1
|
Rajkumar RP. Telomere Dynamics in Post-Traumatic Stress Disorder: A Critical Synthesis. Biomedicines 2025; 13:507. [PMID: 40002919 PMCID: PMC11853385 DOI: 10.3390/biomedicines13020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Post-traumatic stress disorder (PTSD), a mental disorder caused by exposure to traumatic stress, affects 5-10% of the world's population. There is some evidence that PTSD is associated with accelerated cellular aging, leading to an increased risk of medical and neurodegenerative comorbidities. Alterations in telomere length (TL) and telomerase enzyme activity have been proposed as biomarkers of this process. This hypothesis was seemingly confirmed in preliminary research, but more recent studies have yielded mixed results. The current narrative review was conducted to provide a critical synthesis of existing research on telomere length and telomerase in PTSD. Data from 26 clinical studies suggest that TL in PTSD is highly variable and may be influenced by methodological, demographic, trauma-related, and psychosocial factors. There is no evidence for altered telomerase activity in PTSD. In contrast, animal research suggests that exposure to traumatic stress does lead to TL shortening. Overall, it is likely that TL is not, by itself, a reliable biomarker of cellular aging in PTSD. Other markers of cellular senescence, such as epigenetic changes, may prove to be more specific in measuring this process in patients with PTSD.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605006, India
| |
Collapse
|
2
|
Ahlers NE, Lin J, Weiss SJ. WITHDRAWN: Exposure to Ambient Particulate Matter during Pregnancy: Implications for Infant Telomere Length. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.17.23295692. [PMID: 37790308 PMCID: PMC10543047 DOI: 10.1101/2023.09.17.23295692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This manuscript has been withdrawn by the authors as it was submitted and made public without the full consent of all the authors. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author. The authors have an approved version for citation that is peer reviewed. Ahlers, N.E.; Lin, J.; Weiss, S.J. Exposure to Ambient Particulate Matter during Pregnancy: Implications for Infant Telomere Length. Air 2024, 2, 24-37. https://doi.org/10.3390/air2010002.
Collapse
|
3
|
Etzel L, Garrett-Petters P, Shalev I. Early origins of health and disease risk: The case for investigating adverse exposures and biological aging in utero, across childhood, and into adolescence. CHILD DEVELOPMENT PERSPECTIVES 2023; 17:149-156. [PMID: 38706692 PMCID: PMC11068077 DOI: 10.1111/cdep.12488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
In this article, we suggest that aging and development are two sides of the same coin, and that developing a comprehensive understanding of health and disease risk requires examining age-related processes occurring throughout the earliest years of life. Compared to other periods in life, during this early period of acute vulnerability, when children's biological and regulatory systems are developing, biological aging occurs most rapidly. We review theory and empirical research suggesting that processes of development and aging are intricately linked, and that early adversity may program biological parameters for accelerated aging and disease risk early in life, even though clinical signs of age-related disease onset may not be evident until many years later. Following from this, we make the case for widespread incorporation of biological aging constructs into child development research.
Collapse
Affiliation(s)
- Laura Etzel
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | | | - Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Newman LE, Testard C, DeCasien AR, Chiou KL, Watowich MM, Janiak MC, Pavez-Fox MA, Sanchez Rosado MR, Cooper EB, Costa CE, Petersen RM, Montague MJ, Platt ML, Brent LJN, Snyder-Mackler N, Higham JP. The biology of aging in a social world: Insights from free-ranging rhesus macaques. Neurosci Biobehav Rev 2023; 154:105424. [PMID: 37827475 PMCID: PMC10872885 DOI: 10.1016/j.neubiorev.2023.105424] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques (Macaca mulatta). We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.
Collapse
Affiliation(s)
- Laura E Newman
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
| | - Alex R DeCasien
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Marina M Watowich
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Department of Biology, University of Washington, Seattle, WA, USA
| | - Mareike C Janiak
- Department of Anthropology, New York University, New York, NY, USA
| | - Melissa A Pavez-Fox
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom
| | | | - Eve B Cooper
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Christina E Costa
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Rachel M Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
5
|
Wolf SE, Shalev I. The shelterin protein expansion of telomere dynamics: Linking early life adversity, life history, and the hallmarks of aging. Neurosci Biobehav Rev 2023; 152:105261. [PMID: 37268182 PMCID: PMC10527177 DOI: 10.1016/j.neubiorev.2023.105261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Aging is characterized by functional decline occurring alongside changes to several hallmarks of aging. One of the hallmarks includes attrition of repeated DNA sequences found at the ends of chromosomes called telomeres. While telomere attrition is linked to morbidity and mortality, whether and how it causally contributes to lifelong rates of functional decline is unclear. In this review, we propose the shelterin-telomere hypothesis of life history, in which telomere-binding shelterin proteins translate telomere attrition into a range of physiological outcomes, the extent of which may be modulated by currently understudied variation in shelterin protein levels. Shelterin proteins may expand the breadth and timing of consequences of telomere attrition, e.g., by translating early life adversity into acceleration of the aging process. We consider how the pleiotropic roles of shelterin proteins provide novel insights into natural variation in physiology, life history, and lifespan. We highlight key open questions that encourage the integrative, organismal study of shelterin proteins that enhances our understanding of the contribution of the telomere system to aging.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA.
| | - Idan Shalev
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Rampersaud R, Wu GWY, Reus VI, Lin J, Blackburn EH, Epel ES, Hough CM, Mellon SH, Wolkowitz OM. Shorter telomere length predicts poor antidepressant response and poorer cardiometabolic indices in major depression. Sci Rep 2023; 13:10238. [PMID: 37353495 PMCID: PMC10290110 DOI: 10.1038/s41598-023-35912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Telomere length (TL) is a marker of biological aging, and shorter telomeres have been associated with several medical and psychiatric disorders, including cardiometabolic dysregulation and Major Depressive Disorder (MDD). In addition, studies have shown shorter TL to be associated with poorer response to certain psychotropic medications, and our previous work suggested shorter TL and higher telomerase activity (TA) predicts poorer response to Selective Serotonin Reuptake Inhibitor (SSRI) treatment. Using a new group of unmedicated medically healthy individuals with MDD (n = 48), we sought to replicate our prior findings demonstrating that peripheral blood mononuclear cell (PBMC) TL and TA predict response to SSRI treatment and to identify associations between TL and TA with biological stress mediators and cardiometabolic risk indices. Our results demonstrate that longer pre-treatment TL was associated with better response to SSRI treatment (β = .407 p = .007). Additionally, we observed that TL had a negative relationship with allostatic load (β = - .320 p = .017) and a cardiometabolic risk score (β = - .300 p = .025). Our results suggest that PBMC TL reflects, in part, the cumulative effects of physiological stress and cardiovascular risk in MDD and may be a biomarker for predicting SSRI response.
Collapse
Affiliation(s)
- Ryan Rampersaud
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA.
| | - Gwyneth W Y Wu
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Victor I Reus
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Elissa S Epel
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Christina M Hough
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Department of Psychology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Synthia H Mellon
- Department of OB-GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, CA, USA
| | - Owen M Wolkowitz
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| |
Collapse
|
7
|
Thakur M, Patil Y, Philip ST, Hamdule T, Thimmapuram J, Vyas N, Thakur K. Impact of Heartfulness meditation practice on anxiety, perceived stress, well-being, and telomere length. Front Psychol 2023; 14:1158760. [PMID: 37342644 PMCID: PMC10278541 DOI: 10.3389/fpsyg.2023.1158760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Objective Exhaustion, stress, and burnout have all been found to be reduced using techniques like yoga and meditation. This study was carried out to check the effectiveness of Heartfulness practice (a form of meditation) on certain psychological and genetic variables. Methods A total of 100 healthy individuals (aged 18-24) were recruited and randomized into two groups-Heartfulness intervention and control group. The intervention was carried out for 03 months. Participants from both groups were analysed for their cortisol levels and telomere length before and after the intervention. Psychometric measures of anxiety, perceived stress, well-being and mindfulness were carried out using Beck Anxiety Inventory (BAI), Perceived Stress Scale (PSS), WHO-Well-being Index (WHO-WBI) and Five Facet Mindfulness Questionnaire (FFMQ). Results The cortisol levels in the meditators group significantly decreased (p < 0.001) after the intervention as compared to the non-meditators group, whereas, the telomere length increased in the mediators group. This increase was not significant (p > 0.05). Anxiety and perceived stress also decreased post intervention, and well-being as well as mindfulness increased, as assessed by the questionnaire tools, although the decrease in perceived stress was statistically insignificant (p > 0.05). A negative correlation was observed between telomere length and cortisol (stress biomarker), whereas a positive correlation was found between telomere length and well-being. Conclusion Our data provide evidence that Heartfulness meditation practice can improve our mental health. Additionally, telomere length is shown to be affected by cortisol levels, and this meditation practice can also help to increase telomere length, and thereby slow down cellular aging. However, future studies with larger sample size are required to confirm our observations.
Collapse
Affiliation(s)
- Mansee Thakur
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences, Navi Mumbai, India
| | - Yogesh Patil
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences, Navi Mumbai, India
| | - Sanjana T. Philip
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences, Navi Mumbai, India
| | - Tahreem Hamdule
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences, Navi Mumbai, India
| | - Jayaram Thimmapuram
- Department of Internal Medicine, Well Span York Hospital, York, PA, United States
| | | | - Kapil Thakur
- SRCM Heartfulness Meditation Centre, Navi Mumbai, India
| |
Collapse
|
8
|
Beijers R, Ten Thije I, Bolhuis E, O'Donnell KJ, Tollenaar MS, Shalev I, Hastings WJ, MacIsaac JL, Lin DTS, Meaney M, Kobor MS, Belsky J, de Weerth C. Cumulative risk exposure and child cellular aging in a Dutch low-risk community sample. Psychophysiology 2023; 60:e14205. [PMID: 36323627 DOI: 10.1111/psyp.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
One of the proposed mechanisms linking childhood stressor exposure to negative mental and physical health outcomes in later life is cellular aging. In this prospective, longitudinal, and pre-registered study, we examined the association between a cumulative pattern of childhood risk exposure from age 6 to age 10 (i.e., poor maternal mental health, parental relationship problems, family/friend death, bullying victimization, poor quality friendships) and change in two biomarkers of cellular aging (i.e., telomere length, epigenetic age) from age 6 to age 10 in a Dutch low-risk community sample (n = 193). We further examined the moderating effect of cortisol reactivity at age 6. Ordinary Least Squares regression analyses revealed no significant main effects of childhood risk exposure on change in cellular aging, nor a moderation effect of child cortisol reactivity. Secondary findings showed a positive correlation between telomere length and cortisol reactivity at age 6, warranting further investigation. More research in similar communities is needed before drawing strong conclusions based on the null results.
