1
|
Aoki K, Ishitani T. Mechanical force-driven cell competition ensures robust morphogen gradient formation. Semin Cell Dev Biol 2025; 170:103607. [PMID: 40220598 DOI: 10.1016/j.semcdb.2025.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Morphogen gradients provide positional data and maintain tissue patterns by instructing cells to adopt distinct fates. In contrast, morphogen gradient-forming tissues undergo dynamic morphogenetic movements that generate mechanical forces and can disturb morphogen signal transduction. However, the interactions between morphogen gradients and these forces remain largely unknown. In this study, we described how mechanical force-mediated cell competition corrects noisy morphogen gradients to ensure robust tissue patterns. The Wnt/β-catenin morphogen gradient-that patterns the embryonic anterior-posterior axis-generates cadherin-actomyosin interaction-mediated intercellular tension gradients-termed mechano-gradients. Naturally generated unfit cells that produce noisy Wnt/β-catenin gradients induce local deformation of the mechano-gradients. Neighboring fit cells sense this deformation, resulting in the activation of Piezo family mechanosensitive calcium channels and secretion of annexinA1, which specifically kills unfit cells to recover morphogen gradients. Therefore, mechanical force-mediated cell competition between the morphogen-receiver cells supports robust gradient formation. Additionally, we discuss the potential roles of mechanical force-driven cell competition in other contexts, including organogenesis and cancer.
Collapse
Affiliation(s)
- Kana Aoki
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Patten J, Albeltagy N, Bonadio JD, Ortez A, Wang K. FAK Differentially Mechanoregulates Cell Migration During Wound Closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646098. [PMID: 40291676 PMCID: PMC12026409 DOI: 10.1101/2025.04.01.646098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cell migration is an essential step in wound healing. Mechanical input from the local microenvironment controls much of cell velocity and directionality during migration, which is translated into biochemical cues by focal adhesion kinase (FAK) inside the cell. FAK induces both regeneration and fibrosis. The mechanisms by which FAK decide wound fate (regenerative or fibrotic repair) in soft, normal wounds or stiff, fibrotic wounds remains unclear. Here we show that FAK differentially mechanoregulates wound behavior on soft substrates mimicking normal wounds and stiff substrates mimicking fibrotic wounds by converting mechanical substrate stimuli into variable cell velocity, directionality, and angle during wound healing. Cells on soft substrates migrate slower and less persistently; cells on stiff substrates migrate faster and more persistently with the same angle as the cells on normal wound substrates. Inhibition of FAK results in substantially slower, less persistent, and less correctly angled cell migration, which leads to slowed wound closure. Moreover, FAK inhibition impairs fibroblast ability to respond to substrate stiffness when migrating. Here we show FAK is an essential mechanoregulator of wound migration in fibroblast wound closure and is responsible for controlling cell migration dynamics in response to substrate stiffnesses mimicking normal or fibrotic wounds. Abstract Figure
Collapse
|
3
|
Chu T, Lim Y, Sun Y, Wirtz D, Wu PH. Accelerated Discovery of Cell Migration Regulators Using Label-Free Deep Learning-Based Automated Tracking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646705. [PMID: 40236190 PMCID: PMC11996530 DOI: 10.1101/2025.04.01.646705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cell migration plays a key role in normal developmental programs and in disease, including immune responses, tissue repair, and metastasis. Unlike other cell functions, such as proliferation which can be studied using high-throughput assays, cell migration requires more sophisticated instruments and analysis, which decreases throughput and has led to more limited mechanistic advances in our understanding of cell migration. Current assays either preclude single-cell level analysis, require tedious manual tracking, or use fluorescently labeled cells, which greatly limit the number of extracellular conditions and molecular manipulations that can be studied in a reasonable amount of time. Using the migration of cancer cells as a testbed, we established a workflow that images large numbers of cells in real time, using a 96-well plate format. We developed and validated a machine-vision and deep-learning analysis method, DeepBIT, to automatically detect and track the migration of individual cells from time-lapsed videos without cell labeling and user bias. We demonstrate that our assay can examine cancer cell motility behavior in many conditions, using different small-molecule inhibitors of known and potential regulators of migration, different extracellular conditions such as different contents in extracellular matrix and growth factors, and different CRISPR-mediated knockouts. About 1500 cells per well were tracked in 840 different conditions, for a total of ~1.3M tracked cells, in 70h (5 min per condition). Manual tracking of these cells by a trained user would take ~5.5 years. This demonstration reveals previously unidentified molecular regulators of cancer cell migration and suggests that collagen content can change the sign of how cytoskeletal molecules can regulate cell migration.
Collapse
|
4
|
Hippee CE, Durnell LA, Kaufman JW, Murray E, Singh BK, Sinn PL. Epithelial-to-mesenchymal transition and live cell extrusion contribute to measles virus release from human airway epithelia. J Virol 2025; 99:e0122024. [PMID: 39791903 PMCID: PMC11852777 DOI: 10.1128/jvi.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell. We previously described the phenomenon in which infectious centers detach en masse from HAE and remain viable. Here, we investigate the mechanism of this cellular detachment. Via immunostaining, we observed loss of tight junction and cell adhesion proteins within infectious centers. These morphological changes indicate activation of epithelial-to-mesenchymal transition (EMT). EMT can contribute to wound healing in respiratory epithelia by mobilizing nearby cells. Inhibiting TGF-β, and thus EMT, reduced infectious center detachment. Compared with uninfected cells, MeV-infected cells also expressed increased levels of sphingosine kinase 1 (SK1), a regulator of live cell extrusion. Live cell extrusion encourages cells to detach from respiratory epithelia by contracting the actomyosin of neighboring cells. Inhibition or induction of live cell extrusion impacted infectious center detachment rates. Thus, these two related pathways contributed to infectious center detachment in HAE. Detached infectious centers contained high titers of virus that may be protected from the environment, allowing the virus to live on surfaces longer and infect more hosts.IMPORTANCEMeasles virus (MeV) is an extremely contagious respiratory pathogen that continues to cause large, disruptive outbreaks each year. Here, we examine mechanisms of detachment of MeV-infected cells. MeV spreads cell-to-cell in human airway epithelial cells (HAE) to form groups of infected cells, termed "infectious centers". We reported that infectious centers ultimately detach from HAE as a unit, carrying high titers of virus. Viral particles within cells may be more protected from environmental conditions, such as ultraviolet radiation and desiccation. We identified two host pathways, epithelial-to-mesenchymal transition and live cell extrusion, that contribute to infectious center detachment. Perturbing these pathways altered the kinetics of infectious center detachment. These pathways influence one another and contribute to epithelial wound healing, suggesting that infectious center detachment may be a usurped consequence of the host's response to infection that benefits MeV by increasing its transmissibility between hosts.
Collapse
Affiliation(s)
- Camilla E. Hippee
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Lorellin A. Durnell
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Justin W. Kaufman
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Eileen Murray
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Guan G, Chen Y, Wang H, Ouyang Q, Tang C. Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes. MEMBRANES 2024; 14:137. [PMID: 38921504 PMCID: PMC11205511 DOI: 10.3390/membranes14060137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The shape of a cell as defined by its membrane can be closely associated with its physiological state. For example, the irregular shapes of cancerous cells and elongated shapes of neuron cells often reflect specific functions, such as cell motility and cell communication. However, it remains unclear whether and which cell shape descriptors can characterize different cellular physiological states. In this study, 12 geometric shape descriptors for a three-dimensional (3D) object were collected from the previous literature and tested with a public dataset of ~400,000 independent 3D cell regions segmented based on fluorescent labeling of the cell membranes in Caenorhabditis elegans embryos. It is revealed that those shape descriptors can faithfully characterize cellular physiological states, including (1) cell division (cytokinesis), along with an abrupt increase in the elongation ratio; (2) a negative correlation of cell migration speed with cell sphericity; (3) cell lineage specification with symmetrically patterned cell shape changes; and (4) cell fate specification with differential gene expression and differential cell shapes. The descriptors established may be used to identify and predict the diverse physiological states in numerous cells, which could be used for not only studying developmental morphogenesis but also diagnosing human disease (e.g., the rapid detection of abnormal cells).
