1
|
De Padua JC, Tanaka T, Ueno K, Dela Cruz TEE, Ishihara A. Isolation of 2,2'-azoxybisbenzyl alcohol from Agaricus subrutilescens and its inhibitory activity against bacterial biofilm formation. Biosci Biotechnol Biochem 2024; 88:983-991. [PMID: 38925646 DOI: 10.1093/bbb/zbae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Virulence pathways in pathogenic bacteria are regulated by quorum sensing mechanisms, particularly biofilm formation through autoinducer (AI) production and sensing. In this study, the culture filtrate extracted from an edible mushroom, Agaricus subrutilescens, was fractionated to isolate a compound that inhibits biofilm formation. Four gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, and Enterobacter cloacae) and two gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) were used for the bioassay. The bioassay-guided chromatographic separations of the culture filtrate extract resulted in the isolation of the compound. Further, spectroscopic analyses revealed the identity of the compound as 2,2'-azoxybisbenzyl alcohol (ABA). The minimum inhibitory and sub-inhibitory concentrations of the compound were also determined. Azoxybisbenzyl alcohol was significantly effective in inhibiting biofilm formation in all tested bacteria, with half-maximal inhibitory concentrations of 3-11 µg/mL. Additionally, the bioactivity of ABA was confirmed through the bioassays for the inhibition of exopolysaccharide matrixes and AI activities.
Collapse
Affiliation(s)
- Jewel C De Padua
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Tomoya Tanaka
- Graduate School of Sustainability Sciences, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Department of Agricultural, Life, Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Thomas Edison E Dela Cruz
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Atsushi Ishihara
- Department of Agricultural, Life, Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori, Japan
| |
Collapse
|
2
|
Du Q, Xing N, Guo S, Li R, Meng X, Wang S. Cycads: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology and toxicology. PHYTOCHEMISTRY 2024; 220:114001. [PMID: 38286200 DOI: 10.1016/j.phytochem.2024.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Cycads, which primarily consist of the families Cycadaceae and Zamiaceae, possess intrinsic therapeutic attributes that are prominently expressed across their morphological spectrum, including roots, leaves, flowers, and seeds. In Chinese traditional medicine, the leaves of cycads are particularly revered for their profound healing capabilities. This meticulous review engages with existing literature on cycads and presents insightful avenues for future research. Over 210 phytoconstituents have been isolated and identified from various cycad tissues, including flavonoids, azoxy metabolites, sterols, lignans, non-proteogenic amino acids, terpenoids, and other organic constituents. The contemporary pharmacological discourse highlights the antineoplastic, antimicrobial, and antidiabetic activities inherent in these ancient plants, which are of particular importance to the field of oncology. Despite the prevalent focus on crude extracts and total flavonoid content, our understanding of the nuanced pharmacodynamics of cycads lags considerably behind. The notoriety of cycads derived toxicity, notably within the context of Guam's neurological disease cluster, has precipitated an established emphasis on toxicological research within this field. As such, this critical review emphasizes nascent domains deserving of academic and clinical pursuit, whilst nested within the broader matrix of current scientific understanding. The systematic taxonomy, traditional applications, phytochemical composition, therapeutic potential, and safety profile of cycads are holistically interrogated, assimilating an indispensable repository for future scholarly inquiries. In conclusion, cycads stand as a veritable treasure trove of pharmacological virtue, displaying remarkable therapeutic prowess and holding vast promise for ongoing scientific discovery and clinical utilization.
Collapse
Affiliation(s)
- Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nan Xing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Li
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Xie H, Zhang A, Li J, Mou X, He T, Yeung TC, Lau CBS, Zuo Z, Li P, Kennelly EJ, Leung PC, Tang Y, Fan X, Wang CC, Li L. Cycasin derivative: a potential embryotoxic component of Atractylodes macrocephala rhizome for limb malformation. Toxicol Res (Camb) 2024; 13:tfae057. [PMID: 38623091 PMCID: PMC11015991 DOI: 10.1093/toxres/tfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Objective The rhizome of Atractylodes macrocephala Koidz. (Asteraceae), called Atractylodes macrocephala rhizome (AMR) and known by its traditional name Bai Zhu, is a prominent Chinese herbal medicine employed for preventing miscarriage. However, our previous study revealed that high dosages of AMR administered during pregnancy could cause embryotoxicity but the specific embryotoxic components and their underlying mechanisms remain unclear. This study aimed to screen and identify the potential embryotoxic components of AMR. Methods The AMR extracts and sub-fractions were analyzed by thin layer chromatography and subsequently screened by in vitro mouse limb bud micromass and mouse whole embryo culture bioassays. The embryotoxic fractions from AMR were further evaluated in vivo using a pregnant mouse model. The structures of the potential embryotoxic components were analyzed using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Results In vitro and in vivo bioassays revealed that AMR glycoside-enriched sub-fractions (AMR-A-IIa and AMR-A-IIb) exhibited potential embryotoxicity. These sub-fractions, when administered to pregnant animals, increased the incidence of stillbirth and congenital limb malformations. MS spectrometry analysis identified cycasin derivatives in both sub-fractions, suggesting their possible role in the observed limb malformations. However, further experiments are necessary to validate this hypothesis and to elucidate the underlying mechanisms. Conclusions Our study provides significant scientific evidence on the pharmacotoxicity of AMR, which is important for the safe clinical application of commonly used Chinese herbal medicines during pregnancy.