Collapse
Affiliation(s)
- Roseriet Beijers
- Department of Social Development, Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse Ten Thije
- Department of Social Development, Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emma Bolhuis
- Department of Social Development, Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kieran J O'Donnell
- Yale Child Study Center & Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, Connecticut, USA
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
| | - Marieke S Tollenaar
- Leiden Institute for Brain and Cognition and Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Idan Shalev
- Department of Biobehavioral Health, Penn State University, State College, Pennsylvania, USA
| | - Waylon J Hastings
- Department of Biobehavioral Health, Penn State University, State College, Pennsylvania, USA
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada
| | - David T S Lin
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Michael Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jay Belsky
- Department of Human Ecology, University of California, California, Davis, USA
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Newman LE, Testard C, DeCasien AR, Chiou KL, Watowich MM, Janiak MC, Pavez-Fox MA, Rosado MRS, Cooper EB, Costa CE, Petersen RM, Montague MJ, Platt ML, Brent LJ, Snyder-Mackler N, Higham JP. The biology of aging in a social world:insights from free-ranging rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.525893. [PMID: 36747827 PMCID: PMC9900930 DOI: 10.1101/2023.01.28.525893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago Island, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques. We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.
Collapse
Affiliation(s)
- Laura E. Newman
- Department of Anthropology, New York University, New York, New York, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex R. DeCasien
- Section on Developmental Neurogenomics, National Institutes of Mental Health, Bethesda, Maryland, USA
| | - Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Marina M. Watowich
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Mareike C. Janiak
- Department of Anthropology, New York University, New York, New York, USA
| | | | | | - Eve B. Cooper
- Department of Anthropology, New York University, New York, New York, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Christina E. Costa
- Department of Anthropology, New York University, New York, New York, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Michael J. Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren J.N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, New York, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| |
Collapse
|
11
|
Characteristics of salivary telomere length shortening in preterm infants. PLoS One 2023; 18:e0280184. [PMID: 36649354 PMCID: PMC9844854 DOI: 10.1371/journal.pone.0280184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To examine the association between gestational age, telomere length (TL) and rate of shortening in newborns. STUDY DESIGN Genomic DNA was isolated from buccal samples of 39 term infants at birth and one year and 32 preterm infants at birth, term-adjusted age (40 weeks post-conception) and age one-year corrected for gestational duration. Telomere length was measured by quantitative real-time PCR. Demographic and clinical data were collected during clinic or research visits and from hospital records. Socioeconomic status was estimated using the deprivation category (DEPCAT) scores derived from the Carstairs score of the subject's postal code. RESULTS At birth, preterm infants had longer telomeres than infants born at term. However, there was no difference in telomere length between preterm infants and term infants at one year of age, implying that the rate of telomere shortening was greater in pre-term than term infants. Interestingly, TL at age 40 weeks post-conception in preterm infants was significantly longer than term infant TL at birth, suggesting that time since conception is not the only factor that affects rate of shortening. Several factors, including sex, fetal growth restriction, maternal age, maternal booking body mass index (BMI), mother education level and DEPCAT score, also differed between the preterm and term groups. CONCLUSIONS Preterm infants have longer telomeres than term infants at birth. In the studied cohort, the rate of telomere shortening was greater in the premature group compared with the term infants. This finding agrees with previous studies using cord blood, suggesting that the longer TL in premature infants detected at birth do not persist and demonstrating that use of saliva DNA is acceptable for studies of telomere dynamics in infants. However, that the TL at age 40 weeks post-conception in preterm is longer than term infants at birth suggests that biological factors other than time since conception also affect rate of shortening.
Collapse
|
12
|
Bolhuis E, Belsky J, Frankenhuis WE, Shalev I, Hastings WJ, Tollenaar MS, O’Donnell KJ, McGill MG, Pokhvisneva I, Lin DT, MacIsaac JL, Kobor MS, de Weerth C, Beijers R. Attachment insecurity and the biological embedding of reproductive strategies: Investigating the role of cellular aging. Biol Psychol 2022; 175:108446. [DOI: 10.1016/j.biopsycho.2022.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/02/2022]
|
13
|
Zizza A, Panico A, Grassi T, Recchia V, Grima P, De Giglio O, Bagordo F. Is telomere length in buccal or salivary cells a useful biomarker of exposure to air pollution? A review. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 883-884:503561. [DOI: 10.1016/j.mrgentox.2022.503561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
14
|
Hautekiet P, Saenen ND, Aerts R, Martens DS, Roels HA, Bijnens EM, Nawrot TS. Higher buccal mtDNA content is associated with residential surrounding green in a panel study of primary school children. ENVIRONMENTAL RESEARCH 2022; 213:113551. [PMID: 35654156 DOI: 10.1016/j.envres.2022.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Mitochondria are known to respond to environmental stressors but whether green space is associated with mitochondrial abundance is unexplored. Furthermore, as exposures may affect health from early life onwards, we here evaluate if residential green space is associated with mitochondria DNA content (mtDNAc) in children. METHODS In primary schoolchildren (COGNAC study), between 2012 and 2014, buccal mtDNAc was repeatedly (three times) assessed using qPCR. Surrounding low (<3m), high (≥3m) and total (sum of low and high) green space within different radii (100m-1000m) from the residence and distance to the nearest large green space (>0.5ha) were estimated using a remote sensing derived map. Given the repeated measures design, we applied a mixed-effects model with school and subject as random effect while adjusting for a priori chosen fixed covariates. RESULTS mtDNAc was assessed in 246 children with a total of 436 measurements (mean age 10.3 years). Within a 1000m radius around the residential address, an IQR increment in low (11.0%), high (9.5%), and total (13.9%) green space was associated with a respectively 15.2% (95% CI: 7.2%-23.7%), 10.8% (95% CI: 4.5%-17.5%), and 13.4% (95% CI: 7.4%-19.7%) higher mtDNAc. Conversely, an IQR increment (11.6%) in agricultural area in the same radius was associated with a -3.4% (95% CI: 6.7% to -0.1%) lower mtDNAc. Finally, a doubling in distance to large green space was associated with a -5.2% (95% CI: 7.9 to -2.4%) lower mtDNAc. CONCLUSION To our knowledge, this is the first study evaluating associations between residential surrounding green space and mtDNAc in children. Our results showed that green space was associated with a higher mtDNAc in children, which indicates the importance of the early life environment. To what extent these findings contribute to later life health effects should be further examined.
Collapse
Affiliation(s)
- Pauline Hautekiet
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium
| | - Raf Aerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Juliette Wytsmanstraat 14, BE-1050, Brussels, Belgium; Department of Ecology, Evolution and Biodiversity Conservation, University of Leuven (KU Leuven), Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Av. Hippocrate 57, BE-1200, Woluwe-Saint-Lambert, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Department of Human Structure and Repair, Ghent University Hospital, Corneel Heymanslaan 10, BE-9000, Ghent, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, BE-3590, Hasselt, Belgium; Department of Public Health & Primary Care, University of Leuven (KU Leuven), O&N I Herestraat 49 - Bus 706, BE-3000, Leuven, Belgium.
| |
Collapse
|
15
|
Bürgin D, Clemens V, Varghese N, Eckert A, Huber M, Bruttin E, Boonmann C, Unternährer E, O'Donovan A, Schmid M. Adverse and traumatic exposures, posttraumatic stress disorder, telomere length, and hair cortisol – Exploring associations in a high-risk sample of young adult residential care leavers. Brain Behav Immun Health 2022; 26:100524. [PMID: 36213488 PMCID: PMC9535425 DOI: 10.1016/j.bbih.2022.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/17/2022] [Accepted: 09/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Childhood adversities (CAs), potentially traumatic exposures (PTEs), and posttraumatic stress disorder (PTSD) are known to increase the risk for poor health outcomes, including diseases of aging and early mortality. Telomere length (TL) and hair cortisol concentrations (HCC) are biomarkers known to be associated with CA and PTEs, and PTSD, but there is considerable heterogeneity in findings. Objectives This study aims to investigate the association of CAs, PTEs, and PTSD with TL and HCC in a high-risk sample of young adults who were previously placed in youth residential care institutions throughout Switzerland. Method Our sample includes 130 participants (30.8% women, M Age = 26.5 ± 3.7 years) with previous youth residential care placements (MPlacements= 3.9). CAs and PTEs, as well as PTSD, were assessed with self-reported questionnaires and semi-structured clinical interviews. Immune cell TL was measured with quantitative polymerase chain reaction (qPCR) in whole blood. Hair samples were collected for HCC measurement and assayed with high-sensitivity ELISA. Multivariate regression models were fitted to describe the associations between CAs, PTEs, and PTSD with TL and HCC, adjusting for covariates. Results In our high-risk sample, a higher burden of CAs, PTEs, Criterion A trauma, and PTSD was associated with longer TL. PTEs, Criterion A trauma, and PTSD were associated with lower HCC, however no significant associations between CAs and HCC were found. The magnitude of these effects varied depending on the dimensional or categorical nature of the stress-phenotype and the specific measure used. Conclusions Our findings are in contrast with many, but not all, previous studies of associations between adversity and both TL and HCC. For instance, our findings are in line with other studies that find a state of hypocortisolism in PTSD. Better measurement of adversities and trauma, multisystem biomarker approaches, and more research in larger high-risk samples at the upper end of the adversity-continuum is warranted. In this high-risk sample,childhood adversities, potential traumatic exposures, criterion A trauma, or posttraumatic stress disorder (PTSD) was associated with longer telomere length (TL). Potentially traumatic exposures, criterion A trauma, and PTSD were associated with lower hair cortisol concentrations. The magnitude of these effects varied depending on the dimensional or categorical nature of the stress-phenotype and the specific measure used. Hypocortisolism might explain findings of longer TL in participants with cumulated adverse and traumatic exposures. Research in high-risk populations is strongly needed as results across the entire spectrum of adversity exposures may not generalize to the top end of the spectrum.
Collapse
Affiliation(s)
- David Bürgin
- Research Department for Child and Adolescent Psychiatry, University Psychiatric Hospitals Basel, University of Basel, Basel, Switzerland
- Department for Child and Adolescent Psychiatry and Psychotherapy, University Hospital Ulm, Ulm, Germany
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Corresponding author. University Psychiatric Hospitals Basel Research Department for Child and Adolescent Psychiatry Wilhelm-Klein Strasse 27, 4056, Basel, Switzerland.
| | - Vera Clemens
- Department for Child and Adolescent Psychiatry and Psychotherapy, University Hospital Ulm, Ulm, Germany
| | - Nimmy Varghese
- Neurobiological Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Neurobiological Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, University of Basel, Basel, Switzerland
| | - Mara Huber
- Research Department for Child and Adolescent Psychiatry, University Psychiatric Hospitals Basel, University of Basel, Basel, Switzerland
| | - Evelyne Bruttin
- Research Department for Child and Adolescent Psychiatry, University Psychiatric Hospitals Basel, University of Basel, Basel, Switzerland
| | - Cyril Boonmann
- Research Department for Child and Adolescent Psychiatry, University Psychiatric Hospitals Basel, University of Basel, Basel, Switzerland
| | - Eva Unternährer
- Research Department for Child and Adolescent Psychiatry, University Psychiatric Hospitals Basel, University of Basel, Basel, Switzerland
| | - Aoife O'Donovan
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Marc Schmid
- Research Department for Child and Adolescent Psychiatry, University Psychiatric Hospitals Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Graf GH, Li X, Kwon D, Belsky DW, Widom CS. Biological aging in maltreated children followed up into middle adulthood. Psychoneuroendocrinology 2022; 143:105848. [PMID: 35779342 DOI: 10.1016/j.psyneuen.2022.105848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Childhood adversity has been linked to many indicators of shorter healthy lifespan, including earlier onset of disease and disability as well as early mortality. These observations suggest the hypothesis that childhood maltreatment may accelerate aging. OBJECTIVE To characterize the relationship between childhood maltreatment and accelerated biological aging in a prospective cohort of 357 individuals with documented cases of childhood maltreatment and 250 controls matched on demographic and socioeconomic factors. METHODS Cases were drawn from juvenile and adult court records from the years 1967 through 1971 in a large Midwest metropolitan geographic area. Cases were defined as having court-substantiated cases of childhood physical or sexual abuse, or neglect occurring at age 11 or younger. Controls were selected from the same schools and hospitals of birth and matched on age, sex, race, and approximate socioeconomic status. We compared biological aging in these two groups using two blood-chemistry algorithms, the Klemera-Doubal method Biological Age (KDM BA) and the PhenoAge. Algorithms were developed and validated in data from the National Health and Nutrition Examination Surveys (NHANES) using published methods and publicly available software. RESULTS Participants (55% women, 49% non-White) had mean age of 41 years (SD=4). Those with court substantiated childhood maltreatment history exhibited more advanced biological aging as compared with matched controls, although this difference was statistically different for only the KDM BA measure (KDM BA Cohen's D=0.20, 95% CI=[0.03,0.36], p = 0.02; PhenoAge Cohen's D=0.09 95% CI=[-0.08,0.25], p = 0.296). In subgroup analyses, maltreatment effect sizes were larger for women as compared to men and for White participants as compared to non-White participants, although these differences were not statistically significant at the α= 0.05 level. CONCLUSIONS AND RELEVANCE As of midlife, effects of childhood maltreatment on biological aging are small in magnitude but discernible. Interventions to treat psychological and behavioral sequelae of exposure to childhood maltreatment, including in midlife adults, have potential to protect survivors from excess burden of disease, disability, and mortality in later life.
