1
|
Zhang Y, Li J, Liu B, Wang P, Xiao H, Wang Q, Li R, Zhang J. CYB5A promotes osteogenic differentiation of MC3T3-E1 cells through autophagy mediated by the AKT/mTOR/ULK1 signaling pathway. Sci Rep 2025; 15:13234. [PMID: 40246926 PMCID: PMC12006315 DOI: 10.1038/s41598-025-97086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Bone metabolism involves complex genetic and cellular processes. While many advances have been made in understanding the molecular mechanisms of osteogenic differentiation, many aspects remain to be fully elucidated. This study investigated the role of CYB5A in promoting osteogenic differentiation of MC3T3-E1 cells and explored the influence of autophagy via the AKT/mTOR/ULK1 signaling pathway. CYB5A expression during osteogenesis was analyzed through bioinformatics, quantitative reverse transcription polymerase chain reaction, and Western blotting. CYB5A was overexpressed or knocked down via plasmid or small interfering RNA transfection, and its effects on cell proliferation, migration, and differentiation were evaluated. Results showed that CYB5A expression increased during differentiation without affecting proliferation. However, CYB5A significantly enhanced cell differentiation by stimulating autophagy, as indicated by an increased ratio of the autophagic marker LC3-II/LC3-I and reduced levels of P62. Mechanistically, CYB5A modulates autophagy by activating ULK1 and reducing active mTOR phosphorylation. Autophagy inhibitors and activators confirmed that the AKT/mTOR/ULK1 pathway mediates CYB5A's regulatory effects on osteogenesis. This study reveals that CYB5A positively regulates osteogenic differentiation through autophagy, offering insights into bone metabolism mechanisms. These findings suggest that CYB5A is a promising therapeutic target for managing bone metabolic disorders.
Collapse
Affiliation(s)
- Yanjie Zhang
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Jinmeng Li
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Beibei Liu
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Peilin Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Oral Mucosal Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Hanyu Xiao
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Qingfu Wang
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Ruixin Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Jian Zhang
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| |
Collapse
|
2
|
Hootnick DR, Vargesson N, Horton JA, Chomiak J. Embryonic Vascular Dysgenesis: The Origin of Proximal Femoral Focal Deficiency. Birth Defects Res 2025; 117:e2465. [PMID: 40191900 DOI: 10.1002/bdr2.2465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Proximal Femoral Focal Deficiency (PFFD) is the most proximal manifestation of a syndrome involving Congenitally Shortened lower Limbs (CSL), which also affects the fibula and midline metatarsals. This pattern of congenital human long bone deficiencies corresponds, in a time dependent manner, to the failed ingrowth pathways of new blood vessels of the growing embryonic limb. The distal femoral condyles are, in contrast, served by an alternative vascular supply from around the knee joint, and so remain resistant to the CSL deficiency. AIM We hypothesize that embryonic vascular dysgenesis causes PFFD, as well as the cardinal features of the Femoral, Fibular and midline Metatarsal deficiencies (FFM) syndrome. RESULTS Arteriography of CSL with PFFD reveals diminution or failed formation of the Femoral Artery (FA), which corresponds to downstream skeletal reductions. It may also reveal preservation of the primitive Axial Artery (AA) of the embryonic limb. The combination of missing and retained primitive vessels inform the time, place, and nature of the etiologic vascular events. This suggests that PFFD is the visible expression of a normally prefigured cartilaginous scaffold of the femur, which develops in conformity with the available pattern of blood vessels present. The teratogen thalidomide, known to affect the forming embryonic vasculature, also produces PFFD indistinguishable from the naturally occurring entity. CONCLUSION The entire spectrum of PFFD, including phocomelia, fibular, and metatarsal dystrophisms, should thus be regarded as downstream skeletal results of embryonic arterial dysgeneses.
Collapse
Affiliation(s)
- David R Hootnick
- Department of Orthopedic Surgery, Department of Cell & Developmental Biology, Department of Pediatrics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jason A Horton
- Department of Neuroscience & Physiology, Department of Radiation Oncology, Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jiri Chomiak
- Department of Orthopaedics, Institute for Postgraduate Medical Education and First Faculty of Medicine, Charles University and Teaching Hospital Na Bulovce, Prague, Czech Republic
| |
Collapse
|
3
|
Zhu L, Xie L, Wang Z, Li KL, Cai W. Mass spectrometry-based metabolomics reveal the effects and potential mechanism of isochlorogenic acid A in MC3T3-E1 cells. Front Mol Biosci 2025; 12:1518873. [PMID: 40201241 PMCID: PMC11975594 DOI: 10.3389/fmolb.2025.1518873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/27/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction The bioactive compound 3,5-DiCQA, derived from Duhaldea nervosa, has been traditionally utilized in folk remedies for bone fractures and osteoporosis. However, its therapeutic mechanisms remain unclear. Methods We employed UHPLC-Q Exactive Orbitrap MS-based cell metabolomics to investigate the molecular mechanisms of 3,5-DiCQA in MC3T3-E1 cells. Cell proliferation was assessed via MTT assay, differentiation by alkaline phosphatase (ALP) activity, and mineralization through alizarin red staining and cetylpyridinium chloride quantification. Metabolomic profiling compared drug-treated and control groups. Results Results from MTT assays demonstrated that 3,5-DiCQA significantly promoted cell proliferation at 100 μM. Alkaline phosphatase (ALP) assays and alizarin red staining revealed enhanced osteoblast differentiation and mineralization, respectively. Calcification deposition was significantly increased in the calcified stained cells by cetylpyridinium chloride quantization, indicating that 3,5-DiCQA can promote the mineralization of MC3T3-E1 cells. Metabolomic analysis identified key metabolic changes, including the downregulation of phytosphingosine and upregulation of sphinganine and citric acid. Discussion These findings suggest that 3,5-DiCQA promotes osteoblast proliferation, differentiation and mineralization through pathways such as sphingolipid metabolism, arginine and proline metabolism, mucin type O-glycan biosynthesis and the citrate cycle (TCA cycle). This study provides insights into the therapeutic potential of 3,5-DiCQA for osteoporosis and highlights the utility of metabolomics in elucidating traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Lian Zhu
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Liu Xie
- Department of Pathology and Research Office of the School of Basic Medicine, Hunan University of Medicine, Huaihua, China
| | - Ziming Wang
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Kai-Lin Li
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
4
|
Beltrán-Hernández NE, Cardenas L, Jimenez-Jacinto V, Vega-Alvarado L, Rivera HM. Biological Activity of Biomarkers Associated With Metastasis in Osteosarcoma Cell Lines. Cancer Med 2025; 14:e70391. [PMID: 40079158 PMCID: PMC11904427 DOI: 10.1002/cam4.70391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/20/2024] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood. Clarifying the molecular pathways involved in metastasis is essential for enhancing patient prognoses and facilitating the development of targeted therapeutic strategies. METHODS RNA sequencing (RNA-Seq) analysis was employed to compare three conditions, hFOB1.19 versus Saos-2, hFOB1.19 versus SJSA-1, and Saos-2 versus SJSA-1, involving non-cancer osteoblasts (hFOB1.19) and highly metastatic osteosarcoma cell lines (Saos-2 and SJSA-1). Additionally, ENA datasets of RNA-Seq from osteosarcoma biopsies were included. Differentially expressed genes (DEGs) were identified and analyzed through enrichment pathway analysis and protein-protein interaction (PPI) networks. Additionally, for gene candidates, a biochemical evaluation was performed. RESULTS DEGs associated with biological functions pertinent to migration, invasion, and metastasis in osteosarcoma were identified. Notably, matrix metalloproteinase-2 (MMP-2) emerged as a promising candidate. Both canonical or full-length (FL-mmp-2) and N-terminal truncated (NTT-mmp-2) isoforms were discerned in biopsies. Moreover, MMP-2's activity was characterized in cell lines. Additionally, mRNA expression of voltage-gated sodium channels (NaVs) and voltage-gated potassium channels (KVs) was detected, and their functional expression was validated using patch clamp techniques. Evaluation of cell line migration and invasion capacities revealed their reduction in the presence of ion channel blockers (TTX and TEA) and MMP inhibitor (GM6001). CONCLUSIONS The gene functional enrichment analysis of DEGs enabled the identification of interaction networks in osteosarcoma, thereby revealing potential biomarkers. Moreover, the elucidated co-participation of TTX-sensitive NaVs and MMP-2 in facilitating migration and invasion suggests their suitability as novel prognostic biomarkers for osteosarcoma. Additionally, this study introduces a model delineating the potential interaction mechanism among ion channels, MMP-2, and other crucial factors in the metastatic cascade of osteosarcoma.
Collapse
Affiliation(s)
| | - Luis Cardenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Jimenez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Coyoacán Ciudad de México, Mexico
| | - Heriberto Manuel Rivera
- Universidad Autónoma del Estado de Morelos, Facultad de Medicina, Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Feng J, Zhu C, Zou J, Zhang L. Hyperbaric Oxygen Therapy for the Treatment of Bone-Related Diseases. Int J Mol Sci 2025; 26:1067. [PMID: 39940834 PMCID: PMC11817436 DOI: 10.3390/ijms26031067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is a therapeutic modality that enhances tissue oxygenation by delivering 100% oxygen at pressures greater than 1 absolute atmosphere. In recent years, HBOT has shown considerable potential in the treatment of bone diseases. While excess oxygen was once thought to induce oxidative stress, recent studies indicate that when administered within safe limits, HBOT can notably promote bone healing and repair. Extensive basic research has demonstrated that HBOT can stimulate the proliferation and differentiation of osteoblasts and encourage bone angiogenesis. Furthermore, HBOT has been shown to exert a beneficial influence on bone metabolism by modulating the inflammatory response and redox status. These mechanisms are closely related to core issues of bone biology. Specifically, in the context of fracture healing, bone defect repair, and conditions such as osteoporosis, HBOT targets the key bone signaling pathways involved in bone health, thereby exerting a therapeutic effect. Several clinical studies have demonstrated the efficacy of HBOT in improving bone health. However, the optimal HBOT regimen for treating various bone diseases still requires further definition to expand the indications for its clinical application. This paper outlines the mechanisms of HBOT, focusing on its antioxidant stress, promotion of bone vascularization, and anti-inflammatory properties. The paper also describes the application of HBOT in orthopedic diseases, thereby providing a scientific basis for the development of precise and personalized HBOT treatment regimens in clinical orthopedics.
Collapse
Affiliation(s)
- Jie Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.F.); (C.Z.); (J.Z.)
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.F.); (C.Z.); (J.Z.)
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.F.); (C.Z.); (J.Z.)
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
7
|
Nurhidayat L, Benes V, Blom S, Gomes I, Firdausi N, de Bakker MAG, Spaink HP, Richardson MK. Tokay gecko tail regeneration involves temporally collinear expression of HOXC genes and early expression of satellite cell markers. BMC Biol 2025; 23:6. [PMID: 39780185 PMCID: PMC11715542 DOI: 10.1186/s12915-024-02111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex. This system resembles an embryonic developmental field where cells undergo pattern formation. Some lizards, including geckos, can regenerate their tails, but it is unclear whether they show a "development-like" regeneration pathway. RESULTS Using the tokay gecko (Gekko gecko) model species, we examined seven stages of tail regeneration, and three stages of embryonic tail bud development, using transcriptomics, single-cell sequencing, and in situ hybridization. We find no apical growth zone in the regenerating tail. The transcriptomes of the regenerating vs. embryonic tails are quite different with respect to developmental patterning genes. Posterior HOXC genes were activated in a temporally collinear sequence in the regenerating tail. The major precursor populations were stromal cells (regenerating tail) vs. pluripotent stem cells (embryonic tail). Segmented skeletal muscles were regenerated with no expression of classical segmentation genes, but with the early activation of satellite cell markers. CONCLUSIONS Our study suggests that tail regeneration in the tokay gecko-unlike tail development-might rely on the activation of resident stem cells, guided by pre-existing positional information.