Collapse
Affiliation(s)
- Hongliang Xie
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Aolin Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Junwei Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Xuan Mou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Tao He
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Tsz Ching Yeung
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
| | - Ping Li
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468, United States
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468, United States
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
| | - Yu Tang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- Modern Chinese Medicine and Reproductive Health Joint Innovation Center, Innovation Center of Yangtze River Delta, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
- Modern Chinese Medicine and Reproductive Health Joint Innovation Center, Innovation Center of Yangtze River Delta, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou City, Zhejiang Province, 310053, China
| | - Lu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou City, Zhejiang Province, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
- Modern Chinese Medicine and Reproductive Health Joint Innovation Center, Innovation Center of Yangtze River Delta, No. 828 Zhongxing Road, Xitang Town, Jiaxing City, Zhejiang Province, 314100, China
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Shangcheng District, Hangzhou City, Zhejiang Province, 310016, China
| |
Collapse
|
4
|
Newell ME, Adhikari S, Halden RU. Systematic and state-of the science review of the role of environmental factors in Amyotrophic Lateral Sclerosis (ALS) or Lou Gehrig's Disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152504. [PMID: 34971691 DOI: 10.1016/j.scitotenv.2021.152504] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The etiology of sporadic amyotrophic lateral sclerosis (ALS) is still unclear. We evaluate environmental factors suspected to be associated with ALS for their potential linkage to disease causality and to model geographic distributions of susceptible populations and expected cases worldwide. A PRISMA systematic literature review was performed 2021. Bradford Hill criteria were used to identify and rank environmental factors and a secondary review of ALS diagnoses in population studies and ALS case or cohort studies was conducted. Prevalence rate projection informed estimates of impacted regions and populations. Among 1710 papers identified, 258 met the inclusion criteria, of which 173 responded to at least one of nine Bradford Hill criteria among 83 literature-identified ALS environmental factors. Environmental determinants of ALS in order of decreasing significance were β-N-methylamino-L-alanine (BMAA), formaldehyde, selenium, and heavy metals including manganese, mercury, zinc, and copper. Murine animal models were the most common methodology for exploring environmental factors. Another line of investigation of 62 population exposure studies implicated the same group of environmental agents (mean odds ratios): BMAA (2.32), formaldehyde (1.54), heavy metals (2.99), manganese (3.85), mercury (2.74), and zinc (2.78). An age-adjusted incidence model estimated current total ALS cases globally at ~85,000 people compared to only ~1600 cases projected from the reported ALS incidence in the literature. Modeling with the prevalence microscope equation forecasted an increase in U.S. ALS cases from 16,707 confirmed in 2015 to ~22,650 projected for 2040. Two orthogonal methods employed implicate BMAA, formaldehyde, manganese, mercury, and zinc as environmental factors with strong ALS associations. ALS cases likely are significantly underreported globally, and high vulnerability exists in regions with large aging populations. Recent studies on other diseases with environmental determinants suggest the need to consider additional potential triggers and mechanisms, including exposures to microbial agents and epigenetic modifications.
Collapse
Affiliation(s)
- Melanie Engstrom Newell
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; OneWaterOneHealth, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
5
|
Kisby GE, Spencer PS. Genotoxic Damage During Brain Development Presages Prototypical Neurodegenerative Disease. Front Neurosci 2021; 15:752153. [PMID: 34924930 PMCID: PMC8675606 DOI: 10.3389/fnins.2021.752153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023] Open
Abstract
Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC) is a disappearing prototypical neurodegenerative disorder (tau-dominated polyproteinopathy) linked with prior exposure to phytogenotoxins in cycad seed used for medicine and/or food. The principal cycad genotoxin, methylazoxymethanol (MAM), forms reactive carbon-centered ions that alkylate nucleic acids in fetal rodent brain and, depending on the timing of systemic administration, induces persistent developmental abnormalities of the cortex, hippocampus, cerebellum, and retina. Whereas administration of MAM prenatally or postnatally can produce animal models of epilepsy, schizophrenia or ataxia, administration to adult animals produces little effect on brain structure or function. The neurotoxic effects of MAM administered to rats during cortical brain development (specifically, gestation day 17) are used to model the histological, neurophysiological and behavioral deficits of human schizophrenia, a condition that may precede or follow clinical onset of motor neuron disease in subjects with sporadic ALS and ALS/PDC. While studies of migrants to and from communities impacted by ALS/PDC indicate the degenerative brain disorder may be acquired in juvenile and adult life, a proportion of indigenous cases shows neurodevelopmental aberrations in the cerebellum and retina consistent with MAM exposure in utero. MAM induces specific patterns of DNA damage and repair that associate with increased tau expression in primary rat neuronal cultures and with brain transcriptional changes that parallel those associated with human ALS and Alzheimer's disease. We examine MAM in relation to neurodevelopment, epigenetic modification, DNA damage/replicative stress, genomic instability, somatic mutation, cell-cycle reentry and cellular senescence. Since the majority of neurodegenerative disease lacks a solely inherited genetic basis, research is needed to explore the hypothesis that early-life exposure to genotoxic agents may trigger or promote molecular events that culminate in neurodegeneration.