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
| | - Yixuan Chen
- School of Physics, Peking University, Beijing 100871, China;
| | - Hongli Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
- School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Yousafzai MS, Hammer JA. Using Biosensors to Study Organoids, Spheroids and Organs-on-a-Chip: A Mechanobiology Perspective. BIOSENSORS 2023; 13:905. [PMID: 37887098 PMCID: PMC10605946 DOI: 10.3390/bios13100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
The increasing popularity of 3D cell culture models is being driven by the demand for more in vivo-like conditions with which to study the biochemistry and biomechanics of numerous biological processes in health and disease. Spheroids and organoids are 3D culture platforms that self-assemble and regenerate from stem cells, tissue progenitor cells or cell lines, and that show great potential for studying tissue development and regeneration. Organ-on-a-chip approaches can be used to achieve spatiotemporal control over the biochemical and biomechanical signals that promote tissue growth and differentiation. These 3D model systems can be engineered to serve as disease models and used for drug screens. While culture methods have been developed to support these 3D structures, challenges remain to completely recapitulate the cell-cell and cell-matrix biomechanical interactions occurring in vivo. Understanding how forces influence the functions of cells in these 3D systems will require precise tools to measure such forces, as well as a better understanding of the mechanobiology of cell-cell and cell-matrix interactions. Biosensors will prove powerful for measuring forces in both of these contexts, thereby leading to a better understanding of how mechanical forces influence biological systems at the cellular and tissue levels. Here, we discussed how biosensors and mechanobiological research can be coupled to develop accurate, physiologically relevant 3D tissue models to study tissue development, function, malfunction in disease, and avenues for disease intervention.
Collapse
Affiliation(s)
- Muhammad Sulaiman Yousafzai
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Poudel PP, Bhattarai C, Ghosh A, Kalthur SG. Histomorphometry of the cortical layers and the dentate nucleus of the human fetal cerebellum. J Taibah Univ Med Sci 2022; 18:390-399. [PMID: 37102073 PMCID: PMC10124138 DOI: 10.1016/j.jtumed.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives This study was aimed at determining the histomorphometry of the cerebellar cortical laminae and the dentate nucleus of the human fetal cerebellum; the number and shape of the neurons; and the gestational age of appearance of the cerebellar folia, white matter and arbor vitae cerebelli. Methods Microscopic sections of the human fetal cerebellum stained with hematoxylin and eosin and Bielschowsky silver stain were studied. Results The thickness of the cortical laminae of the human fetal cerebellum varied among gestational weeks as follows: external granular layer: 36.06 ± 9.36-50.05 ± 34.06 μm, molecular layer: 32.76 ± 17.16-52 ± 28.6 μm, Purkinje cell layer: 9.36 ± 6.8-15.6 ± 4.68 μm and internal granular layer: 66.65 ± 24.42-146.63 ± 47.79 μm. Similarly, the number of neurons per field of view at 1000X under a compound microscope varied among gestational weeks as follows: external granular layer: 89.92 ± 42-142.84 ± 50, molecular layer: 15 ± 12.5-25 ± 8.25, Purkinje cell layer: 3.5 ± 1-5 ± 2.5 and internal granular layer: 98.5 ± 69.75-224 ± 47.White matter in the fetal cerebellum was already present at the age of 12th gestational week, whereas cerebellar folia appeared at 16-20 gestational weeks. Arbor vitae cerebelli and the dentate nucleus became conspicuous after the 20th gestational week. Fetal neurons were round except for Purkinje cells. Conclusions The thickness and neuronal counts of the human fetal cerebellar cortical layers and the measurements of the dentate nucleus along with other histomorphological features varied with gestational age from the 12th week of gestation until birth.
Collapse
Affiliation(s)
- Phanindra P. Poudel
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Anatomy, Manipal College of Medical Sciences, Pokhara, Nepal
| | - Chacchu Bhattarai
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Anatomy, Manipal College of Medical Sciences, Pokhara, Nepal
| | - Arnab Ghosh
- Department of Pathology, Manipal-TATA Medical College, Jamshedpur, India
| | - Sneha G. Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Corresponding address: Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Jiang T, Wang Y, Wang X, Xu J. CHCHD2 and CHCHD10: Future therapeutic targets in cognitive disorder and motor neuron disorder. Front Neurosci 2022; 16:988265. [PMID: 36061599 PMCID: PMC9434015 DOI: 10.3389/fnins.2022.988265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
CHCHD2 and CHCHD10 are homolog mitochondrial proteins that play key roles in the neurological, cardiovascular, and reproductive systems. They are also involved in the mitochondrial metabolic process. Although previous research has concentrated on their functions within mitochondria, their functions within apoptosis, synaptic plasticity, cell migration as well as lipid metabolism remain to be concluded. The review highlights the different roles played by CHCHD2 and/or CHCHD10 binding to various target proteins (such as OPA-1, OMA-1, PINK, and TDP43) and reveals their non-negligible effects in cognitive impairments and motor neuron diseases. This review focuses on the functions of CHCHD2 and/or CHCHD10. This review reveals protective effects and mechanisms of CHCHD2 and CHCHD10 in neurodegenerative diseases characterized by cognitive and motor deficits, such as frontotemporal dementia (FTD), Lewy body dementia (LBD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). However, there are numerous specific mechanisms that have yet to be elucidated, and additional research into these mechanisms is required.
Collapse
Affiliation(s)
- Tianlin Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Fan C, Shi X, Zhao K, Wang L, Shi K, Liu YJ, Li H, Ji B, Jiu Y. Cell migration orchestrates migrasome formation by shaping retraction fibers. J Cell Biol 2022; 221:213015. [PMID: 35179563 PMCID: PMC9195050 DOI: 10.1083/jcb.202109168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/23/2022] [Indexed: 02/07/2023] Open
Abstract
Migrasomes are recently discovered vesicle-like structures on retraction fibers of migrating cells that have been linked with transfer of cellular contents, shedding of unwanted materials, and information integration. However, whether and how the cell migration paradigm regulates migrasome formation is not clear. Here, we report that there are significantly fewer migrasomes in turning cells compared with straight persistently migrating cells. The major insight underlying this observation is that as the cells elongate, their rear ends become narrower, subsequently resulting in fewer retraction fibers during impersistent migration. In addition to migration persistence, we reveal that migration speed positively corelates with migrasome formation, owing to the derived length of retraction fibers. Substantiating our hypothesis, genetically removing vimentin compromises cell migration speed and persistence and leads to fewer migrasomes. Together, our data explicate the critical roles of two cell migration patterns, persistence and speed, in the control of migrasome formation by regulating retraction fibers.
Collapse
Affiliation(s)
- Changyuan Fan
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuemeng Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Kaikai Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.,Biomechanics and Mechanomedicine Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Linbo Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Kun Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Baohua Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.,Biomechanics and Mechanomedicine Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Zancla A, Mozetic P, Orsini M, Forte G, Rainer A. A primer to traction force microscopy. J Biol Chem 2022; 298:101867. [PMID: 35351517 PMCID: PMC9092999 DOI: 10.1016/j.jbc.2022.101867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Traction force microscopy (TFM) has emerged as a versatile technique for the measurement of single-cell-generated forces. TFM has gained wide use among mechanobiology laboratories, and several variants of the original methodology have been proposed. However, issues related to the experimental setup and, most importantly, data analysis of cell traction datasets may restrain the adoption of TFM by a wider community. In this review, we summarize the state of the art in TFM-related research, with a focus on the analytical methods underlying data analysis. We aim to provide the reader with a friendly compendium underlying the potential of TFM and emphasizing the methodological framework required for a thorough understanding of experimental data. We also compile a list of data analytics tools freely available to the scientific community for the furtherance of knowledge on this powerful technique.
Collapse
Affiliation(s)
- Andrea Zancla
- Department of Engineering, Università degli Studi Roma Tre, Rome, Italy; Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy; Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Monica Orsini
- Department of Engineering, Università degli Studi Roma Tre, Rome, Italy
| | - Giancarlo Forte
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, Czechia.
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy; Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy.
| |
Collapse
|
11
|
Lukic N, Lapetina S, Grobe H, Srikanth KD, Twafra S, Solomon J, Sneh T, Gendler M, Zaidel-Bar R, Gil-Henn H. Pyk2 regulates cell-edge protrusion dynamics by interacting with Crk. Mol Biol Cell 2021; 32:ar17. [PMID: 34432482 PMCID: PMC8693953 DOI: 10.1091/mbc.e20-10-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Focal adhesion kinase (FAK) is well established as a regulator of cell migration, but whether and how the closely related proline-rich tyrosine kinase 2 (Pyk2) regulates fibroblast motility is still under debate. Using mouse embryonic fibroblasts (MEFs) from Pyk2-/- mice, we show here, for the first time, that lack of Pyk2 significantly impairs both random and directed fibroblast motility. Pyk2-/- MEFs show reduced cell-edge protrusion dynamics, which is dependent on both the kinase and protein-protein binding activities of Pyk2. Using bioinformatics analysis of in vitro high- throughput screens followed by text mining, we identified CrkI/II as novel substrates and interactors of Pyk2. Knockdown of CrkI/II shows altered dynamics of cell-edge protrusions, which is similar to the phenotype observed in Pyk2-/- MEFs. Moreover, epistasis experiments suggest that Pyk2 regulates the dynamics of cell-edge protrusions via direct and indirect interactions with Crk that enable both activation and down-regulation of Crk-mediated cytoskeletal signaling. This complex mechanism may enable fine-tuning of cell-edge protrusion dynamics and consequent cell migration on the one hand together with tight regulation of cell motility, a process that should be strictly limited to specific time and context in normal cells, on the other hand.
