1
|
Chappleboim M, Naveh-Tassa S, Carmi M, Levy Y, Barkai N. Ordered and disordered regions of the Origin Recognition Complex direct differential in vivo binding at distinct motif sequences. Nucleic Acids Res 2024; 52:5720-5731. [PMID: 38597680 PMCID: PMC11162778 DOI: 10.1093/nar/gkae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
The Origin Recognition Complex (ORC) seeds replication-fork formation by binding to DNA replication origins, which in budding yeast contain a 17bp DNA motif. High resolution structure of the ORC-DNA complex revealed two base-interacting elements: a disordered basic patch (Orc1-BP4) and an insertion helix (Orc4-IH). To define the ORC elements guiding its DNA binding in vivo, we mapped genomic locations of 38 designed ORC mutants, revealing that different ORC elements guide binding at different sites. At silencing-associated sites lacking the motif, ORC binding and activity were fully explained by a BAH domain. Within replication origins, we reveal two dominating motif variants showing differential binding modes and symmetry: a non-repetitive motif whose binding requires Orc1-BP4 and Orc4-IH, and a repetitive one where another basic patch, Orc1-BP3, can replace Orc4-IH. Disordered basic patches are therefore key for ORC-motif binding in vivo, and we discuss how these conserved, minor-groove interacting elements can guide specific ORC-DNA recognition.
Collapse
Affiliation(s)
- Michal Chappleboim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Segev Naveh-Tassa
- Department of Chemical and structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Chemical and structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
The structure of ORC-Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nat Commun 2021; 12:3883. [PMID: 34162887 PMCID: PMC8222357 DOI: 10.1038/s41467-021-24199-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/07/2021] [Indexed: 01/31/2023] Open
Abstract
The Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins. Eukaryotic DNA replication is mediated by many proteins which are tightly regulated for an efficient firing of replication at each cell cycle. Here the authors report a cryo-EM structure of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA revealing additional insights into how Cdc6 contributes to origin DNA recognition.
Collapse
|
3
|
Wang D, Lai FL, Gao F. Ori-Finder 3: a web server for genome-wide prediction of replication origins in Saccharomyces cerevisiae. Brief Bioinform 2020; 22:6278693. [PMID: 34020544 DOI: 10.1093/bib/bbaa182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
DNA replication is a fundamental process in all organisms; this event initiates at sites termed origins of replication. The characteristics of eukaryotic replication origins are best understood in Saccharomyces cerevisiae. For this species, origin prediction algorithms or web servers have been developed based on the sequence features of autonomously replicating sequences (ARSs). However, their performances are far from satisfactory. By utilizing the Z-curve methodology, we present a novel pipeline, Ori-Finder 3, for the computational prediction of replication origins in S. cerevisiae at the genome-wide level based solely on DNA sequences. The ARS exhibiting both an AT-rich stretch and ARS consensus sequence element can be predicted at the single-nucleotide level. For the identified ARSs in the S. cerevisiae reference genome, 83 and 60% of the top 100 and top 300 predictions matched the known ARS records, respectively. Based on Ori-Finder 3, we subsequently built a database of the predicted ARSs identified in more than a hundred S. cerevisiae genomes. Consequently, we developed a user-friendly web server including the ARS prediction pipeline and the predicted ARSs database, which can be freely accessed at http://tubic.tju.edu.cn/Ori-Finder3.