Collapse
Affiliation(s)
- Glen E. Kisby
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Lebanon, OR, United States
| | - Peter S. Spencer
- School of Medicine (Neurology), Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
6
|
Spencer PS, Kisby GE. Role of Hydrazine-Related Chemicals in Cancer and Neurodegenerative Disease. Chem Res Toxicol 2021; 34:1953-1969. [PMID: 34379394 DOI: 10.1021/acs.chemrestox.1c00150] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrazine-related chemicals (HRCs) with carcinogenic and neurotoxic potential are found in certain mushrooms and plants used for food and in products employed in various industries, including aerospace. Their propensity to induce DNA damage (mostly O6-, N7- and 8-oxo-guanine lesions) resulting in multiple downstream effects is linked with both cancer and neurological disease. For cycling cells, unrepaired DNA damage leads to mutation and uncontrolled mitosis. By contrast, postmitotic neurons attempt to re-enter the cell cycle but undergo apoptosis or nonapoptotic cell death. Biomarkers of exposure to HRCs can be used to explore whether these substances are risk factors for sporadic amyotrophic laterals sclerosis and other noninherited neurodegenerative diseases, which is the focus of this paper.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Glen E Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| |
Collapse
|
7
|
Lagrange E, Vernoux JP, Reis J, Palmer V, Camu W, Spencer PS. An amyotrophic lateral sclerosis hot spot in the French Alps associated with genotoxic fungi. J Neurol Sci 2021; 427:117558. [PMID: 34216974 DOI: 10.1016/j.jns.2021.117558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Between 1990 and 2018, 14 cases of amyotrophic lateral sclerosis (ALS) were diagnosed in residents of, and in visitors with second homes to, a mountainous hamlet in the French Alps. Systematic investigation revealed a socio-professional network that connected ALS cases. Genetic risk factors for ALS were excluded. Several known environmental factors were scrutinized and eliminated, notably lead and other chemical contaminants in soil, water or home-grown vegetation used for food, radon and electromagnetic fields. Some lifestyle-related behavioral risk factors were identified: Prior to clinical onset of motor neuron disease, some patients had a high degree of athleticism and smoked tobacco. Recent investigations on site, based on a new hypothesis, showed that all patients had ingested wild mushrooms, notably poisonous False Morels. Half of the ALS cohort reported acute illness following Gyromitra gigas mushroom consumption. This finding supports the hypothesis that genotoxins of fungal origin may induce motor neuron degeneration.
Collapse
Affiliation(s)
- E Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS consultations, Grenoble University Hospital, 38000 Grenoble, France
| | - J P Vernoux
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - J Reis
- Department of Neurology, University of Strasbourg, University Hospital of Strasbourg, Strasbourg, France; Association RISE, 3, rue du Loir, 67205 Oberhausbergen, France
| | - V Palmer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - W Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, Inserm UMR1051, 34000 Montpellier, France
| | - P S Spencer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA; Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97201, USA.
| |
Collapse
|
8
|
Piao M, Wang Y, Liu N, Wang X, Chen R, Qin J, Ge P, Feng C. Sevoflurane Exposure Induces Neuronal Cell Parthanatos Initiated by DNA Damage in the Developing Brain via an Increase of Intracellular Reactive Oxygen Species. Front Cell Neurosci 2020; 14:583782. [PMID: 33424554 PMCID: PMC7793874 DOI: 10.3389/fncel.2020.583782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The safety of volatile anesthetics in infants and young children has been drawing increasing concern due to its potential neurotoxicity in the developing brain. Neuronal death is considered a major factor associated with developmental neurotoxicity after exposure to volatile anesthetics sevoflurane, but its mechanism remains elusive. Parthanatos, a new type of programmed cell death, resulting from poly (ADP-ribose) polymerase 1 (PARP-1) hyperactivation in response to DNA damage, was found to account for the pathogenesis of multiple neurological disorders. However, the role of Parthanatos in sevoflurane-induced neonatal neuronal cell death has not been investigated. To test it, neuronal cells treated with 2, 4, and 8% sevoflurane for 6, 12, and 24 h and postnatal day 7 rats exposed to 2.5% sevoflurane for 6 h were used in the present study. Our results found sevoflurane exposure induced neuronal cell death, which was accompanied by PARP-1 hyperactivation, cytoplasmic polymerized ADP-ribose (PAR) accumulation, mitochondrial depolarization, and apoptosis-inducing factor (AIF) nuclear translocation in the neuronal cells and hippocampi of rats. Pharmacological or genetic inhibition of PAPR-1 significantly alleviated sevoflurane-induced neuronal cell death and accumulation of PAR polymer and AIF nuclear translocation, which were consistent with the features of Parthanatos. We observed in vitro and in vivo that sevoflurane exposure resulted in DNA damage, given that 8-hydroxydeoxyguanosine (8-OHdG) and phosphorylation of histone variant H2AX (γH2AX) were improved. Moreover, we detected that sevoflurane exposure was associated with an overproduction of intracellular reactive oxygen species (ROS). Inhibition of ROS with antioxidant NAC markedly alleviated DNA damage caused by sevoflurane, indicating that ROS participated in the regulation of sevoflurane-induced DNA damage. Additionally, sevoflurane exposure resulted in upregulation of Parthanatos-related proteins and neuronal cell death, which were significantly attenuated by pretreatment with NAC. Therefore, these results suggest that sevoflurane exposure induces neuronal cell Parthanatos initiated by DNA damage in the developing brain via the increase of intracellular ROS.