Collapse
Affiliation(s)
- Nikola Lukic
- Laboratory for Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Stefanie Lapetina
- Laboratory for Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Hanna Grobe
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Kolluru D Srikanth
- Laboratory for Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Shams Twafra
- Laboratory for Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jonathan Solomon
- Laboratory for Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Tal Sneh
- Laboratory for Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Michal Gendler
- Laboratory for Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Hava Gil-Henn
- Laboratory for Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
12
|
A Cellular Potts Model for Analyzing Cell Migration across Constraining Pillar Arrays. AXIOMS 2021. [DOI: 10.3390/axioms10010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cell migration in highly constrained environments is fundamental in a wide variety of physiological and pathological phenomena. In particular, it has been experimentally shown that the migratory capacity of most cell lines depends on their ability to transmigrate through narrow constrictions, which in turn relies on their deformation capacity. In this respect, the nucleus, which occupies a large fraction of the cell volume and is substantially stiffer than the surrounding cytoplasm, imposes a major obstacle. This aspect has also been investigated with the use of microfluidic devices formed by dozens of arrays of aligned polymeric pillars that limit the available space for cell movement. Such experimental systems, in particular, in the designs developed by the groups of Denais and of Davidson, were here reproduced with a tailored version of the Cellular Potts model, a grid-based stochastic approach where cell dynamics are established by a Metropolis algorithm for energy minimization. The proposed model allowed quantitatively analyzing selected cell migratory determinants (e.g., the cell and nuclear speed and deformation, and forces acting at the nuclear membrane) in the case of different experimental setups. Most of the numerical results show a remarkable agreement with the corresponding empirical data.
Collapse
|
13
|
Schaks M, Döring H, Kage F, Steffen A, Klünemann T, Blankenfeldt W, Stradal T, Rottner K. RhoG and Cdc42 can contribute to Rac-dependent lamellipodia formation through WAVE regulatory complex-binding. Small GTPases 2021; 12:122-132. [PMID: 31451035 PMCID: PMC7849749 DOI: 10.1080/21541248.2019.1657755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 01/19/2023] Open
Abstract
Cell migration frequently involves the formation of lamellipodial protrusions, the initiation of which requires Rac GTPases signalling to heteropentameric WAVE regulatory complex (WRC). While Rac-related RhoG and Cdc42 can potently stimulate lamellipodium formation, so far presumed to occur by upstream signalling to Rac activation, we show here that the latter can be bypassed by RhoG and Cdc42 given that WRC has been artificially activated. This evidence arises from generation of B16-F1 cells simultaneously lacking both Rac GTPases and WRC, followed by reconstitution of lamellipodia formation with specific Rho-GTPase and differentially active WRC variant combinations. We conclude that formation of canonical lamellipodia requires WRC activation through Rac, but can possibly be tuned, in addition, by WRC interactions with RhoG and Cdc42.
Collapse
Affiliation(s)
- Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anika Steffen
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Klünemann
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia Stradal
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
14
|
Wadkin LE, Orozco-Fuentes S, Neganova I, Lako M, Barrio RA, Baggaley AW, Parker NG, Shukurov A. OCT4 expression in human embryonic stem cells: spatio-temporal dynamics and fate transitions. Phys Biol 2021; 18:026003. [PMID: 33296887 DOI: 10.1088/1478-3975/abd22b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The improved in vitro regulation of human embryonic stem cell (hESC) pluripotency and differentiation trajectories is required for their promising clinical applications. The temporal and spatial quantification of the molecular interactions controlling pluripotency is also necessary for the development of successful mathematical and computational models. Here we use time-lapse experimental data of OCT4-mCherry fluorescence intensity to quantify the temporal and spatial dynamics of the pluripotency transcription factor OCT4 in a growing hESC colony in the presence and absence of BMP4. We characterise the internal self-regulation of OCT4 using the Hurst exponent and autocorrelation analysis, quantify the intra-cellular fluctuations and consider the diffusive nature of OCT4 evolution for individual cells and pairs of their descendants. We find that OCT4 abundance in the daughter cells fluctuates sub-diffusively, showing anti-persistent self-regulation. We obtain the stationary probability distributions governing hESC transitions amongst the different cell states and establish the times at which pro-fate cells (which later give rise to pluripotent or differentiated cells) cluster in the colony. By quantifying the similarities between the OCT4 expression amongst neighbouring cells, we show that hESCs express similar OCT4 to cells within their local neighbourhood within the first two days of the experiment and before BMP4 treatment. Our framework allows us to quantify the relevant properties of proliferating hESC colonies and the procedure is widely applicable to other transcription factors and cell populations.
Collapse
Affiliation(s)
- L E Wadkin
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Comparison Between β-Cyclodextrin-Amygdalin Nanoparticle and Amygdalin Effects on Migration and Apoptosis of MCF-7 Breast Cancer Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Richard V, Kumar TRS, Pillai RM. Transitional dynamics of cancer stem cells in invasion and metastasis. Transl Oncol 2021; 14:100909. [PMID: 33049522 PMCID: PMC7557893 DOI: 10.1016/j.tranon.2020.100909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
At the onset, few cancer cells amidst the tumor bulk, identified as cancer stem cells (CSCs) or early disseminated cancer cells (eDCCs) are capable of survival post conventional therapy and persist as minimal residual disease (MRD). Metastatic subclones emerge both early and late in the life of primary tumor ensuing an ongoing regional clonal evolution of progenitor cells in metastatic and primary tumors. In the last decade, multiple studies proposed various identities of stem-like cells that undergo transitions to adapt to the changing microenvironment as the disease progresses. This review advocates with substantial evidence the dynamic model of tumor propagation by exploring the specific cell types, reversible phenotypic plasticity between the tumorigenic leader seeds and the supporting follower cancer cells both in circulation and in solid tissue to accurately decipher tumor promoting clones and its role in metastatic dissemination and tumor re-growth. (142 words).
Collapse
Affiliation(s)
- Vinitha Richard
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | - T R Santhosh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | - Radhakrishna M Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India.
| |
Collapse
|
17
|
Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. Int J Mol Sci 2020; 21:ijms21218117. [PMID: 33143131 PMCID: PMC7663256 DOI: 10.3390/ijms21218117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.
Collapse
|
18
|
Robert AW, Stimamiglio MA. The secretome from embryonic stem cell cardiomyogenesis: Same signals, different cellular feedbacks. J Cell Physiol 2020; 236:971-980. [PMID: 32592189 DOI: 10.1002/jcp.29907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022]
Abstract
Ischemic heart diseases are a global health problem that requires the search for alternative therapies to the current treatments. Thus, an understanding of how cardiomyogenic signals can affect cellular behavior would allow us to create strategies to improve the cell recovery in damaged tissues. In this study, we aimed to evaluate the effects of the conditioned medium (CM), collected at different time points during in vitro cardiomyogenesis of human embryonic stem cells (hESCs), to direct cell behavior. We assayed different cell types to demonstrate noncytotoxic effects from the collected CM and that the CM obtained at initial time points of cardiomyogenic differentiation could promote the cell proliferation. Otherwise, the secretome derived from cardiac committed cells during cardiomyogenesis was unable to improve angiogenesis or migration in endothelial cells, and ineffective to stimulate the differentiation of cardioblasts or increase the differentiation efficiency of hESC. Therefore, we demonstrated that the effectiveness of the CM response varies depending on the cell type and the differentiation step of hESC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Anny W Robert
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz-Paraná, Curitiba, Paraná, Brazil
| | - Marco A Stimamiglio
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz-Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
19
|
Samal P, Maurer P, van Blitterswijk C, Truckenmüller R, Giselbrecht S. A New Microengineered Platform for 4D Tracking of Single Cells in a Stem-Cell-Based In Vitro Morphogenesis Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907966. [PMID: 32346909 DOI: 10.1002/adma.201907966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Recently developed stem-cell-based in vitro models of morphogenesis can help shed light on the mechanisms involved in embryonic patterning. These models are showcased using traditional cell culture platforms and materials, which allow limited control over the biological system and usually do not support high-content imaging. In contrast, using advanced microengineered tools can help in microscale control, long-term culture, and real-time data acquisition from such biological models and aid in elucidating the underlying mechanisms. Here, a new culturing, manipulation and analysis platform is described to study in vitro morphogenesis using thin polycarbonate film-based microdevices. A pipeline consisting of open-source software to quantify 3D cell movement using 4D image acquisition is developed to analyze cell migration within the multicellular clusters. It is shown that the platform can be used to control and study morphogenesis in non-adherent cultures of the P19C5 mouse stem cell line and mouse embryonic stem cells (mESCs) that show symmetry breaking and axial elongation events similar to early embryonic development. Using the new platform, it is found that localized cell proliferation and coordinated cell migration result in elongation morphogenesis of the P19C5 aggregates. Further, it is found that polarization and elongation of mESC aggregates are dependent on directed cell migration.