Collapse
Affiliation(s)
- G H Graf
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA; Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA.
| | - X Li
- Psychology Department, John Jay College, City University of New York, New York, USA; Graduate Center, City University of New York, New York, USA
| | - D Kwon
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA; Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - D W Belsky
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA; Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA.
| | - C S Widom
- Psychology Department, John Jay College, City University of New York, New York, USA; Graduate Center, City University of New York, New York, USA.
| |
Collapse
|
17
|
Higher hair cortisol concentrations associated with shorter leukocyte telomere length in high-risk young adults. Sci Rep 2022; 12:11730. [PMID: 35821228 PMCID: PMC9276815 DOI: 10.1038/s41598-022-14905-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/14/2022] [Indexed: 01/01/2023] Open
Abstract
Chronic stress is associated with accelerated biological aging as indexed by short age-adjusted leukocyte telomere length (LTL). Exploring links of biological stress responses with LTL has proved challenging due to the lack of biological measures of chronic psychological stress. Hair cortisol concentration (HCC) has emerged as a measure of chronic hypothalamic pituitary adrenal (HPA) axis activation, allowing the examination of relationships between aggregate cortisol concentrations over time and LTL. Our sample includes 92 participants (38% women, Mage = 26 ± 3.7 years) from a high-risk sample of young adults with previous residential care placements. Two cm hair was collected for HCC, reflecting approximately eight weeks of cortisol secretion. LTL was measured with quantitative polymerase chain reaction (qPCR) in whole blood samples. All samples for LTL were run in triplicate and assayed twice. Linear and polynomial regression models were used to describe the association between HCC and LTL, adjusting for age and sex. HCC and LTL showed negative associations (std. ß = − 0.67, 95% CI [− 0.83, − 0.52], p < .001) in age- and sex-adjusted analyses, indicating that higher HCCs are associated with shorter LTL. Using polynomial regression, we found a curvilinear relationship indicating a stronger negative association at lower cortisol concentrations. Higher HCCs were associated with shorter LTL, supporting the hypothesized involvement of prolonged cortisol secretion in telomere attrition. Thus, HCC may prove useful as a biological indicator of chronic stress associated with aging-related processes in samples exposed to high levels of stress.
Collapse
|
18
|
Raffington L, Belsky DW. Integrating DNA Methylation Measures of Biological Aging into Social Determinants of Health Research. Curr Environ Health Rep 2022; 9:196-210. [PMID: 35181865 DOI: 10.1007/s40572-022-00338-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Acceleration of biological processes of aging is hypothesized to drive excess morbidity and mortality in socially disadvantaged populations. DNA methylation measures of biological aging provide tools for testing this hypothesis. RECENT FINDINGS Next-generation DNA methylation measures of biological aging developed to predict mortality risk and physiological decline are more predictive of morbidity and mortality than the original epigenetic clocks developed to predict chronological age. These new measures show consistent evidence of more advanced and faster biological aging in people exposed to socioeconomic disadvantage and may be able to record the emergence of socially determined health inequalities as early as childhood. Next-generation DNA methylation measures of biological aging also indicate race/ethnic disparities in biological aging. More research is needed on these measures in samples of non-Western and non-White populations. New DNA methylation measures of biological aging open opportunities for refining inference about the causes of social disparities in health and devising policies to eliminate them. Further refining measures of biological aging by including more diversity in samples used for measurement development is a critical priority for the field.
Collapse
Affiliation(s)
- Laurel Raffington
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| | - Daniel W Belsky
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St. Rm 413, New York, NY, 10032, USA.
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Women's fertility decay starts at the mid 30 s. However, the current delay of childbearing leads to ovarian aging and the need of assisted reproduction technologies (ART). Telomere biology is one of the main pathways involved in organismal aging. Thus, this review will focus on the knowledge acquired during the last 2 years about the telomere pathway and its influence on female fertility and the consequences for the newborn. RECENT FINDINGS New research on telomere biology reaffirms the relationship of telomere attrition and female infertility. Shorter maternal telomeres, which could be aggravated by external factors, underly premature ovarian aging and other complications including preeclampsia, preterm birth and idiopathic pregnancy loss. Finally, the telomere length of the fetus or the newborn is also affected by external factors, such as stress and nutrition. SUMMARY Recent evidence shows that telomeres are implicated in most processes related to female fertility, embryo development and the newborn's health. Thus, telomere length and telomerase activity may be good biomarkers for early detection of ovarian and pregnancy failures, opening the possibility to use telomere therapies to try to solve the infertility situation.
Collapse
|
20
|
Bertele N, Karabatsiakis A, Talmon A, Buss C. Biochemical clusters predict mortality and reported inability to work 10 years later. Brain Behav Immun Health 2022; 21:100432. [PMID: 35252892 PMCID: PMC8892089 DOI: 10.1016/j.bbih.2022.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Chronic systemic inflammation has been linked to premature mortality and limited somatic as well as mental health with consequences for capability to work and everyday functioning. We recently identified three biochemical clusters of endocrine and immune parameters (C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen, cortisol and creatinine) in participants, age 35-81 years, of the open access Midlife in the United States Study (MIDUS) dataset. These clusters have been validated in an independent cohort of Japanese mid-life adults. Among these clusters, the one characterized by high inflammation coupled with low cortisol and creatinine concentrations was associated with the highest disease burden, referred to as high-risk cluster in the following. The current study aims to further examine the nature of this cluster and specifically whether it predicts mortality and the reported inability to work the last 30 days 10 years after the biomarker assessment. METHODS AND FINDINGS Longitudinally assessed health data from N = 1234 individuals were analyzed in the current study. Logistic regression analyses were performed to predict mortality within one decade after first assessment (T0 = first assessment; T1 = second assessment). General linear models were used to predict the number of days study participants were unable to work due to health issues in the last 30 days (assessed at T1, analyses restricted to individuals <70 years of age). Biological sex, disease burden, and age at T0 were used as covariates in all analyses. Individuals in the previously identified high-risk cluster had a higher risk for mortality (22% of individuals deceased between T0 and T1 versus 10% respectively 9% in the two other clusters). Logistic regression models predicting mortality resulted in a significant difference between individuals from the high-risk cluster compared to those from an identified reference cluster (indicator method, p = .012), independently of age and disease burden. Furthermore, individuals in the high-risk cluster reported a higher number of disability days during the past 30 days (3.4 days in the high-risk cluster versus 1.5 respectively 1.0 days in the reference clusters) assessed at T1. All pairwise comparisons involving the high-risk cluster were significant (all ps < .001). CONCLUSIONS Immune-endocrine profiles are predictive of mortality within the following decade over and above age and disease burden. The findings thus highlight the importance of biomarker-based risk profiling that may provide new targets for interventions in the context of preventive medicine in the transition from health to disease and disease-related mortality.
Collapse
Affiliation(s)
- Nina Bertele
- Psychology Department, Stanford University, Stanford, CA, USA
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Alexander Karabatsiakis
- Institute of Psychology, Department of Clinical Psychology-II, University of Innsbruck, Innsbruck, Austria
| | - Anat Talmon
- Psychology Department, Stanford University, Stanford, CA, USA
- Paul Baerwald School of Social Work and Social Welfare, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, Israel
| | - Claudia Buss
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- Development, Health and Disease Research Program, Department of Pediatrics, University of California Irvine, Irvine, USA
| |
Collapse
|
21
|
Marasco V, Smith S, Angelier F. How does early-life adversity shape telomere dynamics during adulthood? Problems and paradigms. Bioessays 2022; 44:e2100184. [PMID: 35122449 DOI: 10.1002/bies.202100184] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Although early-life adversity has been associated with negative consequences during adulthood, growing evidence shows that such adversity can also lead to subsequent stress resilience and positive fitness outcomes. Telomere dynamics are relevant in this context because of the link with developmental conditions and longevity. However, few studies have assessed whether the effects of early-life adversity on developmental telomere dynamics may relate to adult telomere dynamics. We propose that the potential links between early-life adversity and adult telomere dynamics could be driven by developmental constraints (the Constraint hypothesis), by the nature/severity of developmental adversity (the Resilience hypothesis), or by developmental-mediated changes in individual life-history strategies (the Pace of Life hypothesis). We discuss these non-mutually exclusive hypotheses, explore future research directions, and propose specific studies to test these hypotheses. Our article aims to expand our understanding of the evolutionary role of developmental conditions on adult telomere dynamics, stress resilience and ageing.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology (KLIVV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Steve Smith
- Konrad Lorenz Institute of Ethology (KLIVV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS)-La Rochelle Université (LRU), UMR 7372, Villiers en Bois, France
| |
Collapse
|
22
|
Haas S, Metzger U, Paul M. ["Frühe Hilfen": what must pediatricians know?]. Monatsschr Kinderheilkd 2022; 170:359-366. [PMID: 35342196 PMCID: PMC8938728 DOI: 10.1007/s00112-022-01440-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
In early childhood, essential foundations are laid for healthy growing up and long-term quality of life and health. Stressful life situations can disrupt good early childhood development, therefore early support is essential. Early childhood interventions like "Frühe Hilfen" provide support systems with coordinated services for parents and children during early childhood. They are particularly aimed at families in stressful life situations and thus counteract the long-term consequences of negative childhood experiences and promote healthy growing up. Pediatricians are important cooperation partners of "Frühe Hilfen", especially with respect to access to the services. Early life care is an interdisciplinary and integrative concept that aims to promote optimal conditions for families around the desire to have children, pregnancy, birth and early childhood, among other things, with a view to risk situations.
