1
|
Mingoia M, Meloni A, Sedda S, Choufani S, Asunis I, Gemma G, Ammendola A, Torabi-Marashi A, di Venere E, Squeo GM, Rallo V, Marini MG, Moi P, Savasta S, Weksberg R, Merla G, Angius A. A Novel Intronic Variant in the KH3 Domain of HNRNPK Leads to a Mild Form of Au-Kline Syndrome. Clin Genet 2025. [PMID: 40304117 DOI: 10.1111/cge.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Despite the massive adoption of sequencing technologies, disease-specific diagnosis remains challenging, particularly for genes with highly homologous pseudogenes like HNRNPK. Pathogenic HNRNPK variants cause Au-Kline syndrome (AKS), a neurodevelopmental disorder with malformations and distinctive facial features. We validated a novel de novo HNRNPK intronic variant (c.1192-3 C>A, p.Leu398ValfsTer21) in a patient previously misdiagnosed with Kabuki Syndrome (KS). By combining sequencing, in vitro splicing assays, molecular modelling, and protein function analysis, we characterised the molecular defect. A unique DNA methylation (DNAm) signature was recently identified in AKS, with missense variants showing an intermediate DNAm pattern, suggesting an epi-genotype-phenotype correlation linked to milder clinical features. The DNAm signature is a valuable tool for variant interpretation, especially in unclear AKS cases. We demonstrate that two independent approaches-functional characterisation and DNAm evaluation-confirmed a partial loss of HNRNPK function and validated an AKS diagnosis with a mild phenotype. Our findings highlight that a multidisciplinary approach integrating genomic and epigenomic analyses with functional studies and clinical assessment significantly improves rare disease diagnosis.
Collapse
Affiliation(s)
- Maura Mingoia
- Institute of Genetic and Biomedical Research, CNR, Cagliari, Monserrato, Italy
| | - Alessandra Meloni
- Institute of Genetic and Biomedical Research, CNR, Cagliari, Monserrato, Italy
| | - Silvia Sedda
- Antonio Cao Children's Hospital ASL, Cagliari, Italy
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isadora Asunis
- Institute of Genetic and Biomedical Research, CNR, Cagliari, Monserrato, Italy
| | - Giorgia Gemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Ammendola
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Arteen Torabi-Marashi
- The Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eleonora di Venere
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Gabriella Maria Squeo
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Vincenzo Rallo
- Institute of Genetic and Biomedical Research, CNR, Cagliari, Monserrato, Italy
| | | | - Paolo Moi
- Institute of Genetic and Biomedical Research, CNR, Cagliari, Monserrato, Italy
- Antonio Cao Children's Hospital ASL, Cagliari, Italy
| | | | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Andrea Angius
- Institute of Genetic and Biomedical Research, CNR, Cagliari, Monserrato, Italy
| |
Collapse
|
2
|
Ding M, Wang D, Chen H, Kesner B, Grimm NB, Weissbein U, Lappala A, Jiang J, Rivera C, Lou J, Li P, Lee JT. A biophysical basis for the spreading behavior and limited diffusion of Xist. Cell 2025; 188:978-997.e25. [PMID: 39824183 PMCID: PMC11863002 DOI: 10.1016/j.cell.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 01/20/2025]
Abstract
Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome. HNRNPK droplets pull on Xist and internalize the RNA. Once internalized, Xist induces a further phase transition and "softens" the HNRNPK droplet. Xist alters the condensate's deformability, adhesiveness, and wetting properties in vitro. Other Xist-interacting proteins are internalized and entrapped within the droplet, resulting in a concentration of Xist and protein partners within the condensate. We attribute LLPS to HNRNPK's RGG and Xist's repeat B (RepB) motifs. Mutating these motifs causes Xist diffusion, disrupts polycomb recruitment, and precludes the required mixing of chromosomal compartments for Xist's migration. Thus, we hypothesize that phase transitions in HNRNPK condensates allow Xist to locally concentrate silencing factors and to spread through internal channels of the HNRNPK-encapsulated chromosome.
Collapse
Affiliation(s)
- Mingrui Ding
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Danni Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hui Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Niklas-Benedikt Grimm
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anna Lappala
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jiying Jiang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Carlos Rivera
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Yang Q, Guo H, Li H, Li Z, Ni F, Wen Z, Liu K, Kong H, Wei W. The CXCL8/MAPK/hnRNP-K axis enables susceptibility to infection by EV-D68, rhinovirus, and influenza virus in vitro. Nat Commun 2025; 16:1715. [PMID: 39962077 PMCID: PMC11832783 DOI: 10.1038/s41467-025-57094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
Respiratory viruses pose an ongoing threat to human health with excessive cytokine secretion contributing to severe illness and mortality. However, the relationship between cytokine secretion and viral infection remains poorly understood. Here we elucidate the role of CXCL8 as an early response gene to EV-D68 infection. Silencing CXCL8 or its receptors, CXCR1/2, impedes EV-D68 replication in vitro. Upon recognition of CXCL8 by CXCR1/2, the MAPK pathway is activated, facilitating the translocation of nuclear hnRNP-K to the cytoplasm. This translocation increases the recognition of viral RNA by hnRNP-K in the cytoplasm, promoting the function of the 5' untranslated region in the viral genome. Moreover, our investigations also reveal the importance of the CXCL8 signaling pathway in the replication of both influenza virus and rhinovirus. In summary, our findings hint that these viruses exploit the CXCL8/MAPK/hnRNP-K axis to enhance viral replication in respiratory cells in vitro.
Collapse
Affiliation(s)
- Qingran Yang
- Department of Respiration, Children's Medical Center, First Hospital, Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhaoxue Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Fushun Ni
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhongmei Wen
- Center for Pathogen Biology and Infectious Diseases, Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Huihui Kong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China.
- Cancer Center, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Le QD, Lewis A, Dix-Matthews A, Ringler P, Duff A, Whitten AE, Atkin R, Brunner M, Ho D, Iyer KS, Marshall AC, Fox AH, Bond CS. Structural Characteristics and Properties of the RNA-Binding Protein hnRNPK at Multiple Physical States. Int J Mol Sci 2025; 26:1356. [PMID: 39941124 PMCID: PMC11818384 DOI: 10.3390/ijms26031356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA-binding protein containing low-complexity domains (LCDs), which are known to regulate protein behavior under stress conditions. This study demonstrates the ability to control hnRNPK's transitions into four distinct material states-monomer, soluble aggregate, liquid droplet, and fibrillar hydrogel-by modulating environmental factors such as temperature and protein concentration. Importantly, the phase-separated and hydrogel states are newly identified for eGFP-hnRNPK, marking a significant advancement in understanding its material properties. A combination of biophysical techniques, including DLS and SEC-LS, were used to further characterize hnRNPK in monomeric and soluble aggregate states. Structural methods, such as SANS, SAXS, and TEM, revealed the elongated morphology of the hnRNPK monomer. Environmental perturbations, such as decreased temperature or crowding agents, drove hnRNPK into phase-separated or gel-like states, each with distinct biophysical characteristics. These novel states were further analyzed using SEM, X-ray diffraction, and fluorescence microscopy. Collectively, these results demonstrate the complex behaviors of hnRNPK under different conditions and illustrate the properties of the protein in each material state. Transitions of hnRNPK upon condition changes could potentially affect functions of hnRNPK, playing a significant role in regulation of hnRNPK-involved processes in the cell.
Collapse
Affiliation(s)
- Quang D. Le
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
- Faculty of Biology, VNU University of Science, 334-Nguyen Trai Street, Ha Noi 100000, Vietnam
| | - Amanda Lewis
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4001 Basel, Switzerland (P.R.)
| | - Alice Dix-Matthews
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4001 Basel, Switzerland (P.R.)
| | - Anthony Duff
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Andrew E. Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Rob Atkin
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Manuel Brunner
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Diwei Ho
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - K. Swaminathan Iyer
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Andrew C. Marshall
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Archa H. Fox
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Charles S. Bond
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| |
Collapse
|
5
|
Nishanth MJ, Jha S. Evolutionary Analysis of the hnRNP Interactomes and Their Functions in Eukaryotes. Biochem Genet 2024:10.1007/s10528-024-10956-6. [PMID: 39540958 DOI: 10.1007/s10528-024-10956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are central regulators of several fundamental biological processes across eukaryotes. hnRNPs have been implicated in transcriptional and post-transcriptional regulation, telomere maintenance, stem cell maintenance, among other processes in major model organisms. Though hnRNPs are known to be conserved in eukaryotes, the evolutionary conservation/diversification of their functions across species is yet to be understood. To this end, the present work employed computational analyses to identify potential hnRNP orthologs in eighty eukaryotic species, and their interactors. Subsequently, a comprehensive analysis of the biological processes influenced by hnRNP interactomes showed alternative splicing and splicing regulation to be commonly associated with most species, while a few processes were uniquely associated with particular species. Further studies of the clustering patterns of the top-ranking hub nodes of the hnRNP protein networks revealed a notable clustering pattern of hnRNP K orthologs from five species. Subsequent analysis of the genes with overrepresented hnRNP K target sites within their untranslated regions showed hnRNP K orthologs from humans and Ciona intestanilis to potentially target transcripts involved in membrane-related processes. Remarkably, the hnRNP K ortholog from Lottia gigantea was found to possibly regulate other RNA-binding proteins (RBPs), suggesting a regulatory cascade involving hnRNPs and other RBPs. Further experimental studies in this regard would be of scientific and clinical importance, owing to the druggability of several human hnRNPs.
Collapse
Affiliation(s)
- M J Nishanth
- Department of Biotechnology, School of Life Sciences, St Joseph's University, Bengaluru, 560027, India.
| | - Shanker Jha
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India.
| |
Collapse
|
6
|
Maceratessi S, Sampaio NG. hnRNPs in antiviral innate immunity. Immunology 2024; 173:425-441. [PMID: 39111743 DOI: 10.1111/imm.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024] Open
Abstract
During virus infection, many host proteins are redirected from their normal cellular roles to restrict and terminate infection. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are cellular RNA-binding proteins critical to host nucleic acid homeostasis, but can also be involved in the viral infection process, affecting virus replication, assembly and propagation. It has become evident that hnRNPs play important roles in modulation of host innate immunity, which provides critical initial protection against infection. These novel findings can potentially lead to the leveraging of hnRNPs in antiviral therapies. We review hnRNP involvement in antiviral innate immunity, in humans, mice and other animals, and discuss hnRNP targeting as a potential novel antiviral therapeutic.
