1
|
Eguchi T, Calderwood SK. Discovery of myeloid zinc finger (MZF) 1 nuclear bodies. Biochem Biophys Res Commun 2025; 752:151481. [PMID: 39954358 DOI: 10.1016/j.bbrc.2025.151481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Myeloid zinc finger 1 (MZF1) is a multifaceted transcription factor that can act either as a transcriptional activator or a gene repressor. We examined its production of nuclear bodies (NBs) and subcellular localization. Proteomic and protein-protein interaction analysis were used to identify its cofactors and interactions. These revealed the presence of MZF1-NBs (intranuclear oligomers containing MZF1). MZF-NBs are similar to some other nuclear bodies, notably promyelocytic leukemia (PML) -NBs in terms of size and morphology. However the two structures appear to be different. MZF-NBs and PML-NBs were found to associate in the nucleus. Both MZF1 and PML are SUMO1-SUMOylated in PC-3 cells. Sumoylated MZF1 can interact with proteins containing SUMO-interaction motifs (SIM) through SUMO-SIM interaction. Interactome analysis revealed that its NBs participate in the stress response (TPR and UBAP2L), protein folding (CALR and ANKRD40), transcription, post-translational modification (TRIM33, ACOT7, CAMK2D, and CAMK2G), and RNA binding (ALURBP and CPSF5).
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan.
| | - Stuart K Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Abou-Ghali M, Lallemand-Breitenbach V. PML Nuclear bodies: the cancer connection and beyond. Nucleus 2024; 15:2321265. [PMID: 38411156 PMCID: PMC10900273 DOI: 10.1080/19491034.2024.2321265] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies, membrane-less organelles in the nucleus, play a crucial role in cellular homeostasis. These dynamic structures result from the assembly of scaffolding PML proteins and various partners. Recent crystal structure analyses revealed essential self-interacting domains, while liquid-liquid phase separation contributes to their formation. PML bodies orchestrate post-translational modifications, particularly stress-induced SUMOylation, impacting target protein functions. Serving as hubs in multiple signaling pathways, they influence cellular processes like senescence. Dysregulation of PML expression contributes to diseases, including cancer, highlighting their significance. Therapeutically, PML bodies are promising targets, exemplified by successful acute promyelocytic leukemia treatment with arsenic trioxide and retinoic acid restoring PML bodies. Understanding their functions illuminates both normal and pathological cellular physiology, guiding potential therapies. This review explores recent advancements in PML body biogenesis, biochemical activity, and their evolving biological roles.
Collapse
Affiliation(s)
- Majdouline Abou-Ghali
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université 11 PSL, Paris, France
- Saint-Louis Research Institute, Paris, France
| | - Valérie Lallemand-Breitenbach
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université 11 PSL, Paris, France
- Saint-Louis Research Institute, Paris, France
| |
Collapse
|
3
|
Tan Y, Li J, Zhang S, Zhang Y, Zhuo Z, Ma X, Yin Y, Jiang Y, Cong Y, Meng G. Cryo-EM structure of PML RBCC dimer reveals CC-mediated octopus-like nuclear body assembly mechanism. Cell Discov 2024; 10:118. [PMID: 39587079 PMCID: PMC11589706 DOI: 10.1038/s41421-024-00735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 11/27/2024] Open
Abstract
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are essential in regulating tumor suppression, antiviral response, inflammation, metabolism, aging, and other important life processes. The re-assembly of PML NBs might lead to an ~100% cure of acute promyelocytic leukemia. However, until now, the molecular mechanism underpinning PML NB biogenesis remains elusive due to the lack of structural information. In this study, we present the cryo-electron microscopy (cryo-EM) structure of the PML dimer at an overall resolution of 5.3 Å, encompassing the RING, B-box1/2 and part of the coiled-coil (RBCC) domains. The integrated approach, combining crosslinking and mass spectrometry (XL-MS) and functional analyses, enabled us to observe a unique folding event within the RBCC domains. The RING and B-box1/2 domains fold around the α3 helix, and the α6 helix serves as a pivotal interface for PML dimerization. More importantly, further characterizations of the cryo-EM structure in conjugation with AlphaFold2 prediction, XL-MS, and NB formation assays, help unveil an unprecedented octopus-like mechanism in NB assembly, wherein each CC helix of a PML dimer (PML dimer A) interacts with a CC helix from a neighboring PML dimer (PML dimer B) in an anti-parallel configuration, ultimately leading to the formation of a 2 µm membrane-less subcellular organelle.
Collapse
Affiliation(s)
- Yangxia Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Li
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yonglei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhiyi Zhuo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaodan Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yanling Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
4
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
5
|
Liang X, Chen J, Yan P, Chen Z, Gao C, Bai R, Tang J. The highly conserved region within exonuclease III-like in PML-I regulates the cytoplasmic localization of PML-NBs. J Biol Chem 2024; 300:107872. [PMID: 39395810 PMCID: PMC11602975 DOI: 10.1016/j.jbc.2024.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
The sub-nuclear protein structure PML-NB regulates a wide range of important cellular functions, while its abnormal cytoplasmic localization may have pathological consequences. However, the nature of this aberrant localization remains poorly understood. In this study, we unveil that PML-I, the most conserved and abundant structural protein of PML-NB, possesses potent cytoplasmic targeting ability within the N-terminal half of the exonuclease III-like domain encoded by its unique exon 9, independent of the known nuclear localization signal. Fusion of this region to PML-VI can relocate PML-VI from the nucleus to the cytosol. Structural and deletion analysis revealed that the cytoplasmic targeting ability of this domain was restrained by the sequences encoded by exon 8a and the 3' portion of exon 9 in PML-I. Deletion of either of these regions relocates PML-I to the cytosol. Furthermore, we observed a potential interaction between the ER-localized TREX1 and the cytoplasmic-located PML-I mutants. Our results suggest that perturbation of the EXO-like domain of PML-I may represent an important mode to translocate PMLs from the nucleus to the cytosol, thereby interfering with the normal nuclear functions of PML-NBs.
Collapse
Affiliation(s)
- Xinxin Liang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinwen Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peijie Yan
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhongzhou Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chao Gao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rulan Bai
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Baralić K, Božović P, Đukić-Ćosić D. Deciphering the molecular landscape of ionising radiation-induced eye damage with the help of genomic data mining. Arh Hig Rada Toksikol 2024; 75:91-101. [PMID: 38963141 PMCID: PMC11223508 DOI: 10.2478/aiht-2024-75-3817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/01/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024] Open
Abstract
Even at low levels, exposure to ionising radiation can lead to eye damage. However, the underlying molecular mechanisms are not yet fully understood. We aimed to address this gap with a comprehensive in silico approach to the issue. For this purpose we relied on the Comparative Toxicogenomics Database (CTD), ToppGene Suite, Cytoscape, GeneMANIA, and Metascape to identify six key regulator genes associated with radiation-induced eye damage (ATM, CRYAB, SIRT1, TGFB1, TREX1, and YAP1), all of which have physical interactions. Some of the identified molecular functions revolve around DNA repair mechanisms, while others are involved in protein binding, enzymatic activities, metabolic processes, and post-translational protein modifications. The biological processes are mostly centred on response to DNA damage, the p53 signalling pathway in particular. We identified a significant role of several miRNAs, such as hsa-miR-183 and hsamiR-589, in the mechanisms behind ionising radiation-induced eye injuries. Our study offers a valuable method for gaining deeper insights into the adverse effects of radiation exposure.
Collapse
Affiliation(s)
- Katarina Baralić
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović“, Belgrade, Serbia
| | - Predrag Božović
- University of Belgrade Vinča Institute of Nuclear Sciences, Department of Radiation and Environmental Protection, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović“, Belgrade, Serbia
| |
Collapse
|
7
|
Hofmann S, Luther J, Plank V, Oswald A, Mai J, Simons I, Miller J, Falcone V, Hansen-Palmus L, Hengel H, Nassal M, Protzer U, Schreiner S. Arsenic trioxide impacts hepatitis B virus core nuclear localization and efficiently interferes with HBV infection. Microbiol Spectr 2024; 12:e0378823. [PMID: 38567974 PMCID: PMC11064512 DOI: 10.1128/spectrum.03788-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 05/03/2024] Open
Abstract
The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.