Collapse
Affiliation(s)
- Sabine Haas
- Gesundheit Österreich GmbH, Stubenring 6, 1010 Wien, Österreich
| | - Ulrike Metzger
- Christian-Doppler-Klinik, Uniklinikum Salzburg, Salzburg, Österreich
| | - Mechthild Paul
- Nationales Zentrum Frühe Hilfen, Bundeszentrale für gesundheitliche Aufklärung, Köln, Deutschland
| |
Collapse
|
23
|
Stout-Oswald SA, Glynn L, Bisoffi M, Demers CH, Davis EP. Prenatal exposure to maternal psychological distress and telomere length in childhood. Dev Psychobiol 2022; 64:e22238. [PMID: 35050506 PMCID: PMC11673474 DOI: 10.1002/dev.22238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 11/07/2021] [Indexed: 09/02/2023]
Abstract
Telomere length (TL) is a biological marker of cellular aging, and shorter TL in adulthood is associated with increased morbidity and mortality risk. It is likely that these differences in TL are established long before adulthood, and there is growing evidence that TL can reflect prenatal experiences. Although maternal prenatal distress predicts newborn TL, it is unknown whether the relation between prenatal exposure to maternal distress and child TL persists through childhood. The purpose of the current longitudinal, prospective study is to examine the relation between prenatal exposure to maternal distress (perceived stress, depressive symptoms, pregnancy-related anxiety) and TL in childhood. Participants included 102 children (54 girls) and their mothers. Mothers' distress was assessed five times during pregnancy, at 12 weeks postpartum, and at the time of child telomere measurement between 6 and 16 years of age. Maternal distress during pregnancy predicted shorter offspring TL in childhood, even after accounting for postnatal exposure to maternal distress and other covariates. These findings indicate that maternal mental health predicts offspring TL biology later in childhood than previously observed. This study bolsters claims that telomere biology is subject to fetal programming and highlights the importance of supporting maternal mental health during pregnancy.
Collapse
Affiliation(s)
| | - LauraM. Glynn
- Department of Psychology, Chapman University, Orange, California, USA
| | - Marco Bisoffi
- Department of Psychology, Chapman University, Orange, California, USA
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
- School of Pharmacy, Chapman University, Orange, California, USA
| | - Catherine H. Demers
- Department of Psychology, University of Denver, Denver, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, Colorado, USA
- Department of Pediatrics, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
24
|
Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Repeated exposure to challenging environmental conditions influences telomere dynamics across adult life as predicted by changes in mortality risk. FASEB J 2021; 35:e21743. [PMID: 34192361 DOI: 10.1096/fj.202100556r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
The effects of stress exposure are likely to vary depending on life-stage and stressor. While it has been postulated that mild stress exposure may have beneficial effects, the duration of such effects and the underlying mechanisms are unclear. While the long-term effects of early-life stress are relatively well studied, we know much less about the effects of exposure in adulthood since the early- and adult-life environments are often similar. We previously reported that repeated experimental exposure to a relatively mild stressor in female zebra finches, first experienced in young adulthood, initially had no effect on mortality risk, reduced mortality in middle age, but the apparently beneficial effects disappeared in old age. We show here that this is underpinned by differences between the control and stress-exposed group in the pattern of telomere change, with stress-exposed birds showing reduced telomere loss in middle adulthood. We thereby provide novel experimental evidence that telomere dynamics play a key role linking stress resilience and aging.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
25
|
Serum gamma-glutamyl transferase, a marker of alcohol intake, is associated with telomere length and cardiometabolic risk in young adulthood. Sci Rep 2021; 11:12407. [PMID: 34117333 PMCID: PMC8196210 DOI: 10.1038/s41598-021-91987-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Studies based on self-reported alcohol consumption and telomere length show inconsistent results. Therefore, we studied the association between gamma-glutamyl transferase (GGT), a widely used biomarker of alcohol intake, and telomere length. The possible health relevance in young adulthood was explored by investigating cardiometabolic risk factors. Mixed modelling was performed to examine GGT and alcohol consumption in association with telomere length in buccal cells of 211 adults between 18 and 30 years old of the East Flanders Prospective Twin Survey. In addition, we investigated the association between GGT and cardiometabolic risk factors; waist circumference, systolic blood pressure, fasting glucose, HDL cholesterol, and triglycerides. Although we did not observe an association between self-reported alcohol consumption and telomere length, our results show that a doubling in serum GGT is associated with 7.80% (95% CI − 13.9 to − 1.2%; p = 0.02) shorter buccal telomeres, independently from sex, chronological age, educational level, zygosity and chorionicity, waist-to-hip ratio and smoking. The association between GGT was significant for all five cardiometabolic risk factors, while adjusting for age. We show that GGT, a widely used biomarker of alcohol consumption, is associated with telomere length and with risk factors of cardiometabolic syndrome, despite the young age of this study population.
Collapse
|
26
|
Raffington L, Belsky DW, Kothari M, Malanchini M, Tucker-Drob EM, Harden KP. Socioeconomic Disadvantage and the Pace of Biological Aging in Children. Pediatrics 2021; 147:e2020024406. [PMID: 34001641 PMCID: PMC8785753 DOI: 10.1542/peds.2020-024406] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Children who grow up in socioeconomic disadvantage face increased burden of disease and disability throughout their lives. One hypothesized mechanism for this increased burden is that early-life disadvantage accelerates biological processes of aging, increasing vulnerability to subsequent disease. To evaluate this hypothesis and the potential impact of preventive interventions, measures are needed that can quantify early acceleration of biological aging in childhood. METHODS Saliva DNA methylation and socioeconomic circumstances were measured in N = 600 children and adolescents aged 8 to 18 years (48% female) participating in the Texas Twin Project. We measured pace of biological aging using the DunedinPoAm DNA methylation algorithm, developed to quantify the pace-of-aging-related decline in system integrity. We tested if children in more disadvantaged families and neighborhoods exhibited a faster pace of aging as compared with children in more affluent contexts. RESULTS Children living in more disadvantaged families and neighborhoods exhibited a faster DunedinPoAm-measured pace of aging (r = 0.18; P = .001 for both). Latinx-identifying children exhibited a faster DunedinPoAm-measured pace of aging compared with both White- and Latinx White-identifying children, consistent with higher levels of disadvantage in this group. Children with more advanced pubertal development, higher BMI, and more tobacco exposure exhibited faster a faster DunedinPoAm-measured pace of aging. However, DunedinPoAm-measured pace of aging associations with socioeconomic disadvantage were robust to control for these factors. CONCLUSIONS Children growing up under conditions of socioeconomic disadvantage exhibit a faster pace of biological aging. DNA methylation pace of aging might be useful as a surrogate end point in evaluation of programs and policies to address the childhood social determinants of lifelong health disparities.
Collapse
Affiliation(s)
- Laurel Raffington
- Department of Psychology and
- Population Research Center, The University of Texas at Austin, Austin, Texas
| | - Daniel W Belsky
- Department of Epidemiology and
- The Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, New York; and
| | - Meeraj Kothari
- The Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, New York; and
| | - Margherita Malanchini
- Department of Psychology and
- Population Research Center, The University of Texas at Austin, Austin, Texas
- Department of Biological and Experimental Psychology, Queen Mary University of London, London, United Kingdom
| | - Elliot M Tucker-Drob
- Department of Psychology and
- Population Research Center, The University of Texas at Austin, Austin, Texas
- Contributed equally as co-lead authors
| | - K Paige Harden
- Department of Psychology and
- Population Research Center, The University of Texas at Austin, Austin, Texas
- Contributed equally as co-lead authors
| |
Collapse
|
27
|
Heidinger BJ, Kucera AC, Kittilson JD, Westneat DF. Longer telomeres during early life predict higher lifetime reproductive success in females but not males. Proc Biol Sci 2021; 288:20210560. [PMID: 34034512 PMCID: PMC8150037 DOI: 10.1098/rspb.2021.0560] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that contribute to variation in lifetime reproductive success are not well understood. One possibility is that telomeres, conserved DNA sequences at chromosome ends that often shorten with age and stress exposures, may reflect differences in vital processes or influence fitness. Telomere length often predicts longevity, but longevity is only one component of fitness and little is known about how lifetime reproductive success is related to telomere dynamics in wild populations. We examined the relationships between telomere length beginning in early life, telomere loss into adulthood and lifetime reproductive success in free-living house sparrows (Passer domesticus). We found that females, but not males, with longer telomeres during early life had higher lifetime reproductive success, owing to associations with longevity and not reproduction per year or attempt. Telomeres decreased with age in both sexes, but telomere loss was not associated with lifetime reproductive success. In this species, telomeres may reflect differences in quality or condition rather than the pace of life, but only in females. Sexually discordant selection on telomeres is expected to influence the stability and maintenance of within population variation in telomere dynamics and suggests that any role telomeres play in mediating life-history trade-offs may be sex specific.
Collapse
Affiliation(s)
- Britt J. Heidinger
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Aurelia C. Kucera
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Jeff D. Kittilson
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | | |
Collapse
|
28
|
Sosnowski DW, Kliewer W, Valrie CR, Winter MA, Serpell Z, Amstadter AB. The Association Between Adverse Childhood Experiences and Child Telomere Length: Examining Self-Regulation as a Behavioral Mediator. Child Dev 2021; 92:746-759. [PMID: 33783830 DOI: 10.1111/cdev.13441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Childhood adversity is linked to shortened telomere length (TL), but behavioral indicators of telomere attrition remain unclear. This study examined the association between adverse childhood experiences (ACEs) and child TL, and if ACEs were indirectly associated with TL through children's self-regulatory abilities (i.e., effortful control and self-control). Hypotheses were tested using national data from teachers, parents, and their children (N = 2,527; Mage = 9.35, SD = .36 years). More ACEs were uniquely associated with short TL, and low self-control mediated the association between more ACEs and short TL. While longitudinal studies are needed to strengthen claims of causation, this study identifies a pathway from ACEs to TL that should be explored further.
Collapse
|
29
|
Mayer SE, Surachman A, Prather AA, Puterman E, Delucchi KL, Irwin MR, Danese A, Almeida DM, Epel ES. The long shadow of childhood trauma for depression in midlife: examining daily psychological stress processes as a persistent risk pathway. Psychol Med 2021; 52:1-10. [PMID: 33766171 PMCID: PMC8647837 DOI: 10.1017/s0033291721000921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Childhood trauma (CT) increases the risk of adult depression. Buffering effects require an understanding of the underlying persistent risk pathways. This study examined whether daily psychological stress processes - how an individual interprets and affectively responds to minor everyday events - mediate the effect of CT on adult depressive symptoms. METHODS Middle-aged women (N = 183) reported CT at baseline and completed daily diaries of threat appraisals and negative evening affect for 7 days at baseline, 9, and 18 months. Depressive symptoms were measured across the 1.5-year period. Mediation was examined using multilevel structural equation modeling. RESULTS Reported CT predicted greater depressive symptoms over the 1.5-year time period (estimate = 0.27, s.e. = 0.07, 95% CI 0.15-0.38, p < 0.001). Daily threat appraisals and negative affect mediated the effect of reported CT on depressive symptoms (estimate = 0.34, s.e. = 0.08, 95% CI 0.22-0.46, p < 0.001). Daily threat appraisals explained more than half of this effect (estimate = 0.19, s.e. = 0.07, 95% CI 0.08-0.30, p = 0.004). Post hoc analyses in individuals who reported at least moderate severity of CT showed that lower threat appraisals buffered depressive symptoms. A similar pattern was found in individuals who reported no/low severity of CT. CONCLUSIONS A reported history of CT acts as a latent vulnerability, exaggerating threat appraisals of everyday events, which trigger greater negative evening affect - processes that have important mental health consequences and may provide malleable intervention targets.