Collapse
Affiliation(s)
- Dan Wang
- Department of Physics, School of Science, Tianjin University
| | - Fei-Liao Lai
- Department of Physics, School of Science, Tianjin University
| | - Feng Gao
- Department of Physics, School of Science, and the Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University
| |
Collapse
|
4
|
Foureau E, Courdavault V, Navarro Gallón SM, Besseau S, Simkin AJ, Crèche J, Atehortùa L, Giglioli-Guivarc’h N, Clastre M, Papon N. Characterization of an autonomously replicating sequence in Candida guilliermondii. Microbiol Res 2013; 168:580-8. [DOI: 10.1016/j.micres.2013.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/04/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
|
5
|
Kumaran R, Yang SY, Leu JY. Characterization of chromosome stability in diploid, polyploid and hybrid yeast cells. PLoS One 2013; 8:e68094. [PMID: 23874507 PMCID: PMC3707968 DOI: 10.1371/journal.pone.0068094] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023] Open
Abstract
Chromosome instability is a key component of cancer progression and many heritable diseases. Understanding why some chromosomes are more unstable than others could provide insight into understanding genome integrity. Here we systematically investigate the spontaneous chromosome loss for all sixteen chromosomes in Saccharomyces cerevisiae in order to elucidate the mechanisms underlying chromosome instability. We observed that the stability of different chromosomes varied more than 100-fold. Consistent with previous studies on artificial chromosomes, chromosome loss frequency was negatively correlated to chromosome length in S. cerevisiae diploids, triploids and S. cerevisiae-S. bayanus hybrids. Chromosome III, an equivalent of sex chromosomes in budding yeast, was found to be the most unstable chromosome among all cases examined. Moreover, similar instability was observed in chromosome III of S. bayanus, a species that diverged from S. cerevisiae about 20 million years ago, suggesting that the instability is caused by a conserved mechanism. Chromosome III was found to have a highly relaxed spindle checkpoint response in the genome. Using a plasmid stability assay, we found that differences in the centromeric sequence may explain certain aspects of chromosome instability. Our results reveal that even under normal conditions, individual chromosomes in a genome are subject to different levels of pressure in chromosome loss (or gain).
Collapse
Affiliation(s)
- Rajaraman Kumaran
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shi-Yow Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Defining components of the chromosomal origin of replication of the hyperthermophilic archaeon Pyrococcus furiosus needed for construction of a stable replicating shuttle vector. Appl Environ Microbiol 2011; 77:6343-9. [PMID: 21784908 DOI: 10.1128/aem.05057-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We report the construction of a series of replicating shuttle vectors that consist of a low-copy-number cloning vector for Escherichia coli and functional components of the origin of replication (oriC) of the chromosome of the hyperthermophilic archaeon Pyrococcus furiosus. In the process of identifying the minimum replication origin sequence required for autonomous plasmid replication in P. furiosus, we discovered that several features of the origin predicted by bioinformatic analysis and in vitro binding studies were not essential for stable autonomous plasmid replication. A minimum region required to promote plasmid DNA replication was identified, and plasmids based on this sequence readily transformed P. furiosus. The plasmids replicated autonomously and existed in a single copy. In contrast to shuttle vectors based on a plasmid from the closely related hyperthermophile Pyrococcus abyssi for use in P. furiosus, plasmids based on the P. furiosus chromosomal origin were structurally unchanged after transformation and were stable without selection for more than 100 generations.
Collapse
|
7
|
H2A.Z demarcates intergenic regions of the plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog 2010; 6:e1001223. [PMID: 21187892 PMCID: PMC3002978 DOI: 10.1371/journal.ppat.1001223] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/10/2010] [Indexed: 01/18/2023] Open
Abstract
Epigenetic regulatory mechanisms and their enzymes are promising targets for malaria therapeutic intervention; however, the epigenetic component of gene expression in P. falciparum is poorly understood. Dynamic or stable association of epigenetic marks with genomic features provides important clues about their function and helps to understand how histone variants/modifications are used for indexing the Plasmodium epigenome. We describe a novel, linear amplification method for next-generation sequencing (NGS) that allows unbiased analysis of the extremely AT-rich Plasmodium genome. We used this method for high resolution, genome-wide analysis of a histone H2A variant, H2A.Z and two histone H3 marks throughout parasite intraerythrocytic development. Unlike in other organisms, H2A.Z is a constant, ubiquitous feature of euchromatic intergenic regions throughout the intraerythrocytic cycle. The almost perfect colocalisation of H2A.Z with H3K9ac and H3K4me3 suggests that these marks are preferentially deposited on H2A.Z-containing nucleosomes. By performing RNA-seq on 8 time-points, we show that acetylation of H3K9 at promoter regions correlates very well with the transcriptional status whereas H3K4me3 appears to have stage-specific regulation, being low at early stages, peaking at trophozoite stage, but does not closely follow changes in gene expression. Our improved NGS library preparation procedure provides a foundation to exploit the malaria epigenome in detail. Furthermore, our findings place H2A.Z at the cradle of P. falciparum epigenetic regulation by stably defining intergenic regions and providing a platform for dynamic assembly of epigenetic and other transcription related complexes. Plasmodium falciparum is a unicellular pathogen that is responsible for the most severe form of malaria. Similar to other eukaryotic organisms, its genome is organized into chromosomes by proteins called histones. Modification or replacement of these histones has marked effects on the packaging grade of DNA and instructs the recruitment of protein complexes, thereby regulating essential cellular processes such as gene expression and replication. Here we unveil the genome-wide localization of two histone H3 modifications (K9ac/K4me3) and a histone variant, H2A.Z, during development of the parasite in the human red blood cells. We find that all three epigenetic features are predominantly present in intergenic regions of the P. falciparum genome, suggesting an interconnecting role in regulation of gene expression. H2A.Z levels appear to be largely invariable throughout intraerythrocytic development while placement/removal of the histone marks is dynamic with H3K9ac and H3K4me3 being transcription-coupled and stage-specific, respectively. These observations support a model in which H2A.Z-containing nucleosomes serve to demarcate regulatory regions in the parasite's genome and promote transcription initiation by guiding chromatin modifying and transcription initiating complexes. The findings and methodological developments presented in this paper provide a cornerstone for future epigenome research in eukaryotic pathogens and vital information to understand and to interfere with parasite development and survival.