Collapse
Affiliation(s)
- Meihua Piao
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Yingying Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Nan Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xuedong Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Qin
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Chunsheng Feng
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Wibowo M, Ding L. Chemistry and Biology of Natural Azoxy Compounds. JOURNAL OF NATURAL PRODUCTS 2020; 83:3482-3491. [PMID: 33197183 DOI: 10.1021/acs.jnatprod.0c00725] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Azoxy compounds belong to a small yet intriguing group of natural products sharing a common functional group with the general structure RN═N+(O-)R. Their intriguing chemical structures, diverse biological activities, and important industrial applications have received attention from researchers in natural product chemistry, total synthesis, and biosynthesis. This review presents current updates about the structural diversity of natural azoxy compounds isolated from different organisms and highlights the enzymes and biological logic involved in their construction. We assume that the identification of key enzymes will provide efficient tools in biocatalysis to generate new azoxy compounds, while genome mining may result in novel natural azoxy compounds of medical and industrial interest.
Collapse
Affiliation(s)
- Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Whitaker MRL, Salzman S. Ecology and evolution of cycad-feeding Lepidoptera. Ecol Lett 2020; 23:1862-1877. [PMID: 32969575 DOI: 10.1111/ele.13581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
Cycads are an ancient group of tropical gymnosperms that are toxic to most animals - including humans - though the larvae of many moths and butterflies (order: Lepidoptera) feed on cycads with apparent immunity. These insects belong to distinct lineages with varying degrees of specialisation and diverse feeding ecologies, presenting numerous opportunities for comparative studies of chemically mediated eco-evolutionary dynamics. This review presents the first evolutionary evaluation of cycad-feeding among Lepidoptera along with a comprehensive review of their ecology. Our analysis suggests that multiple lineages have independently colonised cycads from angiosperm hosts, yet only a few clades appear to have radiated following their transitions to cycads. Defensive traits are likely important for diversification, as many cycad specialists are warningly coloured and sequester cycad toxins. The butterfly family Lycaenidae appears to be particularly predisposed to cycad-feeding and several cycadivorous lycaenids are warningly coloured and chemically defended. Cycad-herbivore interactions provide a promising but underutilised study system for investigating plant-insect coevolution, convergent and divergent adaptations, and the multi-trophic significance of defensive traits; therefore the review ends by suggesting specific research gaps that would be fruitfully addressed in Lepidoptera and other cycad-feeding insects.
Collapse
Affiliation(s)
- Melissa R L Whitaker
- Entomological Collection, Department of Environmental Systems Science, ETH Zürich, Weinbergstrasse 56/58, Zürich, 8092, Switzerland.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Shayla Salzman
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.,School of Integrative Plant Science, Cornell University, 502 Mann Library, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Spencer PS. Etiology of Retinal and Cerebellar Pathology in Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex. Eye Brain 2020; 12:97-104. [PMID: 32765151 PMCID: PMC7381794 DOI: 10.2147/eb.s260823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/20/2020] [Indexed: 01/28/2023] Open
Abstract
Purpose To reexamine the etiology of a unique retinal pathology (linear and vermiform sub-retinal tubular structures) described among subjects with and without neurodegenerative disease in former high-incidence foci of Western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS/PDC) in Guam (USA) and the Kii peninsula of Honshu island (Japan). Methods Analysis of published and unpublished reports of 1) ALS/PDC and the retinal and cerebellar pathology associated therewith and 2) exogenous neurotoxic factors associated with ALS/PDC and the developing retina and cerebellum. Results ALS/PDC retinal and cerebellar pathology matches persistent retinal and cerebellar dysplasia found in laboratory animals given single in utero or postnatal systemic treatment with cycasin, the principal neurotoxic component in the seed of cycad plants traditionally used for food (Guam) or oral medicine (Kii-Japan), both of which have been linked to the human neurodegenerative disease. Conclusion ALS/PDC-associated retinal and cerebellar dysplasia could arise from in utero exposure to methylazoxymethanol, the genotoxic metabolite of cycasin that results from maternal ingestion of this azoxyglucoside. These results support the environmental toxic etiology of retinal and brain pathology in ALS/PDC.