Collapse
Affiliation(s)
- Samuel Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Julius Luther
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Verena Plank
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Oswald
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Mai
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Ilka Simons
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julija Miller
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Valeria Falcone
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Lea Hansen-Palmus
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility, EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Usluer S, Galhuber M, Khanna Y, Bourgeois B, Spreitzer E, Michenthaler H, Prokesch A, Madl T. Disordered regions mediate the interaction of p53 and MRE11. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119654. [PMID: 38123020 DOI: 10.1016/j.bbamcr.2023.119654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
The genome is frequently targeted by genotoxic agents, resulting in the formation of DNA scars. However, cells employ diverse repair mechanisms to restore DNA integrity. Among these processes, the Mre11-Rad50-Nbs1 complex detects double-strand breaks (DSBs) and recruits DNA damage response proteins such as ataxia-telangiectasia-mutated (ATM) kinase to DNA damage sites. ATM phosphorylates the transactivation domain (TAD) of the p53 tumor suppressor, which in turn regulates DNA repair, growth arrest, apoptosis, and senescence following DNA damage. The disordered glycine-arginine-rich (GAR) domain of double-strand break protein MRE11 (MRE11GAR) and its methylation are important for DSB repair, and localization to Promyelocytic leukemia nuclear bodies (PML-NBs). There is preliminary evidence that p53, PML protein, and MRE11 might co-localize and interact at DSB sites. To uncover the molecular details of these interactions, we aimed to identify the domains mediating the p53-MRE11 interaction and to elucidate the regulation of the p53-MRE11 interaction by post-translational modifications (PTMs) through a combination of biophysical techniques. We discovered that, in vitro, p53 binds directly to MRE11GAR mainly through p53TAD2 and that phosphorylation further enhances this interaction. Furthermore, we found that MRE11GAR methylation still allows for binding to p53. Overall, we demonstrated that p53 and MRE11 interaction is facilitated by disordered regions. We provide for the first time insight into the molecular details of the p53-MRE11 complex formation and elucidate potential regulatory mechanisms that will promote our understanding of the DNA damage response. Our findings suggest that PTMs regulate the p53-MRE11 interaction and subsequently their colocalization to PML-NBs upon DNA damage.
Collapse
Affiliation(s)
- Sinem Usluer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Markus Galhuber
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria
| | - Yukti Khanna
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Benjamin Bourgeois
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Emil Spreitzer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Helene Michenthaler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | - Tobias Madl
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; BioTechMed-Graz, Austria.
| |
Collapse
|
10
|
Loe TK, Lazzerini Denchi E, Tricola GM, Azeroglu B. ALTercations at telomeres: stress, recombination and extrachromosomal affairs. Biochem Soc Trans 2023; 51:1935-1946. [PMID: 37767563 DOI: 10.1042/bst20230265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Approximately 15% of human cancers depend on the alternative lengthening of telomeres (ALT) pathway to maintain telomeres and proliferate. Telomeres that are elongated using ALT display unique features raising the exciting prospect of tailored cancer therapies. ALT-mediated telomere elongation shares several features with recombination-based DNA repair. Strikingly, cells that use the ALT pathway display abnormal levels of replication stress at telomeres and accumulate abundant extrachromosomal telomeric DNA. In this review, we examine recent findings that shed light on the ALT mechanisms and the strategies currently available to suppress this telomere elongation mechanism.
Collapse
Affiliation(s)
- Taylor K Loe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Gianna M Tricola
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| |
Collapse
|
11
|
Ma X, Zhao C, Xu Y, Zhang H. Roles of host SUMOylation in bacterial pathogenesis. Infect Immun 2023; 91:e0028323. [PMID: 37725062 PMCID: PMC10580907 DOI: 10.1128/iai.00283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Bacteria frequently interfere with the post-translational modifications of host cells to facilitate their survival and growth after invasion. SUMOylation, a reversible post-translational modification process, plays an important role in biological life activities. In addition to being critical to host cell metabolism and survival, SUMOylation also regulates gene expression and cell signal transmission. Moreover, SUMOylation in eukaryotic cells can be used by a variety of bacterial pathogens to advance bacterial invasion. In this minireview, we focused on the role and mechanism of host SUMOylation in the pathogenesis of six important clinical bacterial pathogens (Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, and Escherichia coli). Taken together, this review provided new insights for understanding the unique pathogen-host interaction based on host SUMOylation and provided a novel perspective on the development of new strategies to combat bacterial infections in the future.
Collapse
Affiliation(s)
- Xin Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuyao Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Clinical Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Abstract
Human and simian immunodeficiency viruses (HIVs and SIVs, respectively) encode several small proteins (Vif, Vpr, Nef, Vpu, and Vpx) that are called accessory because they are not generally required for viral replication in cell culture. However, they play complex and important roles for viral immune evasion and spread in vivo. Here, we discuss the diverse functions and the relevance of the viral protein U (Vpu) that is expressed from a bicistronic RNA during the late stage of the viral replication cycle and found only in HIV-1 and closely related SIVs. It is well established that Vpu counteracts the restriction factor tetherin, mediates degradation of the primary viral CD4 receptors, and inhibits activation of the transcription factor nuclear factor kappa B. Recent studies identified additional activities and provided new insights into the sophisticated mechanisms by which Vpu enhances and prolongs the release of fully infectious viral particles. In addition, it has been shown that Vpu prevents superinfection not only by degrading CD4 but also by modulating DNA repair mechanisms to promote degradation of nuclear viral complementary DNA in cells that are already productively infected.
Collapse
Affiliation(s)
- Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany;
| | - Lisa Wiesmüller
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany;
| |
Collapse
|
13
|
Fan JR, Chang SN, Chu CT, Chen HC. AKT2-mediated nuclear deformation leads to genome instability during epithelial-mesenchymal transition. iScience 2023; 26:106992. [PMID: 37378334 PMCID: PMC10291577 DOI: 10.1016/j.isci.2023.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Nuclear deformation has been observed in some cancer cells for decades, but its underlying mechanism and biological significance remain elusive. To address these questions, we employed human lung cancer A549 cell line as a model in context with transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition. Here, we report that nuclear deformation induced by TGFβ is concomitant with increased phosphorylation of lamin A at Ser390, defective nuclear lamina and genome instability. AKT2 and Smad3 serve as the downstream effectors for TGFβ to induce nuclear deformation. AKT2 directly phosphorylates lamin A at Ser390, whereas Smad3 is required for AKT2 activation upon TGFβ stimulation. Expression of the lamin A mutant with a substitution of Ser390 to Ala or suppression of AKT2 or Smad3 prevents nuclear deformation and genome instability induced by TGFβ. These findings reveal a molecular mechanism for TGFβ-induced nuclear deformation and establish a role of nuclear deformation in genome instability during epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jia-Rong Fan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Sung-Nian Chang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ching-Tung Chu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
14
|
Hofmann S, Plank V, Groitl P, Skvorc N, Hofmann K, Luther J, Ko C, Zimmerman P, Bruss V, Stadler D, Carpentier A, Rezk S, Nassal M, Protzer U, Schreiner S. SUMO Modification of Hepatitis B Virus Core Mediates Nuclear Entry, Promyelocytic Leukemia Nuclear Body Association, and Efficient Formation of Covalently Closed Circular DNA. Microbiol Spectr 2023; 11:e0044623. [PMID: 37199632 PMCID: PMC10269885 DOI: 10.1128/spectrum.00446-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Persistence of hepatitis B virus (HBV) infection is due to a nuclear covalently closed circular DNA (cccDNA), generated from the virion-borne relaxed circular DNA (rcDNA) genome in a process likely involving numerous cell factors from the host DNA damage response (DDR). The HBV core protein mediates rcDNA transport to the nucleus and likely affects stability and transcriptional activity of cccDNA. Our study aimed at investigating the role of HBV core protein and its posttranslational modification (PTM) with SUMO (small ubiquitin-like modifiers) during the establishment of cccDNA. HBV core protein SUMO PTM was analyzed in His-SUMO-overexpressing cell lines. The impact of HBV core SUMOylation on association with cellular interaction partners and on the HBV life cycle was determined using SUMOylation-deficient mutants of the HBV core protein. Here, we show that the HBV core protein is posttranslationally modified by the addition of SUMO and that this modification impacts nuclear import of rcDNA. By using SUMOylation-deficient HBV core mutants, we show that SUMO modification is a prerequisite for the association with specific promyelocytic leukemia nuclear bodies (PML-NBs) and regulates the conversion of rcDNA to cccDNA. By in vitro SUMOylation of HBV core, we obtained evidence that SUMOylation triggers nucleocapsid disassembly, providing novel insights into the nuclear import process of rcDNA. HBV core protein SUMOylation and subsequent association with PML bodies in the nucleus constitute a key step in the conversion of HBV rcDNA to cccDNA and therefore a promising target for inhibiting formation of the HBV persistence reservoir. IMPORTANCE HBV cccDNA is formed from the incomplete rcDNA involving several host DDR proteins. The exact process and the site of cccDNA formation are poorly understood. Here, we show that HBV core protein SUMO modification is a novel PTM regulating the function of HBV core. A minor specific fraction of the HBV core protein resides with PML-NBs in the nuclear matrix. SUMO modification of HBV core protein mediates its recruitment to specific PML-NBs within the host cell. Within HBV nucleocapsids, SUMOylation of HBV core induces HBV capsid disassembly and is a prerequisite for nuclear entry of HBV core. SUMO HBV core protein association with PML-NBs is crucial for efficient conversion of rcDNA to cccDNA and for the establishment of the viral persistence reservoir. HBV core protein SUMO modification and the subsequent association with PML-NBs might constitute a potential novel target in the development of drugs targeting the cccDNA.