Collapse
|
8
|
Schepers A, Papior P. Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-approaches. Chromosome Res 2010; 18:63-77. [PMID: 19904620 DOI: 10.1007/s10577-009-9087-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA replication initiates from origins of replication following a strict sequential activation programme and a conserved temporal order of activation. The number of replication initiation sites varies between species, according to the complexity of the genomes, with an average spacing of 100,000 bp. In contrast to yeast genomes, the location and definition of origins in mammalian genomes has been elusive. Historically, mammalian replication initiation sites have been mapped in situ by systematically searching specific genomic loci for sites that preferentially initiated DNA replication, potential origins by start-site mapping and autonomously replicating sequence experiments, and potential ORC and pre-replicative complex (pre-RC) sites by chromatin immunoprecipitation (ChIP) using antibodies for pre-RC proteins. In the past decade, ChIP has become an important method for analyzing protein/DNA interactions. Classically, ChIP is combined with Southern blotting or PCR. Recently, whole genome-ChIP methods have been very successful in unicellular eukaryotes to understand molecular mechanisms coordinating replication initiation and its flexibility in response to environmental changes. However, in mammalian systems, ChIP with pre-RC antibodies has often been challenging and genome-wide studies are scarce. In this review, we will appraise the progress that has been made in understanding replication origin organization using immunoprecipitation of the ORC and Mcm2-7 complexes. A special focus will be on the advantages and disadvantages of genome-wide ChIP-technologies and their potential impact on understanding metazoan replicators.
Collapse
Affiliation(s)
- Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München-German Research Center for Environmental Health, Marchioninistrasse 25, 81377, München, Germany.
| | | |
Collapse
|
9
|
Cruz-Cano R, Chew DS, Kwok-Pui C, Ming-Ying L. Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction. INFORMS JOURNAL ON COMPUTING 2010; 22:457-470. [PMID: 20729987 PMCID: PMC2923853 DOI: 10.1287/ijoc.1090.0360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications.
Collapse
Affiliation(s)
- Raul Cruz-Cano
- Department of Computer and Information Sciences, Texas A&M University-Texarkana, Texarkana, TX, 75501, USA,
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore, and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore,
- Bioinformatics Program and Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA,
| | - David S.H. Chew
- Department of Computer and Information Sciences, Texas A&M University-Texarkana, Texarkana, TX, 75501, USA,
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore, and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore,
- Bioinformatics Program and Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA,
| | - Choi Kwok-Pui
- Department of Computer and Information Sciences, Texas A&M University-Texarkana, Texarkana, TX, 75501, USA,
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore, and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore,
- Bioinformatics Program and Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA,
| | - Leung Ming-Ying
- Department of Computer and Information Sciences, Texas A&M University-Texarkana, Texarkana, TX, 75501, USA,
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore, and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore,
- Bioinformatics Program and Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA,
| |
Collapse
|
10
|
Regenberg B, Grotkjær T, Winther O, Fausbøll A, Åkesson M, Bro C, Hansen LK, Brunak S, Nielsen J. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 2007; 7:R107. [PMID: 17105650 PMCID: PMC1794586 DOI: 10.1186/gb-2006-7-11-r107] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 09/04/2006] [Accepted: 11/14/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth rate is central to the development of cells in all organisms. However, little is known about the impact of changing growth rates. We used continuous cultures to control growth rate and studied the transcriptional program of the model eukaryote Saccharomyces cerevisiae, with generation times varying between 2 and 35 hours. RESULTS A total of 5930 transcripts were identified at the different growth rates studied. Consensus clustering of these revealed that half of all yeast genes are affected by the specific growth rate, and that the changes are similar to those found when cells are exposed to different types of stress (>80% overlap). Genes with decreased transcript levels in response to faster growth are largely of unknown function (>50%) whereas genes with increased transcript levels are involved in macromolecular biosynthesis such as those that encode ribosomal proteins. This group also covers most targets of the transcriptional activator RAP1, which is also known to be involved in replication. A positive correlation between the location of replication origins and the location of growth-regulated genes suggests a role for replication in growth rate regulation. CONCLUSION Our data show that the cellular growth rate has great influence on transcriptional regulation. This, in turn, implies that one should be cautious when comparing mutants with different growth rates. Our findings also indicate that much of the regulation is coordinated via the chromosomal location of the affected genes, which may be valuable information for the control of heterologous gene expression in metabolic engineering.