Collapse
Affiliation(s)
- Pinak Samal
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Philipp Maurer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
20
|
Malik AA, Wennberg B, Gerlee P. The Impact of Elastic Deformations of the Extracellular Matrix on Cell Migration. Bull Math Biol 2020; 82:49. [PMID: 32248312 PMCID: PMC7128007 DOI: 10.1007/s11538-020-00721-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/15/2020] [Indexed: 01/06/2023]
Abstract
The mechanical properties of the extracellular matrix, in particular its stiffness, are known to impact cell migration. In this paper, we develop a mathematical model of a single cell migrating on an elastic matrix, which accounts for the deformation of the matrix induced by forces exerted by the cell, and investigate how the stiffness impacts the direction and speed of migration. We model a cell in 1D as a nucleus connected to a number of adhesion sites through elastic springs. The cell migrates by randomly updating the position of its adhesion sites. We start by investigating the case where the cell springs are constant, and then go on to assuming that they depend on the matrix stiffness, on matrices of both uniform stiffness as well as those with a stiffness gradient. We find that the assumption that cell springs depend on the substrate stiffness is necessary and sufficient for an efficient durotactic response. We compare simulations to recent experimental observations of human cancer cells exhibiting durotaxis, which show good qualitative agreement.
Collapse
Affiliation(s)
- A A Malik
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96, Gothenburg, Sweden.
| | - B Wennberg
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96, Gothenburg, Sweden
| | - P Gerlee
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96, Gothenburg, Sweden
| |
Collapse
|
21
|
Pham QL, Tong A, Rodrigues LN, Zhao Y, Surblyte M, Ramos D, Brito J, Rahematpura A, Voronov RS. Ranking migration cue contributions to guiding individual fibroblasts faced with a directional decision in simple microfluidic bifurcations. Integr Biol (Camb) 2020; 11:208-220. [PMID: 31251334 DOI: 10.1093/intbio/zyz018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
Abstract
Directed cell migration in complex micro-environments, such as in vivo pores, is important for predicting locations of artificial tissue growth and optimizing scaffold architectures. Yet, the directional decisions of cells facing multiple physiochemical cues have not been characterized. Hence, we aim to provide a ranking of the relative importance of the following cues to the decision-making of individual fibroblast cells: chemoattractant concentration gradient, channel width, mitosis, and contact-guidance. In this study, bifurcated micro-channels with branches of different widths were created. Fibroblasts were then allowed to travel across these geometries by following a gradient of platelet-derived growth factor-BB (PDGF-BB) established inside the channels. Subsequently, a combination of statistical analysis and image-based diffusion modeling was used to report how the presence of multiple complex migration cues, including cell-cell influences, affect the fibroblast decision-making. It was found that the cells prefer wider channels over a higher chemoattractant gradient when choosing between asymmetric bifurcated branches. Only when the branches were symmetric in width did the gradient become predominant in directing which path the cell will take. Furthermore, when both the gradient and the channels were symmetric, contact guidance became important for guiding the cells in making directional choices. Based on these results we were able to rank these directional cues from most influential to the least as follows: mitosis > channel width asymmetry > chemoattractant gradient difference > and contact-guidance. It is expected that these results will benefit the fields of regenerative medicine, wound healing and developmental biology.
Collapse
Affiliation(s)
- Quang Long Pham
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Anh Tong
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Lydia N Rodrigues
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yang Zhao
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Migle Surblyte
- Ying Wu College of Computing Sciences, Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Diomar Ramos
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - John Brito
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Adwik Rahematpura
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
22
|
Abstract
Connective tissues within the synovial joints are characterized by their dense extracellular matrix and sparse cellularity. With injury or disease, however, tissues commonly experience an influx of cells owing to proliferation and migration of endogenous mesenchymal cell populations, as well as invasion of the tissue by other cell types, including immune cells. Although this process is critical for successful wound healing, aberrant immune-mediated cell infiltration can lead to pathological inflammation of the joint. Importantly, cells of mesenchymal or haematopoietic origin use distinct modes of migration and thus might respond differently to similar biological cues and microenvironments. Furthermore, cell migration in the physiological microenvironment of musculoskeletal tissues differs considerably from migration in vitro. This Review addresses the complexities of cell migration in fibrous connective tissues from three separate but interdependent perspectives: physiology (including the cellular and extracellular factors affecting 3D cell migration), pathophysiology (cell migration in the context of synovial joint autoimmune disease and injury) and tissue engineering (cell migration in engineered biomaterials). Improved understanding of the fundamental mechanisms governing interstitial cell migration might lead to interventions that stop invasion processes that culminate in deleterious outcomes and/or that expedite migration to direct endogenous cell-mediated repair and regeneration of joint tissues.
Collapse
|
23
|
Chen L, Pan X, Guo W, Gan Z, Zhang YH, Niu Z, Huang T, Cai YD. Investigating the gene expression profiles of cells in seven embryonic stages with machine learning algorithms. Genomics 2020; 112:2524-2534. [PMID: 32045671 DOI: 10.1016/j.ygeno.2020.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
The development of embryonic cells involves several continuous stages, and some genes are related to embryogenesis. To date, few studies have systematically investigated changes in gene expression profiles during mammalian embryogenesis. In this study, a computational analysis using machine learning algorithms was performed on the gene expression profiles of mouse embryonic cells at seven stages. First, the profiles were analyzed through a powerful Monte Carlo feature selection method for the generation of a feature list. Second, increment feature selection was applied on the list by incorporating two classification algorithms: support vector machine (SVM) and repeated incremental pruning to produce error reduction (RIPPER). Through SVM, we extracted several latent gene biomarkers, indicating the stages of embryonic cells, and constructed an optimal SVM classifier that produced a nearly perfect classification of embryonic cells. Furthermore, some interesting rules were accessed by the RIPPER algorithm, suggesting different expression patterns for different stages.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China; College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China.
| | - XiaoYong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China.
| | - Wei Guo
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zijun Gan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhibin Niu
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
24
|
Li X, Miao Y, Pal DS, Devreotes PN. Excitable networks controlling cell migration during development and disease. Semin Cell Dev Biol 2019; 100:133-142. [PMID: 31836289 DOI: 10.1016/j.semcdb.2019.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
The directed movements of individual, groups, or sheets of cells at specific times in particular locations bring about form and complexity to developing organisms. Cells move by extending protrusions, such as macropinosomes, pseudopods, lamellipods, filopods, or blebs. Although many of the cytoskeletal components within these structures are known, less is known about the mechanisms that determine their location, number, and characteristics. Recent evidence suggests that control may be exerted by a signal transduction excitable network whose components and activities, including Ras, PI3K, TorC2, and phosphoinositides, self-organize on the plasma membrane and propagate in waves. The waves drive the various types of protrusions, which in turn, determine the modes of cell migration. Acute perturbations at specific points in the network produce abrupt shifts in protrusion type, including transitions from pseudopods to filopods or lamellipods. These observations have also contributed to a delineation of the signal transduction network, including candidate fast positive and delayed negative feedback loops. The network contains many oncogenes and tumor suppressors, and other molecules which have recently been implicated in developmental and metabolic abnormalities. Thus, the concept of signal transduction network excitability in cell migration can be used to understand disease states and morphological changes occurring in development.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Quantification of the morphological characteristics of hESC colonies. Sci Rep 2019; 9:17569. [PMID: 31772193 PMCID: PMC6879623 DOI: 10.1038/s41598-019-53719-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022] Open
Abstract
The maintenance of the undifferentiated state in human embryonic stem cells (hESCs) is critical for further application in regenerative medicine, drug testing and studies of fundamental biology. Currently, the selection of the best quality cells and colonies for propagation is typically performed by eye, in terms of the displayed morphological features, such as prominent/abundant nucleoli and a colony with a tightly packed appearance and a well-defined edge. Using image analysis and computational tools, we precisely quantify these properties using phase-contrast images of hESC colonies of different sizes (0.1–1.1 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\bf{\text{mm}}}}^{{\bf{2}}}$$\end{document}mm2) during days 2, 3 and 4 after plating. Our analyses reveal noticeable differences in their structure influenced directly by the colony area \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{A}}$$\end{document}A. Large colonies (A > 0.6 mm2) have cells with smaller nuclei and a short intercellular distance when compared with small colonies (A < 0.2 mm2). The gaps between the cells, which are present in small and medium sized colonies with A ≤ 0.6 mm2, disappear in large colonies (A > 0.6 mm2) due to the proliferation of the cells in the bulk. This increases the colony density and the number of nearest neighbours. We also detect the self-organisation of cells in the colonies where newly divided (smallest) cells cluster together in patches, separated from larger cells at the final stages of the cell cycle. This might influence directly cell-to-cell interactions and the community effects within the colonies since the segregation induced by size differences allows the interchange of neighbours as the cells proliferate and the colony grows. Our findings are relevant to efforts to determine the quality of hESC colonies and establish colony characteristics database.