Collapse
Affiliation(s)
- Samuel Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Verena Plank
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Peter Groitl
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Nathalie Skvorc
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Katharina Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Julius Luther
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Chunkyu Ko
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Peter Zimmerman
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Volker Bruss
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Daniela Stadler
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | | | - Shahinda Rezk
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Medical Research Institute, Department of Molecular and Diagnostic Microbiology, Alexandria University, Alexandria, Egypt
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J 2023; 20:82. [PMID: 37127643 PMCID: PMC10152602 DOI: 10.1186/s12985-023-02049-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date. The PML NB components that interact with small and medium size DNA viruses include PML protein isoforms, ATRX/Daxx, Sp100, Sp110, HP1, and p53, among others. Interaction between viruses and components of these NBs can result in different outcomes, such as influencing viral genome expression and/or replication or impacting IFN-mediated or apoptotic cell responses to viral infection. We discuss how PML NB components abrogate the ability of adenoviruses or Hepatitis B virus to transcribe and/or replicate their genomes and how papillomaviruses use PML NBs and their components to promote their propagation. Interactions between polyomaviruses and PML NBs that are poorly understood but nevertheless suggest that the NBs can serve as scaffolds for viral replication or assembly are also presented. Furthermore, complex interactions between the HBx protein of hepadnaviruses and several PML NBs-associated proteins are also described. Finally, current but scarce information regarding the interactions of VP3/apoptin of the avian anellovirus with PML NBs is provided. Despite the considerable number of studies that have investigated the functions of the PML NBs in the context of viral infection, gaps in our understanding of the fine interactions between viruses and the very dynamic PML NBs remain. The complexity of the bodies is undoubtedly a great challenge that needs to be further addressed.
Collapse
Affiliation(s)
- Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Vojtěch Šroller
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Alexey Lovtsov
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic.
| |
Collapse
|
16
|
Mathavarajah S, Vergunst KL, Habib EB, Williams SK, He R, Maliougina M, Park M, Salsman J, Roy S, Braasch I, Roger A, Langelaan D, Dellaire G. PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates. Nucleic Acids Res 2023; 51:3185-3204. [PMID: 36912092 PMCID: PMC10123124 DOI: 10.1093/nar/gkad152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.
Collapse
Affiliation(s)
| | - Kathleen L Vergunst
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Elias B Habib
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Shelby K Williams
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Raymond He
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Maria Maliougina
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mika Park
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jayme Salsman
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Stéphane Roy
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QB, Canada
| | - Ingo Braasch
- Michigan State University, Department of Integrative Biology and Ecology, Evolution, and Behavior Program, East Lansing, MI, USA
| | - Andrew J Roger
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
17
|
Dorighello G, McPhee M, Halliday K, Dellaire G, Ridgway N. Differential contributions of phosphotransferases CEPT1 and CHPT1 to phosphatidylcholine homeostasis and lipid droplet biogenesis. J Biol Chem 2023; 299:104578. [PMID: 36871755 PMCID: PMC10166788 DOI: 10.1016/j.jbc.2023.104578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The CDP-choline (Kennedy) pathway culminates with the synthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by choline/ethanolamine phosphotransferase 1 (CEPT1) in the endoplasmic reticulum (ER), and PC synthesis by choline phosphotransferase 1 (CHPT1) in the Golgi apparatus. Whether the PC and PE synthesized by CEPT1 and CHPT1 in the ER and Golgi apparatus has different cellular functions has not been formally addressed. Here we used CRISPR editing to generate CEPT1-and CHPT1-knockout (KO) U2OS cells to assess the differential contribution of the enzymes to feed-back regulation of nuclear CTP:phosphocholine cytidylyltransferase (CCT)α, the rate-limiting enzyme in PC synthesis, and lipid droplet (LD) biogenesis. We found that CEPT1-KO cells had a 50% and 80% reduction in PC and PE synthesis, respectively, while PC synthesis in CHPT1-KO cells was also reduced by 50%. CEPT1 knockout caused the post-transcriptional induction of CCTα protein expression as well as its dephosphorylation and constitutive localization on the inner nuclear membrane and nucleoplasmic reticulum. This activated CCTα phenotype was prevented by incubating CEPT1-KO cells with PC liposomes to restore end-product inhibition. Additionally, we determined that CEPT1 was in close proximity to cytoplasmic LDs, and CEPT1 knockout resulted in the accumulation of small cytoplasmic LDs, as well as increased nuclear LDs enriched in CCTα. In contrast, CHPT1 knockout had no effect on CCTα regulation or LD biogenesis. Thus, CEPT1 and CHPT1 contribute equally to PC synthesis; however, only PC synthesized by CEPT1 in the ER regulates CCTα and the biogenesis of cytoplasmic and nuclear LDs.
Collapse
Affiliation(s)
- Gabriel Dorighello
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Michael McPhee
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Katie Halliday
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Graham Dellaire
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2; Depts of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - NealeD Ridgway
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2.
| |
Collapse
|
18
|
Korsos V, Miller WH. How retinoic acid and arsenic transformed acute promyelocytic leukemia therapy. J Mol Endocrinol 2022; 69:T69-T83. [PMID: 36112505 DOI: 10.1530/jme-22-0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022]
Abstract
Acute promyelocytic leukemia (APL) is associated with severe coagulopathy leading to rapid morbidity and mortality if left untreated. The definitive diagnosis of APL is made by identifying a balanced reciprocal translocation between chromosomes 15 and 17. This t(15;17) results in a fusion transcript of promyelocytic leukemia (PML) and retinoic acid receptor alpha (RARA) genes and the expression of a functional PML/RARA protein. Detection of a fused PML/RARA genomic DNA sequence using fluorescence in situ hybridization (FISH) or by detection of the PML/RARA fusion transcript via reverse transcriptase polymerase chain reaction (RT-PCR) has revolutionized the diagnosis and monitoring of APL. Once confirmed, APL is cured in over 90% of cases, making it the most curable subtype of acute leukemia today. Patients with low-risk APL are successfully treated using a chemotherapy-free combination of all-trans retinoic acid and arsenic trioxide (ATO). In this review, we explore the work that has gone into the modern-day diagnosis and highly successful treatment of this once devastating leukemia.
Collapse
Affiliation(s)
- Victoria Korsos
- Division of Hematology, Jewish General Hospital, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Wilson H Miller
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, Canada
- Lady Davis Institute for Medical Research, Montreal, Canada
| |
Collapse
|
19
|
Mai J, Stubbe M, Hofmann S, Masser S, Dobner T, Boutell C, Groitl P, Schreiner S. PML Alternative Splice Products Differentially Regulate HAdV Productive Infection. Microbiol Spectr 2022; 10:e0078522. [PMID: 35699431 PMCID: PMC9431499 DOI: 10.1128/spectrum.00785-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs) were considered to maintain antiviral capacity, as these spherical complexes are antagonized by viruses. Actual work provides evidence, that PML-NB-associated factors might also be beneficial for distinct viral processes indicating why genomes and replication centers of nuclear replicating viruses are often found juxtaposed to PML-NBs. Several early HAdV proteins target PML-NBs, such as E4orf3 that promotes redistribution into track-like structures. PML-associated dependency factors that enhance viral gene expression, such as Sp100A remain in the nuclear tracks while restrictive factors, such as Daxx, are inhibited by either proteasomal degradation or relocalization to repress antiviral functions. Here, we did a comprehensive analysis of nuclear PML isoforms during HAdV infection. Our results show cell line specific differences as PML isoforms differentially regulate productive HAdV replication and progeny production. Here, we identified PML-II as a dependency factor that supports viral progeny production, while PML-III and PML-IV suppress viral replication. In contrast, we identified PML-I as a positive regulator and PML-V as a restrictive factor during HAdV infection. Solely PML-VI was shown to repress adenoviral progeny production in both model systems. We showed for the first time, that HAdV can reorganize PML-NBs that contain PML isoforms other then PML-II. Intriguingly, HAdV was not able to fully disrupt PML-NBs composed out of the PML isoforms that inhibit viral replication, while PML-NBs composed out of PML isoforms with beneficial influence on the virus formed tracks in all examined cells. In sum, our findings clearly illustrate the crucial role of PML-track formation in efficient viral replication. IMPORTANCE Actual work provides evidence that PML-NB-associated factors might also be beneficial for distinct viral processes indicating why genomes and replication centers of nuclear replicating viruses are often found juxtaposed to PML-NBs. Alternatively spliced PML isoforms I-VII are expressed from one single pml gene containing nine exons and their transcription is tightly controlled and stimulated by interferons and p53. Several early HAdV proteins target PML-NBs, such as E4orf3, promoting redistribution into track-like structures. Our comprehensive studies indicate a diverging role of PML isoforms throughout the course of productive HAdV infection in either stably transformed human lung (H1299) or liver (HepG2) cells, in which we observed a multivalent regulation of HAdV by all six PML isoforms. PML-I and PML-II support HAdV-mediated track formation and efficient formation of viral replication centers, thus promoting HAdV productive infection. Simultaneously, PML-III, -IV,-V, and -VI antagonize viral gene expression and particle production.