Collapse
Affiliation(s)
- Sofia Maceratessi
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| | - Natalia G Sampaio
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Barraza SJ, Woll MG. Pre‐mRNA Splicing Modulation. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2024:151-202. [DOI: 10.1002/9783527840458.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Taniue K, Sugawara A, Zeng C, Han H, Gao X, Shimoura Y, Ozeki AN, Onoguchi-Mizutani R, Seki M, Suzuki Y, Hamada M, Akimitsu N. The MTR4/hnRNPK complex surveils aberrant polyadenylated RNAs with multiple exons. Nat Commun 2024; 15:8684. [PMID: 39419981 PMCID: PMC11487169 DOI: 10.1038/s41467-024-51981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/21/2024] [Indexed: 10/19/2024] Open
Abstract
RNA surveillance systems degrade aberrant RNAs that result from defective transcriptional termination, splicing, and polyadenylation. Defective RNAs in the nucleus are recognized by RNA-binding proteins and MTR4, and are degraded by the RNA exosome complex. Here, we detect aberrant RNAs in MTR4-depleted cells using long-read direct RNA sequencing and 3' sequencing. MTR4 destabilizes intronic polyadenylated transcripts generated by transcriptional read-through over one or more exons, termed 3' eXtended Transcripts (3XTs). MTR4 also associates with hnRNPK, which recognizes 3XTs with multiple exons. Moreover, the aberrant protein translated from KCTD13 3XT is a target of the hnRNPK-MTR4-RNA exosome pathway and forms aberrant condensates, which we name KCTD13 3eXtended Transcript-derived protein (KeXT) bodies. Our results suggest that RNA surveillance in human cells inhibits the formation of condensates of a defective polyadenylated transcript-derived protein.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Anzu Sugawara
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Han Han
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Xinyue Gao
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsuko Nakanishi Ozeki
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Rena Onoguchi-Mizutani
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
9
|
Huang Y, Liu Y, Pu M, Zhang Y, Cao Q, Li S, Wei Y, Hou L. SOX2 interacts with hnRNPK to modulate alternative splicing in mouse embryonic stem cells. Cell Biosci 2024; 14:102. [PMID: 39160617 PMCID: PMC11331657 DOI: 10.1186/s13578-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND SOX2 is a determinant transcription factor that governs the balance between stemness and differentiation by influencing transcription and splicing programs. The role of SOX2 is intricately shaped by its interactions with specific partners. In the interactome of SOX2 in mouse embryonic stem cells (mESCs), there is a cohort of heterogeneous nuclear ribonucleoproteins (hnRNPs) that contributes to multiple facets of gene expression regulation. However, the cross-talk between hnRNPs and SOX2 in gene expression regulation remains unclear. RESULTS Here we demonstrate the indispensable role of the co-existence of SOX2 and heterogeneous nuclear ribonucleoprotein K (hnRNPK) in the maintenance of pluripotency in mESCs. While hnRNPK directly interacts with the SOX2-HMG DNA-binding domain and induces the collapse of the transcriptional repressor 7SK small nuclear ribonucleoprotein (7SK snRNP), hnRNPK does not influence SOX2-mediated transcription, either by modulating the interaction between SOX2 and its target cis-regulatory elements or by facilitating transcription elongation as indicated by the RNA-seq analysis. Notably, hnRNPK enhances the interaction of SOX2 with target pre-mRNAs and collaborates with SOX2 in regulating the alternative splicing of a subset of pluripotency genes. CONCLUSIONS These data reveal that SOX2 and hnRNPK have a direct protein-protein interaction, and shed light on the molecular mechanisms by which hnRNPK collaborates with SOX2 in alternative splicing in mESCs.
Collapse
Affiliation(s)
- Yanlan Huang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuxuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Mingyi Pu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuli Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Senru Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuanjie Wei
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany.
| | - Linlin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
10
|
Fuentes Y, Olguín V, López-Ulloa B, Mendonça D, Ramos H, Abdalla A, Guajardo-Contreras G, Niu M, Rojas-Araya B, Mouland A, López-Lastra M. Heterogeneous nuclear ribonucleoprotein K promotes cap-independent translation initiation of retroviral mRNAs. Nucleic Acids Res 2024; 52:2625-2647. [PMID: 38165048 PMCID: PMC10954487 DOI: 10.1093/nar/gkad1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
Translation initiation of the human immunodeficiency virus-type 1 (HIV-1) genomic mRNA (vRNA) is cap-dependent or mediated by an internal ribosome entry site (IRES). The HIV-1 IRES requires IRES-transacting factors (ITAFs) for function. In this study, we evaluated the role of the heterogeneous nuclear ribonucleoprotein K (hnRNPK) as a potential ITAF for the HIV-1 IRES. In HIV-1-expressing cells, the depletion of hnRNPK reduced HIV-1 vRNA translation. Furthermore, both the depletion and overexpression of hnRNPK modulated HIV-1 IRES activity. Phosphorylations and protein arginine methyltransferase 1 (PRMT1)-induced asymmetrical dimethylation (aDMA) of hnRNPK strongly impacted the protein's ability to promote the activity of the HIV-1 IRES. We also show that hnRNPK acts as an ITAF for the human T cell lymphotropic virus-type 1 (HTLV-1) IRES, present in the 5'UTR of the viral sense mRNA, but not for the IRES present in the antisense spliced transcript encoding the HTLV-1 basic leucine zipper protein (sHBZ). This study provides evidence for a novel role of the host hnRNPK as an ITAF that stimulates IRES-mediated translation initiation for the retroviruses HIV-1 and HTLV-1.
Collapse
Affiliation(s)
- Yazmín Fuentes
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Brenda López-Ulloa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Dafne Mendonça
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
| | - Barbara Rojas-Araya
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
11
|
Sato J, Satoh Y, Yamamoto T, Watanabe T, Matsubara S, Satake H, Kimura AP. PTBP2 binds to a testis-specific long noncoding RNA, Tesra, and activates transcription of the Prss42/Tessp-2 gene. Gene 2024; 893:147907. [PMID: 37858745 DOI: 10.1016/j.gene.2023.147907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently been proved to be functional in the testis. Tesra, a testis-specific lncRNA, was suggested to activate the transcription of Prss42/Tessp-2, a gene that is involved in meiotic progression, in mouse spermatocytes. To reveal the molecular mechanism underlying the activation, we searched for Tesra-binding proteins by a Ribotrap assay followed by LC-MS/MS analysis and identified polypyrimidine tract binding protein 2 (PTBP2) as a candidate. Analysis of public RNA-seq data and our qRT-PCR results indicated that Ptbp2 mRNA showed an expression pattern similar to the expression patterns of Tesra and Prss42/Tessp-2 during testis development. Moreover, PTBP2 was found to be associated with Tesra in testicular germ cells by RNA immunoprecipitation. To evaluate the effect of PTBP2 on the Prss42/Tessp-2 promoter, we established an in vitro reporter gene assay system in which Tesra expression could be induced by the Tet-on system and thereby Prss42/Tessp-2 promoter activity could be increased. In this system, the Prss42/Tessp-2 promoter activity was significantly decreased by the knockdown of PTBP2. These results suggest that PTBP2 contributes to Prss42/Tessp-2 transcriptional activation by Tesra in spermatocytes. The finding provides a precious example of a molecular mechanism of testis lncRNA functioning in spermatogenesis.
Collapse
Affiliation(s)
- Josei Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yui Satoh
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan
| | - Takehiro Watanabe
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
12
|
Bose D, Banerjee N, Roy A, Sengupta P, Chatterjee S. Switchable tetraplex elements in the heterogeneous nuclear ribonucleoprotein K promoter: micro-environment dictated structural transitions of G/C rich elements. J Biomol Struct Dyn 2024:1-18. [PMID: 38235706 DOI: 10.1080/07391102.2024.2303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
We have elucidated the hnRNP K promoter as a hotspot for tetraplex-based molecular switches receptive to micro-environmental stimuli. We have characterised the structural features of four tetraplex-forming loci and identified them as binding sites of transcription factors. These segments form either G-quadruplex or i-motif structures, the structural dynamicity of which has been studied in depth via several biophysical techniques. The tetraplexes display high dynamicity and are influenced by both pH and KCl concentrations in vitro. The loci complementary to these sequences form additional non-canonical secondary structures. In the cellular context, the most eminent observation of this study is the binding of hnRNP K to the i-motif forming sequences in its own promoter. We are the first to report a probable transcriptional autoregulatory function of hnRNP K in coordination with higher-order DNA structures. Herein, we also report the positive interaction of the endogenous tetraplexes with Sp1, a well-known transcriptional regulator. Treatment with tetraplex-specific small molecule ligands further uncovered G-quadruplexes' functioning as repressors and i-motifs as activators in this context. Together, our findings strongly indicate the critical regulatory role of the identified tetraplex elements in the hnRNP K promoter.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Kemihuset (K), Campus, Umeå, Umeå universitet, Umeå, Sweden
| | | |
Collapse
|
13
|
Chen Y, Yang B, Zhang XM, Chen S, Wang M, Hu L, Pan N, Li S, Shi W, Yang Z, Wang L, Tan Y, Wang J, Wang Y, Xing Q, Ma Z, Li J, Huang HF, Zhang J, Xu C. Biallelic variants in RBM42 cause a multisystem disorder with neurological, facial, cardiac, and musculoskeletal involvement. Protein Cell 2024; 15:52-68. [PMID: 37294900 PMCID: PMC10762670 DOI: 10.1093/procel/pwad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/29/2023] [Indexed: 06/11/2023] Open
Abstract
Here, we report a previously unrecognized syndromic neurodevelopmental disorder associated with biallelic loss-of-function variants in the RBM42 gene. The patient is a 2-year-old female with severe central nervous system (CNS) abnormalities, hypotonia, hearing loss, congenital heart defects, and dysmorphic facial features. Familial whole-exome sequencing (WES) reveals that the patient has two compound heterozygous variants, c.304C>T (p.R102*) and c.1312G>A (p.A438T), in the RBM42 gene which encodes an integral component of splicing complex in the RNA-binding motif protein family. The p.A438T variant is in the RRM domain which impairs RBM42 protein stability in vivo. Additionally, p.A438T disrupts the interaction of RBM42 with hnRNP K, which is the causative gene for Au-Kline syndrome with overlapping disease characteristics seen in the index patient. The human R102* or A438T mutant protein failed to fully rescue the growth defects of RBM42 ortholog knockout ΔFgRbp1 in Fusarium while it was rescued by the wild-type (WT) human RBM42. A mouse model carrying Rbm42 compound heterozygous variants, c.280C>T (p.Q94*) and c.1306_1308delinsACA (p.A436T), demonstrated gross fetal developmental defects and most of the double mutant animals died by E13.5. RNA-seq data confirmed that Rbm42 was involved in neurological and myocardial functions with an essential role in alternative splicing (AS). Overall, we present clinical, genetic, and functional data to demonstrate that defects in RBM42 constitute the underlying etiology of a new neurodevelopmental disease which links the dysregulation of global AS to abnormal embryonic development.