Collapse
|
26
|
Binan L, Roy J, Costantino S. Opto-magnetic Selection and Isolation of Single Cells. Bio Protoc 2019; 9:e3428. [PMID: 33654925 DOI: 10.21769/bioprotoc.3428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 11/02/2022] Open
Abstract
Capturing single cells from large heterogenous populations based solely on observable traits is necessary for many cell biology applications and remains a major technical challenge. The protocol we present allows the isolation of viable and metabolically active cells selected for their shape, migration speed, contact to other cells, or intracellular protein localization. We previously introduced a method termed Cell Labeling via Photobleaching (CLaP) for the efficient tagging of cells chosen for visual criteria. Here we describe a new protocol for capturing such cells using ferromagnetic beads termed single-cell magneto-optical capture (scMOCa). This technology is especially useful when the number of target cells represents an extremely low fraction of the total population (potentially one single cell), a situation in which conventional sorting techniques like fluorescent or magnetic activated cell sorting (F/MACS) cannot provide satisfactory results in terms of capture efficiency and specificity. scMOCa uses the lasers of a confocal microscope to photobleach and crosslink biotin-4-fluorecein molecules to cell membranes. Streptavidin coated magnetic beads then adhere to biotin moieties and a magnet allows the capture of illuminated cells. By precisely controlling liquid volumes and spacing between the different parts of a simple setup, high cell selectivity and capture efficacy can be achieved. scMOCA allows visual selection and isolation of any number of cells in a microscopy field and captured cells remain viable to generate new colonies of chosen phenotypes for downstream analyses.
Collapse
Affiliation(s)
- Loïc Binan
- Research center, Maisonneuve-Rosemont Hospital, Montreal, Canada.,Department of ophthalmology, University of Montreal, Montreal, Canada
| | - Joannie Roy
- Research center, Maisonneuve-Rosemont Hospital, Montreal, Canada
| | - Santiago Costantino
- Research center, Maisonneuve-Rosemont Hospital, Montreal, Canada.,Department of ophthalmology, University of Montreal, Montreal, Canada
| |
Collapse
|
27
|
Visweshwaran SP, Maritzen T. A simple 3D cellular chemotaxis assay and analysis workflow suitable for a wide range of migrating cells. MethodsX 2019; 6:2807-2821. [PMID: 31871915 PMCID: PMC6909357 DOI: 10.1016/j.mex.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022] Open
Abstract
Cellular migration plays a crucial role within multicellular organisms enabling organ development, wound healing and efficient immune responses, but also metastasis. Therefore, it is crucial to dissect the underlying mechanisms. Directed migration and invasion are most efficient in response to chemotactic signals. To study cell migration and chemotactic responses, current experimental setups use either simplified 2D, tissue-mimetic 3D (e.g. collagen matrices) or in vivo environments. While the in vivo experiments are closest to the real physiological situation, they require animal experiments and are thus ill-suited for screening purposes. 3D matrices, on the other hand, can mimic in vivo conditions in many respects thus serving as instructive settings for the initial dissection of cell migration and chemotaxis. However, performing 3D chemotaxis assays has its limitations due to the delicate nature of most available setups and the tedious and time-consuming manual quantification process. Here, we present •A method for the easy construction of a chemotaxis chamber suitable for the analysis of large cell numbers.•A procedure to quantify their migration automatically with minimal input required by the experimenter.•Both successfully validated by analyzing the 3D chemotaxis of highly migratory primary dendritic cells and the invasive MDA-MB-231 cancer cells.
Collapse
Affiliation(s)
- Sai P Visweshwaran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| |
Collapse
|
28
|
Morrow CM, Mukherjee A, Traore MA, Leaman EJ, Kim A, Smith EM, Nain AS, Behkam B. Integrating nanofibers with biochemical gradients to investigate physiologically-relevant fibroblast chemotaxis. LAB ON A CHIP 2019; 19:3641-3651. [PMID: 31560021 DOI: 10.1039/c9lc00602h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Persistent cell migration can occur due to anisotropy in the extracellular matrix (ECM), the gradient of a chemo-effector, or a combination of both. Through a variety of in vitro platforms, the contributions of either stimulus have been extensively studied, while the combined effect of both cues remains poorly described. Here, we report an integrative microfluidic chemotaxis assay device that enables the study of single cell chemotaxis on ECM-mimicking, aligned, and suspended nanofibers. Using this assay, we evaluated the effect of fiber spacing on the morphology and chemotaxis response of embryonic murine NIH/3T3 fibroblasts in the presence of temporally invariant, linear gradients of platelet-derived growth factor-BB (PDGF-BB). We found that the strength of PDGF-mediated chemotaxis response depends on not only the gradient slope but also the cell morphology. Low aspect ratio (3.4 ± 0.2) cells on flat substrata exhibited a chemotaxis response only at a PDGF-BB gradient of 0-10 ng mL-1. However, high aspect ratio (19.1 ± 0.7) spindle-shaped cells attached to individual fibers exhibited maximal chemotaxis response at a ten-fold shallower gradient of 0-1 ng mL-1, which was robustly maintained up to 0-10 ng mL-1. Quadrilateral-shaped cells of intermediate aspect ratio (13.6 ± 0.8) attached to two fibers exhibited a weaker response compared to the spindle-shaped cells, but still stronger compared to cells attached to 2D featureless substrata. Through pharmacological inhibition, we show that the mesenchymal chemotaxis pathway is conserved in cells on fibers. Altogether, our findings show that chemotaxis on ECM-mimicking fibers is modulated by fiber spacing-driven cell shape and can be significantly different from the behavior observed on flat 2D substrata. We envisage that this microfluidic platform will have wide applicability in understanding the combined role of ECM architecture and chemotaxis in physiological and pathological processes.
Collapse
Affiliation(s)
- Carmen M Morrow
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Apratim Mukherjee
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Mahama A Traore
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric J Leaman
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - AhRam Kim
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Evan M Smith
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: a brief review. Essays Biochem 2019; 63:569-577. [PMID: 31366473 DOI: 10.1042/ebc20190007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/14/2023]
Abstract
In many contexts of development, regeneration, or disease such as cancer, a cell squeezes through a dense tissue or a basement membrane, constricting its nucleus. Here, we describe how the severity of nuclear deformation depends on a nucleus' mechanical properties that are mostly determined by the density of chromatin and by the nuclear lamina. We explain how constriction-induced nuclear deformation affects nuclear contents by causing (i) local density changes in chromatin and (ii) rupture of the nuclear lamina and envelope. Both processes mislocalize diffusible nuclear factors including key DNA repair and regulatory proteins. Importantly, these effects of constricted migration are accompanied by excess DNA damage, marked by phosphorylated histone γH2AX in fixed cells. Rupture has a number of downstream consequences that include a delayed cell cycle-consistent with a damage checkpoint-and modulation of differentiation, both of which are expected to affect migration-dependent processes ranging from wound healing to tumorigenic invasion.
Collapse
|
30
|
Pfeifer CR, Irianto J, Discher DE. Nuclear Mechanics and Cancer Cell Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1146:117-130. [PMID: 31612457 DOI: 10.1007/978-3-030-17593-1_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a cancer cell invades adjacent tissue, penetrates a basement membrane barrier, or squeezes into a blood capillary, its nucleus can be greatly constricted. Here, we examine: (1) the passive and active deformation of the nucleus during 3D migration; (2) the nuclear structures-namely, the lamina and chromatin-that govern nuclear deformability; (3) the effect of large nuclear deformation on DNA and nuclear factors; and (4) the downstream consequences of mechanically stressing the nucleus. We focus especially on recent studies showing that constricted migration causes nuclear envelope rupture and excess DNA damage, leading to cell cycle suppression, possibly cell death, and ultimately it seems to heritable genomic variation. We first review the latest understanding of nuclear dynamics during cell migration, and then explore the functional effects of nuclear deformation, especially in relation to genome integrity and potentially cancerous mutations.
Collapse
Affiliation(s)
- Charlotte R Pfeifer
- Biophysical Engineering Labs: Molecular & Cell Biophysics and NanoBio-Polymers, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerome Irianto
- Biophysical Engineering Labs: Molecular & Cell Biophysics and NanoBio-Polymers, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Discher
- Biophysical Engineering Labs: Molecular & Cell Biophysics and NanoBio-Polymers, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Binan L, Bélanger F, Uriarte M, Lemay JF, Pelletier De Koninck JC, Roy J, Affar EB, Drobetsky E, Wurtele H, Costantino S. Opto-magnetic capture of individual cells based on visual phenotypes. eLife 2019; 8:e45239. [PMID: 30969169 PMCID: PMC6499596 DOI: 10.7554/elife.45239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The ability to isolate rare live cells within a heterogeneous population based solely on visual criteria remains technically challenging, due largely to limitations imposed by existing sorting technologies. Here, we present a new method that permits labeling cells of interest by attaching streptavidin-coated magnetic beads to their membranes using the lasers of a confocal microscope. A simple magnet allows highly specific isolation of the labeled cells, which then remain viable and proliferate normally. As proof of principle, we tagged, isolated, and expanded individual cells based on three biologically relevant visual characteristics: i) presence of multiple nuclei, ii) accumulation of lipid vesicles, and iii) ability to resolve ionizing radiation-induced DNA damage foci. Our method constitutes a rapid, efficient, and cost-effective approach for isolation and subsequent characterization of rare cells based on observable traits such as movement, shape, or location, which in turn can generate novel mechanistic insights into important biological processes.
