1
|
Dicipulo R, Selland LG, Carpenter RG, Waskiewicz AJ. Functional role for Taz during hindbrain ventricle morphogenesis. PLoS One 2025; 20:e0313262. [PMID: 40080483 PMCID: PMC11906067 DOI: 10.1371/journal.pone.0313262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/21/2024] [Indexed: 03/15/2025] Open
Abstract
The brain ventricle system, composed of the ventricular cavities and the cerebral spinal fluid within, performs critical functions including circulation of nutrients, removal of wastes, and cushioning of neural tissues. Development of the hindbrain ventricle requires a series of factors that coordinate its initial formation and subsequent inflation. Previous work has demonstrated that the transcriptional co-activator Taz (also known as WW domain-containing transcription regulator protein 1, Wwtr1), a component of Hippo signalling, is active at hindbrain rhombomere boundaries where it is regulated by mechanotransduction and promotes proliferation. Here, we demonstrate that Taz is also a critical regulator of hindbrain ventricle development. Zebrafish embryos that lack Taz protein fail to undergo initial midline separation of the hindbrain ventricle. Furthermore, the ventricle phenotype is a result of disorganized cytoskeletal F-actin and apicobasal polarity components. In addition, we have demonstrated that the hindbrain rhombomere boundaries are a location of active Wnt-Hippo crosstalk. Through our work, we propose a model where Taz protein is stabilized at rhombomere boundaries and promotes proper cell polarity necessary for formation of the brain ventricle.
Collapse
Affiliation(s)
- Renée Dicipulo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Lyndsay G. Selland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rowan G. Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J. Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Women & Children’s Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Wingrove JS, Wimmer J, Saba Echezarreta VE, Piazza A, Spencer GE. Retinoic acid reduces the formation of, and acutely modulates, invertebrate electrical synapses. J Neurophysiol 2024; 131:965-981. [PMID: 38568843 DOI: 10.1152/jn.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Communication between cells in the nervous system is dependent on both chemical and electrical synapses. Factors that can affect chemical synapses have been well studied, but less is known about factors that influence electrical synapses. Retinoic acid, the vitamin A metabolite, is a known regulator of chemical synapses, but few studies have examined its capacity to regulate electrical synapses. In this study, we determine that retinoic acid is capable of rapidly altering the strength of electrical synapses in an isomer- and cell-dependent manner. Furthermore, we provide evidence that this acute effect might be independent of either the retinoid receptors or the activation of a protein kinase. In addition to the rapid modulatory effects of retinoic acid, we provide data to suggest that retinoic acid is also capable of regulating the formation of electrical synapses. Long-term exposure to both all-trans-retinoic acid or 9-cis-retinoic acid reduced the proportion of cell pairs forming electrical synapses, as well as reduced the strength of electrical synapses that did form. In summary, this study provides insights into the role that retinoids might play in both the formation and modulation of electrical synapses in the central nervous system.NEW & NOTEWORTHY Retinoids are known modulators of chemical synapses and mediate synaptic plasticity in the nervous system, but little is known of their effects on electrical synapses. Here, we show that retinoids selectively reduce electrical synapses in a cell- and isomer-dependent manner. This modulatory action on existing electrical synapses was rapid and nongenomic in nature. We also showed for the first time that longer retinoid exposures inhibit the formation of electrical synapses.
Collapse
Affiliation(s)
- Joel S Wingrove
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Justin Wimmer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Alicia Piazza
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
3
|
Bedois AMH, Parker HJ, Price AJ, Morrison JA, Bronner ME, Krumlauf R. Sea lamprey enlightens the origin of the coupling of retinoic acid signaling to vertebrate hindbrain segmentation. Nat Commun 2024; 15:1538. [PMID: 38378737 PMCID: PMC10879103 DOI: 10.1038/s41467-024-45911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Retinoic acid (RA) is involved in antero-posterior patterning of the chordate body axis and, in jawed vertebrates, has been shown to play a major role at multiple levels of the gene regulatory network (GRN) regulating hindbrain segmentation. Knowing when and how RA became coupled to the core hindbrain GRN is important for understanding how ancient signaling pathways and patterning genes can evolve and generate diversity. Hence, we investigated the link between RA signaling and hindbrain segmentation in the sea lamprey Petromyzon marinus, an important jawless vertebrate model providing clues to decipher ancestral vertebrate features. Combining genomics, gene expression, and functional analyses of major components involved in RA synthesis (Aldh1as) and degradation (Cyp26s), we demonstrate that RA signaling is coupled to hindbrain segmentation in lamprey. Thus, the link between RA signaling and hindbrain segmentation is a pan vertebrate feature of the hindbrain and likely evolved at the base of vertebrates.
Collapse
Affiliation(s)
- Alice M H Bedois
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Andrew J Price
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, MO, 66160, USA.
| |
Collapse
|
4
|
Kim YI, O'Rourke R, Sagerström CG. scMultiome analysis identifies embryonic hindbrain progenitors with mixed rhombomere identities. eLife 2023; 12:e87772. [PMID: 37947350 PMCID: PMC10662952 DOI: 10.7554/elife.87772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023] Open
Abstract
Rhombomeres serve to position neural progenitors in the embryonic hindbrain, thereby ensuring appropriate neural circuit formation, but the molecular identities of individual rhombomeres and the mechanism whereby they form has not been fully established. Here, we apply scMultiome analysis in zebrafish to molecularly resolve all rhombomeres for the first time. We find that rhombomeres become molecularly distinct between 10hpf (end of gastrulation) and 13hpf (early segmentation). While the embryonic hindbrain transiently contains alternating odd- versus even-type rhombomeres, our scMultiome analyses do not detect extensive odd versus even molecular characteristics in the early hindbrain. Instead, we find that each rhombomere displays a unique gene expression and chromatin profile. Prior to the appearance of distinct rhombomeres, we detect three hindbrain progenitor clusters (PHPDs) that correlate with the earliest visually observed segments in the hindbrain primordium that represent prospective rhombomere r2/r3 (possibly including r1), r4, and r5/r6, respectively. We further find that the PHPDs form in response to Fgf and RA morphogens and that individual PHPD cells co-express markers of multiple mature rhombomeres. We propose that the PHPDs contain mixed-identity progenitors and that their subdivision into individual rhombomeres requires the resolution of mixed transcription and chromatin states.
Collapse
Affiliation(s)
- Yong-Il Kim
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical SchoolAuroraUnited States
| | - Rebecca O'Rourke
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical SchoolAuroraUnited States
| | - Charles G Sagerström
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical SchoolAuroraUnited States
| |
Collapse
|
5
|
Bedois AMH, Parker HJ, Bronner ME, Krumlauf R. Sea lamprey enlightens the origin of the coupling of retinoic acid signaling to vertebrate hindbrain segmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548143. [PMID: 37461675 PMCID: PMC10350081 DOI: 10.1101/2023.07.07.548143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Retinoic acid (RA) is involved in antero-posterior patterning of the chordate body axis and, in jawed vertebrates, has been shown to play a major role at multiple levels of the gene regulatory network (GRN) regulating hindbrain segmentation. Knowing when and how RA became coupled to the core hindbrain GRN is important for understanding how ancient signaling pathways and patterning genes can evolve and generate diversity. Hence, we investigated the link between RA signaling and hindbrain segmentation in the sea lamprey Petromyzon marinus, an important jawless vertebrate model providing clues to decipher ancestral vertebrate features. Combining genomics, gene expression, and functional analyses of major components involved in RA synthesis (Aldh1as) and degradation (Cyp26s), we demonstrate that RA signaling is coupled to hindbrain segmentation in lamprey. Thus, the link between RA signaling and hindbrain segmentation is a pan vertebrate feature of the hindbrain and likely evolved at the base of vertebrates.