Collapse
Affiliation(s)
- Birgitte Regenberg
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Thomas Grotkjær
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ole Winther
- Informatics and Mathematical Modelling, Building 321, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Anders Fausbøll
- Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Mats Åkesson
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christoffer Bro
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Lars Kai Hansen
- Informatics and Mathematical Modelling, Building 321, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Søren Brunak
- Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jens Nielsen
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
McConnell KH, Müller P, Fox CA. Tolerance of Sir1p/origin recognition complex-dependent silencing for enhanced origin firing at HMRa. Mol Cell Biol 2006; 26:1955-66. [PMID: 16479013 PMCID: PMC1430255 DOI: 10.1128/mcb.26.5.1955-1966.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HMR-E silencer is a DNA element that directs the formation of silent chromatin at the HMRa locus in Saccharomyces cerevisiae. Sir1p is one of four Sir proteins required for silent chromatin formation at HMRa. Sir1p functions by binding the origin recognition complex (ORC), which binds to HMR-E, and recruiting the other Sir proteins (Sir2p to -4p). ORCs also bind to hundreds of nonsilencer positions distributed throughout the genome, marking them as replication origins, the sites for replication initiation. HMR-E also acts as a replication origin, but compared to many origins in the genome, it fires extremely inefficiently and late during S phase. One postulate to explain this observation is that ORC's role in origin firing is incompatible with its role in binding Sir1p and/or the formation of silent chromatin. Here we examined a mutant HMR-E silencer and fusions between robust replication origins and HMR-E for HMRa silencing, origin firing, and replication timing. Origin firing within HMRa and from the HMR-E silencer itself could be significantly enhanced, and the timing of HMRa replication during an otherwise normal S phase advanced, without a substantial reduction in SIR1-dependent silencing. However, although the robust origin/silencer fusions silenced HMRa quite well, they were measurably less effective than a comparable silencer containing HMR-E's native ORC binding site.
Collapse
Affiliation(s)
- Kristopher H McConnell
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, 587 MSC, 1300 University Ave., Madison, WI 53706-1532.
| | | | | |
Collapse
|
12
|
Chew DSH, Choi KP, Leung MY. Scoring schemes of palindrome clusters for more sensitive prediction of replication origins in herpesviruses. Nucleic Acids Res 2005; 33:e134. [PMID: 16141192 PMCID: PMC1197138 DOI: 10.1093/nar/gni135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many empirical studies show that there are unusual clusters of palindromes, closely spaced direct and inverted repeats around the replication origins of herpesviruses. In this paper, we introduce two new scoring schemes to quantify the spatial abundance of palindromes in a genomic sequence. Based on these scoring schemes, a computational method to predict the locations of replication origins is developed. When our predictions are compared with 39 known or annotated replication origins in 19 herpesviruses, close to 80% of the replication origins are located within 2% of the genome length. A list of predicted locations of replication origins in all the known herpesviruses with complete genome sequences is reported.