Collapse
Affiliation(s)
- Julia Mai
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Miona Stubbe
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Samuel Hofmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sawinee Masser
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Thomas Dobner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christopher Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow, Scotland, United Kingdom
| | - Peter Groitl
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Yuan B, Zhou X, Suzuki K, Ramos-Mandujano G, Wang M, Tehseen M, Cortés-Medina LV, Moresco JJ, Dunn S, Hernandez-Benitez R, Hishida T, Kim NY, Andijani MM, Bi C, Ku M, Takahashi Y, Xu J, Qiu J, Huang L, Benner C, Aizawa E, Qu J, Liu GH, Li Z, Yi F, Ghosheh Y, Shao C, Shokhirev M, Comoli P, Frassoni F, Yates JR, Fu XD, Esteban CR, Hamdan S, Li M, Izpisua Belmonte JC. Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing. Nat Commun 2022; 13:3646. [PMID: 35752626 PMCID: PMC9233711 DOI: 10.1038/s41467-022-31220-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation.
Collapse
Affiliation(s)
- Baolei Yuan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xuan Zhou
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Institute for Advanced Co-Creation Studies, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Gerardo Ramos-Mandujano
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mengge Wang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lorena V Cortés-Medina
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - James J Moresco
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sarah Dunn
- The Waitt Advanced Biophotonics Core Facility, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Reyna Hernandez-Benitez
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Altos Labs, Inc. 5510 Morehouse Drive, Suite 300, San Diego, CA, 92121, USA
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shitibancho, Wakayama, Wakayama, 640-8156, Japan
| | - Na Young Kim
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Manal M Andijani
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongwei Bi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manching Ku
- Next-generation sequencing core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Jinna Xu
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jinsong Qiu
- Department of Cellular & Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Ling Huang
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Benner
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Emi Aizawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Institute for Advanced Co-Creation Studies, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Jing Qu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongwei Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,University of Southern California, 1333 San Pablo Street, MMR 618, Los Angeles, CA, 90033, USA
| | - Fei Yi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Ambys Medicines, 131 Oyster Point Blvd. Suite 200, South San Francisco, CA, 94080, USA
| | - Yanal Ghosheh
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Changwei Shao
- Department of Cellular & Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Maxim Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Patrizia Comoli
- Pediatric Hematology/Oncology and Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Frassoni
- Department of Research Laboratories and Director of Center for Stem Cell and Cell Therapy, Instituto G. Gaslini Children Hospital Scientific Institute, 16147, Genova, Italy
| | - John R Yates
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xiang-Dong Fu
- Department of Cellular & Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Altos Labs, Inc. 5510 Morehouse Drive, Suite 300, San Diego, CA, 92121, USA
| | - Samir Hamdan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Juan Carlos Izpisua Belmonte
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia. .,Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Altos Labs, Inc. 5510 Morehouse Drive, Suite 300, San Diego, CA, 92121, USA.
| |
Collapse
|
21
|
Giovannoni F, Vazquez CA, Thomas P, Gómez RM, García CC. Promyelocytic leukemia protein is a restriction factor for Junín virus independently of Z matrix protein. Biochem Biophys Res Commun 2022; 606:168-173. [PMID: 35364325 DOI: 10.1016/j.bbrc.2022.03.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
Abstract
The New World (NW) mammarenavirus Junín (JUNV) is the etiological agent of Argentine hemorrhagic fever, a human endemic disease of Argentina. Promyelocytic leukemia protein (PML) has been reported as a restriction factor for several viruses although the mechanism/s behind PML-mediated antiviral effect may be diverse and are a matter of debate. Previous studies have reported a nuclear to cytoplasm translocation of PML during the murine Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) infection. This translocation was found to be mediated by the viral Z protein. Here, we show that PML restricts JUNV infection in human A549 cells. However, in contrast to LCVM, JUNV infection enhances PML expression and PML is not translocated to the cytoplasm neither it colocalizes with JUNV Z protein. Our study demonstrates that a NW mammarenavirus as JUNV interacts differently with the antiviral protein PML than LCMV.
Collapse
Affiliation(s)
- Federico Giovannoni
- Laboratorio de Estrategias Antivirales, Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN, UBA-CONICET, Buenos Aires, Argentina
| | - Cecilia A Vazquez
- Laboratorio de Estrategias Antivirales, Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN, UBA-CONICET, Buenos Aires, Argentina
| | - Pablo Thomas
- Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Ricardo M Gómez
- Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| | - Cybele C García
- Laboratorio de Estrategias Antivirales, Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN, UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Hornofova T, Pokorna B, Hubackova SS, Uvizl A, Kosla J, Bartek J, Hodny Z, Vasicova P. Phospho-SIM and exon8b of PML protein regulate formation of doxorubicin-induced rDNA-PML compartment. DNA Repair (Amst) 2022; 114:103319. [DOI: 10.1016/j.dnarep.2022.103319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
|
23
|
McPhee MJ, Salsman J, Foster J, Thompson J, Mathavarajah S, Dellaire G, Ridgway ND. Running 'LAPS' Around nLD: Nuclear Lipid Droplet Form and Function. Front Cell Dev Biol 2022; 10:837406. [PMID: 35178392 PMCID: PMC8846306 DOI: 10.3389/fcell.2022.837406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The nucleus harbours numerous protein subdomains and condensates that regulate chromatin organization, gene expression and genomic stress. A novel nuclear subdomain that is formed following exposure of cells to excess fatty acids is the nuclear lipid droplet (nLD), which is composed of a neutral lipid core surrounded by a phospholipid monolayer and associated regulatory and lipid biosynthetic enzymes. While structurally resembling cytoplasmic LDs, nLDs are formed by distinct but poorly understood mechanisms that involve the emergence of lipid droplets from the lumen of the nucleoplasmic reticulum and de novo lipid synthesis. Luminal lipid droplets that emerge into the nucleoplasm do so at regions of the inner nuclear membrane that become enriched in promyelocytic leukemia (PML) protein. The resulting nLDs that retain PML on their surface are termed lipid-associated PML structures (LAPS), and are distinct from canonical PML nuclear bodies (NB) as they lack key proteins and modifications associated with these NBs. PML is a key regulator of nuclear signaling events and PML NBs are sites of gene regulation and post-translational modification of transcription factors. Therefore, the subfraction of nLDs that form LAPS could regulate lipid stress responses through their recruitment and retention of the PML protein. Both nLDs and LAPS have lipid biosynthetic enzymes on their surface suggesting they are active sites for nuclear phospholipid and triacylglycerol synthesis as well as global lipid regulation. In this review we have summarized the current understanding of nLD and LAPS biogenesis in different cell types, their structure and composition relative to other PML-associated cellular structures, and their role in coordinating a nuclear response to cellular overload of fatty acids.
Collapse
Affiliation(s)
- Michael J McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jason Foster
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jordan Thompson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
24
|
Batnasan E, Koivukoski S, Kärkkäinen M, Latonen L. Nuclear Organization in Response to Stress: A Special Focus on Nucleoli. Results Probl Cell Differ 2022; 70:469-494. [PMID: 36348119 DOI: 10.1007/978-3-031-06573-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this chapter, we discuss the nuclear organization and how it responds to different types of stress. A key component in these responses is molecular traffic between the different sub-nucleolar compartments, such as nucleoplasm, chromatin, nucleoli, and various speckle and body compartments. This allows specific repair and response activities in locations where they normally are not active and serve to halt sensitive functions until the stress insult passes and inflicted damage has been repaired. We focus on mammalian cells and their nuclear organization, especially describing the central role of the nucleolus in nuclear stress responses. We describe events after multiple stress types, including DNA damage, various drugs, and toxic compounds, and discuss the involvement of macromolecular traffic between dynamic, phase-separated nuclear organelles and foci. We delineate the key proteins and non-coding RNA in the formation of stress-responsive, non-membranous nuclear organelles, many of which are relevant to the formation of and utilization in cancer treatment.