Collapse
Affiliation(s)
- Alice M. H. Bedois
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Hugo J. Parker
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
6
|
Pun M, Pratt D, Nano PR, Joshi PK, Jiang L, Englinger B, Rao A, Cieslik M, Chinnaiyan AM, Aldape K, Pfister S, Filbin MG, Bhaduri A, Venneti S. Common molecular features of H3K27M DMGs and PFA ependymomas map to hindbrain developmental pathways. Acta Neuropathol Commun 2023; 11:25. [PMID: 36759899 PMCID: PMC9912509 DOI: 10.1186/s40478-023-01514-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Globally decreased histone 3, lysine 27 tri-methylation (H3K27me3) is a hallmark of H3K27-altered diffuse midline gliomas (DMGs) and group-A posterior fossa ependymomas (PFAs). H3K27-altered DMGs are largely characterized by lysine-to-methionine mutations in histone 3 at position 27 (H3K27M). Most PFAs overexpress EZH inhibitory protein (EZHIP), which possesses a region of similarity to the mutant H3K27M. Both H3K27M and EZHIP inhibit the function of the polycomb repressive complex 2 (PRC2) responsible for H3K27me3 deposition. These tumors often arise in neighboring regions of the brainstem and posterior fossa. In rare cases PFAs harbor H3K27M mutations, and DMGs overexpress EZHIP. These findings together raise the possibility that certain cell populations in the developing hindbrain/posterior fossa are especially sensitive to modulation of H3K27me3 states. We identified shared molecular features by comparing genomic, bulk transcriptomic, chromatin-based profiles, and single-cell RNA-sequencing (scRNA-seq) data from the two tumor classes. Our approach demonstrated that 1q gain, a key biomarker in PFAs, is prognostic in H3.1K27M, but not H3.3K27M gliomas. Conversely, Activin A Receptor Type 1 (ACVR1), which is associated with mutations in H3.1K27M gliomas, is overexpressed in a subset of PFAs with poor outcome. Despite diffuse H3K27me3 reduction, previous work shows that both tumors maintain genomic H3K27me3 deposition at select sites. We demonstrate heterogeneity in shared patterns of residual H3K27me3 for both tumors that largely segregated with inferred anatomic tumor origins and progenitor populations of tumor cells. In contrast, analysis of genes linked to H3K27 acetylation (H3K27ac)-marked enhancers showed higher expression in astrocytic-like tumor cells. Finally, common H3K27me3-marked genes mapped closely to expression patterns in the human developing hindbrain. Overall, our data demonstrate developmentally relevant molecular similarities between PFAs and H3K27M DMGs and support the overall hypothesis that deregulated mechanisms of hindbrain development are central to the biology of both tumors.
Collapse
Affiliation(s)
- Matthew Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, 3520E MSRB 1, 1150 W. Medical Center, Ann Arbor, MI, 41804, USA
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| | - Patricia R Nano
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Piyush K Joshi
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, 1090, Vienna, Austria
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| | - Stefan Pfister
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, 3520E MSRB 1, 1150 W. Medical Center, Ann Arbor, MI, 41804, USA.
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Kim YI, O’Rourke R, Sagerström CG. scMultiome analysis identifies embryonic hindbrain progenitors with mixed rhombomere identities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525932. [PMID: 36747868 PMCID: PMC9900950 DOI: 10.1101/2023.01.27.525932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rhombomeres serve to position neural progenitors in the embryonic hindbrain, thereby ensuring appropriate neural circuit formation, but the molecular identities of individual rhombomeres and the mechanism whereby they form have not been fully established. Here we apply scMultiome analysis in zebrafish to molecularly resolve all rhombomeres for the first time. We find that rhombomeres become molecularly distinct between 10hpf (end of gastrulation) and 13hpf (early segmentation). While the mature hindbrain consists of alternating odd- versus even-type rhombomeres, our scMultiome analyses do not detect extensive odd versus even characteristics in the early hindbrain. Instead, we find that each rhombomere displays a unique gene expression and chromatin profile. Prior to the appearance of distinct rhombomeres, we detect three hindbrain progenitor clusters (PHPDs) that correlate with the earliest visually observed segments in the hindbrain primordium and that represent prospective rhombomere r2/r3 (possibly including r1), r4 and r5/r6, respectively. We further find that the PHPDs form in response to Fgf and RA morphogens and that individual PHPD cells co-express markers of multiple mature rhombomeres. We propose that the PHPDs contain mixed-identity progenitors and that their subdivision into individual mature rhombomeres requires resolution of mixed transcription and chromatin states.
Collapse
Affiliation(s)
| | | | - Charles G. Sagerström
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, 12801 E. 17th Avenue, Aurora, CO 80045
| |
Collapse
|
8
|
Wingrove J, de Hoog E, Spencer GE. Disruptions in network plasticity precede deficits in memory following inhibition of retinoid signaling. J Neurophysiol 2023; 129:41-55. [PMID: 36448682 DOI: 10.1152/jn.00270.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Retinoic acid, the active metabolite of vitamin A, is important for vertebrate cognition and hippocampal plasticity, but few studies have examined its role in invertebrate learning and memory, and its actions in the invertebrate central nervous system are currently unknown. Using the mollusc Lymnaea stagnalis, we examined operant conditioning of the respiratory behavior, controlled by a well-defined central pattern generator (CPG), and used citral to inhibit retinoic acid signaling. Both citral- and vehicle-treated animals showed normal learning, but citral-treated animals failed to exhibit long-term memory at 24 h. Cohorts of citral- or vehicle-treated animals were dissected into semi-intact preparations, either 1 h after training, or after the memory test 24 h later. Simultaneous electrophysiological recordings from the CPG pacemaker cell (right pedal dorsal 1; RPeD1) and an identified motorneuron (VI) were made while monitoring respiratory activity (pneumostome opening). Activity of the CPG pneumostome opener interneuron (input 3 interneuron; IP3) was also monitored indirectly. Vehicle-treated conditioned preparations showed significant changes in network parameters immediately after learning, such as reduced motorneuron bursting activity (from IP3 input), delayed pneumostome opening, and decoupling of coincident IP3 input within the network. However, citral-treated preparations failed to exhibit these network changes and more closely resembled naïve preparations. Importantly, these citral-induced differences were manifested immediately after training and before any overt changes in the behavioral response (memory impairment). These studies shed light on where and when retinoid signaling might affect a central pattern-generating network to promote memory formation during conditioning of a homeostatic behavior.NEW & NOTEWORTHY We provide novel evidence for how conditioning-induced changes in a CPG network are disrupted when retinoid signaling is inhibited. Inhibition of retinoic acid signaling prevents long-term memory formation following operant conditioning, but has no effect on learning. Simultaneous electrophysiological and behavioral analyses indicate network changes immediately following learning, but these changes are prevented with inhibition of retinoid signaling, before any overt changes in behavior. These data suggest sites for retinoid actions during memory formation.
Collapse
Affiliation(s)
- Joel Wingrove
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Eric de Hoog
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| |
Collapse
|
9
|
Derrick CJ, Pollitt EJG, Sanchez Sevilla Uruchurtu A, Hussein F, Grierson AJ, Noël ES. Lamb1a regulates atrial growth by limiting second heart field addition during zebrafish heart development. Development 2021; 148:272294. [PMID: 34568948 DOI: 10.1242/dev.199691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022]
Abstract
During early vertebrate heart development, the heart transitions from a linear tube to a complex asymmetric structure, a morphogenetic process that occurs simultaneously with growth of the heart. Cardiac growth during early heart morphogenesis is driven by deployment of cells from the second heart field (SHF) into both poles of the heart. Laminin is a core component of the extracellular matrix and, although mutations in laminin subunits are linked with cardiac abnormalities, no role for laminin has been identified in early vertebrate heart morphogenesis. We identified tissue-specific expression of laminin genes in the developing zebrafish heart, supporting a role for laminins in heart morphogenesis. Analysis of heart development in lamb1a zebrafish mutant embryos reveals mild morphogenetic defects and progressive cardiomegaly, and that Lamb1a functions to limit heart size during cardiac development by restricting SHF addition. lamb1a mutants exhibit hallmarks of altered haemodynamics, and blocking cardiac contractility in lamb1a mutants rescues heart size and atrial SHF addition. Together, these results suggest that laminin mediates interactions between SHF deployment and cardiac biomechanics during heart morphogenesis and growth in the developing embryo.
Collapse
Affiliation(s)
| | - Eric J G Pollitt
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Farah Hussein
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Emily S Noël
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
10
|
Knudsen TB, Pierro JD, Baker NC. Retinoid signaling in skeletal development: Scoping the system for predictive toxicology. Reprod Toxicol 2021; 99:109-130. [PMID: 33202217 PMCID: PMC11451096 DOI: 10.1016/j.reprotox.2020.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
All-trans retinoic acid (ATRA), the biologically active form of vitamin A, is instrumental in regulating the patterning and specification of the vertebrate embryo. Various animal models demonstrate adverse developmental phenotypes following experimental retinoid depletion or excess during pregnancy. Windows of vulnerability for altered skeletal patterning coincide with early specification of the body plan (gastrulation) and regional specification of precursor cell populations forming the facial skeleton (cranial neural crest), vertebral column (somites), and limbs (lateral plate mesoderm) during organogenesis. A common theme in physiological roles of ATRA signaling is mutual antagonism with FGF signaling. Consequences of genetic errors or environmental disruption of retinoid signaling include stage- and region-specific homeotic transformations to severe deficiencies for various skeletal elements. This review derives from an annex in Detailed Review Paper (DRP) of the OECD Test Guidelines Programme (Project 4.97) to support recommendations regarding assay development for the retinoid system and the use of resulting data in a regulatory context for developmental and reproductive toxicity (DART) testing.