Collapse
Affiliation(s)
- Loïc Binan
- Research CenterMaisonneuve-Rosemont HospitalMontrealCanada
- Department of OphthalmologyUniversity of MontrealMontrealCanada
| | - François Bélanger
- Research CenterMaisonneuve-Rosemont HospitalMontrealCanada
- Department of Medicine and Molecular Biology ProgramUniversity of MontrealMontrealCanada
| | - Maxime Uriarte
- Research CenterMaisonneuve-Rosemont HospitalMontrealCanada
- Department of Medicine and Molecular Biology ProgramUniversity of MontrealMontrealCanada
| | | | | | - Joannie Roy
- Research CenterMaisonneuve-Rosemont HospitalMontrealCanada
| | - El Bachir Affar
- Research CenterMaisonneuve-Rosemont HospitalMontrealCanada
- Department of Medicine and Molecular Biology ProgramUniversity of MontrealMontrealCanada
| | - Elliot Drobetsky
- Research CenterMaisonneuve-Rosemont HospitalMontrealCanada
- Department of Medicine and Molecular Biology ProgramUniversity of MontrealMontrealCanada
| | - Hugo Wurtele
- Research CenterMaisonneuve-Rosemont HospitalMontrealCanada
| | - Santiago Costantino
- Research CenterMaisonneuve-Rosemont HospitalMontrealCanada
- Department of OphthalmologyUniversity of MontrealMontrealCanada
| |
Collapse
|
32
|
Malik AA, Gerlee P. Mathematical modelling of cell migration: stiffness dependent jump rates result in durotaxis. J Math Biol 2019; 78:2289-2315. [PMID: 30972438 PMCID: PMC6534528 DOI: 10.1007/s00285-019-01344-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/25/2019] [Indexed: 12/17/2022]
Abstract
Durotaxis, the phenomena where cells migrate up a gradient in substrate stiffness, remains poorly understood. It has been proposed that durotaxis results from the reinforcement of focal adhesions on stiff substrates. In this paper we formulate a mathematical model of single cell migration on elastic substrates with spatially varying stiffness. We develop a stochastic model where the cell moves by updating the position of its adhesion sites at random times, and the rate of updates is determined by the local stiffness of the substrate. We investigate two physiologically motivated mechanisms of stiffness sensing. From the stochastic model of single cell migration we derive a population level description in the form of a partial differential equation for the time evolution of the density of cells. The equation is an advection–diffusion equation, where the advective velocity is proportional to the stiffness gradient. The model shows quantitative agreement with experimental results in which cells tend to cluster when seeded on a matrix with periodically varying stiffness.
Collapse
Affiliation(s)
- Adam A Malik
- Mathematical Sciences, Chalmers University of Technology, 41296, Göteborg, Sweden. .,Mathematical Sciences, University of Gothenburg, 41296, Göteborg, Sweden.
| | - Philip Gerlee
- Mathematical Sciences, Chalmers University of Technology, 41296, Göteborg, Sweden.,Mathematical Sciences, University of Gothenburg, 41296, Göteborg, Sweden
| |
Collapse
|
33
|
Osuala KO, Ji K, Mattingly RR, Sloane BF. Breast Cancer: Proteolysis and Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:401-411. [PMID: 31456196 DOI: 10.1007/978-3-030-20301-6_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding breast cancer cell proteolysis and migration is crucial for developing novel therapies to prevent local and distant metastases. Human cancer cells utilize many biological functions comparable to those observed during embryogenesis conferring the cancer cells with survival advantages. One such advantage is the ability to secrete proteases into the tumor microenvironment in order to remodel the extracellular matrix to facilitate migration. These proteases degrade the extracellular matrix, which initially functions as a barrier to cancer cell escape from their site of origin. The extracellular matrix also functions as a reservoir for growth factors that can be released by the secreted proteases and thereby further aid tumor growth and progression. Other survival advantages of tumor cells include: the ability to utilize multiple modes of motility, thrive in acidic microenvironments, and the tumor cell's ability to hijack stromal and immune cells to foster their own migration and survival. In order to reduce metastasis, we must focus our efforts on addressing the survival advantages that tumor cells have acquired.
Collapse
Affiliation(s)
- Kingsley O Osuala
- Department of Pharmacology and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Kyungmin Ji
- Department of Pharmacology and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Raymond R Mattingly
- Department of Pharmacology and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bonnie F Sloane
- Department of Pharmacology and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
34
|
Rahimi-Balaei M, Bergen H, Kong J, Marzban H. Neuronal Migration During Development of the Cerebellum. Front Cell Neurosci 2018; 12:484. [PMID: 30618631 PMCID: PMC6304365 DOI: 10.3389/fncel.2018.00484] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental process in central nervous system (CNS) development. The assembly of functioning neuronal circuits relies on neuronal migration occurring in the appropriate spatio-temporal pattern. A defect in the neuronal migration may result in a neurological disorder. The cerebellum, as a part of the CNS, plays a pivotal role in motor coordination and non-motor functions such as emotion, cognition and language. The excitatory and inhibitory neurons within the cerebellum originate from different distinct germinal zones and migrate through complex routes to assemble in a well-defined neuronal organization in the cerebellar cortex and nuclei. In this review article, the neuronal migration modes and pathways from germinal zones to the final position in the cerebellar cortex and nuclei will be described. The cellular and molecular mechanisms involved in cerebellar neuronal migration during development will also be reviewed. Finally, some diseases and animal models associated with defects in neuronal migration will be presented.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hugo Bergen
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
35
|
Pham QL, Rodrigues LN, Maximov MA, Chandran VD, Bi C, Chege D, Dijamco T, Stein E, Tong NAN, Basuray S, Voronov RS. Cell Sequence and Mitosis Affect Fibroblast Directional Decision-Making During Chemotaxis in Microfluidic Mazes. Cell Mol Bioeng 2018; 11:483-494. [PMID: 31719895 DOI: 10.1007/s12195-018-0551-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 08/21/2018] [Indexed: 01/25/2023] Open
Abstract
Introduction Directed fibroblast migration is central to highly proliferative processes in regenerative medicine and developmental biology. However, the mechanisms by which single fibroblasts affect each other's directional decisions, while chemotaxing in microscopic pores, are not well understood. Methods We explored effects of cell sequence and mitosis on fibroblast platelet-derived growth factor-BB (PDGF-BB)-induced migration in microfluidic mazes with two possible through paths: short and long. Additionally, image-based modeling of the chemoattractant's diffusion, consumption and decay, was used to explain the experimental observations. Results It both cases, the cells displayed behavior that is contradictory to expectation based on the global chemoattractant gradient pre-established in the maze. In case of the sequence, the cells tend to alternate when faced with a bifurcation: if a leading cell takes the shorter (steeper gradient) path, the cell following it chooses the longer (weaker gradient) path, and vice versa. Image-based modeling of the process showed that the local PDGF-BB consumption by the individual fibroblasts may be responsible for this phenomenon. Additionally, it was found that when a mother cell divides, its two daughters go in opposite directions (even if it means migrating against the chemoattractant gradient and overcoming on-going cell traffic). Conclusions It is apparent that micro-confined fibroblasts modify each other's directional decisions in a manner that is counter-intuitive to what is expected from classical chemotaxis theory. Consequently, accounting for these effects could lead to a better understanding of tissue generation in vivo, and result in more advanced engineered tissue products in vitro.
Collapse
Affiliation(s)
- Quang Long Pham
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Lydia N Rodrigues
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Max A Maximov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Vishnu Deep Chandran
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Cheng Bi
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - David Chege
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Timothy Dijamco
- Computer Science Dept., New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Elisabeth Stein
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Nhat Anh Nguyen Tong
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Sagnik Basuray
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| |
Collapse
|
36
|
Surendran A, Plank MJ, Simpson MJ. Spatial Moment Description of Birth-Death-Movement Processes Incorporating the Effects of Crowding and Obstacles. Bull Math Biol 2018; 80:2828-2855. [PMID: 30097916 DOI: 10.1007/s11538-018-0488-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
Birth-death-movement processes, modulated by interactions between individuals, are fundamental to many cell biology processes. A key feature of the movement of cells within in vivo environments is the interactions between motile cells and stationary obstacles. Here we propose a multi-species model of individual-level motility, proliferation and death. This model is a spatial birth-death-movement stochastic process, a class of individual-based model (IBM) that is amenable to mathematical analysis. We present the IBM in a general multi-species framework and then focus on the case of a population of motile, proliferative agents in an environment populated by stationary, non-proliferative obstacles. To analyse the IBM, we derive a system of spatial moment equations governing the evolution of the density of agents and the density of pairs of agents. This approach avoids making the usual mean-field assumption so that our models can be used to study the formation of spatial structure, such as clustering and aggregation, and to understand how spatial structure influences population-level outcomes. Overall the spatial moment model provides a reasonably accurate prediction of the system dynamics, including important effects such as how varying the properties of the obstacles leads to different spatial patterns in the population of agents.