Collapse
Affiliation(s)
- Yiyao Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Bingxin Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Xiaoyu Merlin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Songchang Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Minhui Wang
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nina Pan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shuyuan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Weihui Shi
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Zhenhua Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - Li Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Yajing Tan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Yanlin Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Children’s hospital of Fudan University, Shanghai 201102, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200011, China
| | - Jinglan Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Chenming Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
14
|
Abedeera SM, Davila-Calderon J, Haddad C, Henry B, King J, Penumutchu S, Tolbert BS. The Repurposing of Cellular Proteins during Enterovirus A71 Infection. Viruses 2023; 16:75. [PMID: 38257775 PMCID: PMC10821071 DOI: 10.3390/v16010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Viruses pose a great threat to people's lives. Enterovirus A71 (EV-A71) infects children and infants all over the world with no FDA-approved treatment to date. Understanding the basic mechanisms of viral processes aids in selecting more efficient drug targets and designing more effective antivirals to thwart this virus. The 5'-untranslated region (5'-UTR) of the viral RNA genome is composed of a cloverleaf structure and an internal ribosome entry site (IRES). Cellular proteins that bind to the cloverleaf structure regulate viral RNA synthesis, while those that bind to the IRES also known as IRES trans-acting factors (ITAFs) regulate viral translation. In this review, we survey the cellular proteins currently known to bind the 5'-UTR and influence viral gene expression with emphasis on comparing proteins' functions and localizations pre- and post-(EV-A71) infection. A comprehensive understanding of how the host cell's machinery is hijacked and reprogrammed by the virus to facilitate its replication is crucial for developing effective antivirals.
Collapse
Affiliation(s)
- Sudeshi M. Abedeera
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Jesse Davila-Calderon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Barrington Henry
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Josephine King
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Srinivasa Penumutchu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Blanton S. Tolbert
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
15
|
Chen K, Luo M, Lv Y, Luo Z, Yang H. Undervalued and novel roles of heterogeneous nuclear ribonucleoproteins in autoimmune diseases: Resurgence as potential biomarkers and targets. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1806. [PMID: 37365887 DOI: 10.1002/wrna.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Autoimmune diseases are mainly characterized by the abnormal autoreactivity due to the loss of tolerance to specific autoantigens, though multiple pathways associated with the homeostasis of immune responses are involved in initiating or aggravating the conditions. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a major category of RNA-binding proteins ubiquitously expressed in a multitude of cells and have attracted great attentions especially with their distinctive roles in nucleic acid metabolisms and the pathogenesis in diseases like neurodegenerative disorders and cancers. Nevertheless, the interplay between hnRNPs and autoimmune disorders has not been fully elucidated. Virtually various family members of hnRNPs are increasingly identified as immune players and are pertinent to all kinds of immune-related processes including immune system development and innate or adaptive immune responses. Specifically, hnRNPs have been extensively recognized as autoantigens within and even beyond a myriad of autoimmune diseases, yet their diagnostic and prognostic values are seemingly underestimated. Molecular mimicry, epitope spreading and bystander activation may represent major putative mechanisms underlying the presence of autoantibodies to hnRNPs. Besides, hnRNPs play critical parts in regulating linchpin genes expressions that control genetic susceptibility, disease-linked functional pathways, or immune responses by interacting with other components particularly like microRNAs and long non-coding RNAs, thereby contributing to inflammation and autoimmunity as well as specific disease phenotypes. Therefore, comprehensive unraveling of the roles of hnRNPs is conducive to establishing potential biomarkers and developing better intervention strategies by targeting these hnRNPs in the corresponding disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengchuan Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzhi Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Hu Y, Hao T, Yu H, Miao W, Zheng Y, Tao W, Zhuang J, Wang J, Fan Y, Jia S. lhCLIP reveals the in vivo RNA-RNA interactions recognized by hnRNPK. PLoS Genet 2023; 19:e1011006. [PMID: 37851698 PMCID: PMC10635571 DOI: 10.1371/journal.pgen.1011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/09/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
RNA-RNA interactions play a crucial role in regulating gene expression and various biological processes, but identifying these interactions on a transcriptomic scale remains a challenge. To address this, we have developed a new biochemical technique called pCp-biotin labelled RNA hybrid and ultraviolet crosslinking and immunoprecipitation (lhCLIP) that enables the transcriptome-wide identification of intra- and intermolecular RNA-RNA interactions mediated by a specific RNA-binding protein (RBP). Using lhCLIP, we have uncovered a diverse landscape of intermolecular RNA interactions recognized by hnRNPK in human cells, involving all major classes of noncoding RNAs (ncRNAs) and mRNA. Notably, hnRNPK selectively binds with snRNA U4, U11, and U12, and shapes the secondary structure of these snRNAs, which may impact RNA splicing. Our study demonstrates the potential of lhCLIP as a user-friendly and widely applicable method for discovering RNA-RNA interactions mediated by a particular protein of interest and provides a valuable tool for further investigating the role of RBPs in gene expression and biological processes.
Collapse
Affiliation(s)
- Yuanlang Hu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
- College of basic medical sciences, Three Gorges University, Yichang, People’s Republic of China
| | - Tao Hao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Hanwen Yu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Wenbin Miao
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Yi Zheng
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Weihua Tao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Jingshen Zhuang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Yujuan Fan
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Shiqi Jia
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, People’s Republic of China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, Guangzhou, People’s Republic of China
| |
Collapse
|
17
|
Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G, Mondola P. Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:1747. [PMID: 37760050 PMCID: PMC10525763 DOI: 10.3390/antiox12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Flavia Carriero
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| |
Collapse
|
18
|
Jin L, Li T, Hong Y, Mao R, Li X, Zhu C, Mu J, Zhou J, Pan L, Que Y, Xia Y, Zhang Y, Li S. Activation of NLRP2 in Triple-Negative Breast Cancer sensitizes chemotherapeutic therapy through facilitating hnRNPK function. Biochem Pharmacol 2023; 215:115703. [PMID: 37499769 DOI: 10.1016/j.bcp.2023.115703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor type 2 protein (NLRP2) was reported to inhibit NF-κB in response to inflammatory stimuli, but its role in tumors remains elusive. We screened out NLRP2 from mouse models of breast cancer metastasis. Bioinformatics analysis showed NLRP2 expression was positively correlated with survival rate and negatively correlated with the potential of cancer metastasis. Its significance in Triple-Negative Breast Cancer (TNBC) was investigated by gain- and loss-of-function studies in vivo and vitro. Re-expression of NLRP2 dramatically inhibited the growth and metastasis of the xenograft model of MDA-MB-231 cells. Mechanically, NLRP2 confined hnRNPK within cytoplasm, which in turn blocked vimentin mRNA production. Not only that, NLRP2 further enhanced the H2O2-induced high level of p53&Bax and hence dramatically increased the apoptosis rate (fivefold). Likewise, carboplatin-treated cells showed decreased cell viability, suggesting that patients of TNBC with high level of NLRP2 respond well to chemotherapeutics. Under the stimulus of H2O2, NLRP2-hnRNPK no longer stayed in the cytoplasm, but entered the nucleus to increase the expression of p53 and hence enhanced corresponding apoptosis effect, increasing Bax expression. It suggested that NLRP2 helps p53 enter the nucleus to induce apoptosis. This study revealed a novel function of NLRP2 that modulated oncogenic and anti-oncogenic characteristics of hnRNPK, and provided a new biomarker for TNBC chemotherapy.
Collapse
Affiliation(s)
- Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China.
| | - Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yali Hong
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Rongchen Mao
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Junyu Mu
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yidong Xia
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yuheng Zhang
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China.
| |
Collapse
|
19
|
Fallatah A, Anastasakis DG, Manzourolajdad A, Sharma P, Wang X, Jacob A, Alsharif S, Elgerbi A, Coulombe PA, Hafner M, Chung BM. Keratin 19 binds and regulates cytoplasmic HNRNPK mRNA targets in triple-negative breast cancer. BMC Mol Cell Biol 2023; 24:26. [PMID: 37592256 PMCID: PMC10433649 DOI: 10.1186/s12860-023-00488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoprotein K (HNRNPK) regulates pre-mRNA processing and long non-coding RNA localization in the nucleus. It was previously shown that shuttling of HNRNPK to the cytoplasm promotes cell proliferation and cancer metastasis. However, the mechanism of HNRNPK cytoplasmic localization, its cytoplasmic RNA ligands, and impact on post-transcriptional gene regulation remain uncharacterized. RESULTS Here we show that the intermediate filament protein Keratin 19 (K19) directly interacts with HNRNPK and sequesters it in the cytoplasm. Correspondingly, in K19 knockout breast cancer cells, HNRNPK does not localize in the cytoplasm, resulting in reduced cell proliferation. We comprehensively mapped HNRNPK binding sites on mRNAs and showed that, in the cytoplasm, K19-mediated HNRNPK-retention increases the abundance of target mRNAs bound to the 3' untranslated region (3'UTR) at the expected cytidine-rich (C-rich) sequence elements. Furthermore, these mRNAs protected by HNRNPK in the cytoplasm are typically involved in cancer progression and include the p53 signaling pathway that is dysregulated upon HNRNPK knockdown (HNRNPK KD) or K19 knockout (KRT19 KO). CONCLUSIONS This study identifies how a cytoskeletal protein can directly regulate gene expression by controlling the subcellular localization of RNA-binding proteins to support pathways involved in cancer progression.
