1
|
Zhang Y, Tang Y, Illes P. Modification of Neural Circuit Functions by Microglial P2Y6 Receptors in Health and Neurodegeneration. Mol Neurobiol 2025; 62:4139-4148. [PMID: 39400857 PMCID: PMC11880064 DOI: 10.1007/s12035-024-04531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Neural circuits consisting of neurons and glial cells help to establish all functions of the CNS. Microglia, the resident immunocytes of the CNS, are endowed with UDP-sensitive P2Y6 receptors (P2Y6Rs) which regulate phagocytosis/pruning of excessive synapses during individual development and refine synapses in an activity-dependent manner during adulthood. In addition, this type of receptor plays a decisive role in primary (Alzheimer's disease, Parkinson's disease, neuropathic pain) and secondary (epilepsy, ischemic-, mechanical-, or irradiation-induced) neurodegeneration. A whole range of microglial cytokines controlled by P2Y6Rs, such as the interleukins IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α), leads to neuroinflammation, resulting in neurodegeneration. Hence, small molecular antagonists of P2Y6Rs and genetic knockdown of this receptor provide feasible ways to alleviate inflammation-induced neurological disorders but might also interfere with the regulation of the synaptic circuitry. The present review aims at investigating this dual role of P2Y6Rs in microglia, both in shaping neural circuits by targeted phagocytosis and promoting neurodegenerative illnesses by fostering neuroinflammation through multiple transduction mechanisms.
Collapse
Affiliation(s)
- Yi Zhang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Peter Illes
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Agi E, Reifenstein ET, Wit C, Schneider T, Kauer M, Kehribar M, Kulkarni A, von Kleist M, Hiesinger PR. Axonal self-sorting without target guidance in Drosophila visual map formation. Science 2024; 383:1084-1092. [PMID: 38452066 DOI: 10.1126/science.adk3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
The idea of guidance toward a target is central to axon pathfinding and brain wiring in general. In this work, we show how several thousand axonal growth cones self-pattern without target-dependent guidance during neural superposition wiring in Drosophila. Ablation of all target lamina neurons or loss of target adhesion prevents the stabilization but not the development of the pattern. Intravital imaging at the spatiotemporal resolution of growth cone dynamics in intact pupae and data-driven dynamics simulations reveal a mechanism by which >30,000 filopodia do not explore potential targets, but instead simultaneously generate and navigate a dynamic filopodial meshwork that steers growth directions. Hence, a guidance mechanism can emerge from the interactions of the axons being guided, suggesting self-organization as a more general feature of brain wiring.
Collapse
Affiliation(s)
- Egemen Agi
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Eric T Reifenstein
- Department of Mathematics, Free University of Berlin, 14195 Berlin, Germany
| | - Charlotte Wit
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Teresa Schneider
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Monika Kauer
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Melinda Kehribar
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Abhishek Kulkarni
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| | - Max von Kleist
- Department of Mathematics, Free University of Berlin, 14195 Berlin, Germany
| | - P Robin Hiesinger
- Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany
| |
Collapse
|
3
|
Wolterhoff N, Hiesinger PR. Synaptic promiscuity in brain development. Curr Biol 2024; 34:R102-R116. [PMID: 38320473 PMCID: PMC10849093 DOI: 10.1016/j.cub.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does the genome encode brain wiring in light of this apparent contradiction? Synaptic specificity is the outcome of a long series of developmental processes and mechanisms before, during and after synapse formation. How much promiscuity is permissible or necessary at the moment of synaptic partner choice depends on the extent to which prior development restricts available partners or subsequent development corrects initially made synapses. Synaptic promiscuity at the moment of choice can thereby play important roles in the development of precise connectivity, but also facilitate developmental flexibility and robustness. In this review, we assess the experimental evidence for the prevalence and roles of promiscuous synapse formation during brain development. Many well-established experimental approaches are based on developmental genetic perturbation and an assessment of synaptic connectivity only in the adult; this can make it difficult to pinpoint when a given defect or mechanism occurred. In many cases, such studies reveal mechanisms that restrict partner availability already prior to synapse formation. Subsequently, at the moment of choice, factors including synaptic competency, interaction dynamics and molecular recognition further restrict synaptic partners. The discussion of the development of synaptic specificity through the lens of synaptic promiscuity suggests an algorithmic process based on neurons capable of promiscuous synapse formation that are continuously prevented from making the wrong choices, with no single mechanism or developmental time point sufficient to explain the outcome.