Collapse
Affiliation(s)
- Stefanie E. Mayer
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Agus Surachman
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA
- Center for Healthy Aging, The Pennsylvania State University, University Park, PA, USA
| | - Aric A. Prather
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Eli Puterman
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Kevin L. Delucchi
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Michael R. Irwin
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Andrea Danese
- Social, Genetic and Developmental Psychiatry Centre and Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National and Specialist CAMHS Clinic for Trauma, Anxiety, and Depression, South London and Maudsley NHS Foundation Trust, London, UK
| | - David M. Almeida
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA
- Center for Healthy Aging, The Pennsylvania State University, University Park, PA, USA
| | - Elissa S. Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
30
|
Hautekiet P, Nawrot TS, Janssen BG, Martens DS, De Clercq EM, Dadvand P, Plusquin M, Bijnens EM, Saenen ND. Child buccal telomere length and mitochondrial DNA content as biomolecular markers of ageing in association with air pollution. ENVIRONMENT INTERNATIONAL 2021; 147:106332. [PMID: 33388564 DOI: 10.1016/j.envint.2020.106332] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pro-inflammatory conditions such as air pollution might induce biological ageing. However, the available evidence on such an impact in children is still very scarce. We studied in primary schoolchildren the association of ambient residential air pollution exposure with telomere length (TL) and mitochondrial DNA content (mtDNAc), two important targets of the core axis of ageing. METHODS Between 2012 and 2014, buccal TL and mtDNAc were repeatedly assessed using qPCR in 197 Belgian primary schoolchildren (mean age 10.3 years) as part of the COGNAC study. At the child's residence, recent (week), sub-chronic (month) and chronic (year) exposure to nitrogen dioxide (NO2), particulate matter ≤ 2.5 µm (PM2.5) and black carbon (BC) were estimated using a high resolution spatiotemporal model. A mixed-effects model with school and subject as random effect was used while adjusting for a priori chosen covariates. RESULTS An interquartile range (IQR) increment (1.9 µg/m3) in chronic PM2.5 exposure was associated with a 8.9% (95% CI: -15.4 to -1.9%) shorter TL. In contrast to PM2.5, chronic exposure to BC and NO2 was not associated with TL but recent exposure to BC and NO2 showed significant inverse associations with TL: an IQR increment in recent exposure to BC (0.9 µg/m3) and NO2 (10.2 µg/m3) was associated with a 6.2% (95% CI: -10.6 to -1.6%) and 6.4% (95% CI: -11.8 to -0.7%) shorter TL, respectively. Finally, an IQR increment in chronic PM2.5 exposure was associated with a 12.7% (95% CI: -21.7 to -2.6%) lower mtDNAc. However, no significant associations were seen for NO2 and BC or for other exposure windows. CONCLUSION Chronic exposure to PM2.5 below the EU threshold was associated with child's shorter buccal TL and lower mtDNAc, while traffic-related pollutants (BC and NO2) showed recent effects on telomere biology. Our data add to the literature on air pollution-induced effects of TL and mtDNAc, two measures part of the core axis of cellular ageing, from early life onwards.
Collapse
Affiliation(s)
- Pauline Hautekiet
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium; Risk and Health Impact Assessment, Sciensano, Juliette Wytsmanstraat 14, BE-1050 Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium; Department of Public Health & Primary Care, University of Leuven (KU Leuven), O&N I Herestraat 49 - bus 706, BE-3000 Leuven, Belgium.
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
| | - Eva M De Clercq
- Risk and Health Impact Assessment, Sciensano, Juliette Wytsmanstraat 14, BE-1050 Brussels, Belgium
| | - Payam Dadvand
- ISGlobal, Campus Mar, Dr Aiguader 88, ES-08003 Barcelona, Spain; Pompeu Fabra University, Doctor Aiguader 80, 08003 Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Melchor Fernández Almagro 3-5, 28029 Madrid, Spain
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, BE-3590 Hasselt, Belgium; Risk and Health Impact Assessment, Sciensano, Juliette Wytsmanstraat 14, BE-1050 Brussels, Belgium
| |
Collapse
|
31
|
Social determinants of health, personalized medicine, and child maltreatment. Pediatr Res 2021; 89:368-376. [PMID: 33288877 DOI: 10.1038/s41390-020-01290-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 11/08/2022]
Abstract
This review begins with a brief summary of the importance of child maltreatment as a major public health problem, given its prevalence and the substantial human and economic costs involved. The focus then shifts to consideration of personalized medicine and child maltreatment, including genetic and genomics factors, as well as the role of social determinants of health. Research on epigenetics related to child abuse and neglect is presented, followed by that pertaining to a few specific social factors, such as poverty, parental depression and substance use, and domestic (or intimate partner) violence. The review ends with a discussion of interventions to help address social determinants of health with brief descriptions of several model programs, and thoughts concerning the role of personalized medicine in addressing child maltreatment in the foreseeable future. IMPACT: This paper synthesizes knowledge on social determinants of health and advances in genetics and genomics related to the prevention of child maltreatment. It provides examples of model approaches to addressing the prevention of child maltreatment in primary care practices.
Collapse
|
32
|
Intergenerational transmission of childhood trauma? Testing cellular aging in mothers exposed to sexual abuse and their children. Psychoneuroendocrinology 2020; 120:104781. [PMID: 32629221 PMCID: PMC7502488 DOI: 10.1016/j.psyneuen.2020.104781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Exposure to maltreatment in childhood can lead to increased risk for poor health outcomes in adulthood. Child maltreatment and later poor health may be linked by premature biological aging. We tested whether childhood sexual abuse (CSA) was associated with telomere length (TL) in adult females. We further tested the hypothesis of intergenerational transmission of CSA-related effects by measuring TL in both CSA-exposed and non-exposed mothers and their children. METHODS Participants were a subset of females and their children in a prospective-longitudinal cohort study of sexually abused females and a demographically comparable control group from the same Washington, D.C. area. TL was measured using qPCR in both leukocyte and buccal samples from females (N = 108, mean age 36.3 years) and buccal samples from their children (N = 124, mean age 10.5 years). Multilevel models were used to test associations between CSA-exposure and TL measured in leukocytes and buccal tissue in females and to test the intergenerational effect of maternal-CSA exposure on age-adjusted TL in their children. RESULTS CSA-exposure was not associated with TL in adult females. Maternal TL and biological sex were significant predictors of child TL such that longer maternal TL predicted longer TL in children, and female children had longer TL than male children. However, maternal-CSA exposure did not predict TL in children. DISCUSSION CSA-exposure was not associated with TL in this cohort of middle-aged females, nor was there evidence for an intergenerational effect of maternal-CSA exposure on child TL. This finding is in line with some previous results on CSA and adult TL. Previous significant results associating child maltreatment with shorter TL may be capturing a population of individuals exposed to either multiple types of maltreatment compared to controls with no childhood adversity, or maltreatment in childhood with concurrent TL measurements.
Collapse
|
33
|
Sun Y, Fang J, Wan Y, Su P, Tao F. Association of Early-Life Adversity With Measures of Accelerated Biological Aging Among Children in China. JAMA Netw Open 2020; 3:e2013588. [PMID: 32955573 PMCID: PMC7506517 DOI: 10.1001/jamanetworkopen.2020.13588] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPORTANCE A growing body of literature suggests that exposure to early-life adversity (ELA) is associated with accelerated biological aging, offering 1 mechanism through which ELA may be associated with an increased risk for age-related disease. These investigations, however, have been predominantly cross-sectional and focused on adults and females. OBJECTIVE To evaluate associations of threat-related (ie, physical abuse) and deprivation-related (ie, emotional neglect) ELA exposure with cellular and reproductive strategy metrics of biological aging among boys and girls with specific genetic backgrounds around the period of pubertal onset. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, 997 boys and girls in grade 1 to grade 3 from 3 large elementary schools were recruited from Bengbu, Anhui Province, China, and were followed up from March 21, 2016 (baseline; wave 1), for 4 consecutive years, through March 25, 2019. MAIN OUTCOMES AND MEASURES The outcome was accelerated biological aging in both cellular and reproductive strategy metrics: telomere attrition and age at thelarche (for girls) and testicular maturation (for boys). Multi-informant assessment of exposure to threat-related and deprivation-related ELA was done at baseline (wave 1) and 1-year follow-up (wave 2). The polygenic risk score (PRS) was computed based on 17 single-nucleotide variations for early pubertal timing. RESULTS Of the 997 participants (579 girls [58.1%]; mean [SD] age at baseline, 8.0 [0.8] years), 550 (55.2%) reported exposure to threat-related ELA and 443 (44.4%) reported exposure to deprivation-related ELA. Threat-related ELA was associated with onset of thelarche 2.6 months earlier and deprivation-related ELA with onset of thelarche 3.3 months earlier in exposed girls than in unexposed peers; these associations were observed only among girls with a low PRS. Among boys, a similar pattern was found. Threat-related ELA was associated with testicular volume of 4 mL or more 1.4 months earlier and deprivation-related ELA was associated with testicular volume of 4 mL or more 2.3 months earlier than in unexposed peers but only among those with a low PRS. Boys and girls with greater exposure to threats showed a significantly higher percentage of telomere length change during 1-year follow-up, but only among those with low PRS (boys: β = 1.50; 95% CI, 0.80-2.21; P < .001; girls: β = 2.40; 95% CI, 1.78-3.05; P < .001) and moderate PRS (boys: β = 1.09; 95% CI, 0.43-1.75; P = .001; and girls: β = 1.27; 95% CI, 0.77-1.77; P < .001). No associations of deprivation-related ELA with percentage of telomere length change were found. CONCLUSIONS AND RELEVANCE This study suggests that the accelerating association of ELA with biological aging might occur at an earlier age and in a genetic background-dependent and dimension-specific manner.