Collapse
Affiliation(s)
- Arwa Fallatah
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Dimitrios G Anastasakis
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Amirhossein Manzourolajdad
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
- Department of Computer Science, Colgate University, Hamilton, NY, United States of America
| | - Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Xiantao Wang
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Alexis Jacob
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Sarah Alsharif
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Ahmed Elgerbi
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America.
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC, United States of America.
| |
Collapse
|
20
|
Jiang X, Gatt A, Lashley T. HnRNP Pathologies in Frontotemporal Lobar Degeneration. Cells 2023; 12:1633. [PMID: 37371103 DOI: 10.3390/cells12121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second most common form of young-onset (<65 years) dementia. Clinically, it primarily manifests as a disorder of behavioural, executive, and/or language functions. Pathologically, frontotemporal lobar degeneration (FTLD) is the predominant cause of FTD. FTLD is a proteinopathy, and the main pathological proteins identified so far are tau, TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS). As TDP-43 and FUS are members of the heterogeneous ribonucleic acid protein (hnRNP) family, many studies in recent years have expanded the research on the relationship between other hnRNPs and FTLD pathology. Indeed, these studies provide evidence for an association between hnRNP abnormalities and FTLD. In particular, several studies have shown that multiple hnRNPs may exhibit nuclear depletion and cytoplasmic mislocalisation within neurons in FTLD cases. However, due to the diversity and complex association of hnRNPs, most studies are still at the stage of histological discovery of different hnRNP abnormalities in FTLD. We herein review the latest studies relating hnRNPs to FTLD. Together, these studies outline an important role of multiple hnRNPs in the pathogenesis of FTLD and suggest that future research into FTLD should include the whole spectrum of this protein family.
Collapse
Affiliation(s)
- Xinwa Jiang
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ariana Gatt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
21
|
Amara U, Hu J, Cai J, Kang H. FLK is an mRNA m 6A reader that regulates floral transition by modulating the stability and splicing of FLC in Arabidopsis. MOLECULAR PLANT 2023; 16:919-929. [PMID: 37050878 DOI: 10.1016/j.molp.2023.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
N6-methyladenosine (m6A), which is added, removed, and interpreted by m6A writers, erasers, and readers, respectively, is the most abundant modification in eukaryotic mRNAs. The m6A marks play a pivotal role in the regulation of floral transition in plants. FLOWERING LOCUS K (FLK), an RNA-binding protein harboring K-homology (KH) motifs, is known to regulate floral transition by repressing the levels of a key floral repressor FLOWERING LOCUS C (FLC) in Arabidopsis. However, the molecular mechanism underlying FLK-mediated FLC regulation remains unclear. In this study, we identified FLK as a novel mRNA m6A reader protein that directly binds the m6A site in the 3'-untranslated region of FLC transcripts to repressing FLC levels by reducing its stability and splicing. Importantly, FLK binding of FLC transcripts was abolished in vir-1, an m6A writer mutant, and the late-flowering phenotype of the flk mutant could not be rescued by genetic complementation using the mutant FLKm gene, in which the m6A reader encoding function was eliminated, indicating that FLK binds and regulates FLC expression in an m6A-dependent manner. Collectively, our study has addressed a long-standing question of how FLK regulates FLC transcript levels and established a molecular link between the FLK-mediated recognition of m6A modifications on FLC transcripts and floral transition in Arabidopsis.
Collapse
Affiliation(s)
- Umme Amara
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Jianzhong Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
22
|
Su Y, Guo Y, Guo J, Zeng T, Wang T, Liu W. Study of FOXO1-interacting proteins using TurboID-based proximity labeling technology. BMC Genomics 2023; 24:146. [PMID: 36964488 PMCID: PMC10039511 DOI: 10.1186/s12864-023-09238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Protein‒protein interactions (PPIs) are the foundation of the life activities of cells. TurboID is a biotin ligase with higher catalytic efficiency than BioID or APEX that reduces the required labeling time from 18 h to 10 min. Since many proteins participate in binding and catalytic events that are very short-lived, it is theoretically possible to find relatively novel binding proteins using the TurboID technique. Cell proliferation, apoptosis, autophagy, oxidative stress and metabolic disorders underlie many diseases, and forkhead box transcription factor 1 (FOXO1) plays a key role in these physiological and pathological processes. RESULTS The FOXO1-TurboID fusion gene was transfected into U251 astrocytes, and a cell line stably expressing FOXO1 was constructed. While constructing the FOXO1 overexpression plasmid, we also added the gene sequence of TurboID to perform biotin labeling experiments in the successfully fabricated cell line to look for FOXO1 reciprocal proteins. Label-free mass spectrometry analysis was performed, and 325 interacting proteins were found. A total of 176 proteins were identified in the FOXO1 overexpression group, and 227 proteins were identified in the Lipopolysaccharide -treated group (Lipopolysaccharide, LPS). Wild-type U251 cells were used to exclude interference from nonspecific binding. The FOXO1-interacting proteins hnRNPK and RBM14 were selected for immunoprecipitation and immunofluorescence verification. CONCLUSION The TurboID technique was used to select the FOXO1-interacting proteins, and after removing the proteins identified in the blank group, a large number of interacting proteins were found in both positive groups. This study lays a foundation for further study of the function of FOXO1 and the regulatory network in which it is involved.
Collapse
Affiliation(s)
- Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Yuanyuan Guo
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Jieyu Guo
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Ting Zeng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Ting Wang
- Department of Pediatric Neurology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430000, China.
| | - Wu Liu
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China.
| |
Collapse
|
23
|
Luo X, Zhang J, Gao Y, Pan W, Yang Y, Li X, Chen L, Wang C, Wang Y. Emerging roles of i-motif in gene expression and disease treatment. Front Pharmacol 2023; 14:1136251. [PMID: 37021044 PMCID: PMC10067743 DOI: 10.3389/fphar.2023.1136251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
As non-canonical nucleic acid secondary structures consisting of cytosine-rich nucleic acids, i-motifs can form under certain conditions. Several i-motif sequences have been identified in the human genome and play important roles in biological regulatory functions. Due to their physicochemical properties, these i-motif structures have attracted attention and are new targets for drug development. Herein, we reviewed the characteristics and mechanisms of i-motifs located in gene promoters (including c-myc, Bcl-2, VEGF, and telomeres), summarized various small molecule ligands that interact with them, and the possible binding modes between ligands and i-motifs, and described their effects on gene expression. Furthermore, we discussed diseases closely associated with i-motifs. Among these, cancer is closely associated with i-motifs since i-motifs can form in some regions of most oncogenes. Finally, we introduced recent advances in the applications of i-motifs in multiple areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang Wang
- *Correspondence: Chang Wang, ; Yuqing Wang,
| | | |
Collapse
|
24
|
Li D, Guo J, Jia R. Epigenetic Control of Cancer Cell Proliferation and Cell Cycle Progression by HNRNPK via Promoting Exon 4 Inclusion of Histone Code Reader SPIN1. J Mol Biol 2023; 435:167993. [PMID: 36736887 DOI: 10.1016/j.jmb.2023.167993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (HNRNPK, hnRNP K), a multifunctional RNA/DNA binding protein, mainly regulates transcription, translation and RNA splicing, and then plays oncogenic roles in many cancers. However, the related mechanisms remain largely unknown. Here, we found that HNRNPK can partially epigenetically regulate cancer cell proliferation via increasing transcription and exon 4-inclusion of SPIN1, an important oncogenic histone code reader. This exon 4 skipping event of SPIN1 generates a long non-coding RNA, followed by the downregulation of SPIN1 protein. SPIN1 is one of the most significantly co-expressed genes of HNRNPK in thirteen TCGA cancers. Our further studies revealed HNRNPK knockdown significantly inhibited cell growth and cell cycle progression in oral squamous cell carcinoma (OSCC) cells and promoted cell apoptosis. Overexpression of SPIN1 was able to partially rescue the growth inhibition triggered by HNRNPK knockdown. Moreover, CCND1 (Cyclin D1), a key cell cycle regulator and oncogene, epigenetically up-regulated by SPIN1, was also positively regulated by HNRNPK. In addition, we discovered that HNRNPK promoted SPIN1 exon 4 inclusion by interacting with an intronic splicing enhancer in intron 4. Collectively, our study suggests a novel epigenetic regulatory pathway of HNRNPK in OSCC, mediated by controlling the transcription activity and alternative splicing of SPIN1 gene.
Collapse
Affiliation(s)
- Di Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
25
|
Lyu Y, Song L, Mao R, Liu C, Feng M, Wu C, Pei R, Ding L, Wang J. hnRNP K induces HPV16 oncogene expression and promotes cervical cancerization. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04585-6. [PMID: 36700980 DOI: 10.1007/s00432-023-04585-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE This study aims to explore the expression of hnRNP K in cervical carcinogenesis and to investigate the regulatory role of hnRNP K on HPV16 oncogene expression as well as biological changes in cervical cancer cells. METHODS In total 1042 subjects, including 573 with the normal cervix and 469 with different grades of cervical lesions were enrolled in this study to explore the association between hnRNP K and HPV16 oncogene expression in cervical carcinogenesis. Additionally, the Gene Omnibus (GEO) database was used to analyze hnRNP K mRNA expression in cervical cancerization. Meanwhile, the effects of hnRNP K on cell biological functions and HPV16 oncogene expression were investigated in Siha cells. Moreover, Function analyses were conducted using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases after ChIP-seq. RESULTS hnRNP K was highly expressed in cervical cancer and precancerous lesions, and positively correlated with HPV16 E6, but negatively correlated with HPV16 E2 and HPV16 E2/E6 ratio. hnRNP K induced cell proliferation, inhibited apoptosis and caused cell cycle arrest in the S phase, and particularly increased HPV16 E6 protein expression. CONCLUSION This study revealed that hnRNP K overexpression has important warning significance for the malignant transformation of cervical lesions, and could be used as a potential therapeutic target for inhibiting the carcinogenicity of HPV16 and prevention of cervical carcinogenesis.