Collapse
Affiliation(s)
- Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
12
|
Biggio F, Mostallino M, Talani G, Locci V, Mostallino R, Calandra G, Sanna E, Biggio G. Social enrichment reverses the isolation-induced deficits of neuronal plasticity in the hippocampus of male rats. Neuropharmacology 2019; 151:45-54. [DOI: 10.1016/j.neuropharm.2019.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
13
|
Maćkowiak M, Latusz J, Głowacka U, Bator E, Bilecki W. Adolescent social isolation affects parvalbumin expression in the medial prefrontal cortex in the MAM-E17 model of schizophrenia. Metab Brain Dis 2019; 34:341-352. [PMID: 30519836 DOI: 10.1007/s11011-018-0359-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
Altered parvalbumin (PV) expression is observed in the prefrontal cortex of subjects with schizophrenia. Environmental context, particularly during adolescence, might regulate PV expression. In the present study, we investigated the effect of adolescent social isolation (SI) on PV expression in the medial prefrontal cortex in a neurodevelopmental model (MAM-E17) of schizophrenia. SI exposure occurred from postnatal day 30 to 40, followed by resocialization until late adolescence or early adulthood. PV mRNA and protein levels, as well as the number of PV cells, were analysed at these ages. Moreover, epigenetic regulation of PV expression by histone methylation was examined by measuring the total and PV gene-bound H3K4me3 levels. MAM only decreased levels of the PV mRNA and protein in adulthood. Decreases in total H3K4me3 levels and its level at the PV gene were also observed at this age. In contrast, in late adolescence, SI induced a decrease in the expression of the PV mRNA in the MAM group that was related to the reduction in total and PV gene-bound H3K4me3 levels. However, at this age, SI increased the levels of the PV protein in both the control and MAM groups. In adulthood, SI did not affect PV mRNA or H3K4me3 levels but decreased levels of the PV protein in both groups. Both MAM and SI failed to change the number of PV cells at any age. The results indicate that adolescent SI accelerated epigenetic impairments of PV expression in MAM-E17 rats; however, subsequent resocialization abolished this dysfunction, but failed to prevent alterations in PV protein.
Collapse
Affiliation(s)
- Marzena Maćkowiak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343, Kraków, Poland.
| | - Joachim Latusz
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343, Kraków, Poland
| | - Urszula Głowacka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343, Kraków, Poland
| | - Ewelina Bator
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343, Kraków, Poland
| | - Wiktor Bilecki
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343, Kraków, Poland
| |
Collapse
|
14
|
Gerić M, Gajski G, Domijan AM, Garaj-Vrhovac V, Filipič M, Žegura B. Genotoxic effects of neurotoxin ß-N-methylamino-l-alanine in human peripheral blood cells. CHEMOSPHERE 2019; 214:623-632. [PMID: 30290362 DOI: 10.1016/j.chemosphere.2018.09.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The non-proteinogenic amino acid ß-N-methylamino-l-alanine (BMAA) is associated with the development of neurodegenerative diseases such as Alzheimer's disease, amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) and amyotrophic lateral sclerosis. BMAA is known to induce neurotoxic effects leading to neurodegeneration via multiple mechanisms including misfolded protein accumulation, glutamate induced excitotoxicity, calcium dyshomeostasis, endoplasmic reticulum stress and oxidative stress. In the present study, for the first time, genotoxic activity of BMAA (2.5, 5, 10 and 20 μg/mL) was studied in human peripheral blood cells (HPBCs) using the comet and cytokinesis-block micronucleus cytome assays. In addition, the influence of BMAA on the oxidative stress was assessed. At non-cytotoxic concentrations BMAA did not induce formation of DNA strand breaks in HPBCs after 4 and 24 h exposure; however, it significantly increased the number of micronuclei after 24 and 48 h at 20 μg/mL and nucleoplasmic bridges after 48 h at 20 μg/mL. The frequency of nuclear buds was slightly though non-significantly increased after 48 h. Altogether, this indicates that in HPBCs BMAA is clastogenic and induces complex genomic alterations including structural chromosomal rearrangements and gene amplification. No influence on oxidative stress markers was noticed. These findings provide new evidence that environmental neurotoxin BMAA, in addition to targeting common pathways involved in neurodegeneration, can also induce genomic instability in non-target HPBCs suggesting that it might be involved in cancer development. Therefore, these data are important in advancing our current knowledge and opening new questions in the understanding of the mechanisms of BMAA toxicity, particularly in the context of genotoxicity.
Collapse
Affiliation(s)
- Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| | - Metka Filipič
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.
| | - Bojana Žegura
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Huo C, Liu X, Zhao J, Zhao T, Huang H, Ye H. Abnormalities in behaviour, histology and prefrontal cortical gene expression profiles relevant to schizophrenia in embryonic day 17 MAM-Exposed C57BL/6 mice. Neuropharmacology 2018; 140:287-301. [PMID: 30056124 DOI: 10.1016/j.neuropharm.2018.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023]
Abstract
Gestational and perinatal disruption of neural development increases the risk of developing schizophrenia (SCZ) later in life. Embryonic day 17 (E17) methylazoxymethanol (MAM) treatment leads to histological, physiological and behavioural abnormalities in post-puberty rats that model the neuropathological and cognitive deficits reported in SCZ patients. However, the validity of E17 MAM-exposed mice to model SCZ has not been explored. Here we treated E17 C57BL/6 mouse dams with various dosages of MAM. We found that this mouse strain was more vulnerable to MAM treatment than rats and there were gender differences in behavioural abnormalities, histological changes and prefrontal cortical gene expression profiles in MAM (7.5 mg/kg)-exposed mice. Both male and female MAM-exposed mice had deficits in prepulse inhibition. Female MAM-exposed mice exhibited mildly increased spontaneous locomotion activity and social recognition deficits, while male mice were normal. Consistently, only female MAM-exposed mice exhibited reduced brain weight, decreased size of prefrontal cortex (PFC) and enlarged lateral ventricles. Transcriptome analysis of the PFC revealed that there were more differentially expressed genes in female MAM-exposed mice than those in male mice. Moreover, expression of Pvalb, Arc and genes in their association networks were downregulated in the PFC of female MAM-exposed mice. These results indicate that E17 MAM-exposure in C57BL/6 mice leads to behavioural changes that model certain deficits reported in SCZ patients. MAM-exposed female mice may be used to study gene expression changes, inhibitory neural circuit dysfunction and glutamatergic synaptic plasticity deficits with a possible relation to those in the brains of SCZ patients.