Collapse
Affiliation(s)
- Enkhzaya Batnasan
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Minttu Kärkkäinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
25
|
Barravecchia I, De Cesari C, Forcato M, Scebba F, Pyankova OV, Bridger JM, Foster HA, Signore G, Borghini A, Andreassi M, Andreazzoli M, Bicciato S, Pè ME, Angeloni D. Microgravity and space radiation inhibit autophagy in human capillary endothelial cells, through either opposite or synergistic effects on specific molecular pathways. Cell Mol Life Sci 2021; 79:28. [PMID: 34936031 PMCID: PMC11072227 DOI: 10.1007/s00018-021-04025-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Chiara De Cesari
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Biology, University of Pisa, 56123, Pisa, Italy
| | - Mattia Forcato
- Center for Genome Research, Department of Life Science, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Scebba
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Olga V Pyankova
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Centre of Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Helen A Foster
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | | - Andrea Borghini
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy
| | | | | | - Silvio Bicciato
- Center for Genome Research, Department of Life Science, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
| |
Collapse
|
26
|
Zhu J, Chen Z, Dai Z, Zhou X, Wang H, Li X, Zhao A, Yang S. Molecular Cloning of Alternative Splicing Variants of the Porcine PML Gene and Its Expression Patterns During Japanese Encephalitis Virus Infection. Front Vet Sci 2021; 8:757978. [PMID: 34888375 PMCID: PMC8649775 DOI: 10.3389/fvets.2021.757978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022] Open
Abstract
Promyelocytic leukemia (PML) protein is a crucial component of PML-nuclear bodies (PML-NBs). PML and PML-NBs are involved in the regulation of various cellular functions, including the antiviral immune response. The human PML gene can generate several different isoforms through alternative splicing. However, little is known about the porcine PML alternative splicing isoforms and their expression profiles during Japanese encephalitis virus (JEV) infection. In the present study, we cloned seven mature transcripts of porcine PML, all of which contained the same N-terminal sequence but differed in the C-terminal sequences due to alternative splicing. These seven transcripts encoded five proteins all of which had the RBCC motif and sumoylation sites. Amino acid sequence homology analysis showed that porcine PML-1 had relatively high levels of identity with human, cattle, and goat homologs (76.21, 77.17, and 77.05%, respectively), and low identity with the mouse homolog (61.78%). Immunofluorescence analysis showed that the typical PML-NBs could be observed after overexpression of the five PML isoforms in PK15 cells. Quantitative reverse transcription PCR (RT-qPCR) analysis showed significant upregulation of PML isoforms and PML-NB-associated genes (Daxx and SP100) at 36 and 48 h post-infection (hpi). Western blotting analysis indicated that the PML isoforms were upregulated during the late stage of infection. Moreover, the number of PML-NBs was increased after JEV infection. These results suggest that porcine PML isoforms may play essential roles in JEV infection.
Collapse
Affiliation(s)
- Jingjing Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Zhenyu Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Zhenglie Dai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
27
|
Wu J, Crowe DL. PARP5B is required for nonhomologous end joining during tumorigenesis in vivo. Mol Carcinog 2021; 61:85-98. [PMID: 34710250 DOI: 10.1002/mc.23363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022]
Abstract
Poly(ADP-ribose) polymerases (PARP) act as DNA damage sensors that produce poly(ADP-ribose) (PAR) chains at double-strand breaks, facilitating the recruitment of repair factors. Cancers with homologous recombination defects are sensitive to small molecule PARP inhibitors. Despite PARP5B gene copy number changes in many cancers, the effects of this genetic alteration on tumor phenotype are largely unknown. To better understand this clinical finding, we characterized a PARP5B null mutation in a carcinogen-induced in vivo head and neck squamous cell carcinoma (SCC) model. Reduced PARP5B expression inhibited tumor growth, induced primary tumor differentiation and apoptosis, and inhibited cell proliferation and metastasis. Loss of PARP5B expression-induced ataxia telangiectasia and Rad3 related (ATR) activation and depleted the cancer stem cell fraction. PARP5B null tumor cells lacked 53BP1+ double-strand break foci, ATM activation, and p53 induction compared to PARP5B+/+ cancers. PARP5B null SCC expresses a multiprotein complex containing PML, pRPA, Rad50, Rad51, XRCC1, proliferating cell nuclear antigen (PCNA), and Mcm2, suggesting an HR-mediated repair mechanism at DNA replication foci. Low doses of etoposide combined with the PARP5B inhibitor XAV939 induced senescence and apoptosis in human SCC lines. NBS1 overexpression in these cells inhibited the effects of low-dose etoposide/XAV939 treatment. Our results indicate that PARP5B inhibition is new targeted cancer therapy.
Collapse
Affiliation(s)
- Jianchun Wu
- Department of Diagnostic Sciences, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - David L Crowe
- Department of Diagnostic Sciences, University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
28
|
Sundaria N, Upadhyay A, Prasad A, Prajapati VK, Poluri KM, Mishra A. Neurodegeneration & imperfect ageing: Technological limitations and challenges? Mech Ageing Dev 2021; 200:111574. [PMID: 34562507 DOI: 10.1016/j.mad.2021.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Cellular homeostasis is regulated by the protein quality control (PQC) machinery, comprising multiple chaperones and enzymes. Studies suggest that the loss of the PQC mechanisms in neurons may lead to the formation of abnormal inclusions that may lead to neurological disorders and defective aging. The questions could be raised how protein aggregate formation precisely engenders multifactorial molecular pathomechanism in neuronal cells and affects different brain regions? Such questions await thorough investigation that may help us understand how aberrant proteinaceous bodies lead to neurodegeneration and imperfect aging. However, these studies face multiple technological challenges in utilizing available tools for detailed characterizations of the protein aggregates or amyloids and developing new techniques to understand the biology and pathology of proteopathies. The lack of detection and analysis methods has decelerated the pace of the research in amyloid biology. Here, we address the significance of aggregation and inclusion formation, followed by exploring the evolutionary contribution of these structures. We also provide a detailed overview of current state-of-the-art techniques and advances in studying amyloids in the diseased brain. A comprehensive understanding of the structural, pathological, and clinical characteristics of different types of aggregates (inclusions, fibrils, plaques, etc.) will aid in developing future therapies.
Collapse
Affiliation(s)
- Naveen Sundaria
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH‑8 Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
29
|
Markouli M, Strepkos D, Piperi C. Structure, Activity and Function of the SETDB1 Protein Methyltransferase. Life (Basel) 2021; 11:life11080817. [PMID: 34440561 PMCID: PMC8397983 DOI: 10.3390/life11080817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) is a prominent member of the Suppressor of Variegation 3–9 (SUV39)-related protein lysine methyltransferases (PKMTs), comprising three isoforms that differ in length and domain composition. SETDB1 is widely expressed in human tissues, methylating Histone 3 lysine 9 (H3K9) residues, promoting chromatin compaction and exerting negative regulation on gene expression. SETDB1 has a central role in normal physiology and nervous system development, having been implicated in the regulation of cell cycle progression, inactivation of the X chromosome, immune cells function, expression of retroelements and formation of promyelocytic leukemia (PML) nuclear bodies (NB). SETDB1 has been frequently deregulated in carcinogenesis, being implicated in the pathogenesis of gliomas, melanomas, as well as in lung, breast, gastrointestinal and ovarian tumors, where it mainly exerts an oncogenic role. Aberrant activity of SETDB1 has also been implicated in several neuropsychiatric, cardiovascular and gastrointestinal diseases, including schizophrenia, Huntington’s disease, congenital heart defects and inflammatory bowel disease. Herein, we provide an update on the unique structural and biochemical features of SETDB1 that contribute to its regulation, as well as its molecular and cellular impact in normal physiology and disease with potential therapeutic options.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW To provide an overview of the role of genes and loci that predispose to Paget's disease of bone and related disorders. RECENT FINDINGS Studies over the past ten years have seen major advances in knowledge on the role of genetic factors in Paget's disease of bone (PDB). Genome wide association studies have identified six loci that predispose to the disease whereas family based studies have identified a further eight genes that cause PDB. This brings the total number of genes and loci implicated in PDB to fourteen. Emerging evidence has shown that a number of these genes also predispose to multisystem proteinopathy syndromes where PDB is accompanied by neurodegeneration and myopathy due to the accumulation of abnormal protein aggregates, emphasising the importance of defects in autophagy in the pathogenesis of PDB. Genetic factors play a key role in the pathogenesis of PDB and the studies in this area have identified several genes previously not suspected to play a role in bone metabolism. Genetic testing coupled to targeted therapeutic intervention is being explored as a way of halting disease progression and improving outcome before irreversible skeletal damage has occurred.
Collapse
Affiliation(s)
- Navnit S Makaram
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
31
|
Marks D, Heinen N, Bachmann L, Meermeyer S, Werner M, Gallego L, Hemmerich P, Bader V, Winklhofer KF, Schröder E, Knauer SK, Müller T. Amyloid precursor protein elevates fusion of promyelocytic leukemia nuclear bodies in human hippocampal areas with high plaque load. Acta Neuropathol Commun 2021; 9:66. [PMID: 33849647 PMCID: PMC8042982 DOI: 10.1186/s40478-021-01174-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
The amyloid precursor protein (APP) is a type I transmembrane protein with unknown physiological function but potential impact in neurodegeneration. The current study demonstrates that APP signals to the nucleus causing the generation of aggregates consisting of its adapter protein FE65, the histone acetyltransferase TIP60 and the tumour suppressor proteins p53 and PML. APP C-terminal (APP-CT50) complexes co-localize and co-precipitate with p53 and PML. The PML nuclear body generation is induced and fusion occurs over time depending on APP signalling and STED imaging revealed active gene expression within the complex. We further show that the nuclear aggregates of APP-CT50 fragments together with PML and FE65 are present in the aged human brain but not in cerebral organoids differentiated from iPS cells. Notably, human Alzheimer’s disease brains reveal a highly significant reduction of these nuclear aggregates in areas with high plaque load compared to plaque-free areas of the same individual. Based on these results we conclude that APP-CT50 signalling to the nucleus takes place in the aged human brain and is involved in the pathophysiology of AD.