Collapse
Affiliation(s)
- Yuanjing Lyu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Li Song
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Rui Mao
- Questrom School of Business, Boston University, Boston, MA, USA
| | - Chunliang Liu
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Meijuan Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Caihong Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ruixin Pei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ling Ding
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
26
|
Palo A, Patel SA, Sahoo B, Chowdary TK, Dixit M. FRG1 is a direct transcriptional regulator of nonsense-mediated mRNA decay genes. Genomics 2023; 115:110539. [PMID: 36521634 DOI: 10.1016/j.ygeno.2022.110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
FRG1 is the primary candidate gene for Fascioscapulohumeral Muscular Dystrophy. So far, its role has been reported in muscle development, vasculogenesis, angiogenesis, and tumorigenesis. Mechanistically studies suggest FRG1's role in RNA biogenesis which may have implications in multiple physiological processes and diseases, including tumorigenesis. Its probable role as hnRNP and association with NMD-related genes prompted us to look into FRG1's effect on NMD gene expression and the mechanism. Using microarray profiling in cell lines, we found that FRG1 altered the mRNA surveillance pathway and associated pathways, such as RNA transport and spliceosome machinery molecules. Multiple sequence alignment of core factors, namely, UPF1, UPF3B, and SMG1, showed conserved stretches of nucleotide sequence 'CTGGG'. Structural modeling followed by EMSA, ChIP-qPCR, and luciferase reporter assays showed 'CTGGG' as a FRG1 binding site. Analysis of the publicly available datasets showed that the expression of FRG1 correlates with NMD genes in different tissue types. We validated the effect of FRG1 on NMD gene transcription by qRT-PCR. Overall, FRG1 might be a transcriptional regulator of NMD genes.
Collapse
Affiliation(s)
- Ananya Palo
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saket Awadhesbhai Patel
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Bibekananda Sahoo
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Tirumala Kumar Chowdary
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Manjusha Dixit
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
27
|
Wang Z, Chen J, Sun F, Zhao X, Dong Y, Yu S, Li J, Liang H. LncRNA CRLM1 inhibits apoptosis and promotes metastasis through transcriptional regulation cooperated with hnRNPK in colorectal cancer. Cell Biosci 2022; 12:120. [PMID: 35907898 PMCID: PMC9338583 DOI: 10.1186/s13578-022-00849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal liver metastases (CRLM) continue to have a low survival rate. The number of CRLM regulators and clinical indicators remains limited. Long non-coding RNAs (lncRNAs) are a new master regulator of cell invasion and metastasis. However, the function and regulation mechanism of lncRNAs in colorectal cancer (CRC) metastasis are yet unknown. Methods To screen and identify CRLM-related lncRNAs, public transcriptome data were used. Gain and loss of function experiments were carried out to investigate the biological activities of lncRNA CRLM1 in vitro and in vivo. RNA sequencing (RNA-seq), chromatin isolation by RNA purification (ChIRP), immunofluorescence (IF), quantitative real-time PCR (qRT-PCR), western blotting, and rescue experiments were performed to explore the molecular mechanism of CRLM1. Moreover, identified the proteins, DNAs, and RNAs that interact with CRLM1. Results The investigation of lncRNA expression dynamics in CRLM, primary CRC, and normal tissues in this work resulted in identifying a series of lncRNAs associated with metastasis, including CRLM1. CRLM1 inhibited apoptosis of CRC cells and promoted liver metastasis in Balb/C nude mice. CRLM1 was weakly associated with the chromatin regions of genes involved in cell adhesion and DNA damage, and this association was bidirectionally correlated with CRLM1-regulated pro-metastatic gene expression. CRLM1 physically interacts with the hnRNPK protein and promotes its nuclear localization. CRLM1 effectively enhances hnRNPK promoter occupancy and co-regulates the expression of a panel of metastatic genes. Conclusions The finding of the clinically significant lncRNA CRLM1 in promoting metastasis and regulating gene expression suggests a potential biomarker and target for CRLM therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00849-9.
Collapse
|
28
|
hnRNP K Degrades Viral Nucleocapsid Protein and Induces Type I IFN Production to Inhibit Porcine Epidemic Diarrhea Virus Replication. J Virol 2022; 96:e0155522. [PMID: 36317879 PMCID: PMC9682996 DOI: 10.1128/jvi.01555-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. This study shows that heterogeneous nuclear ribonucleoprotein K (hnRNP K), the host protein determined by the transcription factor KLF15, inhibits the replication of PEDV by degrading the nucleocapsid (N) protein of PEDV in accordance with selective autophagy. hnRNP K was found to be capable of recruiting the E3 ubiquitin ligase, MARCH8, aiming to ubiquitinate N protein. Then, it was found that the ubiquitinated N protein could be delivered into autolysosomes for degradation by the cargo receptor NDP52, thereby inhibiting PEDV proliferation. Moreover, based on the enhanced MyD88 expression, we found that hnRNP K activated the interferon 1 (IFN-1) signaling pathway. Overall, the data obtained revealed a new mechanism of hnRNP K-mediated virus restriction wherein hnRNP K suppressed PEDV replication by degradation of viral N protein using the autophagic degradation pathway and by induction of IFN-1 production based on upregulation of MyD88 expression. IMPORTANCE The spread of the highly virulent PEDV in many countries is still leading to several epidemic and endemic outbreaks. To elucidate effective antiviral mechanisms, it is important to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. In the work, we detected hnRNP K as a new host restriction factor which can hinder PEDV replication through degrading the nucleocapsid protein based on E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. In addition, via the upregulation of MyD88 expression, hnRNP K could also activate the interferon (IFN) signaling pathway. This study describes a previously unknown antiviral function of hnRNP K and offers a new vision toward host antiviral factors that regulate innate immune response as well as a protein degradation pathway against PEDV infection.
Collapse
|
29
|
Wang J, Sun D, Wang M, Cheng A, Zhu Y, Mao S, Ou X, Zhao X, Huang J, Gao Q, Zhang S, Yang Q, Wu Y, Zhu D, Jia R, Chen S, Liu M. Multiple functions of heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle. Front Immunol 2022; 13:989298. [PMID: 36119073 PMCID: PMC9478383 DOI: 10.3389/fimmu.2022.989298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that are implicated in RNA metabolism, such as alternative splicing, mRNA stabilization and translational regulation. According to their different cellular localization, hnRNPs display multiple functions. Most hnRNPs were predominantly located in the nucleus, but some of them could redistribute to the cytoplasm during virus infection. HnRNPs consist of different domains and motifs that enable these proteins to recognize predetermined nucleotide sequences. In the virus-host interactions, hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-hnRNP interactions require the viral RNA or other host factors as the intermediate. Through various mechanisms, hnRNPs could regulate viral translation, viral genome replication, the switch of translation to replication and virion release. This review highlights the common features and the distinguish roles of hnRNPs in the life cycle of positive single-stranded RNA viruses.
Collapse
Affiliation(s)
- Jingming Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- *Correspondence: Anchun Cheng,
| | - Yukun Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
30
|
Braems E, Bercier V, Van Schoor E, Heeren K, Beckers J, Fumagalli L, Dedeene L, Moisse M, Geudens I, Hersmus N, Mehta AR, Selvaraj BT, Chandran S, Ho R, Thal DR, Van Damme P, Swinnen B, Van Den Bosch L. HNRNPK alleviates RNA toxicity by counteracting DNA damage in C9orf72 ALS. Acta Neuropathol 2022; 144:465-488. [PMID: 35895140 PMCID: PMC9381635 DOI: 10.1007/s00401-022-02471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
A 'GGGGCC' repeat expansion in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The exact mechanism resulting in these neurodegenerative diseases remains elusive, but C9 repeat RNA toxicity has been implicated as a gain-of-function mechanism. Our aim was to use a zebrafish model for C9orf72 RNA toxicity to identify modifiers of the ALS-linked phenotype. We discovered that the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (HNRNPK) reverses the toxicity of both sense and antisense repeat RNA, which is dependent on its subcellular localization and RNA recognition, and not on C9orf72 repeat RNA binding. We observed HNRNPK cytoplasmic mislocalization in C9orf72 ALS patient fibroblasts, induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem motor cortex and spinal cord, in line with a disrupted HNRNPK function in C9orf72 ALS. In C9orf72 ALS/FTD patient tissue, we discovered an increased nuclear translocation, but reduced expression of ribonucleotide reductase regulatory subunit M2 (RRM2), a downstream target of HNRNPK involved in the DNA damage response. Last but not least, we showed that increasing the expression of HNRNPK or RRM2 was sufficient to mitigate DNA damage in our C9orf72 RNA toxicity zebrafish model. Overall, our study strengthens the relevance of RNA toxicity as a pathogenic mechanism in C9orf72 ALS and demonstrates its link with an aberrant DNA damage response, opening novel therapeutic avenues for C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Elke Braems
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| | - Evelien Van Schoor
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
| | - Kara Heeren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Lieselot Dedeene
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Ilse Geudens
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Nicole Hersmus
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Arpan R Mehta
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ritchie Ho
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
31
|
The Role of RNA-Binding Proteins in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23179552. [PMID: 36076951 PMCID: PMC9455611 DOI: 10.3390/ijms23179552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hematological malignancies comprise a plethora of different neoplasms, such as leukemia, lymphoma, and myeloma, plus a myriad of dysplasia, such as myelodysplastic syndromes or anemias. Despite all the advances in patient care and the development of new therapies, some of these malignancies remain incurable, mainly due to resistance and refractoriness to treatment. Therefore, there is an unmet clinical need to identify new biomarkers and potential therapeutic targets that play a role in treatment resistance and contribute to the poor outcomes of these tumors. RNA-binding proteins (RBPs) are a diverse class of proteins that interact with transcripts and noncoding RNAs and are involved in every step of the post-transcriptional processing of transcripts. Dysregulation of RBPs has been associated with the development of hematological malignancies, making them potential valuable biomarkers and potential therapeutic targets. Although a number of dysregulated RBPs have been identified in hematological malignancies, there is a critical need to understand the biology underlying their contribution to pathology, such as the spatiotemporal context and molecular mechanisms involved. In this review, we emphasize the importance of deciphering the regulatory mechanisms of RBPs to pinpoint novel therapeutic targets that could drive or contribute to hematological malignancy biology.