Collapse
Affiliation(s)
- Chunyue Huo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Yanjing Medical College, Capital Medical University, Beijing 100069, China
| | - Xu Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Jialu Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Tian Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Huiling Huang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
16
|
Green AJ, Planchart A. The neurological toxicity of heavy metals: A fish perspective. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:12-19. [PMID: 29199130 PMCID: PMC5936656 DOI: 10.1016/j.cbpc.2017.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
The causes of neurodegenerative diseases are complex with likely contributions from genetic susceptibility and environmental exposures over an organism's lifetime. In this review, we examine the role that aquatic models, especially zebrafish, have played in the elucidation of mechanisms of heavy metal toxicity and nervous system function over the last decade. Focus is applied to cadmium, lead, and mercury as significant contributors to central nervous system morbidity, and the application of numerous transgenic zebrafish expressing fluorescent reporters in specific neuronal populations or brain regions enabling high-resolution neurodevelopmental and neurotoxicology research.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Behavior, Animal/drug effects
- Disease Models, Animal
- Gene Expression Regulation, Developmental/drug effects
- Heavy Metal Poisoning, Nervous System/etiology
- Heavy Metal Poisoning, Nervous System/genetics
- Heavy Metal Poisoning, Nervous System/metabolism
- Heavy Metal Poisoning, Nervous System/pathology
- Humans
- Metals, Heavy/toxicity
- Nerve Degeneration
- Nervous System/drug effects
- Nervous System/metabolism
- Nervous System/pathology
- Nervous System/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Risk Assessment
- Water Pollutants, Chemical/toxicity
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Adrian J Green
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Antonio Planchart
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
17
|
Bator E, Latusz J, Głowacka U, Radaszkiewicz A, Mudlaff K, Maćkowiak M. Adolescent Social Isolation Affects Schizophrenia-Like Behavior in the MAM-E17 Model of Schizophrenia. Neurotox Res 2018. [DOI: 10.1007/s12640-018-9888-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Salzman S, Whitaker M, Pierce NE. Cycad-feeding insects share a core gut microbiome. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shayla Salzman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Melissa Whitaker
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
19
|
Bator E, Latusz J, Wędzony K, Maćkowiak M. Adolescent environmental enrichment prevents the emergence of schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia. Eur Neuropsychopharmacol 2018; 28:97-108. [PMID: 29174863 DOI: 10.1016/j.euroneuro.2017.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 01/15/2023]
Abstract
In the present study, we investigated whether exposure to an enriched environment (EE) during adolescence might affect the behavioural dysfunction (sensorimotor gating deficit, memory and social interaction impairments) and neurochemical changes (GAD67 expression, histone methylation) induced by methylazoxymethanol (MAM) in the MAM-E17 rat model of schizophrenia. EE was introduced for 7 days in early adolescence (days 23-29), and behavioural and biochemical studies were performed on adult rats at postnatal day 70. The results showed that exposure to EE prevented the development of adult behavioural deficits induced by prenatal MAM administration. EE also prevented the decrease in GAD67 mRNA and protein levels induced by MAM in the medial prefrontal cortex (mPFC). Moreover, EE inhibited the reductions in the amount of Gad1 bound to H3K4me3 and in the total H3K4me3 protein level induced by prenatal MAM administration in the adult mPFC. However, there was no effect of EE on behaviour or levels of the various neurochemical markers in adult rats prenatally treated with vehicle. Thus, these results indicate that EE exposure during early adolescence may inhibit the development of schizophrenia related symptoms through epigenetic mechanisms that regulate the expression of genes (e.g., Gad1) that are impaired in schizophrenia.
Collapse
Affiliation(s)
- Ewelina Bator
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Joachim Latusz
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Krzysztof Wędzony
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Marzena Maćkowiak
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland.