Collapse
Affiliation(s)
- Ying Sun
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Jiao Fang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
| | - Yuhui Wan
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
34
|
Colich NL, Rosen ML, Williams ES, McLaughlin KA. Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychol Bull 2020; 146:721-764. [PMID: 32744840 DOI: 10.1037/bul0000270] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Life history theory argues that exposure to early life adversity (ELA) accelerates development, although existing evidence for this varies. We present a meta-analysis and systematic review testing the hypothesis that ELA involving threat (e.g., violence exposure) will be associated with accelerated biological aging across multiple metrics, whereas exposure to deprivation (e.g., neglect, institutional rearing) and low-socioeconomic status (SES) will not. We meta-analyze 54 studies (n = 116,010) examining associations of ELA with pubertal timing and cellular aging (telomere length and DNA methylation age), systematically review 25 studies (n = 3,253) examining ELA and neural markers of accelerated development (cortical thickness and amygdala-prefrontal cortex functional connectivity) and evaluate whether associations of ELA with biological aging vary according to the nature of adversity experienced. ELA overall was associated with accelerated pubertal timing (d = -0.10) and cellular aging (d = -0.21), but these associations varied by adversity type. Moderator analysis revealed that ELA characterized by threat was associated with accelerated pubertal development (d = -0.26) and accelerated cellular aging (d = -0.43), but deprivation and SES were unrelated to accelerated development. Systematic review revealed associations between ELA and accelerated cortical thinning, with threat-related ELA consistently associated with thinning in ventromedial prefrontal cortex, and deprivation and SES associated with thinning in frontoparietal, default, and visual networks. There was no consistent association of ELA with amygdala-PFC connectivity. These findings suggest specificity in the types of early environmental experiences associated with accelerated biological aging and highlight the importance of evaluating how accelerated aging contributes to health disparities and whether this process can be mitigated through early intervention. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
|
35
|
Relationship between Decreased Serum Superoxide Dismutase Activity and Metabolic Syndrome: Synergistic Mediating Role of Insulin Resistance and β-Cell Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5384909. [PMID: 32617139 PMCID: PMC7306846 DOI: 10.1155/2020/5384909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
The interplays of cellular aging and oxidative stress (OS) markers form a complex network, which has been reported to be interrelated with numerous age-related and metabolic diseases, including metabolic syndrome (MS). However, given the multifactorial mechanisms of MS, several important confounders such as dietary factors and the reciprocal effect among these markers have not been considered and adjusted in previous investigations regarding the associations of cellular aging and OS markers with MS and its related metabolic abnormalities. To explicate this, we conducted a cross-sectional study among 533 Chinese adults. All the participants underwent a 75 g oral glucose tolerance test. Dietary data were collected via a 24-hour dietary recall and subsequently analyzed by a registered dietitian using nutrition calculation software. Clinical diagnosis of MS was made according to the revised National Cholesterol Education Program Adult Treatment Panel III criteria (2004) with waist circumference cutoff modified for an Asian population. The leukocyte telomere length, mitochondrial DNA copy number, 8-hydroxy-2-deoxyguanosine, superoxide dismutase (SOD) activity, and glutathione reductase were examined. SOD activity was significantly decreased in MS subjects (62.06 ± 16.89 U/mL vs. 56.25 ± 22.61 U/mL, P = 0.001) and exhibited a descending trend across sequential increase of MS component number (P for trend = 0.031). SOD activity is modestly correlated with glucose indicators and insulin sensitivity and β-cell function indices and was independently and negatively correlated with the level of triglyceride. An independent association between SOD activity and MS was observed after adjusting for metabolic indicators, dietary factors, cellular aging, and OS markers, as well as insulin sensitivity and β-cell function indices. However, the statistical significance of the association between SOD activity and MS was attenuated after adjusting for the Matsuda insulin sensitivity index (ISIM) and insulin secretion-sensitivity index-2 (ISSI-2), suggesting a possible mediating effect. Therefore, we conducted a mediation model analysis, which showed that decreased ISIM and ISSI-2 partially and synergistically mediated the contribution of decreased SOD activity to MS. In conclusion, decreased SOD activity is an independent predictor for increased risk of MS, and insulin resistance and β-cell dysfunction partially mediate the relationship between decreased SOD activity and MS.
Collapse
|
36
|
Shalev I, Hastings WJ, Etzel L, Israel S, Russell MA, Hendrick KA, Zinobile M, Siegel SR. Investigating the impact of early-life adversity on physiological, immune, and gene expression responses to acute stress: A pilot feasibility study. PLoS One 2020; 15:e0221310. [PMID: 32243432 PMCID: PMC7122782 DOI: 10.1371/journal.pone.0221310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/11/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Exposure to early-life adversity (ELA) can result in long-term changes to physiological systems, which predispose individuals to negative health outcomes. This biological embedding of stress-responsive systems may operate via dysregulation of physiological resources in response to common stressors. The present pilot study outlines a novel experimental design to test how young adults' exposure to ELA influences neuroendocrine and inflammatory responses to acute stress. MATERIALS AND METHODS Participants were 12 males (mean age = 21.25), half of whom endorsed at least three significant adverse events up to age 18 years ('ELA group'), and half who confirmed zero ('controls'). Using a randomized within-subjects, between-groups experimental design, we induced acute psychosocial stress (Trier Social Stress Test, TSST), and included a no-stress control condition one week apart. During these sessions, we obtained repeated measurements of physiological reactivity, gene expression of the glucocorticoid receptor (NR3C1), and plasma levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNFα) over a 4-hour window post-test. RESULTS In this pilot study, the ELA group evinced higher cortisol response and blunted NR3C1 gene expression in response to the TSST compared with controls, while no differences were observed in the no-stress condition. For pro-inflammatory cytokines, only IL-6 increased significantly in response to the TSST, with no differences between the two groups. CONCLUSION Overall, this pilot feasibility study provides a framework to investigate the biological embedding of early-adversity via dysregulation across physiological and genomic systems in response to acute psychosocial stress. ELA may program such systems in a maladaptive manner more likely to manifest during times of duress, predisposing individuals to the negative health consequences of everyday stressors. Future studies with larger sample size including both males and females are needed to replicate and expand upon these preliminary findings.
Collapse
Affiliation(s)
- Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, United States of America
| | - Waylon J. Hastings
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, United States of America
| | - Laura Etzel
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, United States of America
| | - Salomon Israel
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Scheinfeld Center of Human Genetics for the Social Sciences, Hebrew University, Jerusalem, Israel
| | - Michael A. Russell
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, United States of America
| | - Kelsie A. Hendrick
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, United States of America
| | - Megan Zinobile
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, United States of America
| | - Sue Rutherford Siegel
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
37
|
Khalil D, Giurgescu C, Misra DP, Templin T, Javanbakht A. Recruiting Immigrant and Refugee Arab American Mother-Father-Infant Triads Resettling in the United States: A Feasibility Study. Can J Nurs Res 2020; 52:139-148. [PMID: 32192379 DOI: 10.1177/0844562120910856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent Iraqi and Syrian immigrant families are exposed to stress, anxiety, and depressive symptoms due to civil war. Recruitment challenges specific to conducting research within this population include the lack of knowledge about research, stigma of mental illness, and mistrust. PURPOSES Among immigrant Iraqi and Syrian families: (1) evaluate the approach to recruitment and retention; and (2) evaluate the acceptability of the study procedures. METHODS This feasibility study was conducted based on the work of Orsmond and Cohn. It is focused on the evaluation of recruitment capability and resulting sample characteristics and evaluation of acceptability and suitability of the study procedures. Mother-father-infant triads were recruited from a community center. Parents completed questionnaires about stress and depressive symptoms. Buccal swab samples were obtained from the triads to measure telomere length, and infant hair samples were obtained to measure cortisol level. Telomere length and hair cortisol were utilized as measures of chronic stress. RESULTS Ten mother-father-infant triads were enrolled out of 11 approached. Challenges faced this study included inability to reach families by telephone and the effect of cultural norms where the husband's permission was needed before proceeding, resulting in a slow pace of recruitment. The study strategy and procedures appeared to be feasible as all of the families who participated completed all study protocols. CONCLUSION This study provides feasibility data to inform the launching of a larger study to examine the associations of family stress with infant stress and development. These findings from Iraqi and Syrian families may be generalizable to studies seeking to recruit these and other immigrant and refugee population families.
Collapse
Affiliation(s)
- Dalia Khalil
- College of Nursing, Wayne State University, Detroit, MI, USA
| | - Carmen Giurgescu
- College of Nursing, University of Central Florida, Orlando, FL, USA
| | - Dawn P Misra
- Department of Family Medicine and Public Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Thomas Templin
- College of Nursing, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
38
|
Qiao S, Jiang Y, Li X. The Impact of Health Promotion Interventions on Telomere Length: A Systematic Review. Am J Health Promot 2020; 34:633-647. [DOI: 10.1177/0890117120906958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives:The aim of this study was to evaluate the effectiveness of health promotion interventions in delaying telomere shortening (a biomarker for aging).Data Source:PubMed, PsychINFO, EMBASE, CINAHL, and Cochrane Library databases.Study Inclusion and Exclusion Criteria:Inclusion criteria: (1) empirical studies involving human subjects; (2) health promotion intervention studies including both randomized control trials (RCTs) and non-RCTs.; (3) measured telomere length as an intervention outcome; and (4) were written in English. Exclusion criteria: (1) observational studies without any health promotion intervention practices and (2) did not report intervention effects.Data Extraction:Data extraction was performed by two reviewers following the preferred reporting items for systematic reviews and meta-analysis guidelines.Data Synthesis:Substantial heterogeneity in intervention type and study design in the included studies precluded a meta-analysis. We conducted a narrative synthesis instead.Results:Thirty studies were included in the review, of which 16 were RCTs. One-third of the included studies reported significant intervention impacts in delaying telomere shortening, with relatively consistent significant results emerged from weight-loss interventions and interventions involving multiple lifestyle modification components (eg, diet and exercise). Most of supplement intervention studies observed null effects in telomere length.Conclusions:Weight-loss and comprehensive lifestyle intervention strategies show encouraging impacts in delaying telomere shortening. More rigorous studies targeting populations at different age stages through life span are needed.
Collapse
Affiliation(s)
- Shan Qiao
- Department of Health Promotion, Education, & Behavior, University of South Carolina, Columbia, SC, USA
| | - Yanping Jiang
- Department of Health Promotion, Education, & Behavior, University of South Carolina, Columbia, SC, USA
| | - Xiaoming Li
- Department of Health Promotion, Education, & Behavior, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
39
|
Dantzer B, van Kesteren F, Westrick SE, Boutin S, McAdam AG, Lane JE, Gillespie R, Majer A, Haussmann MF, Monaghan P. Maternal glucocorticoids promote offspring growth without inducing oxidative stress or shortening telomeres in wild red squirrels. J Exp Biol 2020; 223:jeb212373. [PMID: 31796605 PMCID: PMC10668338 DOI: 10.1242/jeb.212373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
Elevations in glucocorticoid (GC) levels in breeding females may induce adaptive shifts in offspring life histories. Offspring produced by mothers with elevated GCs may be better prepared to face harsh environments, where a faster pace of life is beneficial. We examined how experimentally elevated GCs in pregnant or lactating North American red squirrels (Tamiasciurus hudsonicus) affected offspring postnatal growth, structural size and oxidative stress levels (two antioxidants and oxidative protein damage) in three different tissues (blood, heart and liver) and liver telomere lengths. We predicted that offspring from mothers treated with GCs would grow faster but would also have higher levels of oxidative stress and shorter telomeres, which may predict reduced longevity. Offspring from mothers treated with GCs during pregnancy were 8.3% lighter around birth but grew (in body mass) 17.0% faster than those from controls, whereas offspring from mothers treated with GCs during lactation grew 34.8% slower than those from controls and did not differ in body mass around birth. Treating mothers with GCs during pregnancy or lactation did not alter the oxidative stress levels or telomere lengths of their offspring. Fast-growing offspring from any of the treatment groups did not have higher oxidative stress levels or shorter telomere lengths, indicating that offspring that grew faster early in life did not exhibit oxidative costs after this period of growth. Our results indicate that elevations in maternal GCs may induce plasticity in offspring growth without long-term oxidative costs to the offspring that might result in a shortened lifespan.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Freya van Kesteren
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah E Westrick
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Andrew G McAdam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Robert Gillespie
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ariana Majer
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
40
|
Manczak EM, Gotlib IH. Relational Victimization and Telomere Length in Adolescent Girls. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2020; 30 Suppl 1:39-45. [PMID: 30133038 PMCID: PMC6384163 DOI: 10.1111/jora.12447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An emerging body of research suggests that telomere length (TL)-a measure of cellular aging-is inversely associated with experiences of childhood stress. Given the salience of peer relationships in childhood and adolescence, we tested whether relational victimization is a unique and specific predictor of salivary TL in girls. Results examining 122 girls (ages 9-15) revealed that greater relational victimization was related to shorter TL but that similar associations were not evident for other measures of social relationships nor accounted for by factors related to depression, life stress, or 5-HTTLPR genotype. The present findings suggest that relational victimization is uniquely associated with TL in adolescence, revealing a link between key aspects of social relationships and biological processes.