Collapse
|
32
|
Liao Y, Lupiani B, Reddy SM. Manipulation of Promyelocytic Leukemia Protein Nuclear Bodies by Marek's Disease Virus Encoded US3 Protein Kinase. Microorganisms 2021; 9:microorganisms9040685. [PMID: 33810320 PMCID: PMC8066686 DOI: 10.3390/microorganisms9040685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Promyelocytic leukemia protein nuclear bodies (PML-NBs) are dynamic nuclear structures, shown to be important for herpesvirus replication; however, their role in regulating Marek’s disease virus (MDV) infection has not been studied. MDV is an oncogenic alphaherpesvirus that causes lymphoproliferative disease in chickens. MDV encodes a US3 serine/threonine protein kinase that is important for MDV replication and gene expression. In this study, we studied the role of MDV US3 in regulating PML-NBs. Using an immunofluorescence assay, we found that MDV US3 disrupts PML and SP100 in a kinase dependent manner. In addition, treatment with MG-132 (a proteasome inhibitor) could partially restore the levels of PML and SP100, suggesting that a cellular proteasome dependent degradation pathway is involved in MDV US3 induced disruption of PML and SP100. These findings provide the first evidence for the interplay between MDV proteins and PML-NBs.
Collapse
|
33
|
Taniue K, Akimitsu N. Aberrant phase separation and cancer. FEBS J 2021; 289:17-39. [PMID: 33583140 DOI: 10.1111/febs.15765] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Eukaryotic cells are intracellularly divided into numerous compartments or organelles, which coordinate specific molecules and biological reactions. Membrane-bound organelles are physically separated by lipid bilayers from the surrounding environment. Biomolecular condensates, also referred to membraneless organelles, are micron-scale cellular compartments that lack membranous enclosures but function to concentrate proteins and RNA molecules, and these are involved in diverse processes. Liquid-liquid phase separation (LLPS) driven by multivalent weak macromolecular interactions is a critical principle for the formation of biomolecular condensates, and a multitude of combinations among multivalent interactions may drive liquid-liquid phase transition (LLPT). Dysregulation of LLPS and LLPT leads to aberrant condensate and amyloid formation, which causes many human diseases, including neurodegeneration and cancer. Here, we describe recent findings regarding abnormal forms of biomolecular condensates and aggregation via aberrant LLPS and LLPT of cancer-related proteins in cancer development driven by mutation and fusion of genes. Moreover, we discuss the regulatory mechanisms by which aberrant LLPS and LLPT occur in cancer and the drug candidates targeting these mechanisms. Further understanding of the molecular events regulating how biomolecular condensates and aggregation form in cancer tissue is critical for the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Japan.,Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | |
Collapse
|
34
|
Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. Bioessays 2021; 43:e2000156. [PMID: 33448043 DOI: 10.1002/bies.202000156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
Ancient pathways promoting unicellularity and multicellularity are associated with cancer, the former being pro-oncogenic and the latter acting to suppress oncogenesis. However, there are only a limited number of non-vertebrate models for studying these pathways. Here, we review Dictyostelium discoideum and describe how it can be used to understand these gene networks. D. discoideum has a unicellular and multicellular life cycle, making it possible to study orthologs of cancer-associated genes in both phases. During development, differentiated amoebae form a fruiting body composed of a mass of spores that are supported atop a stalk. A portion of the cells sacrifice themselves to become non-reproductive stalk cells. Cheating disrupts the principles of multicellularity, as cheater cells alter their cell fate to preferentially become spores. Importantly, D. discoideum has gene networks and several strategies for maintaining multicellularity. Therefore, D. discoideum can help us better understand how conserved genes and pathways involved in multicellularity also influence cancer development, potentially identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Sabateeshan Mathavarajah
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
35
|
Lee J, Oh GH, Hong JA, Choi S, Choi HJ, Song JJ. Enhanced oncolytic adenoviral production by downregulation of death-domain associated protein and overexpression of precursor terminal protein. Sci Rep 2021; 11:856. [PMID: 33441685 PMCID: PMC7807022 DOI: 10.1038/s41598-020-79998-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Adequate viral replication in tumor cells is the key to improving the anti-cancer effects of oncolytic adenovirus therapy. In this study, we introduced short hairpin RNAs against death-domain associated protein (Daxx), a repressor of adenoviral replication, and precursor terminal protein (pTP), an initiator of adenoviral genome replication, into adenoviral constructs to determine their contributions to viral replication. Both Daxx downregulation and pTP overexpression increased viral production in variety of human cancer cell lines, and the enhanced production of virus progeny resulted in more cell lysis in vitro, and tumor regression in vivo. We confirmed that increased virus production by Daxx silencing, or pTP overexpression, occurred using different mechanisms by analyzing levels of adenoviral protein expression and virus production. Specifically, Daxx downregulation promoted both virus replication and oncolysis in a consecutive manner by optimizing IVa2-based packaging efficiency, while pTP overexpression by increasing both infectious and total virus particles but their contribution to increased viral production may have been damaged to some extent by their another contribution to apoptosis and autophagy. Therefore, introducing both Daxx shRNA and pTP in virotherapy may be a suitable strategy to increase apoptotic tumor-cell death and to overcome poor viral replication, leading to meaningful reductions in tumor growth in vivo.
Collapse
Affiliation(s)
- Jihyun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Geun-Hyeok Oh
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jeong A Hong
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Soojin Choi
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res 2020; 295:198280. [PMID: 33370557 DOI: 10.1016/j.virusres.2020.198280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
PML nuclear bodies are matrix-bound nuclear structures with a variety of functions in human cells. These nuclear domains are interferon regulated and play an essential role during virus infections involving accumulation of SUMO-dependent host and viral factors. PML-NBs are targeted and subsequently manipulated by adenoviral regulatory proteins, illustrating their crucial role during productive infection and virus-mediated oncogenic transformation. PML-NBs have a longstanding antiviral reputation; however, the genomes of Human Adenoviruses and initial sites of viral transcription/replication are found juxtaposed to these domains, resulting in a double-edged capacity of these nuclear multiprotein/multifunctional complexes. This enigma provides evidence that Human Adenoviruses selectively counteract antiviral responses, and simultaneously benefit from or even depend on proviral PML-NB associated components by active recruitment to PML track-like structures, that are induced during infection. Thereby, a positive microenvironment for adenoviral transcription and replication is created at these nuclear subdomains. Based on the available data, this review aims to provide a detailed overview of the current knowledge of Human Adenovirus crosstalk with nuclear PML body compartments as sites of SUMOylation processes in the host cells, evaluating the currently known principles and molecular mechanisms.
Collapse
|
37
|
Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res 2020; 48:11890-11912. [PMID: 33068409 PMCID: PMC7708061 DOI: 10.1093/nar/gkaa828] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic cells compartmentalize their internal milieu in order to achieve specific reactions in time and space. This organization in distinct compartments is essential to allow subcellular processing of regulatory signals and generate specific cellular responses. In the nucleus, genetic information is packaged in the form of chromatin, an organized and repeated nucleoprotein structure that is a source of epigenetic information. In addition, cells organize the distribution of macromolecules via various membrane-less nuclear organelles, which have gathered considerable attention in the last few years. The macromolecular multiprotein complexes known as Promyelocytic Leukemia Nuclear Bodies (PML NBs) are an archetype for nuclear membrane-less organelles. Chromatin interactions with nuclear bodies are important to regulate genome function. In this review, we will focus on the dynamic interplay between PML NBs and chromatin. We report how the structure and formation of PML NBs, which may involve phase separation mechanisms, might impact their functions in the regulation of chromatin dynamics. In particular, we will discuss how PML NBs participate in the chromatinization of viral genomes, as well as in the control of specific cellular chromatin assembly pathways which govern physiological mechanisms such as senescence or telomere maintenance.
Collapse
Affiliation(s)
- Armelle Corpet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Constance Kleijwegt
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Simon Roubille
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Franceline Juillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Karine Jacquet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Pascale Texier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| | - Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Dynamics, Nuclear Domains, Virus F-69008, Lyon, France
| |
Collapse
|
38
|
Mohallem R, Aryal UK. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Sci Rep 2020; 10:20878. [PMID: 33257747 PMCID: PMC7705713 DOI: 10.1038/s41598-020-77914-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is a growing epidemic worldwide and is a major risk factor for several chronic diseases, including diabetes, kidney disease, heart disease, and cancer. Obesity often leads to type 2 diabetes mellitus, via the increased production of proinflammatory cytokines such as tumor necrosis factor-α (TNFα). Our study combines different proteomic techniques to investigate the changes in the global proteome, secretome and phosphoproteome of adipocytes under chronic inflammation condition, as well as fundamental cross-talks between different cellular pathways regulated by chronic TNFα exposure. Our results show that many key regulator proteins of the canonical and non-canonical NF-κB pathways, such as Nfkb2, and its downstream effectors, including Csf-1 and Lgals3bp, directly involved in leukocyte migration and invasion, were significantly upregulated at the intra and extracellular proteomes suggesting the progression of inflammation. Our data provides evidence of several key proteins that play a role in the development of insulin resistance.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA.