Collapse
Affiliation(s)
- Luthfi Nurhidayat
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory Heidelberg, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Sira Blom
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Inês Gomes
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Nisrina Firdausi
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Merijn A G de Bakker
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Michael K Richardson
- Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
8
|
Hong S, Lee HJ, Jung DS, Erdenebileg S, Hwang H, Kwon HC, Kwon J, Yoo G. Exploring the Anti-Osteoporotic Effects of n-Hexane Fraction from Cotoneaster wilsonii Nakai: Activation of Runx2 and Osteoblast Differentiation In Vivo. Pharmaceuticals (Basel) 2025; 18:45. [PMID: 39861108 PMCID: PMC11768920 DOI: 10.3390/ph18010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Osteoporosis is characterized by the microstructural depletion of bone tissue and decreased bone density, leading to an increased risk of fractures. Cotoneaster wilsonii Nakai, an endemic species of the Korean Peninsula, grows wild in Ulleungdo. In this study, we aimed to investigate the effects of C. wilsonii and its components on osteoporosis. METHODS AND RESULTS The alkaline phosphatase (ALP) activity of C. wilsonii extracts and fractions was evaluated in MC3T3-E1 pre-osteoblasts, and the n-hexane fraction (CWH) showed the best properties for ALP activity. The effects of the CWH on bone formation were assessed in MC3T3-E1 cells and ovariectomized mice. Biochemical assays and histological analyses focused on the signaling activation of osteoblast differentiation and osteogenic markers, such as ALP, collagen, and osterix. The CWH significantly activated TGF-β and Wnt signaling, enhancing osteoblast differentiation and bone matrix formation. Notably, CWH treatment improved micro-CT indices, such as femoral bone density, and restored serum osteocalcin levels compared to OVX controls. CONCLUSIONS These results highlight the potential of the C. wilsonii Nakai n-hexane fraction as a promising therapeutic agent for managing osteoporosis.
Collapse
Affiliation(s)
- Soyeon Hong
- Smart Farm Research Center, Korean Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (D.S.J.); (S.E.)
| | - Hee Ju Lee
- Center for Natural Product Systems Biology, Korean Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.J.L.); (H.H.); (H.C.K.)
| | - Da Seul Jung
- Smart Farm Research Center, Korean Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (D.S.J.); (S.E.)
| | - Saruul Erdenebileg
- Smart Farm Research Center, Korean Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (D.S.J.); (S.E.)
| | - Hoseong Hwang
- Center for Natural Product Systems Biology, Korean Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.J.L.); (H.H.); (H.C.K.)
| | - Hak Cheol Kwon
- Center for Natural Product Systems Biology, Korean Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.J.L.); (H.H.); (H.C.K.)
| | - Jaeyoung Kwon
- Center for Natural Product Systems Biology, Korean Institute of Science and Technology, Gangneung 25451, Republic of Korea; (H.J.L.); (H.H.); (H.C.K.)
| | - Gyhye Yoo
- Smart Farm Research Center, Korean Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.H.); (D.S.J.); (S.E.)
- Department of Natural Product Applied Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
9
|
Huang D, He Q, Pan J, Zhai Z, Sun J, Wang Q, Chu W, Huang J, Yu J, Qiu X, Lu W. Systemic immune-inflammatory index predicts fragility fracture risk in postmenopausal anemic females with type 2 diabetes mellitus: evidence from a longitudinal cohort study. BMC Endocr Disord 2024; 24:256. [PMID: 39604954 PMCID: PMC11600564 DOI: 10.1186/s12902-024-01792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Chronic low-grade inflammation is related to bone metabolism in patients with type 2 diabetes mellitus (T2DM). However, credible data indicating the relationship between inflammation and fragility fracture risk in postmenopausal anemic females with T2DM are sparse. The current study sought to investigate the relationships between the systemic immune-inflammatory index (SII) and fragility fracture events, as well as the future 10-year fragility fracture probability evaluated using the fracture risk assessment tool (FRAX) in postmenopausal females with T2DM. METHODS According to the tertiles of SII, 423 postmenopausal females with T2DM were divided into three groups: low-level (≤ 381.32, n = 141), moderate-level (381.32-629.46, n = 141), and high-level (≥ 629.46, n = 141). All participants were followed up for 7 years with a median of 46.8 months (1651 person-years). The association between SII and fragility fracture risk was assessed. RESULTS Of 423 subjects, 75 experienced a fragility fracture event. Spearman partial correlation analysis revealed that SII was negatively related to bone mineral density (BMD) and was positively associated with the future 10-year probability of major osteoporotic fracture (MOF) and hip fracture (HF). Restricted cubic spline (RCS) analysis revealed a positive correlation between SII and fragility fracture risk in an approximately inverted J-shaped dose-response pattern (P for overall < 0.0001). Multivariate Cox regression analysis demonstrated that patients with a high SII presented a greater risk of fragility fractures (P = 0.011). Stratified analysis revealed that fragility fractures in the high-level SII were predominantly associated with anemia with an increase of 4.15 times (P = 0.01). Kaplan‒Meier analysis indicated a greater cumulative incidence of fragility fractures in patients with a high SII (log-rank, all P = 0.0012). Receiver operating characteristic (ROC) analysis indicated an optimal SII cut-off value of 537.34, with an area under the curve (AUC) of 0.646, a sensitivity of 60%, and a specificity of 64.1% (P < 0.001). CONCLUSION The SII revealed a significant positive association with a real-world fragility fracture event and a future 10-year fragility fracture probability in postmenopausal females with T2DM, particularly evident in individuals with anemia. Therefore, monitoring the SII and hemoglobin in postmenopausal older women with T2DM is helpful in routine clinical practice to identify individuals at high risk for fragility fractures and to promptly execute appropriate fracture intervention procedures.
Collapse
Affiliation(s)
- Dinggui Huang
- Project Fund Supervision Center, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Qi He
- Health Examination Center, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiangmei Pan
- Department of Infectious Diseases, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Zhenwei Zhai
- Department of Endocrinology and Metabolism, National Key Endocrine Clinical Construction Specialty, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, No. 6, Taoyuan Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jingxia Sun
- Department of Endocrinology and Metabolism, National Key Endocrine Clinical Construction Specialty, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, No. 6, Taoyuan Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Qiu Wang
- Department of Endocrinology and Metabolism, National Key Endocrine Clinical Construction Specialty, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, No. 6, Taoyuan Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Wenxin Chu
- Department of Endocrinology and Metabolism, National Key Endocrine Clinical Construction Specialty, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, No. 6, Taoyuan Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jianhao Huang
- Department of Endocrinology and Metabolism, National Key Endocrine Clinical Construction Specialty, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, No. 6, Taoyuan Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jinming Yu
- Department of Endocrinology and Metabolism, National Key Endocrine Clinical Construction Specialty, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, No. 6, Taoyuan Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Xiaoqin Qiu
- Department of Nursing, the Guangxi Hospital of the First Affiliated Hospital of Sun Yat-Sen University, No. 3, Foziling Road, Nanning, Guangxi, 530028, People's Republic of China.
| | - Wensheng Lu
- Department of Endocrinology and Metabolism, National Key Endocrine Clinical Construction Specialty, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, No. 6, Taoyuan Road, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
10
|
Wang Y, Zhou R, Dong Z, Wang W, Guo L, Sun J, Rong X, Li P. Loss of Hdac4 in osteoprogenitors impairs postnatal trabecular and cortical bone formation, resulting in a dwarfism and osteopenia phenotype in mice. J Biol Chem 2024; 300:107941. [PMID: 39481602 DOI: 10.1016/j.jbc.2024.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
HDAC4 is a class II histone deacetylation protein with a well-characterized role in chondrocyte differentiation and skeletal development, and dysregulated expression or haploinsufficiency of Hdac4 leads to skeletal formation and malformation disorders. The early lethality of Hdac4 ablation mice hindered further investigation of its role in postnatal bone growth and development. Therefore, this study aims to investigate the significant role of Hdac4 in postnatal endochondral bone development using two mouse models with conditional deletion of Hdac4 in Sp7-expressing osteoprogenitors or chondrocytes and monitored postnatal bone development. The phenotype of Acan-CreERT2; Hdac4fl/fl mice largely resembled that of conventional Hdac4-/- mice. But phenotypic characterizations of mice with Hdac4 inactivation in Sp7-expressing osteoprogenitors (Sp7-Cre; Hdac4fl/fl) showed dwarfism with body and limb shortening and remarkable skeletal defects. Microcomputed tomography analysis of tibias further demonstrated that loss of Hdac4 expression impaired bone formation and microarchitecture, mainly characterized by dysplasia of trabecular and cortical bone in young mice. Our in vivo and in vitro data support a crucial role for Hdac4 in regulating osteoblast proliferation and differentiation, bone matrix protein production, angiogenesis, and ultimately trabecular and cortical bone formation. Moreover, RNA-seq analysis implicated Hdac4 in the regulation of key genes and pathways necessary to affect the accumulation of extracellular matrix, biological processes related to signal transduction, and skeletal growth. Collectively, our data show that postnatal expression of Hdac4 in Sp7-expressing osteoprogenitors provides essential regulatory oversight of endochondral bone formation, bone morphology, and homeostasis.
Collapse
Affiliation(s)
- YunFei Wang
- Department of Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Raorao Zhou
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Zhengquan Dong
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Wenting Wang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Li Guo
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Jian Sun
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Xueqin Rong
- Department of Pain Spinal Minimally Invasive Centre, Sanya Central Hospital, Sanya, Hainan, China.
| | - Pengcui Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China.
| |
Collapse
|
11
|
Miyata N, Mori S, Murakami T, Bizenjima T, Seshima F, Imamura K, Saito A. Combined Effects of Fibroblast Growth Factor-2 and Carbonate Apatite Granules on Periodontal Healing: An In Vivo and In Vitro Study. Biomedicines 2024; 12:1664. [PMID: 39200129 PMCID: PMC11352071 DOI: 10.3390/biomedicines12081664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The aim of this study was to investigate in vivo and in vitro the effectiveness of the use of fibroblast growth factor (FGF)-2 with carbonate apatite (CO3Ap) on periodontal healing. Periodontal defects created in the maxillary first molars in rats were treated with FGF-2, CO3Ap, FGF-2 + CO3Ap or left unfilled. Healing was evaluated using microcomputed tomography, histological, and immunohistochemical analyses. In vitro experiments were performed to assess cellular behaviors and the expression of osteoblastic differentiation markers in MC3T3-E1 cells. At 4 weeks, the bone volume fraction in the FGF-2 + CO3Ap group was significantly greater than that in the CO3Ap group, but there was no significant difference from the FGF-2 group. The FGF-2 + CO3Ap group demonstrated greater new bone compared with the FGF-2 or CO3Ap group. The FGF-2 + CO3Ap group showed greater levels of osteocalcin-positive cells compared with the CO3Ap group, but there was no significant difference from the FGF-2 group. In vitro, the FGF-2 + CO3Ap group exhibited a greater extent of cell attachment and more elongated cells compared with the CO3Ap group. Compared with the CO3Ap group, the FGF-2 + CO3Ap group showed significantly higher viability/proliferation, but the expressions of Runx2 and Sp7 were reduced. The results indicated that the use of FGF-2 with CO3Ap enhanced healing in the periodontal defects. FGF-2 promoted cell attachment to and proliferation on CO3Ap and regulated osteoblastic differentiation, thereby contributing to novel bone formation.
Collapse
Affiliation(s)
- Naoki Miyata
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
| | - Shinta Mori
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
| | - Takahiro Bizenjima
- Chiba Dental Center, Tokyo Dental College, Mihama-ku, Chiba 2618502, Japan;
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (N.M.); (S.M.); (T.M.); (F.S.); (K.I.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| |
Collapse
|
12
|
Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res 2024; 39:633-654. [PMID: 38696703 DOI: 10.1093/jbmr/zjae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine.