Collapse
|
32
|
Song J, Quan R, Wang D, Liu J. Seneca Valley Virus 3C pro Cleaves Heterogeneous Nuclear Ribonucleoprotein K to Facilitate Viral Replication. Front Microbiol 2022; 13:945443. [PMID: 35875542 PMCID: PMC9298500 DOI: 10.3389/fmicb.2022.945443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 02/03/2023] Open
Abstract
Seneca Valley virus (SVV) has emerged as an important pathogen that is associated with idiopathic vesicular infection in pigs, causing a potential threat to the global swine industry. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) that shuttles between the nucleus and cytoplasm plays an important role in viral infection. In this study, we observed that infection with SVV induced cleavage, degradation, and cytoplasmic redistribution of hnRNP K in cultured cells, which was dependent on the activity of viral 3Cpro protease. Also, the 3Cpro induced degradation of hnRNP K via the caspase pathway. Further studies demonstrated that SVV 3Cpro cleaved hnRNP K at residue Q364, and the expression of the cleavage fragment hnRNP K (aa.365–464) facilitates viral replication, which is similar to full-length hnRNP K, whereas hnRNP K (aa.1–364) inhibits viral replication. Additionally, hnRNP K interacts with the viral 5′ untranslated region (UTR), and small interfering RNA (siRNA)-mediated knockdown of hnRNP K results in significant inhibition of SVV replication. Overall, our results demonstrated that the hnRNP K positively regulates SVV replication in a protease activity-dependent fashion in which the cleaved C-terminal contributes crucially to the upregulation of SVV replication. This finding of the role of hnRNP K in promoting SVV propagation provides a novel antiviral strategy to utilize hnRNP K as a potential target for therapy.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Yang Q, Wang W. The Nuclear Translocation of Heme Oxygenase-1 in Human Diseases. Front Cell Dev Biol 2022; 10:890186. [PMID: 35846361 PMCID: PMC9277552 DOI: 10.3389/fcell.2022.890186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/10/2022] [Indexed: 12/30/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is a rate-limiting enzyme in the degradation of heme to generate carbon monoxide (CO), free iron and biliverdin, which could then be converted to bilirubin by biliverdin reductase. HO-1 exhibits cytoprotective effects of anti-apoptosis, anti-oxidation, and anti-inflammation via these byproducts generated during the above process. In the last few years, despite the canonical function of HO-1 and possible biological significance of its byproducts, a noncanonical function, through which HO-1 exhibits functions in diseases independent of its enzyme activity, also has been reported. In this review, the noncanonical functions of HO-1 and its translocation in other subcellular compartments are summarized. More importantly, we emphasize the critical role of HO-1 nuclear translocation in human diseases. Intriguingly, this translocation was linked to tumorigenesis and tumor progression in lung, prostate, head, and neck squamous cell carcinomas and chronic myeloid leukemia. Given the importance of HO-1 nuclear translocation in human diseases, nuclear HO-1 as a novel target might be attractive for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Qing Yang
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Plastic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wenqian Wang,
| |
Collapse
|
34
|
D’Souza MH, Mrozowich T, Badmalia MD, Geeraert M, Frederickson A, Henrickson A, Demeler B, Wolfinger M, Patel T. Biophysical characterisation of human LincRNA-p21 sense and antisense Alu inverted repeats. Nucleic Acids Res 2022; 50:5881-5898. [PMID: 35639511 PMCID: PMC9177966 DOI: 10.1093/nar/gkac414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
Human Long Intergenic Noncoding RNA-p21 (LincRNA-p21) is a regulatory noncoding RNA that plays an important role in promoting apoptosis. LincRNA-p21 is also critical in down-regulating many p53 target genes through its interaction with a p53 repressive complex. The interaction between LincRNA-p21 and the repressive complex is likely dependent on the RNA tertiary structure. Previous studies have determined the two-dimensional secondary structures of the sense and antisense human LincRNA-p21 AluSx1 IRs using SHAPE. However, there were no insights into its three-dimensional structure. Therefore, we in vitro transcribed the sense and antisense regions of LincRNA-p21 AluSx1 Inverted Repeats (IRs) and performed analytical ultracentrifugation, size exclusion chromatography, light scattering, and small angle X-ray scattering (SAXS) studies. Based on these studies, we determined low-resolution, three-dimensional structures of sense and antisense LincRNA-p21. By adapting previously known two-dimensional information, we calculated their sense and antisense high-resolution models and determined that they agree with the low-resolution structures determined using SAXS. Thus, our integrated approach provides insights into the structure of LincRNA-p21 Alu IRs. Our study also offers a viable pipeline for combining the secondary structure information with biophysical and computational studies to obtain high-resolution atomistic models for long noncoding RNAs.
Collapse
Affiliation(s)
- Michael H D’Souza
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Tyler Mrozowich
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Maulik D Badmalia
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Mitchell Geeraert
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Angela Frederickson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
- NorthWest Biophysics Consortium, University of Lethbridge, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Michael T Wolfinger
- Bioinformatics and Computational Biology, Faculty of Computer Science, Währingerstrasse 29, 1090 Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090 Vienna, Austria
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
35
|
Zhang N, Ashizawa T. Mechanistic and Therapeutic Insights into Ataxic Disorders with Pentanucleotide Expansions. Cells 2022; 11:1567. [PMID: 35563872 PMCID: PMC9099484 DOI: 10.3390/cells11091567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pentanucleotide expansion diseases constitute a special class of neurodegeneration. The repeat expansions occur in non-coding regions, have likely arisen from Alu elements, and often result in autosomal dominant or recessive phenotypes with underlying cerebellar neuropathology. When transcribed (potentially bidirectionally), the expanded RNA forms complex secondary and tertiary structures that can give rise to RNA-mediated toxicity, including protein sequestration, pentapeptide synthesis, and mRNA dysregulation. Since several of these diseases have recently been discovered, our understanding of their pathological mechanisms is limited, and their therapeutic interventions underexplored. This review aims to highlight new in vitro and in vivo insights into these incurable diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA;
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA;
| |
Collapse
|
36
|
Taghavi A, Yildirim I. Computational Investigation of Bending Properties of RNA AUUCU, CCUG, CAG, and CUG Repeat Expansions Associated With Neuromuscular Disorders. Front Mol Biosci 2022; 9:830161. [PMID: 35480881 PMCID: PMC9037632 DOI: 10.3389/fmolb.2022.830161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/09/2022] [Indexed: 12/26/2022] Open
Abstract
Expansions of RNA AUUCU, CCUG, CAG, and CUG repeats cause spinocerebellar ataxia type 10, myotonic dystrophy type 2, Huntington’s disease, and myotonic dystrophy type 1, respectively. By performing extensive molecular dynamic simulations, we investigated the bending propensities and conformational landscapes adopted by 3×3, 2×2, and 1×1 internal loops observed in RNA AUUCU, CCUG, CAG, and CUG repeat expansions using model systems having biologically relevant repeat sizes. We show that the conformational variability experienced by these loops is more complex than previous reports where a variety of unconventional hydrogen bonds are formed. At the global scale, strong bending propensity was observed in r(AUUCU)10, r(CCUG)15, r(CAG)20, and r(CUG)20, and, to a lesser extent, in r(AUUCU)4, r(CCUG)10, r(CAG)10, and r(CUG)10. Furthermore, RNA CAG repeats exhibit a tendency toward bent states with more than 50% of observed conformations having bending angles greater than 50°, while RNA CUG repeats display relatively linear-like conformations with extremely bent conformations accounting for less than 25% of the observed structures. Conformations experienced by RNA AUUCU repeats are a combination of strongly bent and kinked structures. The bent states in RNA CCUG repeats mostly fall into the moderately bent category with a marginal ensemble experiencing extreme bending. The general pattern observed in all the bent structures indicates the collapse of the major groove width as the mechanical trigger for bending, which is caused by alteration of base pair step parameters at multiple locations along the RNA due to local distortions at the loop sites. Overextension is also observed in all the RNA repeats that is attributed to widening of the major groove width as well as undertwisting phenomenon. This information and the rich structural repository could be applied for structure based small molecule design targeting disease-causing RNAs. The bending propensities of these constructs, at the global level, could also have implications on how expanded RNA repeats interact with proteins.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL, United States
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, United States
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL, United States
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, United States
- *Correspondence: Ilyas Yildirim,
| |
Collapse
|
37
|
Liu J, Li Z, Zhang T, Wang C, Chen W, Zhang D, Wang J. Long Noncoding RNA LINC00941 Promotes Cell Proliferation and Invasion by Interacting with hnRNPK in Oral Squamous Cell Carcinoma. Nutr Cancer 2022; 74:2983-2995. [PMID: 35037538 DOI: 10.1080/01635581.2022.2027473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent carcinoma of the head, neck and mouth. Recently studies involving the role of long noncoding RNAs (lncRNAs) that play key regulatory roles in altering gene expression has been reported in the context of promoting tumorigenesis. However, the functions of lncRNAs in the context of oral squamous cell carcinoma have not been extensively described. In this study, we report a never identified before lncRNA, LINC00941, which was highly expressed in OSCC tissues and cells. Expression of LINC00941 promoted cell proliferation, migration, invasion, and metastasis of OSCC cells In Vitro by inducing epithelial-mesenchymal transition (EMT) and activating the Wnt/β-catenin signaling cascade. In silico analyses revealed heterogeneous nuclear ribonucleoprotein K (hnRNPK) to be a strong positive regulator of LINC00941 activity. Experimental verification of this association revealed a direct interaction of LINC00941 and hnRNPK to induce cell growth and invasion by activating EMT in OSCC cells. Therefore, our study reports that LINC00941 promotes progression of OSCC by its interaction with hnRNPK, and it may present a promising strategy for diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral Surgery, Liaocheng People's Hospital, LiaoCheng, Shandong, China.,Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhenxing Li
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ting Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chunhui Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Zhao H, Wei Z, Shen G, Chen Y, Hao X, Li S, Wang R. Poly(rC)-binding proteins as pleiotropic regulators in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:1045797. [PMID: 36452487 PMCID: PMC9701828 DOI: 10.3389/fonc.2022.1045797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(rC)-binding proteins (PCBPs), a defined subfamily of RNA binding proteins, are characterized by their high affinity and sequence-specific interaction with poly-cytosine (poly-C). The PCBP family comprises five members, including hnRNP K and PCBP1-4. These proteins share a relatively similar structure motif, with triple hnRNP K homology (KH) domains responsible for recognizing and combining C-rich regions of mRNA and single- and double-stranded DNA. Numerous studies have indicated that PCBPs play a prominent role in hematopoietic cell growth, differentiation, and tumorigenesis at multiple levels of regulation. Herein, we summarized the currently available literature regarding the structural and functional divergence of various PCBP family members. Furthermore, we focused on their roles in normal hematopoiesis, particularly in erythropoiesis. More importantly, we also discussed and highlighted their involvement in carcinogenesis, including leukemia and lymphoma, aiming to clarify the pleiotropic roles and molecular mechanisms in the hematopoietic compartment.