Collapse
Affiliation(s)
- Neele Wolterhoff
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany
| | - P Robin Hiesinger
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany.
| |
Collapse
|
4
|
Company V, Murcia‐Ramón R, Andreu‐Cervera A, Aracil‐Pastor P, Almagro‐García F, Martínez S, Echevarría D, Puelles E. Adhesion molecule Amigo2 is involved in the fasciculation process of the fasciculus retroflexus. Dev Dyn 2022; 251:1834-1847. [PMID: 35727300 PMCID: PMC9796841 DOI: 10.1002/dvdy.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The fasciculus retroflexus is the prominent efferent pathway from the habenular complex. Medial habenular axons form a core packet whereas lateral habenular axons course in a surrounding shell. Both groups of fibers share the same initial pathway but differ in the final segment of the tract, supposedly regulated by surface molecules. The gene Amigo2 codes for a membrane adhesion molecule with an immunoglobulin-like domain 2 and is selectively expressed in the medial habenula. We present it as a candidate for controlling the fasciculation behavior of medial habenula axons. RESULTS First, we studied the development of the habenular efferents in an Amigo2 lack of function mouse model. The fasciculus retroflexus showed a variable defasciculation phenotype. Gain of function experiments allowed us to generate a more condensed tract and rescued the Amigo2 knock-out phenotype. Changes in Amigo2 function did not alter the course of habenular fibers. CONCLUSION We have demonstrated that Amigo2 plays a subtle role in the fasciculation of the fasciculus retroflexus.
Collapse
Affiliation(s)
- Verónica Company
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Raquel Murcia‐Ramón
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Abraham Andreu‐Cervera
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Paula Aracil‐Pastor
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Francisca Almagro‐García
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Salvador Martínez
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Diego Echevarría
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Eduardo Puelles
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| |
Collapse
|
5
|
Hayashi TT, MacKenzie AJ, Ganguly I, Ellis KE, Smihula HM, Jacob MS, Litwin-Kumar A, Caron SJC. Mushroom body input connections form independently of sensory activity in Drosophila melanogaster. Curr Biol 2022; 32:4000-4012.e5. [PMID: 35977547 PMCID: PMC9533768 DOI: 10.1016/j.cub.2022.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
Associative brain centers, such as the insect mushroom body, need to represent sensory information in an efficient manner. In Drosophila melanogaster, the Kenyon cells of the mushroom body integrate inputs from a random set of olfactory projection neurons, but some projection neurons-namely those activated by a few ethologically meaningful odors-connect to Kenyon cells more frequently than others. This biased and random connectivity pattern is conceivably advantageous, as it enables the mushroom body to represent a large number of odors as unique activity patterns while prioritizing the representation of a few specific odors. How this connectivity pattern is established remains largely unknown. Here, we test whether the mechanisms patterning the connections between Kenyon cells and projection neurons depend on sensory activity or whether they are hardwired. We mapped a large number of mushroom body input connections in partially anosmic flies-flies lacking the obligate odorant co-receptor Orco-and in wild-type flies. Statistical analyses of these datasets reveal that the random and biased connectivity pattern observed between Kenyon cells and projection neurons forms normally in the absence of most olfactory sensory activity. This finding supports the idea that even comparatively subtle, population-level patterns of neuronal connectivity can be encoded by fixed genetic programs and are likely to be the result of evolved prioritization of ecologically and ethologically salient stimuli.