Collapse
Affiliation(s)
- Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrei S Chagin
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Zhou P, Lu K, Li C, Xu MZ, Ye YW, Shan HQ, Yin Y. Association between systemic inflammatory response index and bone turnover markers in Chinese patients with osteoporotic fractures: a retrospective cross-sectional study. Front Med (Lausanne) 2024; 11:1404152. [PMID: 39055700 PMCID: PMC11269153 DOI: 10.3389/fmed.2024.1404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Background The systemic inflammatory response index (SIRI) is a novel composite biomarker of inflammation. However, there is limited information on its use in the context of osteoporotic fractures. Hence, this study aimed to investigate the association between baseline SIRI values and bone turnover markers (BTMs) in Chinese patients diagnosed with osteoporotic fractures (OPFs), to offer a more precise method for assessing bone health and inflammation in clinical settings. Methods A retrospective cross-sectional study was conducted on 3,558 hospitalized patients with OPFs who required surgery or hospitalization at the First People's Hospital of Kunshan City from January 2017 to July 2022. Baseline measurements of SIRI, β-CTX (beta-C-terminal telopeptide of type I collagen), and P1NP (procollagen type I N-terminal propeptide) were obtained. The analyses were adjusted for variables, including age, sex, body mass index (BMI), and other initial laboratory and clinical findings. Furthermore, multivariable logistic regression, smooth curve fitting, and threshold analysis were also performed. Results The results revealed a negative correlation between baseline SIRI values and both β-CTX and P1NP levels. After adjusting for covariates in the regression analysis, each unit increase in SIRI was found to be inked to a reduction of 0.04 (β = -0.04; 95% confidence interval [CI], -0.05 to -0.03; with p-value <0.001) in β-CTX levels and a decrease of 3.77 (β = 3.77; 95% CI, 5.07 to 2.47; with p-value <0.001) in P1NP levels. Furthermore, a curvilinear relationship and threshold effect were also identified. Turning points were identified at SIRI values of 1.41 and 1.63 on the adjusted smooth curve. Conclusion The results showed a negative correlation between the baseline SIRI value and β-CTX level, as well as the level of P1NP. This suggests a possible link between the systemic inflammatory response and reduced bone metabolism. If these findings are verified, SIRI has the potential to function as a predictive indicator for BTMs. Nevertheless, additional research is necessary to verify these findings.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Ke Lu
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Chong Li
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Min-zhe Xu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Yao-wei Ye
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Hui-qiang Shan
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Yi Yin
- Department of Orthopedics, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Bixel MG, Sivaraj KK, Timmen M, Mohanakrishnan V, Aravamudhan A, Adams S, Koh BI, Jeong HW, Kruse K, Stange R, Adams RH. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun 2024; 15:4575. [PMID: 38834586 PMCID: PMC11150404 DOI: 10.1038/s41467-024-48579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Collapse
Affiliation(s)
- M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| | - Kishor K Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Anusha Aravamudhan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Bong-Ihn Koh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Sequencing Core Facility, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Bioinformatics Service Unit, D-48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
15
|
Lange M, Babczyk P, Tobiasch E. Exosomes: A New Hope for Angiogenesis-Mediated Bone Regeneration. Int J Mol Sci 2024; 25:5204. [PMID: 38791243 PMCID: PMC11120942 DOI: 10.3390/ijms25105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Bone is a metabolically dynamic structure that is generally remodeled throughout the lifetime of an individual but often causes problems with increasing age. A key player for bone development and homeostasis, but also under pathological conditions, is the bone vasculature. This complex system of arteries, veins, and capillaries forms distinct structures where each subset of endothelial cells has important functions. Starting with the basic process of angiogenesis and bone-specific blood vessel formation, coupled with initial bone formation, the importance of different vascular structures is highlighted with respect to how these structures are maintained or changed during homeostasis, aging, and pathological conditions. After exemplifying the current knowledge on bone vasculature, this review will move on to exosomes, a novel hotspot of scientific research. Exosomes will be introduced starting from their discovery via current isolation procedures and state-of-the-art characterization to their role in bone vascular development, homeostasis, and bone regeneration and repair while summarizing the underlying signal transduction pathways. With respect to their role in these processes, especially mesenchymal stem cell-derived extracellular vesicles are of interest, which leads to a discussion on patented applications and an update on ongoing clinical trials. Taken together, this review provides an overview of bone vasculature and bone regeneration, with a major focus on how exosomes influence this intricate system, as they might be useful for therapeutic purposes in the near future.
Collapse
Affiliation(s)
- Martin Lange
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Patrick Babczyk
- Department of Natural Sciences, University Bonn-Rhein-Sieg, D-53559 Rheinbach, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, University Bonn-Rhein-Sieg, D-53559 Rheinbach, Germany
| |
Collapse
|
16
|
Parvaneh M, Jamaluddin R, Ebrahimi M, Karimi G, Sabran MR. Assessing the effects of probiotic supplementation, single strain versus mixed strains, on femoral mineral density and osteoblastic gene mRNA expression in rats. J Bone Miner Metab 2024; 42:290-301. [PMID: 38796648 DOI: 10.1007/s00774-024-01512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/08/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Osteoporosis is a significant health concern characterized by weak and porous bones, particularly affecting menopausal women aged 50 and above, leading to increased risk of hip fractures and associated morbidity and mortality. MATERIALS AND METHODS We conducted a study to assess the efficacy of single-strain versus mixed-strain probiotic supplementation on bone health using an ovariectomy (OVX) rat model of induced bone loss. The probiotics evaluated were Lactobacillus helveticus (L. helveticus), Bifidobacterium longum (B. longum), and a combination of both. Rats were divided into five groups: SHAM (Control negative), OVX (Control positive), OVX +L. helveticus, OVX + B. longum, and OVX + mixed L. helveticus and B. longum. Daily oral administration of probiotics at 10^8-10^9 CFU/mL began two weeks post-surgery and continued for 16 weeks. RESULTS Both single-strain and mixed-strain probiotic supplementation upregulated expression of osteoblastic genes (BMP- 2, RUNX-2, OSX), increased serum osteocalcin (OC) levels, and improved bone formation parameters. Serum C-terminal telopeptide (CTX) levels and bone resorption parameters were reduced. However, the single-strain supplementation demonstrated superior efficacy compared to the mixed-strain approach. CONCLUSION Supplementation with B. longum and L. helveticus significantly reduces bone resorption and improves bone health in OVX rats, with single-strain supplementation showing greater efficacy compared to a mixed-strain combination. These findings highlight the potential of probiotics as a therapeutic intervention for osteoporosis, warranting further investigation in human studies.
Collapse
Affiliation(s)
- Maria Parvaneh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43300, Serdang, Malaysia
- Charles Perkins Centre, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Rosita Jamaluddin
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43300, Serdang, Malaysia
| | - Mahdi Ebrahimi
- Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Golgis Karimi
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43300, Serdang, Malaysia
- NewGen, Administrative Service, Los Angeles, CA, USA
| | - Mohd Redzwan Sabran
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43300, Serdang, Malaysia.
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
Bolamperti S, Saito H, Heerdmann S, Hesse E, Taipaleenmäki H. Tgif1-deficiency impairs cytoskeletal architecture in osteoblasts by activating PAK3 signaling. eLife 2024; 13:RP94265. [PMID: 38661167 PMCID: PMC11045221 DOI: 10.7554/elife.94265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1-34 (PTH 1-34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.
Collapse
Affiliation(s)
- Simona Bolamperti
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Hiroaki Saito
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| | - Sarah Heerdmann
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Eric Hesse
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| |
Collapse
|
18
|
Robin M, Djediat C, Bardouil A, Baccile N, Chareyron C, Zizak I, Fratzl P, Selmane M, Haye B, Genois I, Krafft J, Costentin G, Azaïs T, Artzner F, Giraud‐Guille M, Zaslansky P, Nassif N. Acidic Osteoid Templates the Plywood Structure of Bone Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304454. [PMID: 38115757 PMCID: PMC10916609 DOI: 10.1002/advs.202304454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Bone is created by osteoblasts that secrete osteoid after which an ordered texture emerges, followed by mineralization. Plywood geometries are a hallmark of many trabecular and cortical bones, yet the origin of this texturing in vivo has never been shown. Nevertheless, extensive in vitro work revealed how plywood textures of fibrils can emerge from acidic molecular cholesteric collagen mesophases. This study demonstrates in sheep, which is the preferred model for skeletal orthopaedic research, that the deeper non-fibrillar osteoid is organized in a liquid-crystal cholesteric geometry. This basophilic domain, rich in acidic glycosaminoglycans, exhibits low pH which presumably fosters mesoscale collagen molecule ordering in vivo. The results suggest that the collagen fibril motif of twisted plywood matures slowly through self-assembly thermodynamically driven processes as proposed by the Bouligand theory of biological analogues of liquid crystals. Understanding the steps of collagen patterning in osteoid-maturation processes may shed new light on bone pathologies that emerge from collagen physico-chemical maturation imbalances.
Collapse
Affiliation(s)
- Marc Robin
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Chakib Djediat
- Muséum National d'Histoire NaturelleUMR CNRS 7245, Bâtiment 39, CP 39, 57 rue CuvierParis75231France
| | - Arnaud Bardouil
- Université de Rennes, CNRSInstitut de Physique de Rennes (IPR)RennesF‐35000France
| | - Niki Baccile
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Camille Chareyron
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Ivo Zizak
- Helmholtz‐Zentrum Berlin für Materialien und Energie – Speicherring BESSY IIAlbert‐Einstein Str. 15D‐12349BerlinGermany
| | - Peter Fratzl
- Department of BiomaterialsMax Planck Institute of Colloids and Interfacesam Mühlenberg 114476PotsdamGermany
| | - Mohamed Selmane
- Institut des Matériaux de Paris CentreSorbonne UniversitéParisF‐75005France
| | - Bernard Haye
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Isabelle Genois
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Jean‐Marc Krafft
- Sorbonne Université, CNRSLaboratoire Réactivité de Surface (LRS)ParisF‐75005France
| | - Guylène Costentin
- Sorbonne Université, CNRSLaboratoire Réactivité de Surface (LRS)ParisF‐75005France
| | - Thierry Azaïs
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Franck Artzner
- Université de Rennes, CNRSInstitut de Physique de Rennes (IPR)RennesF‐35000France
| | - Marie‐Madeleine Giraud‐Guille
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| | - Paul Zaslansky
- Department for OperativePreventive and Pediatric DentistryCharité – Universitätsmedizin BerlinAßmannshauser Str. 4–614197BerlinGermany
| | - Nadine Nassif
- CNRS, Sorbonne Université, Collège de FranceLaboratoire Chimie de la Matière Condensée de Paris (LCMCP)ParisF‐75005France
| |
Collapse
|
19
|
Zhu Y, Li Y, Zhou X, Li H, Guo M, Zhang P. Glucose microenvironment sensitive degradation of arginine modified calcium sulfate reinforced poly(lactide- co-glycolide) composite scaffolds. J Mater Chem B 2024; 12:508-524. [PMID: 38108579 DOI: 10.1039/d3tb01595e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Poly(lactide-co-glycolide) (PLGA) and calcium sulfate composites are promising biodegradable biomaterials but are still challenging to use in people with high levels of blood glucose or diabetes. To date, the influence of glucose on their degradation has not yet been elucidated and thus calls for more research attention. Herein, a novel calcium sulfate whisker with L-arginine was used to effectively tune its crystal morphology and was employed as a reinforced phase to construct the PLGA-based composite scaffolds (ArgCSH/PLGA) with a sleeve porous structure. ArgCSH/PLGA showed excellent elastic modulus and strength in the compression and bending models. Moreover, an in vitro immersion test showed that ArgCSH/PLGA possessed degradation and redeposition behaviors sensitive to glucose concentration, and the adsorbed Arg played a crucial role in the degradation process. The subsequent cell functional evaluation showed that ArgCSH could effectively protect cells from damage caused by AGEs and promote osteogenic differentiation. The corresponding degradation products of ArgCSH/PLGA displayed the ability to regulate osteoblast bone differentiation and accelerate matrix mineralization. These findings provide new insights into the interaction between biomaterials and the physiological environment, which may be useful in expanding the targeted choice of efficient bone graft biodegradable materials for diabetic osteoporosis.