Collapse
|
41
|
Biological embedding of maternal postpartum depressive symptoms: The potential role of cortisol and telomere length. Biol Psychol 2019; 150:107809. [PMID: 31734351 DOI: 10.1016/j.biopsycho.2019.107809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022]
Abstract
Although maternal postpartum depressive symptoms (PDS) are associated with child behavior problems, the underlying biological mechanisms are poorly understood. Thus, the current study focused on 193 healthy mother-child dyads and investigated child cortisol and telomere length as potential mediating factors. At 3 and 6 months postpartum, mothers reported on PDS. At age 6, children provided saliva and buccal swab samples. At age 10, mothers and children reported on child behavior problems. Structural equation modelling revealed (a) no association between PDS and child behavior problems and thus no possibility of mediation, but that (b) lower cortisol forecast more child-reported internalizing problems, and (c) shorter telomere length predicted more child-reported internalizing and externalizing problems. These findings raise mediational questions about the determinants of these biomarkers.
Collapse
|
42
|
Masterson EE, Hayes MG, Kuzawa CW, Lee NR, Eisenberg DT. Early life growth and adult telomere length in a Filipino cohort study. Am J Hum Biol 2019; 31:e23299. [PMID: 31380592 PMCID: PMC6872908 DOI: 10.1002/ajhb.23299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/30/2019] [Accepted: 07/07/2019] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE We investigated the relationship between early life growth patterns and blood telomere length (TL) in adulthood using conditional measures of lean and fat mass growth to evaluate potentially sensitive periods of early life growth. METHODS This study included data from 1562 individuals (53% male; age 20-22 years) participating in the Cebu Longitudinal Health and Nutrition Survey, located in metropolitan Cebu, Philippines. Primary exposures included length-for-age z-score (HAZ) and weight-for-age z-score (WAZ) at birth and conditional measures of linear growth and weight gain during four postnatal periods: 0-6, 6-12, and 12-24 months, and 24 months to 8.5 years. TL was measured at ~21 years of age. We estimated associations using linear regression. RESULTS The study sample had an average gestational age (38.5 ± 2 weeks) and birth size (HAZ = -0.2 ± 1.1, WAZ = -0.7 ± 1.0), but by age 8.5 years had stunted linear growth (HAZ = -2.1 ± 0.9) and borderline low weight (WAZ = -1.9 ± 1.0) relative to World Health Organization references. Heavier birth weight was associated with longer TL in early adulthood (P = .03), but this association was attenuated when maternal age at birth was included in the model (P = .07). Accelerated linear growth between 6 and 12 months was associated with longer TL in adulthood (P = .006), whereas weight gain between 12 and 24 months was associated with shorter TL in adulthood (P = .047). CONCLUSIONS In Cebu, individuals who were born heavier have longer TL in early adulthood, but that birthweight itself may not explain the association. Findings suggest that childhood growth is associated with the cellular senescence process in adulthood, implying early life well-being may be linked to adult health.
Collapse
Affiliation(s)
- Erin E. Masterson
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington
| | - M. Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine
- Department of Anthropology, Northwestern University
| | - Christopher W. Kuzawa
- Department of Anthropology, Northwestern University
- Institute for Policy Research, Northwestern University
| | - Nanette R. Lee
- USC-Office of Population Studies Foundation, Inc, University of San Carlos, Cebu, Philippines
- Department of Anthropology, Sociology, and History, University of San Carlos, Cebu, Philippines
| | - Dan T.A. Eisenberg
- Department of Anthropology, University of Washington
- Center for Studies in Demography and Ecology, University of Washington
| |
Collapse
|
43
|
Grieshober L, Wactawski-Wende J, Hageman Blair R, Mu L, Liu J, Nie J, Carty CL, Hale L, Kroenke CH, LaCroix AZ, Reiner AP, Ochs-Balcom HM. A Cross-Sectional Analysis of Telomere Length and Sleep in the Women's Health Initiative. Am J Epidemiol 2019; 188:1616-1626. [PMID: 31145433 PMCID: PMC6736371 DOI: 10.1093/aje/kwz134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Telomere length is a heritable marker of cellular age that is associated with morbidity and mortality. Poor sleep behaviors, which are also associated with adverse health events, may be related to leukocyte telomere length (LTL). We studied a subpopulation of 3,145 postmenopausal women (1,796 European-American (EA) and 1,349 African-American (AA)) enrolled in the Women's Health Initiative in 1993-1998 with data on Southern blot-measured LTL and self-reported usual sleep duration and sleep disturbance. LTL-sleep associations were analyzed separately for duration and disturbance using weighted and confounder-adjusted linear regression models in the entire sample (AAs + EAs; adjusted for race/ethnicity) and in racial/ethnic strata, since LTL differs by ancestry. After adjustment for covariates, each additional daily hour of sleep beyond 5 hours, approximately, was associated with a 27-base-pair (95% confidence interval (CI): 6, 48) longer LTL in the entire sample. Associations between sleep duration and LTL were strongest among AAs (adjusted β = 37, 95% CI: 4, 70); a similar, nonsignificant association was observed for EAs (adjusted β = 20, 95% CI: -7, 48). Sleep disturbance was not associated with LTL in our study. Our models did not show departure from linearity (quadratic sleep terms: P ≥ 0.55). Our results suggest that longer sleep duration is associated with longer LTL in postmenopausal women.
Collapse
Affiliation(s)
- Laurie Grieshober
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| | - Jingmin Liu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jing Nie
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| | - Cara L Carty
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Lauren Hale
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | - Candyce H Kroenke
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Andrea Z LaCroix
- Division of Epidemiology, Department of Family Medicine and Public Health, School of Medicine, University of California, San Diego, La Jolla, California
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
44
|
Lu JM, Chen YC, Ao ZX, Shen J, Zeng CP, Lin X, Peng LP, Zhou R, Wang XF, Peng C, Xiao HM, Zhang K, Deng HW. System network analysis of genomics and transcriptomics data identified type 1 diabetes-associated pathway and genes. Genes Immun 2019; 20:500-508. [PMID: 30245508 PMCID: PMC6431577 DOI: 10.1038/s41435-018-0045-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
Genome-wide association studies (GWASs) have discovered >50 risk loci for type 1 diabetes (T1D). However, those variations only have modest effects on the genetic risk of T1D. In recent years, accumulated studies have suggested that gene-gene interactions might explain part of the missing heritability. The purpose of our research was to identify potential and novel risk genes for T1D by systematically considering the gene-gene interactions through network analyses. We carried out a novel system network analysis of summary GWAS statistics jointly with transcriptomic gene expression data to identify some of the missing heritability for T1D using weighted gene co-expression network analysis (WGCNA). Using WGCNA, seven modules for 1852 nominally significant (P ≤ 0.05) GWAS genes were identified by analyzing microarray data for gene expression profile. One module (tagged as green module) showed significant association (P ≤ 0.05) between the module eigengenes and the trait. This module also displayed a high correlation (r = 0.45, P ≤ 0.05) between module membership (MM) and gene significant (GS), which indicated that the green module of co-expressed genes is of significant biological importance for T1D status. By further describing the module content and topology, the green module revealed a significant enrichment in the "regulation of immune response" (GO:0050776), which is a crucially important pathway in T1D development. Our findings demonstrated a module and several core genes that act as essential components in the etiology of T1D possibly via the regulation of immune response, which may enhance our fundamental knowledge of the underlying molecular mechanisms for T1D.
Collapse
Affiliation(s)
- Jun-Min Lu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China
| | - Yuan-Cheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China
| | - Zeng-Xin Ao
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China
| | - Chun-Ping Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China
| | - Lin-Ping Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China
| | - Rou Zhou
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China
| | - Xia-Fang Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China
| | - Cheng Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, PR China
| | - Hong-Mei Xiao
- School of Basic Medical Sciences, Central South University, Changsha, 410000, Hunan, PR China
| | - Kun Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier NIH RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Hong-Wen Deng
- School of Basic Medical Sciences, Central South University, Changsha, 410000, Hunan, PR China.
- Southern Medical University, Guangzhou, 510515, Guangdong, PR China.
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
45
|
Cumulative lifetime stress exposure and leukocyte telomere length attrition: The unique role of stressor duration and exposure timing. Psychoneuroendocrinology 2019; 104:210-218. [PMID: 30884304 PMCID: PMC6518420 DOI: 10.1016/j.psyneuen.2019.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Stress exposure occurring across the lifespan increases risk for disease, potentially involving telomere length shortening. Stress exposure during childhood and adulthood has been cross-sectionally linked with shorter telomere length. However, few longitudinal studies have examined telomere length attrition over time, and none have investigated how stressor duration (acute life events vs. chronic difficulties), timing (childhood vs. adulthood), and perceived severity may be uniquely related to telomere length shortening. METHODS To address these issues, we administered a standardized instrument for assessing cumulative lifetime stress exposure (Stress and Adversity Inventory; STRAIN) to 175 mothers of children with Autism Spectrum Disorder or neurotypical children and measured their leukocyte telomere length (LTL) at baseline and 2 years later. RESULTS Greater count of lifetime stressors was associated with shorter LTL at baseline and greater LTL attrition over time. When separating lifetime stressors into acute life events and chronic difficulties, only greater count of chronic difficulties significantly predicted shorter baseline LTL and greater LTL attrition. Similarly, when examining timing of stressor exposure, only greater count of chronic childhood difficulties (age < 18) significantly predicted shorter baseline LTL and greater LTL attrition over the 2-year period in mid-life. Importantly, these results were robust while controlling for stressors occurring during the interim 2-year period. Post-hoc analyses suggested that chronic difficulties occurring during earlier childhood (0-12 years) were associated with greater LTL attrition. Cumulative stressor severity predicted LTL attrition in a parallel manner, but was less consistently associated with baseline LTL. CONCLUSIONS These data are the first to examine the effects of different aspects of cumulative lifetime stress exposure on LTL attrition over time, suggesting that accumulated chronic difficulties during childhood may play a unique role in shaping telomere shortening in midlife.