Collapse
Affiliation(s)
- Thomas B Knudsen
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Jocylin D Pierro
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Nancy C Baker
- Leidos, Contractor to CCTE, Research Triangle Park, NC, 27711, United States.
| |
Collapse
|
11
|
Kukreja S, Udaykumar N, Yogesh B, Sen J. Retinoic acid signaling regulates proliferation and lamina formation in the developing chick optic tectum. Dev Biol 2020; 467:95-107. [PMID: 32919944 DOI: 10.1016/j.ydbio.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 01/05/2023]
Abstract
The retinotectal system has been extensively studied for investigating the mechanism(s) for topographic map formation. The optic tectum, which is composed of multiple laminae, is the major retino recipient structure in the developing avian brain. Laminar development of the tectum results from cell proliferation, differentiation and migration, coordinated in strict temporal and spatial patterns. However, the molecular mechanisms that orchestrate these complex developmental events, have not been fully elucidated. In this study, we have identified the presence of differential retinoic acid (RA) signaling along the rostro-caudal and dorsoventral axis of the tectum. We show for the first time that loss of RA signaling in the anterior optic tectum, leads to an increase in cell proliferation and gross changes in the morphology manifested as defects in lamination. Detailed analysis points to delayed migration of cells as the plausible cause for the defects in lamina formation. Thus, we conclude that in the optic tectum, RA signaling is involved in maintaining cell proliferation and in regulating the formation of the tectal laminae.
Collapse
Affiliation(s)
- Shweta Kukreja
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Present address: Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, USA
| | - Niveda Udaykumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Baba Yogesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Present address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
12
|
Isabella AJ, Barsh GR, Stonick JA, Dubrulle J, Moens CB. Retinoic Acid Organizes the Zebrafish Vagus Motor Topographic Map via Spatiotemporal Coordination of Hgf/Met Signaling. Dev Cell 2020; 53:344-357.e5. [PMID: 32302545 PMCID: PMC7237105 DOI: 10.1016/j.devcel.2020.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/14/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Information flow through neural circuits often requires their organization into topographic maps in which the positions of cell bodies and synaptic targets correspond. To understand how topographic map development is controlled, we examine the mechanism underlying targeting of vagus motor axons to the pharyngeal arches in zebrafish. We reveal that retinoic acid organizes topography by specifying anterior-posterior identity in vagus motor neurons. We then show that chemoattractant signaling between Hgf and Met is required for vagus innervation of the pharyngeal arches. Finally, we find that retinoic acid controls the spatiotemporal dynamics of Hgf/Met signaling to coordinate axon targeting with the developmental progression of the pharyngeal arches and show that experimentally altering the timing of Hgf/Met signaling is sufficient to redirect axon targeting and disrupt the topographic map. These findings establish a mechanism of topographic map development in which the regulation of chemoattractant signaling in space and time guides axon targeting.
Collapse
Affiliation(s)
- Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gabrielle R Barsh
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jason A Stonick
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Lin Y, Yu J, Wu J, Wang S, Zhang T. Abnormal level of CUL4B-mediated histone H2A ubiquitination causes disruptive HOX gene expression. Epigenetics Chromatin 2019; 12:22. [PMID: 30992047 PMCID: PMC6466687 DOI: 10.1186/s13072-019-0268-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neural tube defects (NTDs) are common birth defects involving the central nervous system. Recent studies on the etiology of human NTDs have raised the possibility that epigenetic regulation could be involved in determining susceptibility to them. Results Here, we show that the H2AK119ub1 E3 ligase CUL4B is required for the activation of retinoic acid (RA)-inducible developmentally critical homeobox (HOX) genes in NT2/D1 embryonal carcinoma cells. RA treatment led to attenuation of H2AK119ub1 due to decrease in CUL4B, further affecting HOX gene regulation. Furthermore, we found that CUL4B interacted directly with RORγ and negatively regulated its transcriptional activity. Interestingly, knockdown of RORγ decreased the expression of HOX genes along with increased H2AK119ub1 occupancy levels, at HOX gene sites in N2/D1 cells. In addition, upregulation of HOX genes was observed along with lower levels of CUL4B-mediated H2AK119ub1 in both mouse and human anencephaly NTD cases. Notably, the expression of HOXA10 genes was negatively correlated with CUL4B levels in human anencephaly NTD cases. Conclusions Our results indicate that abnormal HOX gene expression induced by aberrant CUL4B-mediated H2AK119ub1 levels may be a risk factor for NTDs, and highlight the need for further analysis of genome-wide epigenetic modifications in NTDs. Electronic supplementary material The online version of this article (10.1186/s13072-019-0268-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Lin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.,Graduate Schools of Peking Union Medical College, Beijing, 100730, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Institute of Basic Medical Sciences, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China. .,Graduate Schools of Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
14
|
Rapacioli M, Fiszer de Plazas S, Flores V. The developing optic tectum: An asymmetrically organized system and the need for a redefinition of the notion of sensitive period. Int J Dev Neurosci 2018; 73:1-9. [PMID: 30572015 DOI: 10.1016/j.ijdevneu.2018.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022] Open
Abstract
The present article summarizes the main events involved in the isthmic organizer and optic tectum determination and analyses how optic tectum patterning is translated, by the organized operation of several specific cell behaviors, into the terminally differentiated optic tectum. The paper proposes that this assembling of temporally/spatially organized cell behaviors could be incorporated into a wider notion of patterning and that, given the asymmetric organization of the developing optic tectum, the notion of "sensitive period" does not capture the whole complexity of midbrain development and the pathogenesis of congenital disorders. The cell behaviors involved in the optic tectum development are organized in time and space by the isthmic organizer. A comprehensive description of the normal optic tectum development, and also its alterations, should consider both domains. Significantly, the identity of each neuronal cohort depends critically on its "time and place of birth". Both parameters must be considered at once to explain how the structural and functional organization of the optic tectum is elaborated. The notion of "patterning" applies only to the early events of the optic tectum development. Besides, the notion of "sensitive period" considers only a temporal domain and disregards the asymmetric organization of the developing optic tectum. The present paper proposes that these notions might be re-defined: (a) a wider meaning of the term patterning and (b) a replacement of the term "sensitive period" by a more precise concept of "sensitive temporal/spatial window".
Collapse
Affiliation(s)
- Melina Rapacioli
- Grupo Interdisciplinario de Biología Teórica, Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Universidad Favaloro-INECO-CONICET, Buenos Aires, Argentina.
| | - Sara Fiszer de Plazas
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Vladimir Flores
- Grupo Interdisciplinario de Biología Teórica, Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Universidad Favaloro-INECO-CONICET, Buenos Aires, Argentina; Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
15
|
Dubey A, Rose RE, Jones DR, Saint-Jeannet JP. Generating retinoic acid gradients by local degradation during craniofacial development: One cell's cue is another cell's poison. Genesis 2018; 56:10.1002/dvg.23091. [PMID: 29330906 PMCID: PMC5818312 DOI: 10.1002/dvg.23091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/02/2023]
Abstract
Retinoic acid (RA) is a vital morphogen for early patterning and organogenesis in the developing embryo. RA is a diffusible, lipophilic molecule that signals via nuclear RA receptor heterodimeric units that regulate gene expression by interacting with RA response elements in promoters of a significant number of genes. For precise RA signaling, a robust gradient of the morphogen is required. The developing embryo contains regions that produce RA, and specific intracellular concentrations of RA are created through local degradation mediated by Cyp26 enzymes. In order to elucidate the mechanisms by which RA executes precise developmental programs, the kinetics of RA metabolism must be clearly understood. Recent advances in techniques for endogenous RA detection and quantification have paved the way for mechanistic studies to shed light on downstream gene expression regulation coordinated by RA. It is increasingly coming to light that RA signaling operates not only at precise concentrations but also employs mechanisms of degradation and feedback inhibition to self-regulate its levels. A global gradient of RA throughout the embryo is often found concurrently with several local gradients, created by juxtaposed domains of RA synthesis and degradation. The existence of such local gradients has been found especially critical for the proper development of craniofacial structures that arise from the neural crest and the cranial placode populations. In this review, we summarize the current understanding of how local gradients of RA are established in the embryo and their impact on craniofacial development.