Collapse
Affiliation(s)
- David S H Chew
- Department of Mathematics, National University of Singapore Singapore.
| | | | | |
Collapse
|
13
|
Ak P, Benham CJ. Susceptibility to superhelically driven DNA duplex destabilization: a highly conserved property of yeast replication origins. PLoS Comput Biol 2005; 1:e7. [PMID: 16103908 PMCID: PMC1183513 DOI: 10.1371/journal.pcbi.0010007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 05/10/2005] [Indexed: 12/03/2022] Open
Abstract
Strand separation is obligatory for several DNA functions, including replication. However, local DNA properties such as A+T content or thermodynamic stability alone do not determine the susceptibility to this transition in vivo. Rather, superhelical stresses provide long-range coupling among the transition behaviors of all base pairs within a topologically constrained domain. We have developed methods to analyze superhelically induced duplex destabilization (SIDD) in genomic DNA that take into account both this long-range stress-induced coupling and sequence-dependent local thermodynamic stability. Here we apply this approach to examine the SIDD properties of 39 experimentally well-characterized autonomously replicating DNA sequences (ARS elements), which function as replication origins in the yeast Saccharomyces cerevisiae. We find that these ARS elements have a strikingly increased susceptibility to SIDD relative to their surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do their immediately surrounding sequences, making them more than 2,000 times easier to open. Statistical analysis shows that the probability of this strong an association between SIDD sites and ARS elements arising by chance is approximately 4 × 10−10. This local enhancement of the propensity to separate to single strands under superhelical stress has obvious implications for origin function. SIDD properties also could be used, in conjunction with other known origin attributes, to identify putative replication origins in yeast, and possibly in other metazoan genomes. Several DNA functions require the two strands of the DNA duplex to transiently separate. Examples include the initiation of gene expression and of DNA replication. Here the authors examine the strand separation properties of the DNA duplex at autonomously replicating sequences (ARS elements), which are the potential replication origins in yeast. In vivo, susceptibility to strand separation does not depend only on local DNA properties such as adenine plus thymine content or thermodynamic stability. Rather, stresses imposed on the DNA in vivo couple together the strand-opening behaviors of all base pairs that experience them. The authors use computational methods for analyzing stress-driven strand separation to examine the susceptibility to opening of 39 experimentally well-characterized ARS elements. They show that these ARS elements have strikingly increased susceptibilities to stress-induced separation relative to the surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do surrounding sequences, making them more than 2,000 times easier to open. This enhanced susceptibility to stress-driven strand separation has obvious implications for the mechanisms that begin the process of replication. This property is also shared by bacterial and viral replication start points, suggesting that it may be a general attribute of replication origins.
Collapse
Affiliation(s)
- Prashanth Ak
- UC Davis Genome Center, University of California, Davis, USA.
| | | |
Collapse
|
14
|
Abstract
The cell division cycle is one of the most intensively studied biological processes, yet, in spite of great effort, many questions remain as to how the cell cycle is controlled by cyclin-dependent kinases and other critical regulators. Recent functional genomic and proteomic approaches have yielded new insights into almost all aspects of cell cycle control, including transcriptional circuits, DNA replication, sister chromatid separation and regulation by environmental signals. Perhaps most notably, systematic analysis has begin to reveal meta-level connections between previously distinct sub-processes. As the interconnections between these huge datasets are beyond intuition, mathematical representation and automated analysis of functional genomic data is an urgent mandate.
Collapse
Affiliation(s)
- Mike Tyers
- Samuel Lunenfeld Research Institute, Toronto, Canada M5G 1X5.
| |
Collapse
|
15
|
Abstract
Palindromes are symmetrical words of DNA in the sense that they read exactly the same as their reverse complementary sequences. Representing the occurrences of palindromes in a DNA molecule as points on the unit interval, the scan statistics can be used to identify regions of unusually high concentration of palindromes. These regions have been associated with the replication origins on a few herpesviruses in previous studies. However, the use of scan statistics requires the assumption that the points representing the palindromes are independently and uniformly distributed on the unit interval. In this paper, we provide a mathematical basis for this assumption by showing that in randomly generated DNA sequences, the occurrences of palindromes can be approximated by a Poisson process. An easily computable upper bound on the Wasserstein distance between the palindrome process and the Poisson process is obtained. This bound is then used as a guide to choose an optimal palindrome length in the analysis of a collection of 16 herpesvirus genomes. Regions harboring significant palindrome clusters are identified and compared to known locations of replication origins. This analysis brings out a few interesting extensions of the scan statistics that can help formulate an algorithm for more accurate prediction of replication origins.