Collapse
Affiliation(s)
- Yongzhan Zhu
- 8th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, P. R. China.
| | - Yinghao Li
- 8th Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, P. R. China.
| | - Xiaosong Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Haoxuan Li
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N. 126 Xiantai Street, Changchun 130033, Jilin, P. R. China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
20
|
Sheng N, Xing F, Wang J, Zhang QY, Nie R, Li-Ling J, Duan X, Xie HQ. Recent progress in bone-repair strategies in diabetic conditions. Mater Today Bio 2023; 23:100835. [PMID: 37928253 PMCID: PMC10623372 DOI: 10.1016/j.mtbio.2023.100835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
Bone regeneration following trauma, tumor resection, infection, or congenital disease is challenging. Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia. It can result in complications affecting multiple systems including the musculoskeletal system. The increased number of diabetes-related fractures poses a great challenge to clinical specialties, particularly orthopedics and dentistry. Various pathological factors underlying DM may directly impair the process of bone regeneration, leading to delayed or even non-union of fractures. This review summarizes the mechanisms by which DM hampers bone regeneration, including immune abnormalities, inflammation, reactive oxygen species (ROS) accumulation, vascular system damage, insulin/insulin-like growth factor (IGF) deficiency, hyperglycemia, and the production of advanced glycation end products (AGEs). Based on published data, it also summarizes bone repair strategies in diabetic conditions, which include immune regulation, inhibition of inflammation, reduction of oxidative stress, promotion of angiogenesis, restoration of stem cell mobilization, and promotion of osteogenic differentiation, in addition to the challenges and future prospects of such approaches.
Collapse
Affiliation(s)
- Ning Sheng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jie Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Duan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| |
Collapse
|
21
|
Chin SM, Unnold-Cofre C, Naismith T, Jansen S. The actin-bundling protein, PLS3, is part of the mechanoresponsive machinery that regulates osteoblast mineralization. Front Cell Dev Biol 2023; 11:1141738. [PMID: 38089885 PMCID: PMC10711096 DOI: 10.3389/fcell.2023.1141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/07/2023] [Indexed: 02/01/2024] Open
Abstract
Plastin-3 (PLS3) is a calcium-sensitive actin-bundling protein that has recently been linked to the development of childhood-onset osteoporosis. Clinical data suggest that PLS3 mutations lead to a defect in osteoblast function, however the underlying mechanism remains elusive. To investigate the role of PLS3 in bone mineralization, we generated MC3T3-E1 preosteoblast cells that are stably depleted of PLS3. Analysis of osteogenic differentiation of control and PLS3 knockdown (PLS3 KD) cells showed that depletion of PLS3 does not alter the first stage of osteoblast mineralization in which a collagen matrix is deposited, but severely affects the subsequent mineralization of that matrix. During this phase, osteoblasts heavily rely on mechanosensitive signaling pathways to sustain mineral deposition in response to increasing stiffness of the extracellular matrix (ECM). PLS3 prominently localizes to focal adhesions (FAs), which are intricately linked to mechanosensation. In line with this, we observed that depletion of PLS3 rendered osteoblasts unresponsive to changes in ECM stiffness and showed the same cell size, FA lengths and number of FAs when plated on soft (6 kPa) versus stiff (100 kPa) substrates in contrast to control cells, which showed an increased in each of these parameters when plated on 100 kPa substrates. Defective cell spreading of PLS3 KD cells on stiff substrates could be rescued by expression of wildtype PLS3, but not by expression of three PLS3 mutations that were identified in patients with early onset osteoporosis and that have aberrant actin-bundling activity. Altogether, our results show that actin-bundling by PLS3 is part of the mechanosensitive mechanism that promotes osteoblast mineralization and thus begins to elucidate how PLS3 contributes to the development of bone defects such as osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
22
|
Kajander K, Sirkiä SV, Vallittu PK, Heino TJ, Määttä JA. Bioactive glasses promote rapid pre-osteoblastic cell migration in contrast to hydroxyapatite, while carbonated apatite shows migration inhibiting properties. Sci Rep 2023; 13:20587. [PMID: 37996563 PMCID: PMC10667509 DOI: 10.1038/s41598-023-47883-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Different biomaterials have been clinically used as bone filling materials, although the mechanisms behind the biological effects are incompletely understood. To address this, we compared the effects of five different biomaterials: two bioactive glasses (45S5 and S53P4), hydroxyapatite (HAP), carbonated apatite (CAP), and alumina on the in vitro migration and viability of pre-osteoblastic cells. In addition, we studied the effects of biomaterials' calcium release on cell migration, viability and differentiation. We found differences between the materials as the bioactive glasses promoted rapid pre-osteoblastic cell migration. In contrast, CAP decreased cell migration, which was also associated with lower activity of migration related kinases. Bioactive glasses released significant amounts of calcium into the media, while CAP decreased the calcium concentration. The response of cells to calcium was mechanistically studied by blocking calcium sensing receptor (CaSR) and ATP-gated ion channel P2X7, but this had no effect on cell migration. Surprisingly, HAP and CAP initially decreased cell viability. In summary, bioactive glasses 45S5 and S53P4 had significant and long-lasting effects on the pre-osteoblastic cell migration, which could be related to the observed calcium dissolution. Additionally, bioactive glasses had no negative effects on cell viability, which was observed with HAP and CAP.
Collapse
Affiliation(s)
- Karoliina Kajander
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Saara V Sirkiä
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Wellbeing Services County of Southwest Finland, Turku, Finland
| | - Terhi J Heino
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Jorma A Määttä
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| |
Collapse
|
23
|
Wang X, Zhang D, Peng H, Yang J, Li Y, Xu J. Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability. BIOMATERIALS ADVANCES 2023; 154:213638. [PMID: 37812984 DOI: 10.1016/j.bioadv.2023.213638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
The treatment and reconstruction of large or critical size bone defects is a challenging clinical problem. Additive manufacturing breaks the technical difficulties of preparing complex conformation and anatomically matched personalized porous tantalum implants, but the ideal pore structure for 3D-printed porous tantalum in critical bone defect repair applications remains unclear. Guiding appropriate bone tissue regeneration by regulating proper pore size-pore distribution-pore geometry-porosity is a challenge for its fabrication and application. We fabricated porous tantalum (PTa) scaffolds with six different combinations of pore structures using powder bed laser melting (L-PBF) technology. In vitro biological experiments were conducted to systematically investigate the effects of pore structure characteristics on osteoblast behaviors, showing that the bionic trabecular structure with both large and small poress facilitated cell permeation, proliferation and differentiation compared to the cubic structure with uniform pore sizes. The osteogenesis of PTa with different porosity of trabecular structures was further investigated by a rabbit condyle critical bone defect model. Synthetically, T70% up-regulated the expression of osteogenesis-related genes (ALP, COLI, OCN, RUNX-2) and showed the highest bone ingrowth area and bone contact rate in vivo after 16 weeks, with the best potential for critical bone defect repair. Our results suggested that the bionic trabecular structure with a pore size distribution of 200-1200 μm, an average pore size of 700 μm, and a porosity of 70 % is the best choice for repairing critical bone defects, which is expected to guide the clinical application of clinical 3D-printed PTa scaffolds.
Collapse
Affiliation(s)
- Xueying Wang
- Biomaterials Laboratory of the Medical Device Inspection Institute, National Institutes for Food and Drug Control, Beijing, China; School of Material Science and Engineering, Beihang University, Beijing, China
| | - Dachen Zhang
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Haitao Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jingzhou Yang
- Shenzhen Dazhou Medical Technology Co., Ltd., Shenzhen, Guangdong, China; School of Mechanical and Automobile Engineering, Qingdao University of Technology, Qingdao, Shandong, China.
| | - Yan Li
- School of Material Science and Engineering, Beihang University, Beijing, China.
| | - Jianxia Xu
- Biomaterials Laboratory of the Medical Device Inspection Institute, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
24
|
Liu Z, Wang R, Liu W, Liu Y, Feng X, Zhao F, Chen P, Shao L, Rong M. Recent advances in the application and biological mechanism of silicon nitride osteogenic properties: a review. Biomater Sci 2023; 11:7003-7017. [PMID: 37718623 DOI: 10.1039/d3bm00877k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Silicon nitride, an emerging bioceramic material, is highly sought after in the biomedical industry due to its osteogenesis-promoting properties, which are a result of its unique surface chemistry and excellent mechanical properties. Currently, it is used in clinics as an orthopedic implant material. The osteogenesis-promoting properties of silicon nitride are manifested in its contribution to the formation of a local osteogenic microenvironment, wherein silicon nitride and its hydrolysis products influence osteogenesis by modulating the biological behaviors of the constituents of the osteogenic microenvironment. In particular, silicon nitride regulates redox signaling, cellular autophagy, glycolysis, and bone mineralization in cells involved in bone formation via several mechanisms. Moreover, it may also promote osteogenesis by influencing immune regulation and angiogenesis. In addition, the wettability, surface morphology, and charge of silicon nitride play crucial roles in regulating its osteogenesis-promoting properties. However, as a bioceramic material, the molding process of silicon nitride needs to be optimized, and its osteogenic mechanism must be further investigated. Herein, we summarize the impact of the molding process of silicon nitride on its osteogenic properties and clinical applications. In addition, the mechanisms of silicon nitride in promoting osteogenesis are discussed, followed by a summary of the current gaps in silicon nitride mechanism research. This review, therefore, aims to provide novel ideas for the future development and applications of silicon nitride.
Collapse
Affiliation(s)
- Ziyi Liu
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Ruijie Wang
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Yushan Liu
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Pei Chen
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| | - Mingdeng Rong
- Stomatological Hospital, Southern Medical University, Jiangnan Avenue 366, Guangzhou 510280, China.
| |
Collapse
|
25
|
Watanabe H, Maishi N, Hoshi-Numahata M, Nishiura M, Nakanishi-Kimura A, Hida K, Iimura T. Skeletal-Vascular Interactions in Bone Development, Homeostasis, and Pathological Destruction. Int J Mol Sci 2023; 24:10912. [PMID: 37446097 DOI: 10.3390/ijms241310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Bone is a highly vascularized organ that not only plays multiple roles in supporting the body and organs but also endows the microstructure, enabling distinct cell lineages to reciprocally interact. Recent studies have uncovered relevant roles of the bone vasculature in bone patterning, morphogenesis, homeostasis, and pathological bone destruction, including osteoporosis and tumor metastasis. This review provides an overview of current topics in the interactive molecular events between endothelial cells and bone cells during bone ontogeny and discusses the future direction of this research area to find novel ways to treat bone diseases.