Collapse
Affiliation(s)
- Anudeep Surendran
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael J Plank
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
- Te Pūnaha Matatini, A New Zealand Centre of Research Excellence, Auckland, New Zealand
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
37
|
Chen W, Xu K, Tao B, Dai L, Yu Y, Mu C, Shen X, Hu Y, He Y, Cai K. Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis in vitro and in vivo. Acta Biomater 2018; 74:489-504. [PMID: 29702291 DOI: 10.1016/j.actbio.2018.04.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/27/2018] [Accepted: 04/22/2018] [Indexed: 12/20/2022]
Abstract
We used surface-modified titanium (Ti) substrates with a multilayered structure composed of chitosan-catechol (Chi-C), gelatin (Gel) and hydroxyapatite (HA) nanofibers, which were previously shown to improve osteogenesis, as a platform to investigate the interaction of osteogenesis and angiogenesis during bone healing. Combined techniques of Transwell co-culture, wound healing assay, enzyme linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemical staining were used to evaluate adhesion, morphology and migration of adipose-derived mesenchymal stem cells (Ad-MSCs) and human umbilical vein endothelial cells (HUVECs) grown on different Ti substrates. We investigated the effect of substrates on the osteogenic differentiation of Ad-MSCs and reciprocal paracrine effects of Ad-MSCs on HUVECs or vice versa. The multilayered Ti substrates directly regulated the cellular functions of Ad-MSCs and angiogenic HUVECs and mediated communication between them by enhancing paracrine effects via cell-matrix interactions in vitro. The in vivo results showed that the change of microenvironment induced by surface-modified Ti implants promoted the adhesion, recruitment and proliferation of MSCs and facilitated coupled osteogenesis and angiogenesis in bone healing. The study proved that multilayer-film-coated Ti substrates positively mediated cellular biological function in vitro and improved bone healing in vivo. STATEMENT OF SIGNIFICANCE Recent studies have revealed that osteogenesis and angiogenesis are coupled, and that communication between osteoblasts and endothelial cells is essential for bone healing and remodeling processes; however, these conclusions only result from in vitro studies or in vivo studies using transgenic murine models. Relatively little is known about the communication between osteoblasts and endothelial cells in peri-implants during bone healing processes. Our results revealed the cellular/molecular mechanism of how multilayered Ti substrates mediate reciprocal paracrine effects between adipose-derived mesenchymal stem cells and human umbilical vein endothelial cells; moreover, the interactions between the cell-matrix and peri-implant was proven in vivo with enhanced bone healing. This study contributes to our understanding of the fundamental mechanisms of angiogenesis and osteogenesis that affect peri-implantation, and thus, provides new insights into the design of future high-quality orthopedic implants.
Collapse
|
38
|
Wadkin LE, Orozco-Fuentes S, Neganova I, Swan G, Laude A, Lako M, Shukurov A, Parker NG. Correlated random walks of human embryonic stem cells in vitro. Phys Biol 2018; 15:056006. [DOI: 10.1088/1478-3975/aac008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Allam AH, Charnley M, Russell SM. Context-Specific Mechanisms of Cell Polarity Regulation. J Mol Biol 2018; 430:3457-3471. [PMID: 29886017 DOI: 10.1016/j.jmb.2018.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Cell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses. The polarity protein complexes regulating these interactions are highly evolutionarily conserved between vertebrates and invertebrates. Interestingly, these polarity complexes interact with each other and key signaling pathways in a cell-polarity context-dependent manner. However, the exact mechanisms by which these interactions take place are poorly understood. In this review, we will focus on the roles of the key polarity complexes SCRIB, PAR and Crumbs in regulating different forms of cell polarity, including epithelial cell polarity, cell migration, asymmetric cell division and the T-cell immunological synapse assembly and signaling.
Collapse
Affiliation(s)
- Amr H Allam
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia.
| | - Mirren Charnley
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Biointerface Engineering Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Sarah M Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Department of Pathology, The University of Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia.
| |
Collapse
|
40
|
Rubio-Solsona E, Martí S, Vílchez JJ, Palau F, Hoenicka J. ANKK1 is found in myogenic precursors and muscle fibers subtypes with glycolytic metabolism. PLoS One 2018; 13:e0197254. [PMID: 29758057 PMCID: PMC5951577 DOI: 10.1371/journal.pone.0197254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
Ankyrin repeat and kinase domain containing 1 (ANKK1) gene has been widely related to neuropsychiatry disorders. The localization of ANKK1 in neural progenitors and its correlation with the cell cycle has suggested its participation in development. However, ANKK1 functions still need to be identified. Here, we have further characterized the ANKK1 localization in vivo and in vitro, by using immunolabeling, quantitative real-time PCR and Western blot in the myogenic lineage. Histologic investigations in mice and humans revealed that ANKK1 is expressed in precursors of embryonic and adult muscles. In mice embryos, ANKK1 was found in migrating myotubes where it shows a polarized cytoplasmic distribution, while proliferative myoblasts and satellite cells show different isoforms in their nuclei and cytoplasm. In vitro studies of ANKK1 protein isoforms along the myogenic progression showed the decline of nuclear ANKK1-kinase until its total exclusion in myotubes. In adult mice, ANKK1 was expressed exclusively in the Fast-Twitch muscles fibers subtype. The induction of glycolytic metabolism in C2C12 cells with high glucose concentration or treatment with berberine caused a significant increase in the ANKK1 mRNA. Similarly, C2C12 cells under hypoxic conditions caused the increase of nuclear ANKK1. These results altogether show a relationship between ANKK1 gene regulation and the metabolism of muscles during development and in adulthood. Finally, we found ANKK1 expression in regenerative fibers of muscles from dystrophic patients. Future studies in ANKK1 biology and the pathological response of muscles will reveal whether this protein is a novel muscle disease biomarker.
Collapse
Affiliation(s)
- Estrella Rubio-Solsona
- CIBERER Biobank, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Salvador Martí
- CIBERER Biobank, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Juan J. Vílchez
- CIBERER Biobank, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
- Department of Medicine, University of Valencia School of Medicine, Valencia, Spain
| | - Francesc Palau
- CIBERER Biobank, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
- Department of Genetic and Molecular Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
- Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Division of Pediatrics, University of Barcelona School of Medicine, Barcelona, Spain
| | - Janet Hoenicka
- Centro de Investigación Príncipe Felipe, Valencia, Spain
- Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- * E-mail:
| |
Collapse
|
41
|
Septiadi D, Crippa F, Moore TL, Rothen-Rutishauser B, Petri-Fink A. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704463. [PMID: 29315860 DOI: 10.1002/adma.201704463] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Indexed: 05/22/2023]
Abstract
Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Federica Crippa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Thomas Lee Moore
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
42
|
Overlapping Role of SCYL1 and SCYL3 in Maintaining Motor Neuron Viability. J Neurosci 2018; 38:2615-2630. [PMID: 29437892 DOI: 10.1523/jneurosci.2282-17.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/23/2017] [Accepted: 01/31/2018] [Indexed: 11/21/2022] Open
Abstract
Members of the SCY1-like (SCYL) family of protein kinases are evolutionarily conserved and ubiquitously expressed proteins characterized by an N-terminal pseudokinase domain, centrally located Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats, and an overall disorganized C-terminal segment. In mammals, three family members encoded by genes Scyl1, Scyl2, and Scyl3 have been described. Studies have pointed to a role for SCYL1 and SCYL2 in regulating neuronal function and viability in mice and humans, but little is known about the biological function of SCYL3. Here, we show that the biochemical and cell biological properties of SCYL3 are similar to those of SCYL1 and both proteins work in conjunction to maintain motor neuron viability. Specifically, although lack of Scyl3 in mice has no apparent effect on embryogenesis and postnatal life, it accelerates the onset of the motor neuron disorder caused by Scyl1 deficiency. Growth abnormalities, motor dysfunction, hindlimb paralysis, muscle wasting, neurogenic atrophy, motor neuron degeneration, and loss of large-caliber axons in peripheral nerves occurred at an earlier age in Scyl1/Scyl3 double-deficient mice than in Scyl1-deficient mice. Disease onset also correlated with the mislocalization of TDP-43 in spinal motor neurons, suggesting that SCYL1 and SCYL3 regulate TDP-43 proteostasis. Together, our results demonstrate an overlapping role for SCYL1 and SCYL3 in vivo and highlight the importance the SCYL family of proteins in regulating neuronal function and survival. Only male mice were used in this study.SIGNIFICANCE STATEMENT SCYL1 and SCYL2, members of the SCY1-like family of pseudokinases, have well established roles in neuronal function. Herein, we uncover the role of SCYL3 in maintaining motor neuron viability. Although targeted disruption of Scyl3 in mice had little or no effect on embryonic development and postnatal life, it accelerated disease onset associated with the loss of Scyl1, a novel motor neuron disease gene in humans. Scyl1 and Scyl3 double-deficient mice had neuronal defects characteristic of amyotrophic lateral sclerosis, including TDP-43 pathology, at an earlier age than did Scyl1-deficient mice. Thus, we show that SCYL1 and SCYL3 play overlapping roles in maintaining motor neuronal viability in vivo and confirm that SCYL family members are critical regulators of neuronal function and survival.