Collapse
Affiliation(s)
- Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Rong Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
Myoparr-Associated and -Independent Multiple Roles of Heterogeneous Nuclear Ribonucleoprotein K during Skeletal Muscle Cell Differentiation. Int J Mol Sci 2021; 23:ijms23010108. [PMID: 35008534 PMCID: PMC8744952 DOI: 10.3390/ijms23010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of heterogeneous nuclear ribonucleoprotein K (hnRNPK) for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level. The hnRNPK-binding region of Myoparr was required to repress myogenin expression. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays lncRNA-associated and -independent multiple roles during myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.
Collapse
|
40
|
Natarajan K, Sundaramoorthy A, Shanmugam N. HnRNPK and lysine specific histone demethylase-1 regulates IP-10 mRNA stability in monocytes. Eur J Pharmacol 2021; 920:174683. [PMID: 34914972 DOI: 10.1016/j.ejphar.2021.174683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Altered mRNA metabolism is a feature of many inflammatory diseases. Post transcriptional regulation of interferon-γ-inducible protein (IP)-10 has been uncharacterized in diabetes conditions. RNA-affinity capture method and RNA immuno-precipitation revealed S100b treatment increased the binding of heterogeneous nuclear ribonucleoprotein (hnRNP)K to the IP-10 3'UTR and increased IP-10 mRNA accumulation. Luciferase activity assay using reporter plasmids showed involvement of IP-10 3'UTR. Knocking down of hnRNPK destabilized S100b induced IP-10 mRNA accumulation. S100b promoted the translocation of hnRNPK from nucleus to the cytoplasm and this was confirmed by phosphomimetic S284/353D mutant and non-phosphatable S284/353A hnRNPK mutant. S100b treatment demethylates hnRNPK at Lys219 by Lysine Specific Demethylase (LSD)-1. HnRNPKK219I, a demethylation defective mutant increased IP-10 mRNA stability. Apparently, triple mutant hnRNPKK219I/S284D/353D promoted IP-10 mRNA stability. Interestingly, knocking down LSD-1 abolished S100b induced IP-10 mRNA accumulation. These observations show for the first time that IP-10 mRNA stability is dynamically regulated by Lysine demethylation of hnRNPK by LSD-1. These results indicate that hnRNPK plays an important role in IP-10 mRNA stability induced by S100b which could exacerbate monocyte activation, relevant to the pathogenesis of diabetic complications like atherosclerosis.
Collapse
Affiliation(s)
- Kartiga Natarajan
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Arun Sundaramoorthy
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - Narkunaraja Shanmugam
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| |
Collapse
|
41
|
Puvvula PK, Buczkowski S, Moon AM. hnRNPK-derived cell-penetrating peptide inhibits cancer cell survival. Mol Ther Oncolytics 2021; 23:342-354. [PMID: 34820504 PMCID: PMC8586514 DOI: 10.1016/j.omto.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
hnRNPK is a multifunctional protein that plays an important role in cancer cell proliferation and metastasis via its RNA- and DNA-binding properties. Previously we showed that cell-penetrating peptides derived from the RGG RNA-binding domain of SAFA (hnRNPU) disrupt cancer cell proliferation and survival. Here we explore the efficacy of a peptide derived from the RGG domain of hnRNPK. This peptide acts in a dominant-negative manner on several hnRNPK functions to induce death of multiple types of cancer cells. The peptide phenocopies the effect of hnRNPK knockdown on its mRNA-stability targets such as KLF4 and EGR1 and alters the levels and locations of long non-coding RNAs (lncRNAs) and proteins required for nuclear and paraspeckle formation and function. The RGG-derived peptide also decreases euchromatin as evidenced by loss of active marks and polymerase II occupancy. Our findings reveal the potential therapeutic utility of the hnRNPK RGG-derived peptide in a range of cancers.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Corresponding author: Pavan Kumar Puvvula, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| | - Stephanie Buczkowski
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - Anne M. Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA
- Corresponding author: Anne M. Moon, MD, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| |
Collapse
|
42
|
Yao J, Tu Y, Shen C, Zhou Q, Xiao H, Jia D, Sun Q. Nuclear import receptors and hnRNPK mediates nuclear import and stress granule localization of SIRLOIN. Cell Mol Life Sci 2021; 78:7617-7633. [PMID: 34689235 PMCID: PMC11073023 DOI: 10.1007/s00018-021-03992-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
The majority of lncRNAs and a small fraction of mRNAs localize in the cell nucleus to exert their functions. A SIRLOIN RNA motif was previously reported to drive its nuclear localization by the RNA-binding protein hnRNPK. However, the underlying mechanism remains unclear. Here, we report crystal structures of hnRNPK in complex with SIRLOIN, and with the nuclear import receptor (NIR) Impα1, respectively. The protein hnRNPK bound to SIRLOIN with multiple weak interactions, and interacted Impα1 using an independent high-affinity site. Forming a complex with hnRNPK and Impα1 was essential for the nuclear import and stress granule localization of SIRLOIN in semi-permeabilized cells. Nuclear import of SIRLOIN enhanced with increasing NIR concentrations, but its stress granule localization peaked at a low NIR concentration. Collectively, we propose a mechanism of SIRLOIN localization, in which NIRs functioned as drivers/regulators, and hnRNPK as an adaptor.
Collapse
Affiliation(s)
- Jialin Yao
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, 610041, China
| | - Yingfeng Tu
- Division of Neurology, Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Congcong Shen
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, 610041, China
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, 610041, China
| | - Hengyi Xiao
- Aging Research Lab, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, 610041, China
| | - Da Jia
- Division of Neurology, Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
43
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
44
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
45
|
Song S, He X, Wang J, Wang R, Wang L, Zhao W, Wang Y, Zhang Y, Yu Z, Miao D, Xue Y. ELF3-AS1 contributes to gastric cancer progression by binding to hnRNPK and induces thrombocytosis in peripheral blood. Cancer Sci 2021; 112:4553-4569. [PMID: 34418240 PMCID: PMC8586678 DOI: 10.1111/cas.15104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have reported that a variety of long noncoding RNAs (lncRNAs) can promote the proliferation, invasion, and migration of different tumor cells. However, different lncRNAs regulate cell functions in various forms, and the exact mechanisms are not clear. Here, we investigated the effect of the lncRNA ELF3-AS1 on gastric cancer (GC) cell function and explored the exact mechanism. Quantitative real-time polymerase chain reaction was used to detect the expression of ELF3-AS1 in GC tissues and adjacent nontumor tissues. Knockdown and overexpression of ELF3-AS1 was used to detect the effect of ELF3-AS1 on cell function. Potential downstream target genes were identified using RNA transcriptome sequencing, while RNA immunoprecipitation, chromatin immunoprecipitation, and Western blotting were performed to explore the tumor promotion mechanisms of ELF3-AS1. We observed that ELF3-AS1 was highly expressed in GC tissues, and high ELF3-AS1 expression predicted poor prognosis. The knockdown of ELF3-AS1 significantly inhibited cell proliferation, migration, and epithelial-mesenchymal transition and promoted apoptosis. Mechanistic investigations revealed that ELF3-AS1 may regulate the downstream target gene, C-C motif chemokine 20, by binding with the RNA-binding protein hnRNPK. Additionally, we found that high ELF3-AS1 expression was associated with thrombocytosis. Interleukin-6 and thrombopoietin may be involved in ELF3-AS1-induced paraneoplastic thrombocytosis. Together, our results demonstrate that aberrantly expressed ELF3-AS1 in GC may play important roles in oncogenesis and progression and is expected to become a new target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Shubin Song
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xuezhi He
- Department of Nutrition and Food HygieneSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Jing Wang
- Department of Anatomy, Histology and EmbryologyState Key Laboratory of Reproductive MedicineThe Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Rong Wang
- Department of Anatomy, Histology and EmbryologyThe Research Center for Bone and Stem CellsNanjing Medical UniversityNanjingChina
| | - Leilei Wang
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Wei Zhao
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Yimin Wang
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Yongle Zhang
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Zhiyong Yu
- Department of Breast SurgeryShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Dengshun Miao
- The Research Center for AgingFriendship Affiliated Plastic Surgery Hospital of Nanjing Medical UniversityNanjingChina
| | - Yingwei Xue
- Department of gastrointestinal surgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
46
|
HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol 2021; 142:609-627. [PMID: 34274995 PMCID: PMC8423707 DOI: 10.1007/s00401-021-02340-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (HnRNPs) are a group of ubiquitously expressed RNA-binding proteins implicated in the regulation of all aspects of nucleic acid metabolism. HnRNP K is a member of this highly versatile hnRNP family. Pathological redistribution of hnRNP K to the cytoplasm has been linked to the pathogenesis of several malignancies but, until now, has been underexplored in the context of neurodegenerative disease. Here we show hnRNP K mislocalisation in pyramidal neurons of the frontal cortex to be a novel neuropathological feature that is associated with both frontotemporal lobar degeneration and ageing. HnRNP K mislocalisation is mutually exclusive to TDP-43 and tau pathological inclusions in neurons and was not observed to colocalise with mitochondrial, autophagosomal or stress granule markers. De-repression of cryptic exons in RNA targets following TDP-43 nuclear depletion is an emerging mechanism of potential neurotoxicity in frontotemporal lobar degeneration and the mechanistically overlapping disorder amyotrophic lateral sclerosis. We silenced hnRNP K in neuronal cells to identify the transcriptomic consequences of hnRNP K nuclear depletion. Intriguingly, by performing RNA-seq analysis we find that depletion of hnRNP K induces 101 novel cryptic exon events. We validated cryptic exon inclusion in an SH-SY5Y hnRNP K knockdown and in FTLD brain exhibiting hnRNP K nuclear depletion. We, therefore, present evidence for hnRNP K mislocalisation to be associated with FTLD and for this to induce widespread changes in splicing.