Collapse
Affiliation(s)
- Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Nako Maishi
- Department of Vascular Biology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Marie Hoshi-Numahata
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Mai Nishiura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Atsuko Nakanishi-Kimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| |
Collapse
|
26
|
Torrecillas-Baena B, Pulido-Escribano V, Dorado G, Gálvez-Moreno MÁ, Camacho-Cardenosa M, Casado-Díaz A. Clinical Potential of Mesenchymal Stem Cell-Derived Exosomes in Bone Regeneration. J Clin Med 2023; 12:4385. [PMID: 37445420 DOI: 10.3390/jcm12134385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Bone metabolism is regulated by osteoblasts, osteoclasts, osteocytes, and stem cells. Pathologies such as osteoporosis, osteoarthritis, osteonecrosis, and traumatic fractures require effective treatments that favor bone formation and regeneration. Among these, cell therapy based on mesenchymal stem cells (MSC) has been proposed. MSC are osteoprogenitors, but their regenerative activity depends in part on their paracrine properties. These are mainly mediated by extracellular vesicle (EV) secretion. EV modulates regenerative processes such as inflammation, angiogenesis, cell proliferation, migration, and differentiation. Thus, MSC-EV are currently an important tool for the development of cell-free therapies in regenerative medicine. This review describes the current knowledge of the effects of MSC-EV in the different phases of bone regeneration. MSC-EV has been used by intravenous injection, directly or in combination with different types of biomaterials, in preclinical models of bone diseases. They have shown great clinical potential in regenerative medicine applied to bone. These findings should be confirmed through standardization of protocols, a better understanding of the mechanisms of action, and appropriate clinical trials. All that will allow the translation of such cell-free therapy to human clinic applications.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Victoria Pulido-Escribano
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
27
|
Zhang X, Wang G, Wang W, Ran C, Piao F, Ma Z, Zhang Z, Zheng G, Cao F, Xie H, Cui D, Samuel Okoye C, Yu X, Wang Z, Zhao D. Bone marrow mesenchymal stem cells paracrine TGF-β1 to mediate the biological activity of osteoblasts in bone repair. Cytokine 2023; 164:156139. [PMID: 36738525 DOI: 10.1016/j.cyto.2023.156139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are an important source of seed cells for regenerative medicine and tissue engineering therapy. BMSCs have multiple differentiation potentials and can release paracrine factors to facilitate tissue repair. Although the role of the osteogenic differentiation of BMSCs has been fully confirmed, the function and mechanism of BMSC paracrine factors in bone repair are still largely unclear. This study aimed to determine the roles of transforming growth factor beta-1 (TGF-β1) produced by BMSCs in bone tissue repair. METHODS To confirm our hypothesis, we used a Transwell system to coculture hBMSCs and human osteoblast-like cells without contact, which could not only avoid the interference of the osteogenic differentiation of hBMSCs but also establish the cell-cell relationship between hBMSCs and human osteoblast-like cells and provide stable paracrine substances. In the transwell coculture system, alkaline phosphatase activity, mineralized nodule formation, cell migration and chemotaxis analysis assays were conducted. RESULTS Osteogenesis, migration and chemotaxis of osteoblast-like cells were regulated by BMSCs in a paracrine manner via the upregulation of osteogenic and migration-associated genes. A TGF-β receptor I inhibitor (LY3200882) significantly antagonized BMSC-induced biological activity and related gene expression in osteoblast-like cells. Interestingly, coculture with osteoblast-like cells significantly increased the production of TGF-β1 by BMSCs, and there was potential intercellular communication between BMSCs and osteoblast-like cells. CONCLUSIONS Our findings provide evidence that the biological mechanism of BMSC-produced TGF-β1 promotes bone regeneration and repair, providing a theoretical basis and new directions for the application of BMSC transplantation in the treatment of osteonecrosis and bone injury.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Guangkuo Wang
- Department of Orthopaedics, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Weidan Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Fengyuan Piao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Zhijie Ma
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Zhaodong Zhang
- Department of Orthopaedics, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Guoshuang Zheng
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Fang Cao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Hui Xie
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Daping Cui
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Chukwuemeka Samuel Okoye
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Xiaoming Yu
- School of Material Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Ziming Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| |
Collapse
|
28
|
Liu Y, Zhu S, Liu J, Chen Y, Zhong S, Lian D, Liang J, Huang S, Hou S. Vitexin Regulates Angiogenesis and Osteogenesis in Ovariectomy-Induced Osteoporosis of Rats via the VDR/PI3K/AKT/eNOS Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:546-556. [PMID: 36538589 DOI: 10.1021/acs.jafc.2c07005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is extremely important to promote angiogenesis-dependent osteogenesis and ameliorate bone loss for the prevention and treatment of osteoporosis (OP) development. Vitexin, as one of the major active components in pigeonpea leave, promoted the proliferation of osteoblast and HUVECs in hypoxia. The present study aimed to investigate the effect of vitexin on alleviating osteoporosis in ovariectomized (OVX) rats and further explore its underlying mechanisms. Herein, the OVX rat model was established and treated with vitexin (10 mg kg-1) for 3 months. After being sacrificed, we performed hematoxylin-eosin (H&E) staining and micro-computed tomography (micro-CT) to assess bone mass, which found that trabecular bone was damaged in the OVX rat model. Vitexin could repair bone injury and promote osteoblast biochemical indicators and angiogenesis indicators. Furthermore, EAhy926 cells were used to further explore the effect of vitexin on improving hypoxia-induced endothelial injury in vitro. Vitexin had a protective effect on hypoxia-treated EAhy926 cells and up-regulated vitamin D receptor (VDR) signaling and promoted phosphorylation of phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and endothelial NO synthase (eNOS), which enhanced endothelial cell migration and tube formation. VDR small-interfering RNA (siRNA) transfection significantly decreased both VDR and p-eNOS proteins, and VDR siRNA transfection + vitexin could not further increase VDR and downstream proteins. Overall, this study presented that vitexin regulates angiogenesis and osteogenesis in ovariectomy-induced osteoporosis of rats via the VDR/eNOS signaling pathway.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Shumin Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Jiaying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Shaowen Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Dawei Lian
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, PR China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, PR China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, PR China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
29
|
Takeshita N, Takano-Yamamoto T. Analysis of Chemotactic Property of CCN2/CTGF in Intramembranous Osteogenesis. Methods Mol Biol 2023; 2582:237-253. [PMID: 36370354 DOI: 10.1007/978-1-0716-2744-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemotaxis is a directed migration of cells in response to a gradient of extracellular molecules called chemoattractants. Development, growth, remodeling, and fracture healing of bones are advanced through intramembranous osteogenesis. Chemotaxis of preosteoblasts toward future bone formation sites observed in the early stage of intramembranous osteogenesis is a critical cellular process for normal bone formation. However, molecular biological mechanisms of the chemotaxis of preosteoblasts are not fully understood. We have recently clarified, for the first time, the critical role of the cellular communication network factor 2 (CCN2)/connective tissue growth factor (CTGF)-integrin α5-Ras axis for chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis. In this chapter, we describe in detail the procedures of the in vivo and in vitro assays to investigate the chemotactic property of CCN2/CTGF and its underlying molecular biological mechanisms during intramembranous osteogenesis.
Collapse
Affiliation(s)
- Nobuo Takeshita
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
30
|
Babu LK, Ghosh D. Looking at Mountains: Role of Sustained Hypoxia in Regulating Bone Mineral Homeostasis in Relation to Wnt Pathway and Estrogen. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-022-09283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Nadine S, Correia CR, Mano JF. Engineering immunomodulatory hydrogels and cell-laden systems towards bone regeneration. BIOMATERIALS ADVANCES 2022; 140:213058. [PMID: 35933955 DOI: 10.1016/j.bioadv.2022.213058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The well-known synergetic interplay between the skeletal and immune systems has changed the design of advanced bone tissue engineering strategies. The immune system is essential during the bone lifetime, with macrophages playing multiple roles in bone healing and biomaterial integration. If in the past, the most valuable aspect of implants was to avoid immune responses of the host, nowadays, it is well-established how important are the crosstalks between immune cells and bone-engineered niches for an efficient regenerative process to occur. For that, it is essential to recapitulate the multiphenotypic cellular environment of bone tissue when designing new approaches. Indeed, the lack of osteoimmunomodulatory knowledge may be the explanation for the poor translation of biomaterials into clinical practice. Thus, smarter hydrogels incorporating immunomodulatory bioactive factors, stem cells, and immune cells are being proposed to develop a new generation of bone tissue engineering strategies. This review highlights the power of immune cells to upgrade the development of innovative engineered strategies, mainly focusing on orthopaedic and dental applications.
Collapse
Affiliation(s)
- Sara Nadine
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Clara R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Burger MG, Grosso A, Briquez PS, Born GME, Lunger A, Schrenk F, Todorov A, Sacchi V, Hubbell JA, Schaefer DJ, Banfi A, Di Maggio N. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater 2022; 149:111-125. [PMID: 35835287 DOI: 10.1016/j.actbio.2022.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022]
Abstract
Rapid vascularization of clinical-size bone grafts is an unsolved challenge in regenerative medicine. Vascular endothelial growth factor-A (VEGF) is the master regulator of angiogenesis. Its over-expression by genetically modified human osteoprogenitors has been previously evaluated to drive vascularization in osteogenic grafts, but has been observed to cause paradoxical bone loss through excessive osteoclast recruitment. However, during bone development angiogenesis and osteogenesis are physiologically coupled by VEGF expression. Here we investigated whether the mode of VEGF delivery may be a key to recapitulate its physiological function. VEGF activity requires binding to the extracellular matrix, and heterogeneous levels of expression lead to localized microenvironments of excessive dose. Therefore we hypothesized that a homogeneous distribution of matrix-associated factor in the microenvironment may enable efficient coupling of angiogenesis and bone formation. This was achieved by decorating fibrin matrices with a cross-linkable engineered version of VEGF (TG-VEGF) that is released only by enzymatic cleavage by invading cells. In ectopic grafts, both TG-VEGF and VEGF-expressing progenitors similarly improved vascularization within the first week, but efficient bone formation was possible only in the factor-decorated matrices, whereas heterogenous, cell-based VEGF expression caused significant bone loss. In critical-size orthotopic calvaria defects, TG-VEGF effectively improved early vascular invasion, osteoprogenitor survival and differentiation, as well as bone repair compared to both controls and VEGF-expressing progenitors. In conclusion, homogenous distribution of matrix-associated VEGF protein preserves the physiological coupling of angiogenesis and osteogenesis, providing an attractive and clinically applicable strategy to engineer vascularized bone. STATEMENT OF SIGNIFICANCE: The therapeutic regeneration of vascularized bone is an unsolved challenge in regenerative medicine. Stimulation of blood vessel growth by over-expression of VEGF has been associated with paradoxical bone loss, whereas angiogenesis and osteogenesis are physiologically coupled by VEGF during development. Here we found that controlling the distribution of VEGF dose in an osteogenic graft is key to recapitulate its physiological function. In fact, homogeneous decoration of fibrin matrices with engineered VEGF could improve both vascularization and bone formation in orthotopic critical-size defects, dispensing with the need for combined osteogenic factor delivery. VEGF-decorated fibrin matrices provide a readily translatable platform for engineering a controlled microenvironment for bone regeneration.
Collapse
Affiliation(s)
- Maximilian G Burger
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Grosso
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Gordian M E Born
- Tissue Engineering, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Alexander Lunger
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Flavio Schrenk
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Atanas Todorov
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland; Tissue Engineering, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Veronica Sacchi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Dirk J Schaefer
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland.
| | - Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| |
Collapse
|
33
|
Sehring IM, Mohammadi HF, Haffner-Luntzer M, Ignatius A, Huber-Lang M, Weidinger G. Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses. eLife 2022; 11:77614. [PMID: 35748539 PMCID: PMC9259016 DOI: 10.7554/elife.77614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.