Collapse
|
46
|
Bürgin D, O'Donovan A, d'Huart D, di Gallo A, Eckert A, Fegert J, Schmeck K, Schmid M, Boonmann C. Adverse Childhood Experiences and Telomere Length a Look Into the Heterogeneity of Findings-A Narrative Review. Front Neurosci 2019; 13:490. [PMID: 31191214 PMCID: PMC6541108 DOI: 10.3389/fnins.2019.00490] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Adverse childhood experiences (ACEs) have been associated with poor mental and somatic health. Accumulating evidence indicates that accelerated biological aging-indexed by altered telomere-related markers-may contribute to associations between ACEs and negative long-term health outcomes. Telomeres are repeated, non-coding deoxyribonucleic acid (DNA) sequences at the end of chromosomes. Telomeres shorten during repeated cell divisions over time and are being used as a marker of biological aging. Objectives: The aim of the current paper is to review the literature on the relationship between ACEs and telomere length (TL), with a specific focus on how the heterogeneity of sample and ACEs characteristics lead to varying associations between ACEs and TL. Methods: Multiple databases were searched for relevant English peer-reviewed articles. Thirty-eight papers were found to be eligible for inclusion in the current review. Results: Overall, the studies indicated a negative association between ACEs and TL, although many papers presented mixed findings and about a quarter of eligible studies found no association. Studies with smaller sample sizes more often reported significant associations than studies with larger samples. Also, studies reporting on non-clinical and younger samples more often found associations between ACEs and TL compared to studies with clinical and older samples. Reviewing the included studies based on the "Stressor Exposure Characteristics" recently proposed by Epel et al. (2018) revealed a lack of detailed information regarding ACEs characteristics in many studies. Conclusion: Overall, it is difficult to achieve firm conclusions about associations of ACEs with TL due to the heterogeneity of study and ACE characteristics and the heterogeneity in reported findings. The field would benefit from more detailed descriptions of study samples and measurement of ACEs.
Collapse
Affiliation(s)
- David Bürgin
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| | - Aoife O'Donovan
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Delfine d'Huart
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| | - Alain di Gallo
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Neurobiological Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, University of Basel, Basel, Switzerland
| | - Jörg Fegert
- Child and Adolescent Psychiatry/Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Klaus Schmeck
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| | - Marc Schmid
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| | - Cyril Boonmann
- Child and Adolescent Psychiatric Clinic, Psychiatric University Hospitals, University of Basel, Basel, Switzerland
| |
Collapse
|
47
|
Jiang Y, Da W, Qiao S, Zhang Q, Li X, Ivey G, Zilioli S. Basal cortisol, cortisol reactivity, and telomere length: A systematic review and meta-analysis. Psychoneuroendocrinology 2019; 103:163-172. [PMID: 30695740 PMCID: PMC6450740 DOI: 10.1016/j.psyneuen.2019.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 01/23/2023]
Abstract
The objective of the present study is to synthesize the existing empirical literature and perform a meta-analysis of published data on the relationship between cortisol and telomere length. We systematically searched studies that examined the relationship between cortisol and telomere length in humans on electronic databases and screened reference sections of included articles. Fourteen studies were included in the meta-analysis, with effect sizes being extracted for two cortisol measures: basal cortisol levels and cortisol reactivity to acute psychological stress. Results from random effects models showed that basal cortisol levels (13 effect sizes from 12 cross-sectional studies, N = 3675 participants) were not significantly correlated with telomere length (r =-0.05, 95% CI [-0.11, 0.02]). Further, results stratified by the specimen type for cortisol measurement (i.e., saliva, urine, blood) showed that none of the three basal cortisol level measures were correlated with telomere length. However, we found a statistically significant correlation between salivary cortisol reactivity to acute psychosocial stress (6 cross-sectional studies, N = 958 participants) and telomere length (r = -0.13, 95% CI [-0.23, -0.03]). Subgroup analyses revealed that correlations between salivary cortisol reactivity and telomere length were more evident in studies conducted among children (vs. adults) and in studies that included female participants only (vs. both genders). However, the small number of available studies limits the conclusions derived from subgroup analyses, and more studies are needed before moderator effects can be properly established. Overall, findings of this study support the existence of a relationship between cortisol reactivity and telomere shortening.
Collapse
Affiliation(s)
- Yanping Jiang
- Department of Health Promotion, Education, & Behavior, University of South Carolina, Columbia, SC United States.
| | - Wendi Da
- Department of Health Promotion, Education, & Behavior, University of South Carolina, Columbia, SC
| | - Shan Qiao
- Department of Health Promotion, Education, & Behavior, University of South Carolina, Columbia, SC
| | - Quan Zhang
- Department of Health Promotion, Education, & Behavior, University of South Carolina, Columbia, SC
| | - Xiaoming Li
- Department of Health Promotion, Education, & Behavior, University of South Carolina, Columbia, SC
| | - Grace Ivey
- Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Samuele Zilioli
- Department of Psychology, Wayne State University, Detroit, MI United States; Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI United States.
| |
Collapse
|
48
|
Rentscher KE, Carroll JE, Repetti RL, Cole SW, Reynolds BM, Robles TF. Chronic stress exposure and daily stress appraisals relate to biological aging marker p16 INK4a. Psychoneuroendocrinology 2019; 102:139-148. [PMID: 30557761 PMCID: PMC6420375 DOI: 10.1016/j.psyneuen.2018.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/19/2023]
Abstract
Previous research has linked exposure to adverse social conditions with DNA damage and accelerated telomere shortening, raising the possibility that chronic stress may impact biological aging pathways, ultimately increasing risk for age-related diseases. Less clear, however, is whether these stress-related effects extend to additional hallmarks of biological aging, including cellular senescence, a stable state of cell cycle arrest. The present study aimed to investigate associations between psychosocial stress and two markers of cellular aging-leukocyte telomere length (LTL) and cellular senescence signal p16INK4a. Seventy-three adults (Mage = 43.0, SD = 7.2; 55% female) with children between 8-13 years of age completed interview-based and questionnaire measures of their exposures to and experiences of stress, as well as daily reports of stress appraisals over an 8-week diary period. Blood samples were used to assess markers of cellular aging: LTL and gene expression of senescent cell signal p16INK4a (CDKN2A). Random effects models covarying for age, sex, ethnicity/race, and BMI revealed that participants with greater chronic stress exposure over the previous 6 months (b = 0.011, p = .04), perceived stress (b = 0.020, p < .001), and accumulated daily stress appraisals over the 8-week period (b = 0.013, p = .02) showed increased p16INK4a. No significant associations with LTL were found. These findings extend previous work on the impact of stress on biological aging by linking chronic stress exposure and daily stressful experiences to an accumulation of senescent cells. Findings also support the hypothesis that chronic stress is associated with accelerated aging by inducing cellular senescence, a common correlate of age-related diseases.
Collapse
Affiliation(s)
- Kelly E Rentscher
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, 300 Medical Plaza, Los Angeles, CA 90095, USA.
| | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, 300 Medical Plaza, Los Angeles, CA 90095, USA.
| | - Rena L Repetti
- Department of Psychology, University of California, 502 Portola Plaza, Los Angeles, CA 90095, USA.
| | - Steve W Cole
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, 300 Medical Plaza, Los Angeles, CA 90095, USA.
| | - Bridget M Reynolds
- National Center for Health Statistics, Centers for Disease Control and Prevention, 3311 Toledo Road, Hyattsville, MD 20782, USA.
| | - Theodore F Robles
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, 300 Medical Plaza, Los Angeles, CA 90095, USA; Department of Psychology, University of California, 502 Portola Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
49
|
Willis M, Staudinger UM, Factor-Litvak P, Calvo E. Stress and Salivary Telomere Length in the Second Half of Life: A Comparison of Life-course Models. ADVANCES IN LIFE COURSE RESEARCH 2019; 39:34-41. [PMID: 31186623 PMCID: PMC6557584 DOI: 10.1016/j.alcr.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Background Previous research has explored the relationship between childhood and adulthood stressful life events (SLEs) and adult salivary telomere length (TL), but no research to date has tested different life-course models in which stress in adulthood may fully, partly, or not mediate the relationship between childhood stress and adult TL. Methods To fill this gap, we elaborate over previous work by Puterman et al. (2016) and other standard models that do not account for the temporal order of stressors in childhood and adulthood, by using structural equation modeling (SEM) for a sample of 5,754 Health and Retirement Study (HRS) participants to compare the fit of three nested life-course models-social trajectory, early critical period, and cumulative risk. Results Results indicated that the social trajectory model, in which the association between childhood SLEs and TL in later adulthood is fully mediated by adulthood SLEs, fit the data better than the early critical period (no mediation) and cumulative risk (partial mediation) models. Conclusion In the social trajectory model, childhood SLEs are related to TL in later life only through adulthood SLEs. The direct physiological effect of childhood SLEs on TL in later life would be overestimated if adulthood SLEs are overlooked.
Collapse
Affiliation(s)
- Margaret Willis
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | - Ursula M. Staudinger
- Robert N. Butler Columbia Aging Center, Columbia University
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | - Esteban Calvo
- Department of Epidemiology, Mailman School of Public Health, Columbia University
- Robert N. Butler Columbia Aging Center, Columbia University
- Society and Health Research Center, Facultad de Humanidades, Universidad Mayor
- Laboratory on Aging and Social Epidemiology, Universidad Mayor
| |
Collapse
|
50
|
Provenzi L, Giorda R, Fumagalli M, Brambilla M, Mosca F, Borgatti R, Montirosso R. Telomere length and salivary cortisol stress reactivity in very preterm infants. Early Hum Dev 2019; 129:1-4. [PMID: 30530269 DOI: 10.1016/j.earlhumdev.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/29/2018] [Accepted: 12/02/2018] [Indexed: 11/15/2022]
Abstract
During the Neonatal Intensive Care Unit (NICU) stay, very preterm (VPT) infants are exposed to life-saving yet pain-inducing skin-breaking procedures (i.e., NICU pain-related stress) which contribute to the programming of hypo-responsive HPA axis development during the first months of life. Unfortunately, to date the mechanisms linking NICU pain-related stress and altered HPA axis regulation are only limitedly known. Telomere length (TL) regulation is an epigenetic mechanism previously shown to be affected by early stress exposures and capable of associating with HPA axis reactivity in children. In VPT infants, NICU pain-related stress was found to associate with decreased TL from birth to discharge, but there is no evidence for the association between TL and HPA axis in these infants. In this study, we prospectively examined the relationship between NICU pain-related stress and HPA axis reactivity to an age-appropriate socio-emotional condition (i.e., the Still-Face Procedure, SFP) in healthy VPT infants at 3-month corrected age. NICU pain-related stress was computed as the ratio between the number of skin-breaking procedures and length of NICU stay. A differential score (i.e., ∆TL) was obtained subtracting TL at birth from TL at discharge. A normalized (log10) cortisol reactivity index (CRI) was obtained by averaging post-stress (20 min after SFP) salivary cortisol sample on baseline value. A regression model controlling for neonatal and socio-demographic confounders showed that ∆TL was the only significant predictor of CRI. Although preliminary, these findings contribute to our knowledge of the mechanisms linking early exposures to adversity and later in life regulation of the HPA axis in VPT infants.
Collapse
Affiliation(s)
- Livio Provenzi
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS Eugenio Medea, via Don Luigi Monza 20, 23842 Bosisio Parini, Lecco, Italy.
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute IRCCS Eugenio Medea, via Don Luigi Monza 20, 23842 Bosisio Parini, Lecco, Italy
| | - Monica Fumagalli
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via della Commenda 12, 20122 Milan, Italy
| | - Maddalena Brambilla
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS Eugenio Medea, via Don Luigi Monza 20, 23842 Bosisio Parini, Lecco, Italy
| | - Fabio Mosca
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via della Commenda 12, 20122 Milan, Italy
| | - Renato Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, via Don Luigi Monza 20, 23842 Bosisio Parini, Lecco, Italy
| | - Rosario Montirosso
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS Eugenio Medea, via Don Luigi Monza 20, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|