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
39
|
Volcic M, Sparrer KMJ, Koepke L, Hotter D, Sauter D, Stürzel CM, Scherer M, Stamminger T, Hofmann TG, Arhel NJ, Wiesmüller L, Kirchhoff F. Vpu modulates DNA repair to suppress innate sensing and hyper-integration of HIV-1. Nat Microbiol 2020; 5:1247-1261. [PMID: 32690953 PMCID: PMC7616938 DOI: 10.1038/s41564-020-0753-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
To avoid innate sensing and immune control, human immunodeficiency virus type 1 (HIV-1) has to prevent the accumulation of viral complementary DNA species. Here, we show that the late HIV-1 accessory protein Vpu hijacks DNA repair mechanisms to promote degradation of nuclear viral cDNA in cells that are already productively infected. Vpu achieves this by interacting with RanBP2-RanGAP1*SUMO1-Ubc9 SUMO E3-ligase complexes at the nuclear pore to reprogramme promyelocytic leukaemia protein nuclear bodies and reduce SUMOylation of Bloom syndrome protein, unleashing end degradation of viral cDNA. Concomitantly, Vpu inhibits RAD52-mediated homologous repair of viral cDNA, preventing the generation of dead-end circular forms of single copies of the long terminal repeat and permitting sustained nucleolytic attack. Our results identify Vpu as a key modulator of the DNA repair machinery. We show that Bloom syndrome protein eliminates nuclear HIV-1 cDNA and thereby suppresses immune sensing and proviral hyper-integration. Therapeutic targeting of DNA repair may facilitate the induction of antiviral immunity and suppress proviral integration replenishing latent HIV reservoirs.
Collapse
Affiliation(s)
- Meta Volcic
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Thomas G Hofmann
- Department of Epigenetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
- Institute of Toxicology, University of Mainz, Mainz, Germany
| | - Nathalie J Arhel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) CNRS FRE3689, Montpellier University, Montpellier, France
| | - Lisa Wiesmüller
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany.
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
40
|
Ning S, Wang L. The Multifunctional Protein p62 and Its Mechanistic Roles in Cancers. Curr Cancer Drug Targets 2020; 19:468-478. [PMID: 30332964 PMCID: PMC8052633 DOI: 10.2174/1568009618666181016164920] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/17/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
The multifunctional signaling hub p62 is well recognized as a ubiquitin sensor and a selective autophagy receptor. As a ubiquitin sensor, p62 promotes NFκB activation by facilitating TRAF6 ubiquitination and aggregation. As a selective autophagy receptor, p62 sorts ubiquitinated substrates including p62 itself for lysosome-mediated degradation. p62 plays crucial roles in myriad cellular processes including DNA damage response, aging/senescence, infection and immunity, chronic inflammation, and cancerogenesis, dependent on or independent of autophagy. Targeting p62-mediated autophagy may represent a promising strategy for clinical interventions of different cancers. In this review, we summarize the transcriptional and post-translational regulation of p62, and its mechanistic roles in cancers, with the emphasis on its roles in regulation of DNA damage response and its connection to the cGAS-STING-mediated antitumor immune response, which is promising for cancer vaccine design.
Collapse
Affiliation(s)
- Shunbin Ning
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Ling Wang
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| |
Collapse
|
41
|
Li C, Sharma-Bhandari A, Seo JH, Kim Y. Lysyl oxidase-variant 2 (LOX-v2) colocalizes with promyelocytic leukemia-nuclear bodies in the nucleus. IUBMB Life 2020; 72:2400-2408. [PMID: 32852148 DOI: 10.1002/iub.2363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 01/30/2023]
Abstract
Lysyl oxidase-variant 2 (LOX-v2) is a novel variant of LOX that functions as an amine oxidase for the formation of collagen and elastin fibrils in the extracellular matrix (ECM). LOX-v2 lacks the N-terminal prepropeptide region of LOX but contains the C-terminal domains required for amine oxidase activity. To study the cellular localization of LOX-v2, we generated a recombinant construct of LOX-v2 with an epitope tag at the C-terminus and then transfected the recombinant construct into HEK293 cells. Upon ectopic expression, LOX-v2 showed much higher expression in the nucleus than in the cytoplasm. In coimmunofluorescence staining with subnuclear structures, LOX-v2 colocalized with the promyelocytic leukemia-nuclear bodies (PML-NBs). Further, the ectopic expression of LOX-v2 increased global SUMOylation in the nucleus. PML-NBs have been implicated in various cellular activities, including transcriptional regulation, DNA repair, cell cycle control, anti-viral response, and apoptosis. Our findings strongly indicate that LOX-v2 may be subject to different cellular processing from what LOX undergoes, playing a distinct functional role in the PML-NBs, beyond the cross-linking of the structural proteins.
Collapse
Affiliation(s)
- Chunying Li
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Anjali Sharma-Bhandari
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Jae Ho Seo
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Youngho Kim
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
| |
Collapse
|
42
|
The HECT E3 Ligase E6AP/UBE3A as a Therapeutic Target in Cancer and Neurological Disorders. Cancers (Basel) 2020; 12:cancers12082108. [PMID: 32751183 PMCID: PMC7464832 DOI: 10.3390/cancers12082108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/23/2022] Open
Abstract
The HECT (Homologous to the E6-AP Carboxyl Terminus)-family protein E6AP (E6-associated protein), encoded by the UBE3A gene, is a multifaceted ubiquitin ligase that controls diverse signaling pathways involved in cancer and neurological disorders. The oncogenic role of E6AP in papillomavirus-induced cancers is well known, with its action to trigger p53 degradation in complex with the E6 viral oncoprotein. However, the roles of E6AP in non-viral cancers remain poorly defined. It is well established that loss-of-function alterations of the UBE3A gene cause Angelman syndrome, a severe neurodevelopmental disorder with autosomal dominant inheritance modified by genomic imprinting on chromosome 15q. Moreover, excess dosage of the UBE3A gene markedly increases the penetrance of autism spectrum disorders, suggesting that the expression level of UBE3A must be regulated tightly within a physiologically tolerated range during brain development. In this review, current the knowledge about the substrates of E6AP-mediated ubiquitination and their functions in cancer and neurological disorders is discussed, alongside with the ongoing efforts to pharmacologically modulate this ubiquitin ligase as a promising therapeutic target.
Collapse
|
43
|
Zhang H, Zhao R, Tones J, Liu M, Dilley RL, Chenoweth DM, Greenberg RA, Lampson MA. Nuclear body phase separation drives telomere clustering in ALT cancer cells. Mol Biol Cell 2020; 31:2048-2056. [PMID: 32579423 PMCID: PMC7543070 DOI: 10.1091/mbc.e19-10-0589] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Telomerase-free cancer cells employ a recombination-based alternative lengthening of telomeres (ALT) pathway that depends on ALT-associated promyelocytic leukemia nuclear bodies (APBs), whose function is unclear. We find that APBs behave as liquid condensates in response to telomere DNA damage, suggesting two potential functions: condensation to enrich DNA repair factors and coalescence to cluster telomeres. To test these models, we developed a chemically induced dimerization approach to induce de novo APB condensation in live cells without DNA damage. We show that telomere-binding protein sumoylation nucleates APB condensation via interactions between small ubiquitin-like modifier (SUMO) and SUMO interaction motif (SIM), and that APB coalescence drives telomere clustering. The induced APBs lack DNA repair factors, indicating that APB functions in promoting telomere clustering can be uncoupled from enriching DNA repair factors. Indeed, telomere clustering relies only on liquid properties of the condensate, as an alternative condensation chemistry also induces clustering independent of sumoylation. Our findings introduce a chemical dimerization approach to manipulate phase separation and demonstrate how the material properties and chemical composition of APBs independently contribute to ALT, suggesting a general framework for how chromatin condensates promote cellular functions.
Collapse
Affiliation(s)
- Huaiying Zhang
- Departments of Biology, University of Pennsylvania, Philadelphia, PA 19104.,Departments of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Rongwei Zhao
- Departments of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Jason Tones
- Departments of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Michel Liu
- Departments of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert L Dilley
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
| | - David M Chenoweth
- Department of Cancer Biology, Basser Center for BRCA, Perelman School of Medicine
| | - Roger A Greenberg
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael A Lampson
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
44
|
Li Y, Ma X, Wu W, Chen Z, Meng G. PML Nuclear Body Biogenesis, Carcinogenesis, and Targeted Therapy. Trends Cancer 2020; 6:889-906. [PMID: 32527650 DOI: 10.1016/j.trecan.2020.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023]
Abstract
Targeted therapy has become increasingly important in cancer therapy. For example, targeting the promyelocytic leukemia PML protein in leukemia has proved to be an effective treatment. PML is the core component of super-assembled structures called PML nuclear bodies (NBs). Although this nuclear megaDalton complex was first observed in the 1960s, the mechanism of its assembly remains poorly understood. We review recent breakthroughs in the PML field ranging from a revised assembly mechanism to PML-driven genome organization and carcinogenesis. In addition, we highlight that oncogenic oligomerization might also represent a promising target in the treatment of leukemias and solid tumors.