Collapse
Affiliation(s)
| | | | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| |
Collapse
|
34
|
Tan WH, Winkler C. A non-disruptive and efficient knock-in approach allows fate tracing of resident osteoblast progenitors during repair of vertebral lesions in medaka. Development 2022; 149:275483. [DOI: 10.1242/dev.200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
During bone development and repair, osteoblasts are recruited to bone deposition sites. To identify the origin of recruited osteoblasts, cell lineage tracing using Cre/loxP recombination is commonly used. However, a confounding factor is the use of transgenic Cre drivers that do not accurately recapitulate endogenous gene expression or the use of knock-in Cre drivers that alter endogenous protein activity or levels. Here, we describe a CRISPR/Cas9 homology-directed repair knock-in approach that allows efficient generation of Cre drivers controlled by the endogenous gene promoter. In addition, a self-cleaving peptide preserves the reading frame of the endogenous protein. Using this approach, we generated col10a1p2a-CreERT2 knock-in medaka and show that tamoxifen-inducible CreERT2 efficiently recombined loxP sites in col10a1 cells. Similar knock-in efficiencies were obtained when two unrelated loci (osr1 and col2a1a) were targeted. Using live imaging, we traced the fate of col10a1 osteoblast progenitors during bone lesion repair in the medaka vertebral column. We show that col10a1 cells at neural arches represent a mobilizable cellular source for bone repair. Together, our study describes a previously unreported strategy for precise cell lineage tracing via efficient and non-disruptive knock-in of Cre.
Collapse
Affiliation(s)
- Wen Hui Tan
- National University of Singapore Department of Biological Sciences and Centre for Bioimaging Sciences , , Singapore 117543 , Singapore
| | - Christoph Winkler
- National University of Singapore Department of Biological Sciences and Centre for Bioimaging Sciences , , Singapore 117543 , Singapore
| |
Collapse
|
35
|
Yan M, Pan Y, Lu S, Li X, Wang D, Shao T, Wu Z, Zhou Q. Chitosan-CaP microflowers and metronidazole loaded calcium alginate sponges with enhanced antibacterial, hemostatic and osteogenic properties for the prevention of dry socket after tooth removal. Int J Biol Macromol 2022; 212:134-145. [PMID: 35588978 DOI: 10.1016/j.ijbiomac.2022.05.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
Tooth removal, particularly for patients with severe periodontitis, can frequently cause massive bleeding, postoperative infection, and bone resorption, resulting in a dry socket. Thus, developing bio-multifunctional materials with excellent antibacterial, hemostatic, and osteogenic characteristics for the prevention of dry sockets after tooth removal is highly desirable in clinical applications. Herein, chitosan-CaP microflowers (CM) and metronidazole (MD) loaded calcium alginate (CA) sponges (CA@CM/MD) with enhanced antibacterial, hemostatic, and osteogenic properties were developed via Ca2+ crosslinking, lyophilization, and electrostatic interaction for the prevention of dry socket after tooth removal. The fabricated CM particles display 3-dimensional, relatively homogeneous, and flower-shaped architectures. The CA@CM/MD composite sponges were facilely shaped into the tooth root as well as exhibit interconnected porous and lamellar structures with remarkable porosity, suitable maximum swelling ratio, as well as excellent compressive and hemostatic performance. Besides, the in vitro cellular assessment demonstrates that the prepared CA@CM/MD composite sponges possess satisfactory cytocompatibility. Importantly, the designed sponges significantly suppress the growth of S. aureus and E. coli, as well as promote cellular osteogenic differentiation by upregulating the formation of alkaline phosphatase. Our findings indicate that the tooth root-shaped composite sponges hold great promise for wound management after tooth removal.
Collapse
Affiliation(s)
- Mingzhe Yan
- Department of Human Anatomy, Histology and Embryology, School of basic medicine, Qingdao University, Qingdao 266073, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Yingxiao Pan
- School of Stomatology, Qingdao University, Qingdao 266003, China; Oral department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Shulai Lu
- Oral department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Xin Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Danyang Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Tianyi Shao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Zhihang Wu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; Department of Biomedical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Qihui Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
36
|
Zhang S, He W, Li A, Zhao C, Chen Y, Xu C, Zhang Q, Zheng D, Chen M, Miao H, Huang Y. Involvement of the TNF-α/SATB2 axis in the induced apoptosis and inhibited autophagy of osteoblasts by the antipsychotic Risperidone. Mol Med 2022; 28:46. [PMID: 35505281 PMCID: PMC9066868 DOI: 10.1186/s10020-022-00466-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Risperidone, an atypical antipsychotic, impedes serotonin and dopamine receptor systems. Meanwhile, tumor necrosis factor-α (TNF-α) is known to participate in regulating osteoblast functions. Consequently, the current study aimed to investigate whether the influences of Risperidone on osteoblast functions are associated with TNF-α and special AT-rich sequence-binding protein (SATB2). METHODS Firstly, we searched the DGIdb, MEM and GeneCards databases to identify the critical factors involved in the effects of Risperidone on osteoblasts, as well as their interactions. Afterwards, osteoblast cell line MC3T3-E1 was transduced with lentivirus carrying si-TNF-α, si-SATB2 or both and subsequently treated with Risperidone. Various abilities including differentiation, autophagy and apoptosis of osteoblasts were examined after different treatments. Finally, animal experiments were performed with Risperidone alone or together with lentivirus to verify the function of Risperidone in vivo and the mechanism. RESULTS It was found that Risperidone might promote TNF-α expression, thereby inhibiting the expression of SATB2 to affect the autophagy and apoptosis in osteoblasts. Furthermore, as shown by our experimental findings, Risperidone treatment inhibited the differentiation and autophagy, and promoted the apoptosis of osteoblasts, as evidenced by elevated levels of OPG, p62, cleaved PARP1, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9, and reduced levels of LC3 II/I, Beclin1, collagen I, and RANKL. In addition, Risperidone was also found to elevate the expression of TNF-α to down-regulate SATB2, thereby inhibiting the differentiation and autophagy and enhancing the apoptosis of osteoblasts in vitro and in vivo. CONCLUSIONS Collectively, our findings indicated that Risperidone affects the differentiation of osteoblasts by inhibiting autophagy and enhancing apoptosis via TNF-α-mediated down-regulation of SATB2.
Collapse
Affiliation(s)
- Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Wei He
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Aiguo Li
- Department of Orthopaedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
- Department of Pharmacology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
- Department of Pharmacology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Qiuzhen Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
- Department of Pharmacology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Danling Zheng
- Department of Pharmacology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Meini Chen
- Department of Pharmacology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Haixiong Miao
- Department of Orthopaedics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
- Department of Pediatrics, Guangzhou Red Cross Hospital, Jinan University, No. 396, Tongfuzhong Road, Haizhu District, Guangzhou, 510220, Guangdong, China
| | - Yihui Huang
- Department of Pediatrics, Shantou University Medical College, Shantou, 515041, China
- Department of Pediatrics, Guangzhou Red Cross Hospital, Jinan University, No. 396, Tongfuzhong Road, Haizhu District, Guangzhou, 510220, Guangdong, China
| |
Collapse
|
37
|
Li S, Li Y, Jiang Z, Hu C, Gao Y, Zhou Q. Efficacy of total flavonoids of Rhizoma drynariae on the blood vessels and the bone graft in the induced membrane. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153995. [PMID: 35278899 DOI: 10.1016/j.phymed.2022.153995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Total flavonoids of Rhizoma drynariae (TFRD), a Chinese medicine, is widely used in the treatment of orthopedic diseases. However, there are few basic and clinical studies on the effect of TFRD on induced membrane technique (Masquelet technique). PURPOSE This trial is to explore effects of TFRD on vascularization of the induced membrane, and mineralization of the bone graft in rats with femoral bone defects. STUDY DESIGN AND METHODS Forty-eight Sprague-Dawley rats were randomly divided into high dose group (H-TFRD), medium dose group (M-TFRD), low dose group (L-TFRD) and control group (control). The segmental bone defects were established with 12 rats in per group. The polymethyl methacrylate (PMMA) spacer was implanted into the femoral bone defect of rats in the first-stage surgery. About 4 weeks after first-stage surgery, induced membranes of 6 rats in each group were selected. The blood vessels and angiogenesis-related factors in the induced membrane were analyzed by hematoxylin-eosin (HE) and masson staining, western blot, qPCR and immunohistostaining. The remaining rats in per group underwent second-stage surgery (bone grafting). Twelve weeks after the bone grafting, the bone tissues was examined by X-ray, micro-computed tomography (Micro-CT), HE staining and enzyme-linked immunosorbent assay (ELISA) to evaluate the growth of the bone graft. Meanwhile, the TFRD-containing serum was collected from rats to culture osteoblasts in vitro. Cell Counting Kit-8 (CCK-8) method, Alizarin Red S (ARS) staining, western blot and immunofluorescence were used to detect effects of TFRD on the osteoblasts' proliferation and BMP-SMAD signaling pathway. RESULTS Compared with the L-TFRD and control groups, the number of blood vessels and the expression of angiogenesis-related factors (VEGF, TGF-β1, BMP-2, PDGF-BB and CD31) were higher in the H-TFRD and M-TFRD groups. The Lane-Sandhu X-ray score, bone mass and growth rate of the bone graft in the H-TFRD and M-TFRD groups were significantly better than those in the L-TFRD and control groups. In addition, medium and high doses of TFRD significantly increased the expression of BMP-SMAD pathway proteins (BMP-2, SMAD1, SMAD4, SMAD5 and RUNX2) in rat serum and bone graft. In vitro, after osteoblasts were intervened with TFRD-containing serum from the H-TFRD and M-TFRD groups, the cell viability, the number of mineralized nodules and the phosphorylation of BMP-SMAD pathway proteins were markedly increased. CONCLUSION TFRD could promote the formation of blood vessels and the expression of angiogenesis-related factors during the formation of the induced membrane. During the growing period of bone graft, it could facilitate the growth and mineralization of bone graft in a dose-dependent manner, which is partly related to the activation and phosphorylation of BMP-SMAD signaling pathway.