Collapse
Affiliation(s)
- Aditi Dubey
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry
| | - Rebecca E. Rose
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
| | - Drew R. Jones
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
| | | |
Collapse
|
16
|
Pillay LM, Mackowetzky KJ, Widen SA, Waskiewicz AJ. Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation. PLoS One 2016; 11:e0166040. [PMID: 27861498 PMCID: PMC5115706 DOI: 10.1371/journal.pone.0166040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/11/2016] [Indexed: 01/14/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent progenitors that generate all vertebrate adult blood lineages. Recent analyses have highlighted the importance of somite-derived signaling factors in regulating HSC specification and emergence from dorsal aorta hemogenic endothelium. However, these factors remain largely uncharacterized. We provide evidence that the vitamin A derivative retinoic acid (RA) functions as an essential regulator of zebrafish HSC formation. Temporal analyses indicate that RA is required for HSC gene expression prior to dorsal aorta formation, at a time when the predominant RA synthesis enzyme, aldh1a2, is strongly expressed within the paraxial mesoderm and somites. Previous research implicated the Cxcl12 chemokine and Notch signaling pathways in HSC formation. Consequently, to understand how RA regulates HSC gene expression, we surveyed the expression of components of these pathways in RA-depleted zebrafish embryos. During somitogenesis, RA-depleted embryos exhibit altered expression of jam1a and jam2a, which potentiate Notch signaling within nascent endothelial cells. RA-depleted embryos also exhibit a severe reduction in the expression of cxcr4a, the predominant Cxcl12b receptor. Furthermore, pharmacological inhibitors of RA synthesis and Cxcr4 signaling act in concert to reduce HSC formation. Our analyses demonstrate that somite-derived RA functions to regulate components of the Notch and Cxcl12 chemokine signaling pathways during HSC formation.
Collapse
Affiliation(s)
- Laura M Pillay
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Kacey J Mackowetzky
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Sonya A Widen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Andrew Jan Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
17
|
Bose B, Sudheer PS. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets. Methods Mol Biol 2015; 1341:257-84. [PMID: 25783769 DOI: 10.1007/7651_2015_230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the advent of pluripotent stem cells, (embryonic and induced pluripotent stem cells), applications of such pluripotent stem cells are of prime importance. Indeed, scientists are involved in studying the basic biology of pluripotent stem cells, but equal impetus is there to direct the pluripotent stem cells into multiple lineages for cell therapy applications. Scientists across the globe have been successful, to a certain extent, in obtaining cells of definitive endoderm and also pancreatic β islets by differentiating human pluripotent stem cells. Pluripotent stem cell differentiation protocols aim at mimicking in vivo embryonic development. As in vivo embryonic development is a complex process and involves interplay of multiple cytokines, the differentiation protocols also involve a stepwise use of multiple cytokines. Indeed the novel markers for pancreas organogenesis serve as the roadmaps to develop new protocols for pancreatic differentiation from pluripotent stem cells. Earliest developed protocols for pancreas differentiation involved "Nestin selection pathway," a pathway common for both neuronal and pancreatic differentiation lead to the generation of cells that were a combination of cells from neuronal lineage. Eventually with the discovery of hierarchy of β cell transcription factors like Pdx1, Pax4, and Nkx2.2, forced expression of such transcription factors proved successful in converting a pluripotent stem cell into a β cell. Protocols developed almost half a decade ago to the recent ones rather involve stepwise differentiations involving various cytokines and could generate as high as 25 % functional insulin-positive cells in vitro. Most advanced protocols for β islet differentiations from human pluripotent stem cells focused on 3D culture conditions, which reportedly produced 60-65 % functional β islet cells. Here, we describe the protocol for differentiation of human pluripotent stem cells into functional β cells under both 2D and 3D culture conditions.
Collapse
Affiliation(s)
- Bipasha Bose
- Level 03, Stem Cell Biology and Tissue Engineering Division, Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018, Karnataka, India.
| | - P Shenoy Sudheer
- Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, NTU/SBS Lab location @ Level 2, Singapore Institute for Clinical Sciences Brenner Centre for Molecular Medicine 30 Medical Drive, Singapore, 117609, Singapore
| |
Collapse
|
18
|
Hogarth CA, Arnold S, Kent T, Mitchell D, Isoherranen N, Griswold MD. Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production. Biol Reprod 2014; 92:37. [PMID: 25519186 DOI: 10.1095/biolreprod.114.126326] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The asynchronous cyclic nature of spermatogenesis is essential for continual sperm production and is one of the hallmarks of mammalian male fertility. While various mRNA and protein localization studies have indirectly implicated changing retinoid levels along testis tubules, no quantitative evidence for these changes across the cycle of the seminiferous epithelium currently exists. This study utilized a unique mouse model of induced synchronous spermatogenesis, localization of the retinoid-signaling marker STRA8, and sensitive quantification of retinoic acid concentrations to determine whether there are fluctuations in retinoid levels at each of the individual stages of germ cell differentiation and maturation to sperm. These data show that processive pulses of retinoic acid are generated during spermatogonial differentiation and are the likely trigger for cyclic spermatogenesis and allow us, for the first time, to understand how the cycle of the seminiferous epithelium is generated and maintained. In addition, this study represents the first direct quantification of a retinoid gradient controlling cellular differentiation in a postnatal tissue.
Collapse
Affiliation(s)
- Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Samuel Arnold
- University of Washington Medical Center, University of Washington, Seattle, Washington
| | - Travis Kent
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Nina Isoherranen
- University of Washington Medical Center, University of Washington, Seattle, Washington
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
19
|
Retinoic Acid, under Cerebrospinal Fluid Control, Induces Neurogenesis during Early Brain Development. J Dev Biol 2014. [DOI: 10.3390/jdb2020072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
20
|
Merlini L, Fluss J, Dhouib A, Vargas MI, Becker M. Mid-hindbrain malformations due to drugs taken during pregnancy. J Child Neurol 2014; 29:538-44. [PMID: 23390117 DOI: 10.1177/0883073812474345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although genetic defects are the leading cause of central nervous system malformations including in the posterior fossa, specific malformative patterns should alert the clinician to consider rather a teratogenic etiology. We discuss the imaging features of 2 mid-hindbrain malformations consecutive to the intake of isotretinoin (Roaccuatane®; case 1) and misoprostol (Cytotec®; case 2) during pregnancy and review the pertinent literature. We correlate the morphological appearance of the mid-hindbrain malformation, as seen on high-resolution magnetic resonance imaging to possible drug-induced pathogenetical mechanisms. The recognition of characteristic imaging patterns enables diagnosis of and/or confirmation of suspected drug-induced hindbrain malformations. This has important medicolegal implications and also clinical significance to avoid unsuccessful and misleading genetic testing.
Collapse
Affiliation(s)
- Laura Merlini
- 1Department of Radiology, Unit of Pediatric Radiology, Geneva University Hospital, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Smith Callahan LA, Ma Y, Stafford CM, Becker ML. Concentration dependent neural differentiation and neurite extension of mouse ESC on primary amine-derivatized surfaces. Biomater Sci 2013; 1:537-544. [DOI: 10.1039/c3bm00161j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Love CE, Prince VE. Expression and retinoic acid regulation of the zebrafish nr2f orphan nuclear receptor genes. Dev Dyn 2012; 241:1603-15. [PMID: 22836912 DOI: 10.1002/dvdy.23838] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The vertebrate nuclear receptor subfamily 2, group f (nr2f) genes encode orphan receptors that have the capacity to act as negative regulators of retinoic acid (RA) signaling. RESULTS We describe embryonic and larval expression of four of the six zebrafish nr2f genes, nr2f1a, nr2f1b, nr2f2, and nr2f5. These genes show highly regulated patterns of expression within the central nervous system, including in the developing hindbrain, as well as in the mesoderm and endoderm. We also investigated the role of RA and fibroblast growth factor (Fgf) signaling in regulating early nr2f gene expression. RA is not required for nr2f expression in the hindbrain; however, exogenous RA can repress this expression. Conversely, we find that RA positively regulates nr2f1a expression in trunk endoderm and mesoderm. Fgf signaling is not required for nr2f expression onset in the hindbrain; however, it may play a role in maintaining rhombomere-specific expression. CONCLUSIONS We report detailed expression analysis of four nr2f genes in all three germ layers. The onset of nr2f expression in the hindbrain does not require RA or Fgf signals. Our finding that RA positively regulates nr2f1a expression in the trunk supports the possibility that Nr2fs function in a negative feedback loop to modulate RA signaling in this region.
Collapse
Affiliation(s)
- Crystal E Love
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
23
|
Kam RKT, Deng Y, Chen Y, Zhao H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2012; 2:11. [PMID: 22439772 PMCID: PMC3325842 DOI: 10.1186/2045-3701-2-11] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
Retinoic acid (RA) is a morphogen derived from retinol (vitamin A) that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR) and retinoic acid X receptor (RXR) which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.