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenyu Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
45
|
Lee J, Salsman J, Foster J, Dellaire G, Ridgway ND. Lipid-associated PML structures assemble nuclear lipid droplets containing CCTα and Lipin1. Life Sci Alliance 2020; 3:3/8/e202000751. [PMID: 32461215 PMCID: PMC7266991 DOI: 10.26508/lsa.202000751] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/24/2022] Open
Abstract
PML proteins assemble into noncanonical lipid-associated PML structures (LAPS) on nuclear lipid droplets, which recruit CCTα and Lipin1 for the synthesis of phosphatidylcholine and triacylglycerol. Nuclear lipid droplets (nLDs) form on the inner nuclear membrane by a mechanism involving promyelocytic leukemia (PML), the protein scaffold of PML nuclear bodies. We report that PML structures on nLDs in oleate-treated U2OS cells, referred to as lipid-associated PML structures (LAPS), differ from canonical PML nuclear bodies by the relative absence of SUMO1, SP100, and DAXX. These nLDs were also enriched in CTP:phosphocholine cytidylyltransferase α (CCTα), the phosphatidic acid phosphatase Lipin1, and DAG. Translocation of CCTα onto nLDs was mediated by its α-helical M-domain but was not correlated with its activator DAG. High-resolution imaging revealed that CCTα and LAPS occupied distinct polarized regions on nLDs. PML knockout U2OS (PML KO) cells lacking LAPS had a 40–50% reduction in nLDs with associated CCTα, and residual nLDs were almost devoid of Lipin1 and DAG. As a result, phosphatidylcholine and triacylglycerol synthesis was inhibited in PML KO cells. We conclude that in response to excess exogenous fatty acids, LAPS are required to assemble nLDs that are competent to recruit CCTα and Lipin1.
Collapse
Affiliation(s)
- Jonghwa Lee
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, Canada
| | - Jason Foster
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Graham Dellaire
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada .,Department of Pathology, Dalhousie University, Halifax, Canada
| | - Neale D Ridgway
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada .,Department of Pediatrics, Dalhousie University, Halifax, Canada
| |
Collapse
|
46
|
Feng C, Liang Y, Teodoro JG. The Role of Apoptin in Chicken Anemia Virus Replication. Pathogens 2020; 9:pathogens9040294. [PMID: 32316372 PMCID: PMC7238243 DOI: 10.3390/pathogens9040294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Apoptin is the Vp3 protein of chicken anemia virus (CAV), which infects the thymocytes and erythroblasts in young chickens, causing chicken infectious anemia and immunosuppression. Apoptin is highly studied for its ability to selectively induce apoptosis in human tumor cells and, thus, is a protein of interest in anti-tumor therapy. CAV apoptin is known to localize to different subcellular compartments in transformed and non-transformed cells, depending on the DNA damage response, and the phosphorylation of several identified threonine residues. In addition, apoptin interacts with molecular machinery such as the anaphase promoting complex/cyclosome (APC/C) to inhibit the cell cycle and induce arrest in G2/M phase. While these functions of apoptin contribute to the tumor-selective effect of the protein, they also provide an important fundamental framework to apoptin’s role in viral infection, pathogenesis, and propagation. Here, we reviewed how the regulation, localization, and functions of apoptin contribute to the viral life cycle and postulated its importance in efficient replication of CAV. A model of the molecular biology of infection is critical to informing our understanding of CAV and other related animal viruses that threaten the agricultural industry.
Collapse
Affiliation(s)
- Cynthia Feng
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Yingke Liang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, Montreal, QC H3G 1A1, Canada
- Correspondence:
| |
Collapse
|
47
|
Viral DNA Binding Protein SUMOylation Promotes PML Nuclear Body Localization Next to Viral Replication Centers. mBio 2020; 11:mBio.00049-20. [PMID: 32184235 PMCID: PMC7078464 DOI: 10.1128/mbio.00049-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human adenoviruses (HAdVs) have developed mechanisms to manipulate cellular antiviral measures to ensure proper DNA replication, with detailed processes far from being understood. Host cells repress incoming viral genomes through a network of transcriptional regulators that normally control cellular homeostasis. The nuclear domains involved are promyelocytic leukemia protein nuclear bodies (PML-NBs), interferon-inducible, dot-like nuclear structures and hot spots of SUMO posttranslational modification (PTM). In HAdV-infected cells, such SUMO factories are found in close proximity to newly established viral replication centers (RCs) marked by the adenoviral DNA binding protein (DBP) E2A. Here, we show that E2A is a novel target of host SUMOylation, leading to PTMs supporting E2A function in promoting productive infection. Our data show that SUMOylated E2A interacts with PML. Decreasing SUMO-E2A protein levels by generating HAdV variants mutated in the three main SUMO conjugation motifs (SCMs) led to lower numbers of viral RCs and PML-NBs, and these two structures were no longer next to each other. Our data further indicate that SUMOylated E2A binds the host transcription factor Sp100A, promoting HAdV gene expression, and represents the molecular bridge between PML tracks and adjacent viral RCs. Consequently, E2A SCM mutations repressed late viral gene expression and progeny production. These data highlight a novel mechanism used by the virus to benefit from host antiviral responses by exploiting the cellular SUMO conjugation machinery.IMPORTANCE PML nuclear bodies (PML-NBs) are implicated in general antiviral defense based on recruiting host restriction factors; however, it is not understood so far why viruses would establish viral replication centers (RCs) juxtaposed to such "antiviral" compartments. To understand this enigma, we investigate the cross talk between PML-NB components and viral RCs to find the missing link connecting both compartments to promote efficient viral replication and gene expression. Taken together, the current concept is more intricate than originally believed, since viruses apparently take advantage of several specific PML-NB-associated proteins to promote productive infection. Simultaneously, they efficiently inhibit antiviral measures to maintain the viral infectious program. Our data provide evidence that SUMOylation of the viral RC marker protein E2A represents the basis of this virus-host interface and regulates various downstream events to support HAdV productive infection. These results are the basis of our current attempts to generate and screen for specific E2A SUMOylation inhibitors to constitute novel therapeutic approaches to limit and prevent HAdV-mediated diseases and mortality of immunosuppressed patients.
Collapse
|
48
|
Hoang SM, O'Sullivan RJ. Alternative Lengthening of Telomeres: Building Bridges To Connect Chromosome Ends. Trends Cancer 2020; 6:247-260. [PMID: 32101727 PMCID: PMC7199893 DOI: 10.1016/j.trecan.2019.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Alternative lengthening of telomeres (ALT) is a mechanism of telomere maintenance that is observed in many of the most recalcitrant cancer subtypes. Telomeres in ALT cancer cells exhibit a distinctive nucleoprotein architecture shaped by the mismanagement of chromatin that fosters cycles of DNA damage and replicative stress that activate homology-directed repair (HDR). Mutations in specific chromatin-remodeling factors appear to be key determinants of the emergence and survival of ALT cancer cells. However, these may represent vulnerabilities for the targeted elimination of ALT cancer cells that infiltrate tissues and organs to become devastating tumors. In this review we examine recent findings that provide new insights into the factors and mechanisms that mediate telomere length maintenance and survival of ALT cancer cells.
Collapse
Affiliation(s)
- Song My Hoang
- Department of Pharmacology and Chemical Biology, Hillman Cancer Center, University of Pittsburgh School of Medicine (UPMC), Pittsburgh, PA, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, Hillman Cancer Center, University of Pittsburgh School of Medicine (UPMC), Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Lim KRQ, Nguyen Q, Yokota T. DUX4 Signalling in the Pathogenesis of Facioscapulohumeral Muscular Dystrophy. Int J Mol Sci 2020; 21:E729. [PMID: 31979100 PMCID: PMC7037115 DOI: 10.3390/ijms21030729] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a disabling inherited muscular disorder characterized by asymmetric, progressive muscle weakness and degeneration. Patients display widely variable disease onset and severity, and sometimes present with extra-muscular symptoms. There is a consensus that FSHD is caused by the aberrant production of the double homeobox protein 4 (DUX4) transcription factor in skeletal muscle. DUX4 is normally expressed during early embryonic development, and is then effectively silenced in all tissues except the testis and thymus. Its reactivation in skeletal muscle disrupts numerous signalling pathways that mostly converge on cell death. Here, we review studies on DUX4-affected pathways in skeletal muscle and provide insights into how understanding these could help explain the unique pathogenesis of FSHD.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
| |
Collapse
|
50
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|