Collapse
Affiliation(s)
- Shuyuan Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Li
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zexin Jiang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Hu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ya Gao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qishi Zhou
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
38
|
Gao L, Zhang SQ. Antiosteoporosis Effects, Pharmacokinetics, and Drug Delivery Systems of Icaritin: Advances and Prospects. Pharmaceuticals (Basel) 2022; 15:397. [PMID: 35455393 PMCID: PMC9032325 DOI: 10.3390/ph15040397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic skeletal disorder affecting over 200 million people worldwide and contributes dramatically to global healthcare costs. Available anti-osteoporotic drug treatments including hormone replacement therapy, anabolic agents, and bisphosphonates often cause adverse events which limit their long-term use. Therefore, the application of natural products has been proposed as an alternative therapy strategy. Icaritin (ICT) is not only an enzyme-hydrolyzed product of icariin but also an intestinal metabolite of eight major flavonoids of the traditional Chinese medicinal plant Epimedium with extensive pharmacological activities, such as strengthening the kidney and reinforcing the bone. ICT displays several therapeutic effects, including osteoporosis prevention, neuroprotection, antitumor, cardiovascular protection, anti-inflammation, and immune-protective effect. ICT inhibits bone resorption activity of osteoclasts and stimulates osteogenic differentiation and maturation of bone marrow stromal progenitor cells and osteoblasts. As for the mechanisms of effect, ICT regulates relative activities of two transcription factors Runx2 and PPARγ, determines the differentiation of MSCs into osteoblasts, increases mRNA expression of OPG, and inhibits mRNA expression of RANKL. Poor water solubility, high lipophilicity, and unfavorable pharmacokinetic properties of ICT restrict its anti-osteoporotic effects, and novel drug delivery systems are explored to overcome intrinsic limitations of ICT. The paper focuses on osteogenic effects and mechanisms, pharmacokinetics and delivery systems of ICT, and highlights bone-targeting strategies to concentrate ICT on the ideal specific site of bone. ICT is a promising potential novel therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Lifang Gao
- School of Public Health, Capital Medical University, 10 Youanmenwai Xitiao, Beijing 100069, China;
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China
| |
Collapse
|
39
|
He W, Shi X, Guo Z, Wang H, Kang M, Lv Z. Circ_0019693 promotes osteogenic differentiation of bone marrow mesenchymal stem cell and enhances osteogenesis-coupled angiogenesis via regulating microRNA-942-5p-targeted purkinje cell protein 4 in the development of osteoporosis. Bioengineered 2022; 13:2181-2193. [PMID: 35030971 PMCID: PMC8973649 DOI: 10.1080/21655979.2021.2023982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Circular RNA (circRNA) is a crucial regulator in multiple human diseases, including osteoporosis (OP). However, the function of numerous circRNAs remains unclear. This study aimed to explore the role and mechanism of circ_0019693 in bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteogenesis-coupled angiogenesis. The expression of circ_0019693, miR-942-5p and purkinje cell protein 4 (PCP4) was measured using quantitative real-time PCR (qPCR) or Western blot. Osteogenic differentiation was monitored according to the protein levels of RUNX family transcription factor 2 (RUNX2), osteopontin (OPN) and osteocalcin (OCN) by Western blot analysis, and the activity of alkaline phosphatase (ALP). Angiogenesis was evaluated by tube formation assay. The targeting relationship between miR-942-5p and circ_0019693 or PCP4 was identified using pull-down, dual-luciferase reporter, and RNA immunoprecipitation assays. Circ_0019693 was downregulated in serum samples and bone tissues from OP patients relative to normal subjects. Circ_0019693 expression was enhanced in the stages of BMSC osteogenic differentiation. Circ_0019693 overexpression enhanced the activity of ALP and the expression of RUNX2, OPN and OCN, and its overexpression also promoted angiogenesis. However, circ_0019693 knockdown played the opposite effects. MiR-942-5p was ensured to be a target of circ_0019693, and miR-942-5p enrichment reversed the effects of circ_0019693. In addition, PCP4 was a target of miR-942-5p, and miR-942-5p inhibitor-promoted BMSC osteogenic differentiation and angiogenesis were partly repressed by PCP4 knockdown. In conclusion, circ_0019693 promotes BMSC osteogenic differentiation osteogenesis-coupled angiogenesis via regulating miR-942-5p-targeted PCP4, thus blocking the development of OP.
Collapse
Affiliation(s)
| | | | - Zhenye Guo
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Huan Wang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Mingming Kang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Zhi Lv
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China
| |
Collapse
|
40
|
Steppe L, Krüger BT, Tschaffon MEA, Fischer V, Tuckermann J, Ignatius A, Haffner-Luntzer M. Estrogen Receptor α Signaling in Osteoblasts is Required for Mechanotransduction in Bone Fracture Healing. Front Bioeng Biotechnol 2021; 9:782355. [PMID: 34950644 PMCID: PMC8689144 DOI: 10.3389/fbioe.2021.782355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Biomechanical stimulation by whole-body low-magnitude high-frequency vibration (LMHFV) has demonstrated to provoke anabolic effects on bone metabolism in both non-osteoporotic and osteoporotic animals and humans. However, preclinical studies reported that vibration improved fracture healing and bone formation in osteoporotic, ovariectomized (OVX) mice representing an estrogen-deficient hormonal status, but impaired bone regeneration in skeletally healthy non-OVX mice. These effects were abolished in general estrogen receptor α (ERα)-knockout (KO) mice. However, it remains to be elucidated which cell types in the fracture callus are targeted by LMHFV during bone healing. To answer this question, we generated osteoblast lineage-specific ERα-KO mice that were subjected to ovariectomy, femur osteotomy and subsequent vibration. We found that the ERα specifically on osteoblastic lineage cells facilitated the vibration-induced effects on fracture healing, because in osteoblast lineage-specific ERα-KO (ERαfl/fl; Runx2Cre) mice the negative effects in non-OVX mice were abolished, whereas the positive effects of vibration in OVX mice were reversed. To gain greater mechanistic insights, the influence of vibration on murine and human osteogenic cells was investigated in vitro by whole genome array analysis and qPCR. The results suggested that particularly canonical WNT and Cox2/PGE2 signaling is involved in the mechanotransduction of LMHFV under estrogen-deficient conditions. In conclusion, our study demonstrates a critical role of the osteoblast lineage-specific ERα in LMHFV-induced effects on fracture healing and provides further insights into the molecular mechanism behind these effects.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
41
|
Choi LY, Kim MH, Yang WM. Promotion of osteogenesis by Sweroside via BMP2-involved signaling in postmenopausal osteoporosis. Phytother Res 2021; 35:7050-7063. [PMID: 34818696 DOI: 10.1002/ptr.7336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/09/2023]
Abstract
Phlomis umbrosa has been traditionally used for bone diseases in traditional Korean Medicine. Sweroside (SOS), marker compounds of P. umbrosa, has been known to promote osteoblast differentiation. In this study, ameliorative effects of SOS on osteoporosis and potential target pathway were investigated. Ovariectomized mice were administered three doses of SOS three times a week for 4 weeks after inducing osteoporosis. Bone mineral content (BMC) and bone mineral density (BMD) were analyzed by dual energy X-ray absorptiometry. A human osteosarcoma cell line (SaOS-2) was differentiated to clarify the promoting effects of SOS on osteoblast differentiation and bone formation. Osteoblastic bone-forming markers were evaluated in lumbar vertebrae (LV) and mineralized SaOS-2 cells. SOS markedly elevated BMC and BMD levels and attenuated the bone marrow adipocytes in the femoral shaft. SOS increased the formation of bone matrix in SaOS-2 cells. Bone morphogenetic protein-2 (BMP2) and runt-related transcription factor 2 (CBFA1) in LV and SaOS-2 cells were up-regulated by SOS. SOS increased alkaline phosphatase (ALPL), osteopontin (SPP1), and bone sialoprotein-1 (BSPH1). In conclusion, SOS induced the formation of mineralized bone matrix by regulating BMP2/CBFA1-mediated molecules. Therefore, SOS could be a therapeutic compound of treatment for osteoporosis by producing the new bone matrix.
Collapse
Affiliation(s)
- La Yoon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Yao Z, Chen P, Fan L, Chen P, Zhang X, Yu B. CCL2 is a critical mechano-responsive mediator in crosstalk between osteoblasts and bone mesenchymal stromal cells. FASEB J 2021; 35:e21851. [PMID: 34547121 DOI: 10.1096/fj.202002808rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
It has been known that moderate mechanical loading, like that caused by exercise, promotes bone formation. However, its underlying mechanisms remain elusive. Here we showed that moderate running dramatically improved trabecular bone in mice tibias with an increase in bone volume fraction and trabecular number and a decrease in trabecular pattern factor. Results of immunohistochemical and histochemical staining revealed that moderate running mainly increased the number of osteoblasts but had no effect on osteoclasts. In addition, we observed a dramatic increase in the number of colony forming unit-fibroblast in endosteal bone marrow and the percentage of CD45- Leptin receptor+ (CD45- LepR+ ) endosteal mesenchymal progenitors. Bioinformatics analysis of the transcriptional data from gene expression omnibus (GEO) database identified chemokine c-c-motif ligands (CCL2) as a critical candidate induced by mechanical loading. Interestingly, we found that CCL2 was up-regulated mainly in osteoblastic cells in the tibia of mice after moderate running. Further, we found that mechanical loading up-regulated the expression of CCL2 by activating ERK1/2 pathway, thereby stimulating migration of endosteal progenitors. Finally, neutralizing CCL2 abolished the recruitment of endosteal progenitors and the increased bone formation in mice after 4 weeks running. These results therefore uncover an unknown connection between osteoblasts and endosteal progenitors recruited in the increased bone formation induced by mechanical loading.
Collapse
Affiliation(s)
- Zilong Yao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Pengyu Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Liuyi Fan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Peisheng Chen
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
43
|
A Potential Role of Semaphorin 3A during Orthodontic Tooth Movement. Int J Mol Sci 2021; 22:ijms22158297. [PMID: 34361063 PMCID: PMC8348452 DOI: 10.3390/ijms22158297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Induced tooth movement during orthodontic therapy requires mechano-induced bone remodeling. Besides various cytokines and growth-factors, neuronal guidance molecules gained attention for their roles in bone homeostasis and thus, potential roles during tooth movement. Several neuronal guidance molecules have been implicated in the regulation of bone remodeling. Amongst them, Semaphorin 3A is particular interesting as it concurrently induces osteoblast differentiation and disturbs osteoclast differentiation. METHODS Mechano-regulation of Sema3A and its receptors PlexinA1 and Neuropilin (RT-qPCR, WB) was evaluated by applying compressive and tension forces to primary human periodontal fibroblasts (hPDLF) and alveolar bone osteoblasts (hOB). The association of the transcription factor Osterix (SP7) and SEMA3A was studied by RT-qPCR. Mechanisms involved in SEMA3A-mediated osteoblast differentiation were assessed by Rac1GTPase pull-downs, β-catenin expression analyses (RT-qPCR) and nuclear translocation assays (IF). Osteogenic markers were analyzed by RT-qPCR. RESULTS SEMA3A, PLXNA1 and NRP1 were differentially regulated by tension or compressive forces in hPDLF. Osterix (SP7) displayed the same pattern of regulation. Recombinant Sema3A induced the activation of Rac1GTPase, the nuclear translocation of β-catenin and the expression of osteogenic marker genes. CONCLUSION Sema3A, its receptors and Osterix are regulated by mechanical forces in hPDLF. SEMA3A upregulation was associated with Osterix (SP7) modulation. Sema3A-enhanced osteogenic marker gene expression in hOB might be dependent on a pathway involving Rac1GTPase and β-catenin. Thus, Semaphorin 3A might contribute to bone remodeling during induced tooth movement.
Collapse
|
44
|
A Chemotactic Functional Scaffold with VEGF-Releasing Peptide Amphiphiles Facilitates Bone Regeneration by BMP-2 in a Large-Scale Rodent Cranial Defect Model. Plast Reconstr Surg 2021; 147:386-397. [PMID: 33235044 DOI: 10.1097/prs.0000000000007551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Current common techniques for repairing calvarial defects by autologous bone grafting and alloplastic implants have significant limitations. In this study, the authors investigated a novel alternative approach to bone repair based on peptide amphiphile nanofiber gels that are engineered to control the release of vascular endothelial growth factor (VEGF) to recruit circulating stem cells to a site of bone regeneration and facilitate bone healing by bone morphogenetic protein-2 (BMP-2). METHODS VEGF release kinetics from peptide amphiphile gels were evaluated. Chemotactic functional scaffolds were fabricated by combining collagen sponges with peptide amphiphile gels containing VEGF. The in vitro and in vivo chemotactic activities of the scaffolds were evaluated by measuring mesenchymal stem cell migration, and angiogenic capability of the scaffolds was also evaluated. Large-scale rodent cranial bone defects were created to evaluate bone regeneration after implanting the scaffolds and other control materials. RESULTS VEGF was released from peptide amphiphile in a controlled-release manner. In vitro migration of mesenchymal stem cells was significantly greater when exposed to chemotactic functional scaffolds compared to control scaffolds. In vivo chemotaxis was evidenced by migration of tracer-labeled mesenchymal stem cells to the chemotactic functional scaffolds. Chemotactic functional scaffolds showed significantly increased angiogenesis in vivo. Successful bone regeneration was noted in the defects treated with chemotactic functional scaffolds and BMP-2. CONCLUSIONS The authors' observations suggest that this bioengineered construct successfully acts as a chemoattractant for circulating mesenchymal stem cells because of controlled release of VEGF from the peptide amphiphile gels. The chemotactic functional scaffolds may play a role in the future design of clinically relevant bone graft substitutes for large-scale bone defects.