Collapse
Affiliation(s)
- Richard Kin Ting Kam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P, R, China.
| | | | | | | |
Collapse
|
24
|
Alonso MI, Martín C, Carnicero E, Bueno D, Gato A. Cerebrospinal fluid control of neurogenesis induced by retinoic acid during early brain development. Dev Dyn 2011; 240:1650-9. [PMID: 21594951 DOI: 10.1002/dvdy.22657] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2011] [Indexed: 01/13/2023] Open
Abstract
Embryonic-cerebrospinal fluid (E-CSF) plays crucial roles in early brain development including the control of neurogenesis. Although FGF2 and lipoproteins present in the E-CSF have previously been shown to be involved in neurogenesis, the main factor triggering this process remains unknown. E-CSF contains all-trans-retinol and retinol-binding protein involved in the synthesis of retinoic acid (RA), a neurogenesis inducer. In early chick embryo brain, only the mesencephalic-rombencephalic isthmus (IsO) is able to synthesize RA. Here we show that in chick embryo brain development: (1) E-CSF helps to control RA synthesis in the IsO by means of the RBP and all-trans-retinol it contains; (2) E-CSF has retinoic acid activity, which suggests it may act as a diffusion pathway for RA; and (3) the influence of E-CSF on embryonic brain neurogenesis is to a large extent due to its involvement in RA synthesis. These data help to understand neurogenesis from neural progenitor cells.
Collapse
Affiliation(s)
- M I Alonso
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | | | | | | | | |
Collapse
|
25
|
Rapacioli M, Rodríguez Celín A, Duarte S, Ortalli AL, Di Napoli J, Teruel L, Sánchez V, Scicolone G, Flores V. The chick optic tectum developmental stages. A dynamic table based on temporal- and spatial-dependent histogenetic changes: A structural, morphometric and immunocytochemical analysis. J Morphol 2011; 272:675-97. [PMID: 21484853 DOI: 10.1002/jmor.10943] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 11/26/2010] [Accepted: 12/05/2010] [Indexed: 11/07/2022]
Abstract
Development is often described as temporal sequences of developmental stages (DSs). When tables of DS are defined exclusively in the time domain they cannot discriminate histogenetic differences between different positions along a spatial reference axis. We introduce a table of DSs for the developing chick optic tectum (OT) based on time- and space-dependent changes in quantitative morphometric parameters, qualitative histogenetic features and immunocytochemical pattern of several developmentally active molecules (Notch1, Hes5, NeuroD1, β-III-Tubulin, synaptotagmin-I and neurofilament-M). Seven DSs and four transitional stages were defined from ED2 to ED12, when the basic OT cortical organization is established, along a spatial developmental gradient axis extending between a zone of maximal and a zone of minimal development. The table of DSs reveals that DSs do not only progress as a function of time but also display a spatially organized propagation along the developmental gradient axis. The complex and dynamic character of the OT development is documented by the fact that several DSs are simultaneously present at any ED or any embryonic stage. The table of DSs allows interpreting how developmental cell behaviors are temporally and spatially organized and explains how different DSs appear as a function of both time and space. The table of DSs provides a reference system to characterize the OT corticogenesis and to reliably compare observations made in different specimens.
Collapse
Affiliation(s)
- Melina Rapacioli
- Department of Biostructural Sciences, Interdisciplinary Group in Theoretical Biology, Favaloro University, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marrs JA, Clendenon SG, Ratcliffe DR, Fielding SM, Liu Q, Bosron WF. Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement. Alcohol 2010; 44:707-15. [PMID: 20036484 DOI: 10.1016/j.alcohol.2009.03.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 03/26/2009] [Accepted: 03/31/2009] [Indexed: 11/30/2022]
Abstract
This study was designed to develop a zebrafish experimental model to examine defects in retinoic acid (RA) signaling caused by embryonic ethanol exposure. RA deficiency may be a causative factor leading to a spectrum of birth defects classified as fetal alcohol spectrum disorder (FASD). Experimental support for this hypothesis using Xenopus showed that effects of treatment with ethanol could be partially rescued by adding retinoids during ethanol treatment. Previous studies show that treating zebrafish embryos during gastrulation and somitogenesis stages with a pathophysiological concentration of ethanol (100mM) produces effects that are characteristic features of FASD. We found that treating zebrafish embryos with RA at a low concentration (10(-9)M) and 100mM ethanol during gastrulation and somitogenesis stages significantly rescued a spectrum of defects produced by treating embryos with 100mM ethanol alone. The rescued phenotype that we observed was quantitatively more similar to embryos treated with 10(-9)M RA alone (RA toxicity) than to untreated or 100mM ethanol-treated embryos. RA rescued defects caused by 100mM ethanol treatment during gastrulation and somitogenesis stages that include early gastrulation cell movements (anterior-posterior axis), craniofacial cartilage formation, and ear development. Morphological evidence also suggests that other characteristic features of FASD (e.g., neural axis patterning) are rescued by RA supplement.
Collapse
Affiliation(s)
- James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Sachidanandan C, Yeh JRJ, Peterson QP, Peterson RT. Identification of a novel retinoid by small molecule screening with zebrafish embryos. PLoS One 2008; 3:e1947. [PMID: 18398471 PMCID: PMC2275795 DOI: 10.1371/journal.pone.0001947] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 03/03/2008] [Indexed: 11/18/2022] Open
Abstract
Small molecules have played an important role in delineating molecular pathways involved in embryonic development and disease pathology. The need for novel small molecule modulators of biological processes has driven a number of targeted screens on large diverse libraries. However, due to the specific focus of such screens, the majority of the bioactive potential of these libraries remains unharnessed. In order to identify a higher proportion of compounds with interesting biological activities, we screened a diverse synthetic library for compounds that perturb the development of any of the multiple organs in zebrafish embryos. We identified small molecules that affect the development of a variety of structures such as heart, vasculature, brain, and body-axis. We utilized the previously known role of retinoic acid in anterior-posterior (A-P) patterning to identify the target of DTAB, a compound that caused A-P axis shortening in the zebrafish embryo. We show that DTAB is a retinoid with selective activity towards retinoic acid receptors gamma and beta. Thus, conducting zebrafish developmental screens using small molecules will not only enable the identification of compounds with diverse biological activities in a large chemical library but may also facilitate the identification of the target pathways of these biologically active molecules.
Collapse
Affiliation(s)
- Chetana Sachidanandan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Jing-Ruey J. Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Quinn P. Peterson
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Randall T. Peterson
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| |
Collapse
|
29
|
Pittlik S, Domingues S, Meyer A, Begemann G. Expression of zebrafish aldh1a3 (raldh3) and absence of aldh1a1 in teleosts. Gene Expr Patterns 2007; 8:141-7. [PMID: 18178530 DOI: 10.1016/j.gep.2007.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/23/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
Abstract
The vitamin A-derived morphogen retinoic acid (RA) plays important roles during the development of chordate animals. The Aldh1a-family of RA-synthesizing enzymes consists of three members, Aldh1a1-3 (Raldh1-3), that are dynamically expressed throughout development. We have searched the known teleost genomes for the presence of Raldh family members and have found that teleost fish possess orthologs of Aldh1a2 and Aldh1a3 only. Here we describe the expression of aldh1a3 in the zebrafish, Danio rerio. Whole mount in situ hybridization shows that aldh1a3 is expressed during eye development in the retina flanking the optic stalks and later is expressed ventrally, opposite the expression domain of aldh1a2. During inner ear morphogenesis, aldh1a3 is expressed in developing sensory epithelia of the cristae and utricular macula and is specifically up-regulated in epithelial projections throughout the formation of the walls of the semicircular canals and endolymphatic duct. In contrast to the mouse inner ear, which expresses all three Raldhs, we find that only aldh1a3 is expressed in the zebrafish otocyst, while aldh1a2 is present in the periotic mesenchyme. During larval stages, additional expression domains of aldh1a3 appear in the anterior pituitary and the swim bladder. Our analyses provide a starting point for genetic studies to examine the role of RA in these organs and emphasize the suitability of the zebrafish inner ear in dissecting the contribution of RA signaling to the development of the vestibular system.