Collapse
|
43
|
Manheimer KB, Richter F, Edelmann LJ, D'Souza SL, Shi L, Shen Y, Homsy J, Boskovski MT, Tai AC, Gorham J, Yasso C, Goldmuntz E, Brueckner M, Lifton RP, Chung WK, Seidman CE, Seidman JG, Gelb BD. Robust identification of mosaic variants in congenital heart disease. Hum Genet 2018; 137:183-193. [PMID: 29417219 PMCID: PMC5997246 DOI: 10.1007/s00439-018-1871-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Mosaicism due to somatic mutations can cause multiple diseases including cancer, developmental and overgrowth syndromes, neurodevelopmental disorders, autoinflammatory diseases, and atrial fibrillation. With the increased use of next generation sequencing technology, multiple tools have been developed to identify low-frequency variants, specifically from matched tumor-normal tissues in cancer studies. To investigate whether mosaic variants are implicated in congenital heart disease (CHD), we developed a pipeline using the cancer somatic variant caller MuTect to identify mosaic variants in whole-exome sequencing (WES) data from a cohort of parent/affected child trios (n = 715) and a cohort of healthy individuals (n = 416). This is a novel application of the somatic variant caller designed for cancer to WES trio data. We identified two cases with mosaic KMT2D mutations that are likely pathogenic for CHD, but conclude that, overall, mosaicism detectable in peripheral blood or saliva does not account for a significant portion of CHD etiology.
Collapse
Affiliation(s)
- Kathryn B Manheimer
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Felix Richter
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa J Edelmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sunita L D'Souza
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisong Shi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Cardiovscular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Marko T Boskovski
- Division of Cardiac Surgery, The Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angela C Tai
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Elizabeth Goldmuntz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiology, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Martina Brueckner
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- Yale Center for Mendelian Genomics, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Medicine (Cardiology), Brigham and Women's Hospital, Boston, MA, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
44
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
45
|
Stepanik V, Dunipace L, Bae YK, Macabenta F, Sun J, Trisnadi N, Stathopoulos A. The migrations of Drosophila muscle founders and primordial germ cells are interdependent. Development 2017; 143:3206-15. [PMID: 27578182 DOI: 10.1242/dev.134346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/29/2016] [Indexed: 12/31/2022]
Abstract
Caudal visceral mesoderm (CVM) cells migrate from posterior to anterior of the Drosophila embryo as two bilateral streams of cells to support the specification of longitudinal muscles along the midgut. To accomplish this long-distance migration, CVM cells receive input from their environment, but little is known about how this collective cell migration is regulated. In a screen we found that wunen mutants exhibit CVM cell migration defects. Wunens are lipid phosphate phosphatases known to regulate the directional migration of primordial germ cells (PGCs). PGC and CVM cell types interact while PGCs are en route to the somatic gonadal mesoderm, and previous studies have shown that CVM impacts PGC migration. In turn, we found here that CVM cells exhibit an affinity for PGCs, localizing to the position of PGCs whether mislocalized or trapped in the endoderm. In the absence of PGCs, CVM cells exhibit subtle changes, including more cohesive movement of the migrating collective, and an increased number of longitudinal muscles is found at anterior sections of the larval midgut. These data demonstrate that PGC and CVM cell migrations are interdependent and suggest that distinct migrating cell types can coordinately influence each other to promote effective cell migration during development.
Collapse
Affiliation(s)
- Vincent Stepanik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leslie Dunipace
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Young-Kyung Bae
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Frank Macabenta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jingjing Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathanie Trisnadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
46
|
Greenberg JM, Carballosa CM, Cheung HS. Concise Review: The Deleterious Effects of Cigarette Smoking and Nicotine Usage and Mesenchymal Stem Cell Function and Implications for Cell-Based Therapies. Stem Cells Transl Med 2017; 6:1815-1821. [PMID: 28696009 PMCID: PMC5689746 DOI: 10.1002/sctm.17-0060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022] Open
Abstract
Stem cell sources for cell‐based therapeutics are often screened for infectious agents and genetic diseases prior to implantation; however, there are other risk factors that are often overlooked, which may ultimately lead to less efficacious clinical outcomes. One such risk factor is exposure of mesenchymal stem cells (MSCs) to cigarette smoke or nicotine. Recent data have shown that exposure to cigarette smoke or nicotine leads to decreased regenerative potential, namely decreased proliferation, decreased migration, and decreased differentiation potential of exposed MSCs. This review provides a brief introduction into MSCs and their respective niches and a summary regarding the interactions of cigarettes and nicotine with MSCs populations. Specifically, the effects of cigarette smoke and nicotine on the regenerative potential of MSCs (i.e., proliferation, migration, and differentiation) will be covered with an emphasis on considerations for the development of future cell‐based clinical trials and therapies. stemcellstranslationalmedicine2017;6:1815–1821
Collapse
Affiliation(s)
- Jordan M Greenberg
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida, USA
| | - Carlos M Carballosa
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida, USA
| | - Herman S Cheung
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida, USA.,Geriatric Research, Education and Clinical Center (GRECC); Miami Veterans Affairs Medical Center, Miami, Florida, USA
| |
Collapse
|
47
|
Paterson EK, Courtneidge SA. Invadosomes are coming: new insights into function and disease relevance. FEBS J 2017; 285:8-27. [PMID: 28548369 DOI: 10.1111/febs.14123] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Invadopodia and podosomes are discrete, actin-based molecular protrusions that form in cancer cells and normal cells, respectively, in response to diverse signaling pathways and extracellular matrix cues. Although they participate in a host of different cellular processes, they share a common functional theme of controlling pericellular proteolytic activity, which sets them apart from other structures that function in migration and adhesion, including focal adhesions, lamellipodia, and filopodia. In this review, we highlight research that explores the function of these complex structures, including roles for podosomes in embryonic and postnatal development, in angiogenesis and remodeling of the vasculature, in maturation of the postsynaptic membrane, in antigen sampling and recognition, and in cell-cell fusion mechanisms, as well as the involvement of invadopodia at multiple steps of the metastatic cascade, and how all of this may apply in the treatment of human disease states. Finally, we explore recent research that implicates a novel role for exosomes and microvesicles in invadopodia-dependent and invadopodia-independent mechanisms of invasion, respectively.
Collapse
Affiliation(s)
- Elyse K Paterson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sara A Courtneidge
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
48
|
Lee P, Yeo GC, Weiss AS. A cell adhesive peptide from tropoelastin promotes sequential cell attachment and spreading via distinct receptors. FEBS J 2017; 284:2216-2230. [DOI: 10.1111/febs.14114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/30/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Pearl Lee
- School of Life and Environmental Sciences University of Sydney Australia
- Bosch Institute University of Sydney Australia
- Charles Perkins Centre University of Sydney Australia
| | - Giselle C. Yeo
- School of Life and Environmental Sciences University of Sydney Australia
- Charles Perkins Centre University of Sydney Australia
- Applied and Plasma Physics School of Physics University of Sydney Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney Australia
- Bosch Institute University of Sydney Australia
- Charles Perkins Centre University of Sydney Australia
| |
Collapse
|
49
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
50
|
Emmert M, Witzel P, Rothenburger-Glaubitt M, Heinrich D. Nanostructured surfaces of biodegradable silica fibers enhance directed amoeboid cell migration in a microtubule-dependent process. RSC Adv 2017. [DOI: 10.1039/c6ra25739a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study reveals significantly enhanced amoeboid cell migration on biodegradable silica fibers in comparison to plain glass surfaces.
Collapse
Affiliation(s)
- Martin Emmert
- Fraunhofer Institute for Silicate Research ISC
- 97082 Würzburg
- Germany
- Julius-Maximilians-Universität Würzburg
- Chemical Technology of Material Synthesis
| | - Patrick Witzel
- Fraunhofer Institute for Silicate Research ISC
- 97082 Würzburg
- Germany
- Julius-Maximilians-Universität Würzburg
- Chemical Technology of Material Synthesis
| | | | - Doris Heinrich
- Fraunhofer Institute for Silicate Research ISC
- 97082 Würzburg
- Germany
- Leiden University
- LION Leiden Institute of Physics
| |
Collapse
|