased incidence of jugal fused to maxilla (pregabalin 1250 and 2500 mg/kg) and fusion of the nasal sutures (pregabalin 2500 mg/kg). The alterations in skull development occurred in the presence of maternal toxicity (reduced body weight gain) and developmental toxicity (reduced fetal body weight and increased skeletal variations), and were initially classified as malformations. Subsequent investigative studies in pregnant rats treated with pregabalin during organogenesis confirmed the advanced jugal fused to maxilla, and fusion of the nasal sutures at cesarean section (gestation day/postmating day [PMD] 21) in pregabalin‐treated groups. In a study designed to evaluate progression of skull development, advanced jugal fused to maxilla and fusion of the nasal sutures was observed on PMD 20–25 and PMD 21–23, respectively (birth occurs approximately on PMD 22). On postnatal day (PND) 21, complete jugal fused to maxilla was observed in the majority of control and 2500 mg/kg offspring. No treatment‐related differences in the incidence of skull bone fusions occurred on PND 21, indicating no permanent adverse outcome. Based on the results of the investigative studies, and a review of historical data and scientific literature, the advanced skull bone fusions were reclassified as anatomic variations. Pregabalin was not teratogenic in rats under the conditions of these studies
Collapse
Affiliation(s)
- Dennis C Morse
- Pfizer Worldwide Research and Development, Drug Safety Research and Development, Groton, Connecticut
| | | | - Steven A Bailey
- Pfizer Worldwide Research and Development, Drug Safety Research and Development, Andover, Massachusetts
| |
Collapse
|
17
|
Kawamura S, Yoshioka T, Mito N, Kishimoto N, Nakaoka M, Fantel AG. Mechanism of Developmental Effects in Rats Caused by an N-Phenylimide Herbicide: Transient Fetal Anemia and Sequelae during Mid-to-Late Gestation. ACTA ACUST UNITED AC 2016; 107:45-59. [PMID: 26865470 DOI: 10.1002/bdrb.21172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/20/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rat developmental toxicity including embryolethality and teratogenicity (mainly ventricular septal defects [VSDs] and wavy ribs) was produced by an N-phenylimide herbicide that inhibits protoporphyrinogen oxidase (PPO) common to chlorophyll and heme biosynthesis. Major characteristics of the developmental toxicity included species difference between rats and rabbits, compound-specific difference among structurally similar herbicides, and sensitive period. Protoporphyrin accumulation in treated fetuses closely correlated with the major characteristics. Iron deposits in erythroblastic mitochondria and degeneration of erythroblasts were observed in treated rat fetuses. In this study we investigated fetal anemia and subsequent developmental effects in rats, and inhibition of PPO in rats, rabbits, and humans by the herbicides in vitro. METHODS Fetuses were treated on gestational day (GD) 12 and removed on GDs 13 through 20. All litters were examined externally. One half of litters were examined for blood and skeletal development, and the other half for interventricular foramen closure. Effects on PPO were determined in mitochondria from embryos and adult livers. RESULTS Fetal anemia in rats was evident on GDs 13 through 16. Subsequently, enlarged heart, delayed closure of the foramen, reduced serum protein, and retarded rib ossification were observed. In vitro PPO inhibition exhibited species- and compound-specific differences corresponding to the developmental toxicity. CONCLUSION We propose that developmental toxicity results from PPO inhibition in primitive erythroblasts, causing transient fetal anemia followed by death. Compensatory enlargement of the fetal heart results in failure of interventricular foramen closure and VSD. Reduced serum protein leads to delayed ossification and wavy ribs.
Collapse
Affiliation(s)
- Satoshi Kawamura
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Takafumi Yoshioka
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Nobuaki Mito
- Intellectual Property Department, Sumitomo Chemical Co. Ltd, Chuo-ku, Tokyo, Japan
| | - Noriyuki Kishimoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Masanao Nakaoka
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd, Konohana-ku, Osaka, Japan
| | - Alan G Fantel
- Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
18
|
Chahoud I, Talsness C, Walter A, Grote K. Postnatal investigation of prenatally induced effects on the vertebral column of rats reduces the uncertainty of classification of anomalies. Reprod Toxicol 2015. [DOI: 10.1016/j.reprotox.2015.07.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|