| |
Collapse
|
20
|
Omidi A, Akbari M, Mortezaee K, Eqlimi E, Beyer C, Zendedel A, Ragerdi Kashani I. Prenatal transplantation of epidermal neural crest stem cells in malformation of cortical development mouse model. Microsc Res Tech 2017; 80:394-405. [DOI: 10.1002/jemt.22809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/18/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022]
Abstract
AbstractPrenatal interventions may offer an immense opportunity in therapeutic protocols of malformations of cortical development (MCD). Epidermal neural crest stem cells (EPI‐NCSCs) of the hair follicle bulge exhibit features of both embryonic and adult stem cells; these cells maintain their neurologic differentiation capability because of their neural crest origin. However, it is unknown if prenatal use of EPI‐NCSCs could be beneficial in targeting methylazoxymethanol (MAM)‐induced MCD, which further addressed in the present work. EPI‐NCSCs were prenatally infused to the MAM‐exposed mice. Thicknesses of various cerebral cortex areas as well as corpus callosum was measured; there were markedly decrease in MAM group (p < .001 vs. untreated), but a significant increase in EPI‐NCSC group (p < .05 vs. MAM), except for corpus callosum. Real‐time PCR analysis showed high expressions for absent, small, or homeotic 2‐like protein, nestin, doublecortin (DCX), neuronal specific nuclei protein (NeuN), and glial fibrillary acidic protein (GFAP) in MAM group (p < .001 vs. untreated), except for G‐protein‐coupled C‐X‐C chemokine receptor type 4 (CXCR4) and CXC motif ligand 12 (CXCL12), whereas there were low expressions in EPI‐NCSCs group (p < .01 vs. MAM). Immunohistochemistry of NeuN, GFAP, ionized calcium‐binding adapter molecule (Iba1), and oligodendrocyte lineage transcription factor 2 (Olig2) was also revealed the same pattern as real‐time PCR (p < .001 MAM vs. untreated, and p < .05 EPI‐NCSCs vs. MAM). Our findings suggest prenatal use of EPI‐NCSCs as a possible candidate for cell‐based therapy of cortical injury through affecting neural markers and their relationship with glial.
Collapse
Affiliation(s)
- Ameneh Omidi
- Department of Anatomy, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine Kurdistan University of Medical Sciences Sanandaj Iran
| | - Ehsan Eqlimi
- Department of Medical Physics and Biomedical Engineering, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, School of Medicine RWTH Aachen University 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, School of Medicine RWTH Aachen University 52074 Aachen, Germany
- JARA‐Brain RWTH Aachen University 52074 Aachen, Germany
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
21
|
Potjewyd G, Day PJ, Shangula S, Margison GP, Povey AC. L-β-N-methylamino-l-alanine (BMAA) nitrosation generates a cytotoxic DNA damaging alkylating agent: An unexplored mechanism for neurodegenerative disease. Neurotoxicology 2017; 59:105-109. [PMID: 28163087 DOI: 10.1016/j.neuro.2017.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND L-β-N-methylamino-l-alanine (BMAA) is a non-proteinic amino acid, that is neurotoxic in vitro and in animals, and is implicated in the causation of amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC) on Guam. Given that natural amino acids can be N-nitrosated to form toxic alkylating agents and the structural similarity of BMAA to other amino acids, our hypothesis was that N-nitrosation of BMAA might result in a toxic alkylating agent, providing a novel mechanistic hypothesis for BMAA action. FINDINGS We have chemically nitrosated BMAA with sodium nitrite to produce nitrosated BMAA (N-BMAA) which was shown to react with the alkyl-trapping agent, 4-(p-nitrobenzyl)pyridine, cause DNA strand breaks in vitro and was toxic to the human neuroblastoma cell line SH-SY5Y under conditions in which BMAA itself was minimally toxic. CONCLUSIONS Our results indicate that N-BMAA is an alkylating agent and toxin suggesting a plausible and previously unrecognised mechanism for the neurotoxic effects of BMAA.
Collapse
Affiliation(s)
- G Potjewyd
- Centre for Epidemiology, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - P J Day
- Centre for Epidemiology, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Institute for Biotechnology, University of Manchester, Manchester, UK
| | - S Shangula
- Centre for Epidemiology, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - G P Margison
- Centre for Epidemiology, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A C Povey
- Centre for Epidemiology, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
22
|
Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 2016; 56:269-283. [DOI: 10.1016/j.neuro.2016.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
23
|
Spencer P, Garner C, Palmer V, Kisby G. Vervets and macaques: Similarities and differences in their responses to l -BMAA. Neurotoxicology 2016; 56:284-286. [DOI: 10.1016/j.neuro.2016.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 02/05/2023]
|
24
|
Chepelev NL, Long AS, Bowers WJ, Gagné R, Williams A, Kuo B, Phillips DH, Arlt VM, White PA, Yauk CL. Transcriptional profiling of the mouse hippocampus supports an NMDAR-mediated neurotoxic mode of action for benzo[a]pyrene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:350-63. [PMID: 27195522 PMCID: PMC4915531 DOI: 10.1002/em.22020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Benzo[a]pyrene (BaP) is a genotoxic carcinogen and a neurotoxicant. The neurotoxicity of BaP is proposed to arise from either genotoxicity leading to neuronal cell death, or perturbed expression of N-methyl-d-aspartate receptor (NMDAR) subunits. To explore these hypotheses, we profiled hippocampal gene expression of adult male Muta(™) Mouse administered 0, 1, 35, or 70 mg BaP/kg bw per day by oral gavage for 3 days. Transcriptional profiles were examined by RNA-sequencing (RNA-seq), DNA microarrays, and real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). BaP-DNA adducts in the cerebellum were quantified by (32) P-post-labeling to measure genotoxicity. RNA-seq revealed altered expression of 0, 260, and 219 genes (P-value < 0.05, fold-change ≥ ± 1.5) following exposure to the low, medium, and high doses, respectively; 54 genes were confirmed by microarrays. Microarray and RT-PCR analysis showed increased expression of NMDAR subunits Grina and Grin2a. In contrast, no effects on DNA-damage response genes were observed despite comparable BaP-DNA adduct levels in the cerebellum and in the lungs and livers of mice at similar BaP doses in previous studies. The results suggest that DNA-damage response does not play a major role in BaP-induced adult neurotoxicity. Meta-analysis revealed that BaP-induced transcriptional profiles are highly correlated with those from the hippocampus of transgenic mice exhibiting similar neurotoxicity outcomes to BaP-exposed mice and rats (i.e., defects in learning and memory). Overall, we suggest that BaP-induced neurotoxicity is more likely to be a consequence of NMDAR perturbation than genotoxicity, and identify other important genes potentially mediating this adverse outcome. Environ. Mol. Mutagen. 57:350-363, 2016. © 2016 Her Majesty the Queen in Right of Canada. Environmental and Molecular Mutagenesis © 2016 Environmental Mutagen Society.