Collapse
Affiliation(s)
- Silke Pittlik
- Department of Biology, University of Konstanz, Fach M617, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
30
|
Skromne I, Thorsen D, Hale M, Prince VE, Ho RK. Repression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord. Development 2007; 134:2147-58. [PMID: 17507415 PMCID: PMC2804982 DOI: 10.1242/dev.002980] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spinal cord is a unique vertebrate feature that originates, together with the hindbrain, from the caudal neural plate. Whereas the hindbrain subdivides into rhombomeres, the spinal cord remains unsegmented. We have identified Cdx transcription factors as key determinants of the spinal cord region in zebrafish. Loss of Cdx1a and Cdx4 functions causes posterior expansion of the hindbrain at the expense of the unsegmented spinal cord. By contrast, cdx4 overexpression in the hindbrain impairs rhombomere segmentation and patterning and induces the expression of spinal cord-specific genes. Using cell transplantation, we demonstrate that Cdx factors function directly within the neural ectoderm to specify spinal cord. Overexpression of 5' Hox genes fails to rescue hindbrain and spinal cord defects associated with cdx1a/cdx4 loss-of-function, suggesting a Hox-independent mechanism of spinal cord specification. In the absence of Cdx function, the caudal neural plate retains hindbrain characteristics and remains responsive to surrounding signals, particularly retinoic acid, in a manner similar to the native hindbrain. We propose that by preventing the posterior-most region of the neural plate from following a hindbrain developmental program, Cdx factors help determine the size of the prospective hindbrain and spinal cord territories.
Collapse
Affiliation(s)
- Isaac Skromne
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th Street R107, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
31
|
Depew MJ, Simpson CA. 21st century neontology and the comparative development of the vertebrate skull. Dev Dyn 2006; 235:1256-91. [PMID: 16598716 DOI: 10.1002/dvdy.20796] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Classic neontology (comparative embryology and anatomy), through the application of the concept of homology, has demonstrated that the development of the gnathostome (jawed vertebrate) skull is characterized both by a fidelity to the gnathostome bauplan and the exquisite elaboration of final structural design. Just as homology is an old concept amended for modern purposes, so are many of the questions regarding the development of the skull. With due deference to Geoffroy-St. Hilaire, Cuvier, Owen, Lankester et al., we are still asking: How are bauplan fidelity and elaboration of design maintained, coordinated, and modified to generate the amazing diversity seen in cranial morphologies? What establishes and maintains pattern in the skull? Are there universal developmental mechanisms underlying gnathostome autapomorphic structural traits? Can we detect and identify the etiologies of heterotopic (change in the topology of a developmental event), heterochronic (change in the timing of a developmental event), and heterofacient (change in the active capacetence, or the elaboration of capacity, of a developmental event) changes in craniofacial development within and between taxa? To address whether jaws are all made in a like manner (and if not, then how not), one needs a starting point for the sake of comparison. To this end, we present here a "hinge and caps" model that places the articulation, and subsequently the polarity and modularity, of the upper and lower jaws in the context of cranial neural crest competence to respond to positionally located epithelial signals. This model expands on an evolving model of polarity within the mandibular arch and seeks to explain a developmental patterning system that apparently keeps gnathostome jaws in functional registration yet tractable to potential changes in functional demands over time. It relies upon a system for the establishment of positional information where pattern and placement of the "hinge" is driven by factors common to the junction of the maxillary and mandibular branches of the first arch and of the "caps" by the signals emanating from the distal-most first arch midline and the lamboidal junction (where the maxillary branch meets the frontonasal processes). In this particular model, the functional registration of jaws is achieved by the integration of "hinge" and "caps" signaling, with the "caps" sharing at some critical level a developmental history that potentiates their own coordination. We examine the evidential foundation for this model in mice, examine the robustness with which it can be applied to other taxa, and examine potential proximate sources of the signaling centers. Lastly, as developmental biologists have long held that the anterior-most mesendoderm (anterior archenteron roof or prechordal plate) is in some way integral to the normal formation of the head, including the cranial skeletal midlines, we review evidence that the seminal patterning influences on the early anterior ectoderm extend well beyond the neural plate and are just as important to establishing pattern within the cephalic ectoderm, in particular for the "caps" that will yield medial signaling centers known to coordinate jaw development.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London, United Kingdom.
| | | |
Collapse
|
32
|
Induction of the homeotic gene Hoxa1 through valproic acid's teratogenic mechanism of action. Neurotoxicol Teratol 2006; 28:617-24. [DOI: 10.1016/j.ntt.2006.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 07/20/2006] [Accepted: 08/10/2006] [Indexed: 11/21/2022]
|
33
|
Wang H, Lee EMJ, Sperber SM, Lin S, Ekker M, Long Q. Isolation and expression of zebrafish zinc-finger transcription factor gene tsh1. Gene Expr Patterns 2006; 7:318-22. [PMID: 17035100 DOI: 10.1016/j.modgep.2006.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/16/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
We report the expression patterns of tsh1, a zebrafish homologue of the Drosophila homeotic gene teashirt. Expression of tsh1 is first detected at the 2-somite stage (10h post-fertilization, hpf) at the anterior end of the spinal cord. Expression expands toward the posterior spinal cord, and by the prim-5 stage (24 hpf) tsh1 transcripts are detected throughout spinal cord. Between the 14- and 25-somite stage (16-24 hpf), spinal cord expression shows a clear anterior boundary at the rostral margin of rhombomere 7. Around the prim-25 stage (36 hpf), while the spinal expression of tsh1 decreases, new expression is detected in the pectoral fin buds and dorsal forebrain. By the long-pec stage (48 hpf), spinal cord expression is undetectable, but strong expression is observed in the rhombencephalon, telencephalon, tectum opticum, midbrain-hindbrain boundary, in the first pharyngeal arch and in the eyes. This expression persists at least until the larval stages. Retinoic acid signaling influences tsh1 expression. Zebrafish tsh1 expression was induced in the anterior neural tube in embryos treated briefly with exogenous retinoic acid. Furthermore, tsh1 expression was down-regulated in the spinal cord in the zebrafish neckless mutant in which RA signaling is disrupted due to a missense mutation in the gene encoding retinaldehyde dehydrogenase type 2.
Collapse
Affiliation(s)
- Han Wang
- Department of Zoology and Stephenson Research and Technology Center, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | |
Collapse
|
34
|
Maves L, Kimmel CB. Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid. Dev Biol 2006; 285:593-605. [PMID: 16102743 DOI: 10.1016/j.ydbio.2005.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 06/19/2005] [Accepted: 07/15/2005] [Indexed: 11/24/2022]
Abstract
A prominent region of the vertebrate hindbrain is subdivided along the anterior-posterior axis into a series of seven segments, or rhombomeres. The identity of each rhombomere is specified by the expression of conserved transcription factors, including Krox-20, vHnf1, Val (Kreisler, Mafb) and several Hox proteins. Previous work has shown that retinoic acid (RA) signaling plays a critical role in regulating the expression of these factors and that more posterior rhombomeres require higher levels of RA than more anterior rhombomeres. Models to account for RA concentration dependency have proposed either a static RA gradient or increasing time periods of RA exposure. Here, we provide evidence against both of these models. We show that early zebrafish rhombomere-specification genes, including vhnf1 in r5-r6 and hoxd4a in r7, initiate expression sequentially in the hindbrain, each adjacent to the source of RA synthesis in paraxial mesoderm. By knocking down RA signaling, we show that progressively more posterior rhombomeres require increasingly higher levels of RA signaling, and vhnf1 and hoxd4a expression are particularly RA-dependent. RA synthesis is required just at the time of initiation, but not for maintenance, of vhnf1 and hoxd4a expression. Furthermore, a premature RA increase causes premature activation of vhnf1 and hoxd4a expression. Our results support a new model of dynamic RA action in the hindbrain, in which a temporally increasing source of RA is required to sequentially initiate progressively more posterior rhombomere identities.
Collapse
Affiliation(s)
- Lisa Maves
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | | |
Collapse
|
35
|
Anteroposterior and Dorsoventral Patterning. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Yamamoto M, Fujinuma M, Hirano S, Hayakawa Y, Clagett-Dame M, Zhang J, McCaffery P. Retinoic acid influences the development of the inferior olivary nucleus in the rodent. Dev Biol 2005; 280:421-33. [PMID: 15882583 DOI: 10.1016/j.ydbio.2005.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 02/02/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
All-trans retinoic acid (atRA) is an endogenous morphogen that regulates gene transcription. Maternal exposure to atRA results in severe developmental abnormalities by disrupting normal patterns of atRA distribution. Previously, we have shown that the pontine nucleus, which originates from the rhombic lip, is severely atrophied in the mouse on exposure to atRA at gestational days 9 and 10. In this study, we show that this same period of atRA exposure has the contrary effect on the inferior olive and this rhombic lip derivative is expanded in volume and probably contains an increased number of cells. The posterior region of the inferior olive maintains a relatively normal shape but is significantly expanded in size. In contrast, the organization of the anterior inferior olive is severely disrupted. Because endogenous atRA levels are known to be higher in the region of the posterior inferior olive at the time of birth of inferior olivary neurons, these results suggest that endogenous atRA may promote the generation, or select the fate, of posterior neurons of the inferior olive. In support of this concept, a reduction in atRA resulting from vitamin A deficiency results in loss of cells of the posterior inferior olive.