Collapse
|
45
|
Ikedo A, Imai Y. Estrogen receptor α in mature osteoblasts regulates the late stage of bone regeneration. Biochem Biophys Res Commun 2021; 559:238-244. [PMID: 33964733 DOI: 10.1016/j.bbrc.2021.04.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Estrogen deficiency impairs fracture healing and homeostasis of bone tissue. OVX-induced estrogen deficiency in mice attenuates fracture healing and changes the expression ratio of estrogen receptor (ER) α and ERβ in callus during the process of fracture healing. Therefore, ERs may be involved in the regulation of fracture healing. However, the roles of ERs in fracture healing are largely unknown. The purpose of this study was to clarify the significance of ERs during fracture healing using osteoblast-specific ER knockout mice in a mono-cortical drill hole bone regeneration model. The mature osteoblast-specific ER knockout mice were generated using osteocalcin (OCN)-Cre mice, and ERα and ERβ flox mice (OCN-Cre; ERαf/f, ERαΔOb/ΔOb and OCN-Cre; ERβf/f, ERβΔOb/ΔOb). Drill hole surgery was conducted on the tibiae of 8-week-old female mice. The mice were sacrificed 10 or 14 days after surgery and the bones were analyzed by DXA, μCT and bone histomorphometry. DXA analysis revealed that intact femoral BMD was significantly decreased in ERαΔOb/ΔOb mice compared with ERαf/f mice, but there was no difference in bone mass between ERβΔOb/ΔOb and ERβf/f mice. Micro CT analyses showed that the callus volume at the restricted drill hole site in tibiae was significantly less in ERαΔOb/ΔOb compared to ERαf/f mice only at day 14 but not at day 10. In addition to femoral BMD, there was no significant difference in callus volume between ERβΔOb/ΔOb and ERβf/f mice. Bone histomorphometric analyses showed that Ob.S/BS and N.Ob/B.Pm were significantly less in ERαΔOb/ΔOb mice compared with ERαf/f mice only at day 10. In addition, Oc.S/BS and N.Oc/B.Pm were significantly less in ERαΔOb/ΔOb mice compared with ERαf/f mice only at day 14. These results suggest that ERα but not ERβ in osteocalcin-positive osteoblasts may contribute to the late stage of bone regeneration.
Collapse
Affiliation(s)
- Aoi Ikedo
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime, Japan; Department of Pathophysiology, Ehime University Graduate School of Medicine, Ehime, Japan.
| |
Collapse
|
46
|
Li H, He D, Xiao X, Yu G, Hu G, Zhang W, Wen X, Lin Y, Li X, Lin H, Diao Y, Tang Y. Nitrogen-Doped Multiwalled Carbon Nanotubes Enhance Bone Remodeling through Immunomodulatory Functions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25290-25305. [PMID: 33908252 DOI: 10.1021/acsami.1c05437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It has been reported that multiwalled carbon nanotubes (MWCNTs) can reportedly positively affect growth and differentiation of bone-related cells and therefore offer great potential in biomedical applications. To overcome negative immune responses that limit their application, specific doping and functionalization can improve their biocompatibility. Here, we demonstrated that nitrogen-doped carboxylate-functionalized MWCNTs (N-MWCNTs) enhance bone remodeling both in vitro and in vivo with excellent biocompatibility, via stimulation of both bone resorption and formation. We revealed that 0.2 μg/mL N-MWCNTs not only increase the transcription of osteoblastogenic and osteoclastogenic genes but also up-regulate the activities of both TRAP and AKP in the differentiation of bone marrow stromal cells (BMSCs). Additionally, intramuscular administration of N-MWCNTs at a dosage of 1.0 mg/kg body weight enhances bone mineral density and bone mass content in mice, as well as induces potentiated degree of TRAP- and ARS-positive staining in the femur. The positive regulation of N-MWCNTs on bone remodeling is initiated by macrophage phagocytosis, which induces altered production of inflammatory cytokines by immune response pathways, and consequently up-regulates IL1α, IL10, and IL16. These cytokines collectively regulate the central osteoclastogenic transcription factor NFATc1 and osteoblastogenic BMP signaling, the suppression of which confirmed that these factors respectively participate in N-MWCNT-mediated regulation of osteoclastic and osteoblastic bone marrow stem cell activities. These results suggest that N-MWCNTs can be readily generalized for use as biomaterials in bone tissue engineering for metabolic bone disorders.
Collapse
Affiliation(s)
- Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Dalin He
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xue Xiao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Guanliu Yu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wenqian Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Wen
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yun Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xianyao Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Youxiang Diao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yi Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
47
|
Jablonská E, Horkavcová D, Rohanová D, Brauer DS. A review of in vitro cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration. J Mater Chem B 2021; 8:10941-10953. [PMID: 33169773 DOI: 10.1039/d0tb01493a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioactive glasses are used to regenerate bone by a mechanism which involves surface degradation, the release of ions such as calcium, soluble silica and phosphate and the precipitation of a biomimetic apatite surface layer on the glass. One major area of bioactive glass research is the incorporation of therapeutically active ions to broaden the application range of these materials. When developing such new compositions, in vitro cell culture studies are a key part of their characterisation. However, parameters of cell culture studies vary widely, and depending on the intended use of bioactive glass compositions, different layouts, cell types and assays need to be used. The aim of this publication is to provide materials scientists, particularly those new to cell culture studies, with a tool for selecting the most appropriate assays to give insight into the properties of interest.
Collapse
Affiliation(s)
- Eva Jablonská
- Laboratory of Molecular Biology and Virology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Diana Horkavcová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Dana Rohanová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Delia S Brauer
- Otto Schott Institute of Materials Research, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany.
| |
Collapse
|
48
|
Li D, Liu J, Yang C, Tian Y, Yin C, Hu L, Chen Z, Zhao F, Zhang R, Lu A, Zhang G, Qian A. Targeting long noncoding RNA PMIF facilitates osteoprogenitor cells migrating to bone formation surface to promote bone formation during aging. Am J Cancer Res 2021; 11:5585-5604. [PMID: 33859765 PMCID: PMC8039942 DOI: 10.7150/thno.54477] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: The migration of mesenchymal osteoprogenitor cells (OPCs) to bone formation surface is the initial step of osteoblastogenesis before they undergo osteoblast differentiation and maturation for governing bone formation. However, whether the migration capacity of OPCs is compromised during aging and how it contributes to the aging-related bone formation reduction remain unexplored. In the present study, we identified a migration inhibitory factor (i.e., long noncoding RNA PMIF) and examined whether targeting lnc-PMIF could facilitate osteoprogenitor cells migrating to bone formation surface to promote bone formation during aging. Methods: Primary OPCs from young (6-momth-old) and aged (18-momth-old) C57BL/6 mice and stable lnc-PMIF knockdown/overexpression cell lines were used for in vitro and in vivo cell migration assay (i.e., wound healing assay, transwell assay and cell intratibial injection assay). RNA pulldown-MS/WB and RIP-qPCR were performed to identify the RNA binding proteins (RBPs) of lnc-PMIF. Truncations of lnc-PMIF and the identified RBP were engaged to determine the interaction motif between them by RNA pulldown-WB and EMSA. By cell-based therapy approach and by pharmacological approach, small interfering RNA (siRNA)-mediated lnc-PMIF knockdown were used in aged mice. The cell migration ability was evaluated by transwell assay and cell intratibial injection assay. The bone formation was evaluated by microCT analysis and bone morphometry analysis. Results: We reported that the decreased bone formation was accompanied by the reduced migration capacity of the bone marrow mesenchymal stem cells (BMSCs, the unique source of OPCs in bone marrow) in aged mice. We further identified that the long non-coding RNA PMIF (postulated migration inhibitory factor) (i.e., lnc-PMIF) was highly expressed in BMSCs from aged mice and responsible for the reduced migration capacity of aged OPCs to bone formation surface. Mechanistically, we found that lnc-PMIF could bind to human antigen R (HuR) for interrupting the HuR-β-actin mRNA interaction, therefore inhibit the expression of β-actin for suppressing the migration of aged OPCs. We also authenticated a functionally conserved human lncRNA ortholog of the murine lnc-PMIF. By cell-based therapy approach, we demonstrated that replenishing the aged BMSCs with small interfering RNA (siRNA)-mediated lnc-PMIF knockdown could promote bone formation in aged mice. By pharmacological approach, we showed that targeted delivery of lnc-PMIF siRNA approaching the OPCs around the bone formation surface could also promote bone formation in aged mice. Conclusion: Toward translational medicine, this study hints that targeting lnc-PMIF to facilitate aged OPCs migrating to bone formation surface could be a brand-new anabolic strategy for aging-related osteoporosis.
Collapse
|
49
|
Ellur G, Sukhdeo SV, Khan MT, Sharan K. Maternal high protein-diet programs impairment of offspring's bone mass through miR-24-1-5p mediated targeting of SMAD5 in osteoblasts. Cell Mol Life Sci 2021; 78:1729-1744. [PMID: 32734584 PMCID: PMC11071892 DOI: 10.1007/s00018-020-03608-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022]
Abstract
Maternal nutrition is crucial for the offspring's skeleton development and the onset of osteoporosis later in life. While maternal low protein diet has been shown to regulate bone mass negatively, the effect of a high protein diet (HP) remains unexplored. Here, we found that C57BL/6 mice fed with HP delivered offspring with decreased skeletal mineralization at birth and reduced bone mass throughout their life due to a decline in their osteoblast maturation. A small RNA sequencing study revealed that miR-24-1-5p was highly upregulated in HP group osteoblasts. Target prediction and validation studies identified SMAD-5 as a direct target of miR-24-1-5p. Furthermore, mimic and inhibitor studies showed a negative correlation between miR-24-1-5p expression and osteoblast function. Moreover, ex vivo inhibition of miR-24-1-5p reversed the reduced maturation and SMAD-5 expression in the HP group osteoblasts. Together, we show that maternal HP diminishes the bone mass of the offspring through miR-24-1-5p.
Collapse
Affiliation(s)
- Govindraj Ellur
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Md Touseef Khan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
50
|
Jiang W, Takeshita N, Maeda T, Sogi C, Oyanagi T, Kimura S, Yoshida M, Sasaki K, Ito A, Takano-Yamamoto T. Connective tissue growth factor promotes chemotaxis of preosteoblasts through integrin α5 and Ras during tensile force-induced intramembranous osteogenesis. Sci Rep 2021; 11:2368. [PMID: 33504916 PMCID: PMC7841149 DOI: 10.1038/s41598-021-82246-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
In vertebrates, new bone formation via intramembranous osteogenesis is a critical biological event for development, remodeling, and fracture healing of bones. Chemotaxis of osteoblast lineage cells is an essential cellular process in new bone formation. Connective tissue growth factor (CTGF) is known to exert chemotactic properties on various cells; however, details of CTGF function in the chemotaxis of osteoblast lineage cells and underlying molecular biological mechanisms have not been clarified. The aim of the present study was to evaluate the chemotactic properties of CTGF and its underlying mechanisms during active bone formation through intramembranous osteogenesis. In our mouse tensile force-induced bone formation model, preosteoblasts were aggregated at the osteogenic front of calvarial bones. CTGF was expressed at the osteogenic front, and functional inhibition of CTGF using a neutralizing antibody suppressed the aggregation of preosteoblasts. In vitro experiments using μ-slide chemotaxis chambers showed that a gradient of CTGF induced chemotaxis of preosteoblastic MC3T3-E1 cells, while a neutralizing integrin α5 antibody and a Ras inhibitor inhibited the CTGF-induced chemotaxis of MC3T3-E1 cells. These findings suggest that the CTGF-integrin α5-Ras axis is an essential molecular mechanism to promote chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis.
Collapse
Affiliation(s)
- Wei Jiang
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Chisumi Sogi
- Department of Pediatrics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8574, Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Seiji Kimura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Michiko Yoshida
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan. .,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8586, Japan.
| |
Collapse
|