Collapse
Affiliation(s)
- Ming-Ying Leung
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968-0514, USA.
| | | | | | | |
Collapse
|
16
|
Mitkova AV, Biswas-Fiss EE, Biswas SB. Modulation of DNA synthesis in Saccharomyces cerevisiae nuclear extract by DNA polymerases and the origin recognition complex. J Biol Chem 2004; 280:6285-92. [PMID: 15590683 DOI: 10.1074/jbc.m410129200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the modulation of DNA synthesis on a supercoiled plasmid DNA template by DNA polymerases (pol), minichromosome maintenance protein complex (Mcm), topoisomerases, and the origin recognition complex (ORC) using an in vitro assay system. Antisera specific against the four-subunit pol alpha, the catalytic subunit of pol delta, and the Mcm467 complex each inhibited DNA synthesis. However, DNA synthesis in this system appeared to be independent of polepsilon. Consequently, DNA synthesis in the in vitro system appeared to depend only on two polymerases, alpha and delta, as well as the Mcm467 DNA helicase. This system requires supercoiled plasmid DNA template and DNA synthesis absolutely required DNA topoisomerase I. In addition, we also report here a novel finding that purified recombinant six subunit ORC significantly stimulated the DNA synthesis on a supercoiled plasmid DNA template containing an autonomously replicating sequence, ARS1.
Collapse
Affiliation(s)
- Atanaska V Mitkova
- Department of Molecular Biology, GSBS & SOM, University of Medicine & Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | |
Collapse
|
17
|
Altman AL, Fanning E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol Cell Biol 2004; 24:4138-50. [PMID: 15121836 PMCID: PMC400449 DOI: 10.1128/mcb.24.10.4138-4150.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 08/12/2003] [Accepted: 02/19/2004] [Indexed: 01/01/2023] Open
Abstract
A small DNA fragment containing the high-frequency initiation region (IR) ori-beta from the hamster dihydrofolate reductase locus functions as an independent replicator in ectopic locations in both hamster and human cells. Conversely, a fragment of the human lamin B2 locus containing the previously mapped IR serves as an independent replicator at ectopic chromosomal sites in hamster cells. At least four defined sequence elements are specifically required for full activity of ectopic ori-beta in hamster cells. These include an AT-rich element, a 4-bp sequence located within the mapped IR, a region of intrinsically bent DNA located between these two elements, and a RIP60 protein binding site adjacent to the bent region. The ori-beta AT-rich element is critical for initiation activity in human, as well as hamster, cells and can be functionally substituted for by an AT-rich region from the human lamin B2 IR that differs in nucleotide sequence and length. Taken together, the results demonstrate that two mammalian replicators can be activated at ectopic sites in chromosomes of another mammal and lead us to speculate that they may share functionally related elements.
Collapse
Affiliation(s)
- Amy L Altman
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
18
|
Weinreich M, Palacios DeBeer MA, Fox CA. The activities of eukaryotic replication origins in chromatin. ACTA ACUST UNITED AC 2004; 1677:142-57. [PMID: 15020055 DOI: 10.1016/j.bbaexp.2003.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 11/17/2003] [Indexed: 12/26/2022]
Abstract
DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.
Collapse
Affiliation(s)
- Michael Weinreich
- Laboratory of Chromosome Replication, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA.
| | | | | |
Collapse
|
19
|
Ivessa AS, Zakian VA. To fire or not to fire: origin activation in Saccharomyces cerevisiae ribosomal DNA. Genes Dev 2002; 16:2459-64. [PMID: 12368256 DOI: 10.1101/gad.1033702] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Andreas S Ivessa
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
20
|
Grünenfelder B, Winzeler EA. Treasures and traps in genome-wide data sets: case examples from yeast. Nat Rev Genet 2002; 3:653-61. [PMID: 12209140 DOI: 10.1038/nrg886] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the publication of the Saccharomyces cerevisiae genome sequence, much effort has been dedicated to developing high-throughput techniques to generate comprehensive information about the function and dynamics of all genes in this yeast's genome. These techniques have generated data sets that typically contain large amounts of reliable and valuable biological information. Nevertheless, there are also uncertainties that are associated with such large-scale studies, which we discuss in this review. These uncertainties increase with the complexity of the organism under study. On the basis of the results from yeast, we should learn much from human and mouse genomic data sets. However, as with yeast data sets, they might also contain misleading results.
Collapse
Affiliation(s)
- Björn Grünenfelder
- Department of Cell Biology, ICND 202, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
21
|
Current awareness on yeast. Yeast 2002; 19:995-1002. [PMID: 12125056 DOI: 10.1002/yea.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|