Collapse
Affiliation(s)
- Miyuki Yamamoto
- Inst. Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Merrill RA, See AWM, Wertheim ML, Clagett-Dame M. Crk-associated substrate (Cas) family member, NEDD9, is regulated in human neuroblastoma cells and in the embryonic hindbrain by all-trans retinoic acid. Dev Dyn 2005; 231:564-75. [PMID: 15376324 DOI: 10.1002/dvdy.20159] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The vitamin A metabolite, all-trans retinoic acid (atRA), plays an essential role in vertebrate embryogenesis, including development of the nervous system. In the human neuroblastoma cell line, SH-SY5Y, atRA rapidly induces (within 4 hr) the expression of the Crk-associated substrate (Cas) family member, neural precursor cell-expressed, developmentally down-regulated gene 9 (NEDD9) also called the human enhancer of filamentation (HEF1). NEDD9 is expressed in the developing hindbrain (5-somite stage) in the presumptive rhombomeres 2, 3, and 5 before the onset of overt segmentation. Exposure of rat embryos to excess atRA at times ranging from E9.25 to E12 leads to altered NEDD9 expression in the developing hindbrain within 6 hr. NEDD9 expression is also perturbed in vitamin A-deficient embryos. A putative retinoic acid response element in the 5' region of the NEDD9 promoter binds specifically to a RXR/RAR heterodimer and forms a higher molecular weight complex upon addition of a retinoic acid receptor-specific antibody. Regulation of NEDD9 may be an important means whereby atRA promotes cell spreading and neurite outgrowth in SH-SY5Y human neuroblastoma cells, and NEDD9 represents a new downstream target of atRA and its receptors in the developing hindbrain.
Collapse
Affiliation(s)
- Ronald A Merrill
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
38
|
Schäfer M, Kinzel D, Neuner C, Schartl M, Volff JN, Winkler C. Hedgehog and retinoid signalling confines nkx2.2b expression to the lateral floor plate of the zebrafish trunk. Mech Dev 2005; 122:43-56. [PMID: 15582776 DOI: 10.1016/j.mod.2004.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/07/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022]
Abstract
The ventral neural tube of vertebrates consists of distinct neural progenitor domains positioned along the dorsoventral (DV) axis that develop different types of moto- and interneurons. Several signalling molecules, most notably Sonic Hedgehog (Shh), retinoic acid (RA) and fibroblast growth factor (FGF) have been implicated in the generation of these domains. Shh is secreted from the floor plate, the ventral most neural tube structure that consists of the medial (MFP) and the lateral floor plate (LFP). While the MFP is well characterized, organization and function of the LFP remains unclear. Here, we describe the novel homeobox gene nkx2.2b that is strongly expressed in the trunk LFP of zebrafish and thus represents a unique marker for the characterization of LFP formation and the identification of LFP deficient mutants. nkx2.2b and its paralog nkx2.2a (formerly known as nk2.2 and nkx2.2) arose by gene duplication in zebrafish. Both duplicates show significant differences in their expression patterns. For example, while prominent nkx2.2a expression has been described in the ventral brain [Barth, K.A., Wilson, S.W., 1995. Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development 121, 1755-1768], hardly any expression can be found in the trunk LFP, which is in contrast to nkx2.2b. Overexpression, mutant and inhibitor analyses show that nkx2.2b expression in the LFP is up-regulated by Shh, but repressed by retinoids and ectopic islet-1 (isl1) expression. In contrast to previously described zebrafish trunk LFP markers, like e.g. tal2 or foxa2, nkx2.2b is exclusively expressed in the LFP. Thus, it represents a unique tool to analyse the mechanisms of ventral neural tube patterning in zebrafish.
Collapse
Affiliation(s)
- Matthias Schäfer
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Linville A, Gumusaneli E, Chandraratna RAS, Schilling TF. Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain. Dev Biol 2004; 270:186-99. [PMID: 15136149 DOI: 10.1016/j.ydbio.2004.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/09/2004] [Accepted: 02/17/2004] [Indexed: 01/22/2023]
Abstract
Segmentation of the vertebrate hindbrain into rhombomeres is essential for the anterior-posterior patterning of cranial motor nuclei and their associated nerves. The vitamin A derivative, retinoic acid (RA), is an early embryonic signal that specifies rhombomeres, but its roles in neuronal differentiation within the hindbrain remain unclear. Here we have analyzed the formation of primary and secondary hindbrain neurons in the zebrafish mutant neckless (nls), which disrupts retinaldehyde dehydrogenase 2 (raldh2), and in embryos treated with retinoid receptor (RAR) antagonists. Mutation of nls disrupts secondary, branchiomotor neurons of the facial and vagal nerves, but not the segmental pattern of primary, reticulospinal neurons, suggesting that RA acts on branchiomotor neurons independent of its role in hindbrain segmentation. Very few vagal motor neurons form in nls mutants and many facial motor neurons do not migrate out of rhombomere 4 into more posterior segments. When embryos are treated with RAR antagonists during gastrulation, we observe more severe patterning defects than seen in nls. These include duplicated reticulospinal neurons and posterior expansions of rhombomere 4, as well as defects in branchiomotor neurons. However, later antagonist treatments after rhombomeres are established still disrupt branchiomotor development, suggesting that requirements for RARs in these neurons occur later and independent of segmental patterning. We also show that RA produced by the paraxial mesoderm controls branchiomotor differentiation, since we can rescue the entire motor innervation pattern by transplanting wild-type cells into the somites of nls mutants. Thus, in addition to its role in determining rhombomere identities, RA plays a more direct role in the differentiation of subsets of branchiomotor neurons within the hindbrain.
Collapse
Affiliation(s)
- Angela Linville
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | | | | | | |
Collapse
|
40
|
Liu RZ, Denovan-Wright EM, Degrave A, Thisse C, Thisse B, Wright JM. Spatio-temporal distribution of cellular retinol-binding protein gene transcripts (CRBPI and CRBPII) in the developing and adult zebrafish (Danio rerio). ACTA ACUST UNITED AC 2004; 271:339-48. [PMID: 14717701 DOI: 10.1046/j.1432-1033.2003.03932.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have cloned and determined the nucleotide sequence of the cDNA coding for a cellular retinol-binding protein type I (CRBPI) from zebrafish. The deduced amino acid sequence of the zebrafish CRBPI showed highest sequence identity ( approximately 59%) to the mammalian CRBPIs of the intracellular lipid-binding protein (iLBP) multigene family. Phylogenetic analysis clustered the zebrafish CRBPI to the CRBPI clade. The zebrafish CRBPI gene (rbp1) and CRBPII gene (rbp2) both consist of four exons separated by three introns, identical to all other iLBP genes in vertebrates. Two transcription start sites were identified in the rbp1 promoter and a single transcription start site was identified for rbp2. Radiation hybrid mapping assigned the zebrafish rbp1 gene to linkage group 16 and conserved syntenic genes were found by comparative analysis of mammalian orthologous rbp1 genes. RT-PCR detected mRNA transcripts in the adult intestine, liver, brain, ovary and testis for rbp1 gene and in the intestine and liver for rbp2 gene. Whole mount in situ hybridization of zebrafish embryos revealed rbp1 mRNA expression in the developing zebrafish central nervous system at specific sites that are known to have abundant retinoic acid distribution and significant retinoic acid action. Whole mount in situ hybridization also showed that the zebrafish rbp2 mRNA was localized specifically in the embryonic intestinal bulb and the developing intestine during the larval stage, implying a novel function for the rbp2 gene product during organogenesis and development of the zebrafish intestine.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Wang CC. Development of the Rhombencephalon: Molecular Evolution and Genetic Regulation. Neuroembryology Aging 2004. [DOI: 10.1159/000088208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Götz ME, Riederer P. Advances in Neuroprotection Research for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 541:1-19. [PMID: 14977205 DOI: 10.1007/978-1-4419-8969-7_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mario E Götz
- Institute of Pharmacology and Toxicology, 97078 Würzburg, Germany
| | | |
Collapse
|
43
|
Tropepe V, Sive HL. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? GENES BRAIN AND BEHAVIOR 2003; 2:268-81. [PMID: 14606692 DOI: 10.1034/j.1601-183x.2003.00038.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The zebrafish has proven to be an excellent model for analyzing issues of vertebrate development. In this review we ask whether the zebrafish is a viable model for analyzing the neurodevelopmental causes of autism. In developing an answer to this question three topics are considered. First, the general attributes of zebrafish as a model are discussed, including low cost maintenance, rapid life cycle and the multitude of techniques available. These techniques include large-scale genetic screens, targeted loss and gain of function methods, and embryological assays. Second, we consider the conservation of zebrafish and mammalian brain development, structure and function. Third, we discuss the impressive use of zebrafish as a model for human disease, and suggest several strategies by which zebrafish could be used to dissect the genetic basis for autism. We conclude that the zebrafish system could be used to make important contributions to understanding autistic disorders.