Collapse
|
47
|
de Jong LC, Crnko S, ten Broeke T, Bovenschen N. Noncytotoxic functions of killer cell granzymes in viral infections. PLoS Pathog 2021; 17:e1009818. [PMID: 34529743 PMCID: PMC8445437 DOI: 10.1371/journal.ppat.1009818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytotoxic lymphocytes produce granules armed with a set of 5 serine proteases (granzymes (Gzms)), which, together with the pore-forming protein (perforin), serve as a major defense against viral infections in humans. This granule-exocytosis pathway subsumes a well-established mechanism in which target cell death is induced upon perforin-mediated entry of Gzms and subsequent activation of various (apoptosis) pathways. In the past decade, however, a growing body of evidence demonstrated that Gzms also inhibit viral replication and potential reactivation in cell death–independent manners. For example, Gzms can induce proteolysis of viral or host cell proteins necessary for the viral entry, release, or intracellular trafficking, as well as augment pro-inflammatory antiviral cytokine response. In this review, we summarize current evidence for the noncytotoxic mechanisms and roles by which killer cells can use Gzms to combat viral infections, and we discuss the potential thereof for the development of novel therapies.
Collapse
Affiliation(s)
- Lisanne C. de Jong
- Radboud University, Nijmegen, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
48
|
Peng C, Tan Y, Yang P, Jin K, Zhang C, Peng W, Wang L, Zhou J, Chen R, Wang T, Jin C, Ji J, Feng Y, Tang J, Sun Y. Circ-GALNT16 restrains colorectal cancer progression by enhancing the SUMOylation of hnRNPK. J Exp Clin Cancer Res 2021; 40:272. [PMID: 34452628 PMCID: PMC8400830 DOI: 10.1186/s13046-021-02074-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recent studies have investigated the role of circular RNAs (circRNAs) as significant regulatory factors in multiple cancer progression. Nevertheless, the biological functions of circRNAs and the underlying mechanisms by which they regulate colorectal cancer (CRC) progression remain unclear. METHODS A novel circRNA (circ-GALNT16) was identified by microarray and qRT-PCR. A series of in vitro and in vivo phenotype experiments were performed to investigate the role of circ-GALNT16 in CRC. The FISH, RNA pulldown assay, RIP assay, RNA sequencing, coimmunoprecipitation, and ChIP were performed to investigate the molecular mechanisms of circ-GALNT16 in CRC progression. RESULTS Circ-GALNT16 was downregulated in CRC and was negatively correlated with poor prognosis. Circ-GALNT16 suppressed the proliferation and metastatic ability of CRC cells in vitro and in vivo. Mechanistically, circ-GALNT16 could bind to the KH3 domain of heterogeneous nuclear ribonucleoprotein K (hnRNPK), which promoted the SUMOylation of hnRNPK. Additionally, circ-GALNT16 could enhance the formation of the hnRNPK-p53 complex by facilitating the SUMOylation of hnRNPK. RNA sequencing assay identified serpin family E member 1 as the target gene of circ-GALNT16 at the transcriptional level. Rescue assays revealed that circ-GALNT16 regulated the expression of Serpine1 by inhibiting the deSUMOylation of hnRNPK mediated by SUMO-specific peptidase 2 and then regulating the sequence-specific DNA binding ability of the hnRNPK-p53 transcriptional complex. CONCLUSIONS Circ-GALNT16 suppressed CRC progression by inhibiting Serpine1 expression through regulating the sequence-specific DNA binding ability of the SENP2-mediated hnRNPK-p53 transcriptional complex and might function as a biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Chaofan Peng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yuqian Tan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Peng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Kangpeng Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Chuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Wen Peng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Jiahui Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Ranran Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Tuo Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Chi Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Jiangzhou Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Junwei Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| |
Collapse
|
49
|
Feng J, Li H, Li J, Meng P, Wang L, Liu C, Zhao S, Sun W, Zhang Y. hnRNPK knockdown alleviates NLRP3 inflammasome priming by repressing FLIP expression in Raw264.7 macrophages. Redox Rep 2021; 25:104-111. [PMID: 33269646 PMCID: PMC7717877 DOI: 10.1080/13510002.2020.1857157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objectives: Inflammation is an important predisposing and progressive factor in chronic kidney disease (CKD). Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is associated with many fundamental cellular processes, but in chronic inflammatory pathologies remains unclear. Methods: An in vitro peripheral inflammation model was established using lipopolysaccharide (LPS)-stimulated mouse RAW264.7 macrophages, followed by inflammasome activation by ATP treatment. Knockdown of hnRNPK by sihnRNPK and FLICE-like inhibitory protein (FLIP) by siFLIP transfection were achieved in Raw264.7 macrophages. ELISA was used to determine the expression of IL-1β, IL-18 and TNF-α. Real time PCR was applied to detect the mRNA levels of hnRNPK, NOD-like receptors family pyrin domain-containing 3 (NLRP3), FLIP, Caspase-1, IL-1β and IL-18. Western blot and immunofluorescence were performed to detect relevant protein expressions. Co-immunoprecipitation (Co-IP) was used to assess the interaction of hnRNPK with FLIP. Results: Results showed that LPS plus ATP activated NLRP3 inflammasome, which evidenced by the up-regulation of TNF-α, IL-1β and IL-18. Notably, hnRNPK and FLIP were significantly up-regulated in activated NLRP3 inflammasome of macrophages. HnRNPK or FLIP knockdown significantly suppressed the activation of NLRP3 inflammasome, as reflected by down-regulation of Caspase-1, IL-1β and IL-18. Importantly, hnRNPK could directly bind to FLIP in activated NLRP3 inflammasome. Discussion: Our findings suggest that hnRNPK could promote the activation of NLRP3 inflammasome by directly binding FLIP, which might provide potential new therapeutic targets for CKD.
Collapse
Affiliation(s)
- Junxia Feng
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hongyan Li
- Department of nephrology, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jingchun Li
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ping Meng
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Lina Wang
- Department of nephrology, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chunli Liu
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shili Zhao
- Department of nephrology, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wei Sun
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yunfang Zhang
- Department of nephrology, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
50
|
Padovani KS, Goto RN, Fugio LB, Garcia CB, Alves VM, Brassesco MS, Greene LJ, Rego EM, Leopoldino AM. Crosstalk between hnRNP K and SET in ATRA-induced differentiation in acute promyelocytic leukemia. FEBS Open Bio 2021; 11:2019-2032. [PMID: 34058077 PMCID: PMC8255839 DOI: 10.1002/2211-5463.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
HnRNP K protein is a heterogeneous nuclear ribonucleoprotein which has been proposed to be involved in the leukemogenesis of acute promyelocytic leukemia (APL), as well as in differentiation induced by all‐trans retinoic acid (ATRA). We previously demonstrated a connection between SET and hnRNP K function in head and neck squamous cell carcinoma (HNSCC) cells related to splicing processing. The objective of this study was to characterize the participation of hnRNP K and SET proteins in ATRA‐induced differentiation in APL. We observed higher (5‐ to 40‐fold) levels of hnRNP K and SET mRNA in APL patients at the diagnosis phase compared with induction and maintenance phases. hnRNP K knockdown using short‐hairpin RNA led to cell death in ATRA‐sensitive NB4 and resistant NB4‐R2 cells by apoptosis with SET cleavage. In addition, hnRNP K knockdown increased granulocytic differentiation in APL cells, mainly in NB4‐R2 with ATRA. hnRNP K knockdown had an effect similar to that of treatment with U0126 (an meiosis‐specific serine/threonine protein kinase/ERK inhibitor), mainly in NB4‐R2 cells. SET knockdown in APL cells revealed that apoptosis induction in cells with hnRNP K knockdown occurred by SET cleavage rather than by reduction in SET protein. Transplantation of NB4‐R2 cells into nude mice confirmed that arsenic trioxide (ATO) combined with U0126 has higher potential against tumor progression when compared to ATO. Therefore, hnRNP K/SET and ERK are potential therapeutic targets for both antineoplastic leukemia therapy and relapsed APL patients with ATRA resistance.
Collapse
Affiliation(s)
- Karina Stringhetta Padovani
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.,CEPID-FAPESP, Center for Cell Based Therapy, Regional Blood Center of Ribeirão, Preto, Brazil
| | - Renata Nishida Goto
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Lais Brigliadori Fugio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Cristiana Bernadelli Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Vani Maria Alves
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, School of Medicine of Ribeirão Preto-FMRP, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil
| | - Lewis Joel Greene
- CEPID-FAPESP, Center for Cell Based Therapy, Regional Blood Center of Ribeirão, Preto, Brazil.,Department of Cellular and Molecular Biology and Pathogenic Bioagents, School of Medicine of Ribeirão Preto-FMRP, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo Magalhães Rego
- CEPID-FAPESP, Center for Cell Based Therapy, Regional Blood Center of Ribeirão, Preto, Brazil.,Department of Internal Medicine, School of Medicine of Ribeirão Preto-FMRP, University of São Paulo, Ribeirão Preto, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.,CEPID-FAPESP, Center for Cell Based Therapy, Regional Blood Center of Ribeirão, Preto, Brazil
| |
Collapse
|