Collapse
Affiliation(s)
- Nikolai L Chepelev
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Alexandra S Long
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Wayne J Bowers
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, United Kingdom
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, United Kingdom
| | - Paul A White
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| |
Collapse
|
25
|
Armon C. Accrued somatic mutations (nucleic acid changes) trigger ALS: 2005-2015 update. Muscle Nerve 2016; 53:842-9. [PMID: 26799358 DOI: 10.1002/mus.25049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multilevel disease of the motor neuron system. The mechanisms triggering disease onset should be considered separately from those facilitating its spread and motor neuron death. In 2005, I brought together clinical and epidemiological evidence to support the hypothesis that acquired nucleic acid changes may trigger sporadic ALS. Since 2005, the conceptual foundations for this hypothesis have been strengthened. The journal Amyotrophic Lateral Sclerosis was renamed Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration. The focal onset, with simultaneous initial maximal upper and lower motor neuron involvement in the region of onset, and patterns of spread, were characterized further. Clues from the epidemiology of sporadic ALS were affirmed by quantitative analysis, including the increase in disease incidence with age, suggesting accrual of time-dependent changes, and the confirmation of smoking as an established risk factor. Additional observations support the conclusion that accrued somatic mutations trigger onset of ALS. Muscle Nerve 53: 842-849, 2016.
Collapse
Affiliation(s)
- Carmel Armon
- Tel Aviv University Sackler Faculty of Medicine and Assaf Harofeh Medical Center, Israel
| |
Collapse
|
26
|
Bator E, Latusz J, Radaszkiewicz A, Wędzony K, Maćkowiak M. Valproic acid (VPA) reduces sensorimotor gating deficits and HDAC2 overexpression in the MAM animal model of schizophrenia. Pharmacol Rep 2015; 67:1124-9. [PMID: 26481530 DOI: 10.1016/j.pharep.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Evidence indicates that the disruption of epigenetic processes might play an important role in the development of schizophrenia symptoms. The present study investigated the role of histone acetylation in the development of sensorimotor gating deficits in a neurodevelopmental model of schizophrenia based on prenatal administration of methylazoxymethanol (MAM) at embryonic day 17. METHODS Valproic acid (VPA), an inhibitor of class I histone deacetylases, was administered (250 mg/kg, twice a day for 7 consecutive days) in early adolescence (23rd-29th day) or early adulthood (63rd-69th day) to rats. The effect of VPA treatment on the sensorimotor gating deficits induced by prenatal MAM administration was analyzed in adult rats at postnatal day 70 (P70). In addition, the effects of VPA administration (at the same doses) on MAM-induced changes in the levels of histone H3 acetylation at lysine 9 (H3K9ac) and histone deacetylase 2 (HDAC2) in the medial prefrontal cortex (mPFC) were determined at P70 using Western blot. RESULTS VPA administration in either adolescence or early adulthood prevented the sensorimotor gating deficits induced by MAM. However, VPA administration in early adolescence or early adulthood did not alter H3K9ac levels induced by MAM. In contrast, VPA administration in either adolescence or adulthood prevented the increase in HDAC2 level evoked by MAM. CONCLUSIONS Prenatal MAM administration impaired histone acetylation in the mPFC, which might be involved in the development of some of the neurobehavioral deficits (i.e., sensorimotor gating deficits) associated with schizophrenia. Blockade of HDAC2 might prevent the disruption of sensorimotor gating in adulthood.
Collapse
Affiliation(s)
- Ewelina Bator
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joachim Latusz
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Aleksandra Radaszkiewicz
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krzysztof Wędzony
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
27
|
Llorens J, van Thriel C, Fox DA, Lammers J, Westerink RHS, de Groot DMG. Neurodevelopmental basis of health and disease: the 14th meeting of the International Neurotoxicology Association. Neurotoxicology 2014; 43:1-2. [PMID: 24709091 DOI: 10.1016/j.neuro.2014.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Jordi Llorens
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, IFADO, Dortmund, Germany
| | | | - Jan Lammers
- Dutch Health Care Inspectorate, The Hague, The Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|