Collapse
Affiliation(s)
- V Tropepe
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|
44
|
Kikuta H, Kanai M, Ito Y, Yamasu K. gbx2 Homeobox gene is required for the maintenance of the isthmic region in the zebrafish embryonic brain. Dev Dyn 2003; 228:433-50. [PMID: 14579382 DOI: 10.1002/dvdy.10409] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We isolated cDNA clones for the zebrafish gbx2 gene, which is implicated in the establishment of the midbrain-hindbrain boundary (MHB) in other vertebrates. Spatially localized expression of gbx2 was observed at the MHB from 90% epiboly through to the hatching stage. Comparisons with the expression of otx2, wnt1, and krox20 showed that gbx2 is expressed in the anterior hindbrain. Ectopic expression of gbx2 by mRNA injection caused cyclopia or truncation of the fore- and midbrain and severely affected isthmic and cerebellar structures, while hindbrain formation was not significantly affected. At the molecular level, gbx2 suppressed the expression of otx2 in the fore/midbrain, six3 in the anterior forebrain, and MHB-specific genes such as eng2 and wnt1. In contrast, gbx2 did not down-regulate the expression of the hindbrain marker genes. Therefore, gbx2 specifically suppressed the formation of the entire fore/midbrain. Meanwhile, misexpression of otx2 suppressed the expression of gbx2 in the embryonic brain. Abrogation of gbx2 expression with an antisense morpholino oligonucleotide disrupted the midbrain/anterior hindbrain region, and these loss-of-function effects were rescued by activating the Gbx2 protein immediately after the end of gastrulation. Taken together, these results suggest that the zebrafish gbx2 gene is essential for the maintenance of MHB and/or the formation of the isthmic structure during somitogenesis, rather than for the MHB establishment during gastrulation. We also suggest that other factors, including gbx1, is required for the establishment of the MHB during gastrulation.
Collapse
Affiliation(s)
- Hiroshi Kikuta
- Department of Regulation Biology, Faculty of Science, Saitama University, Saitama, Japan
| | | | | | | |
Collapse
|
45
|
Holzschuh J, Barrallo-Gimeno A, Ettl AK, Durr K, Knapik EW, Driever W. Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype. Development 2003; 130:5741-54. [PMID: 14534139 DOI: 10.1242/dev.00816] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tfap2a is a transcriptional activator expressed in many different cell types, including neurons, neural crest derivatives and epidermis. We show that mutations at the zebrafish locus previously called mont blanc (mob) or lockjaw (low) encode tfap2a. The mutant phenotype reveals that tfap2a is essential for the development of hindbrain noradrenergic (NA) neurons of the locus coeruleus, medulla and area postrema, as well as for sympathetic NA neurons, epibranchial placode derived visceral sensory ganglia, and craniofacial and trunk crest derivatives. We focus our analysis on the role of tfap2a NA differentiation in the CNS. In the locus coeruleus, Phox2a and Tfap2a are co-expressed and are both required for NA development. By contrast, in the medulla Phox2a and Tfap2a are expressed in adjacent overlapping domains, but only tfap2a activity is required for NA differentiation, as NA neurons develop normally in soulless/phox2a mutant medulla. phox2a and tfap2a do not appear to affect each others expression. Our studies show that two distinct inductive mechanisms control NA development in the zebrafish hindbrain. For the posterior hindbrain, we identify retinoic acid as an important signal to induce NA differentiation in the medulla oblongata and area postrema, where it expands the tfap2a expression domain and thus acts upstream of tfap2a. By contrast, previous work revealed Fgf8 to be involved in specification of NA neurons in the locus coeruleus. Thus, although the inductive signals may be distinct, hindbrain NA neurons of the locus coeruleus and the posterior groups both require Tfap2a to establish their noradrenergic identity.
Collapse
Affiliation(s)
- Jochen Holzschuh
- Developmental Biology, Institute Biology 1, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Learning how the incredible diversity of neurons in the vertebrate central nervous system (CNS) is generated is a central focus of developmental neuroscience. Three studies in the September 25, 2003, issue of Neuron bring us closer to this goal by revealing how the interplay between Fibroblast Growth Factor (FGF), retinoic acid (RA), and Sonic hedgehog (Shh) signaling regulate progression of spinal cord progenitor cells through various phases of development and specify particular types of spinal motor neurons (MNs).
Collapse
Affiliation(s)
- Bruce Appel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
47
|
Chung AC, Cooney AJ. The varied roles of nuclear receptors during vertebrate embryonic development. NUCLEAR RECEPTOR SIGNALING 2003; 1:e007. [PMID: 16604179 PMCID: PMC1402219 DOI: 10.1621/nrs.01007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 06/16/2003] [Indexed: 11/20/2022]
Abstract
Nuclear receptors comprise a superfamily of sequence-specific transcription factors whose members have diverse roles during development. This review will summarize the developmental roles of selected members of the nuclear receptor superfamily.
Collapse
|
48
|
Barreto G, Borgmeyer U, Dreyer C. The germ cell nuclear factor is required for retinoic acid signaling during Xenopus development. Mech Dev 2003; 120:415-28. [PMID: 12676320 DOI: 10.1016/s0925-4773(03)00018-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The germ cell nuclear factor (GCNF, NR6A1) is a nuclear orphan receptor that functions as a transcriptional repressor and is transiently expressed in mammalian carcinoma cells during retinoic acid (RA) induced neuronal differentiation. During Xenopus laevis development, the spatiotemporal expression pattern of embryonic GCNF (xEmGCNF) suggests a role in anteroposterior specification of the neuroectoderm. Here, we show that RA treatment of Xenopus embryos enhances xEmGCNF expression. Moreover, we present evidence for the relevance of this finding in the context of primary neurogenesis and hindbrain development. During early development of the central nervous system, RA signals promote posterior transformation of the neuroectoderm and increase the number of cells undergoing primary neurogenesis. Our loss-of-function analyses using a xEmGCNF-specific morpholino antisense oligonucleotide indicate that xEmGCNF is required for the effect of RA on primary neurogenesis. This may be caused by transcriptional regulation of the gene encoding the RA-degrading enzyme CYP26, since this gene is derepressed after depletion of xEmGCNF and an antimorph of xEmGCNF directly activates transcription of CYP26, also in absence of protein synthesis. The effect of xEmGCNF knockdown on hindbrain patterning is similar to conditions of reduced RA signaling, which may be caused by a reduction of RAR gamma expression specifically in the presumptive hindbrain.
Collapse
Affiliation(s)
- Guillermo Barreto
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstr. 35/V, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Raymond Romand
- Institut Clinique de la Souris, 67404 Illkirch Cedex, France
| |
Collapse
|
50
|
Abstract
Inner ear induction, like induction of other tissues examined in recent years, is likely to be comprised of several stages. The process begins during gastrulation when the ectoderm is competent to respond to induction. It appears that a signal from the endomesoderm underlying the otic area during gastrulation initiates induction complemented by a signal from presumptive neural tissue. By the neural plate stage, a region of ectoderm outside the neural plate is "biased" toward ear formation; this process may be part of a more general "placodal" bias shared by several sensory tissues. Induction continues during neurulation when a signal from neural tissue (possibly augmented by mesoderm underlying the otic area) results in ectoderm committed to otic vesicle formation at the time of neural tube closure. Studies on several gene families implicate them in the ear determination process. Fibroblast Growth Factor (FGF) family members are clearly involved in induction: FGFs are appropriately expressed for such a role, and have been shown to be essential for inner ear development. FGFs also have inductive activity, although it is not clear if they are sufficient for ear induction. Activation of transcription factors in the otic ectoderm, for example, by Pax gene family members, provides evidence for important changes in the responding ectoderm beginning during gastrulation and continuing through specification at the end of neurulation, although few functional tests have defined the role of these genes in determination. The challenge remains to merge embryologic data with gene function studies to develop a clear model for the molecular basis of inner ear induction.
Collapse
Affiliation(s)
- Selina Noramly
- Department of Biology, University of Virginia, Gilmer Hall, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|