Collapse
Affiliation(s)
- Tatsuya Tatz Hayashi
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexander John MacKenzie
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Ishani Ganguly
- Center for Theoretical Neuroscience, Columbia University, Jerome L Greene Science Center, 3227 Broadway, New York, NY 10027, USA
| | - Kaitlyn Elizabeth Ellis
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Hayley Marie Smihula
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Miles Solomon Jacob
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Ashok Litwin-Kumar
- Center for Theoretical Neuroscience, Columbia University, Jerome L Greene Science Center, 3227 Broadway, New York, NY 10027, USA
| | - Sophie Jeanne Cécile Caron
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Karpinski BA, Maynard TM, Bryan CA, Yitsege G, Horvath A, Lee NH, Moody SA, LaMantia AS. Selective disruption of trigeminal sensory neurogenesis and differentiation in a mouse model of 22q11.2 deletion syndrome. Dis Model Mech 2022; 15:dmm047357. [PMID: 33722956 PMCID: PMC8126478 DOI: 10.1242/dmm.047357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
22q11.2 Deletion Syndrome (22q11DS) is a neurodevelopmental disorder associated with cranial nerve anomalies and disordered oropharyngeal function, including pediatric dysphagia. Using the LgDel 22q11DS mouse model, we investigated whether sensory neuron differentiation in the trigeminal ganglion (CNgV), which is essential for normal orofacial function, is disrupted. We did not detect changes in cranial placode cell translocation or neural crest migration at early stages of LgDel CNgV development. However, as the ganglion coalesces, proportions of placode-derived LgDel CNgV cells increase relative to neural crest cells. In addition, local aggregation of placode-derived cells increases and aggregation of neural crest-derived cells decreases in LgDel CNgV. This change in cell-cell relationships was accompanied by altered proliferation of placode-derived cells at embryonic day (E)9.5, and premature neurogenesis from neural crest-derived precursors, reflected by an increased frequency of asymmetric neurogenic divisions for neural crest-derived precursors by E10.5. These early differences in LgDel CNgV genesis prefigure changes in sensory neuron differentiation and gene expression by postnatal day 8, when early signs of cranial nerve dysfunction associated with pediatric dysphagia are observed in LgDel mice. Apparently, 22q11 deletion destabilizes CNgV sensory neuron genesis and differentiation by increasing variability in cell-cell interaction, proliferation and sensory neuron differentiation. This early developmental divergence and its consequences may contribute to oropharyngeal dysfunction, including suckling, feeding and swallowing disruptions at birth, and additional orofacial sensory/motor deficits throughout life.
Collapse
Affiliation(s)
- Beverly A. Karpinski
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Thomas M. Maynard
- The Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
| | - Corey A. Bryan
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Gelila Yitsege
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Anelia Horvath
- Department of Pharmacology and Physiology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Anthony-Samuel LaMantia
- The Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
7
|
Kiral FR, Dutta SB, Linneweber GA, Hilgert S, Poppa C, Duch C, von Kleist M, Hassan BA, Hiesinger PR. Brain connectivity inversely scales with developmental temperature in Drosophila. Cell Rep 2021; 37:110145. [PMID: 34936868 DOI: 10.1016/j.celrep.2021.110145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Variability of synapse numbers and partners despite identical genes reveals the limits of genetic determinism. Here, we use developmental temperature as a non-genetic perturbation to study variability of brain wiring and behavior in Drosophila. Unexpectedly, slower development at lower temperatures increases axo-dendritic branching, synapse numbers, and non-canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we show that changing the relative availability of synaptic partners using a DIPγ mutant that ablates R7's preferred partner leads to temperature-dependent recruitment of non-canonical partners to reach normal synapse numbers. Hence, R7 synaptic specificity is not absolute but based on the relative availability of postsynaptic partners and presynaptic control of synapse numbers. Behaviorally, movement precision is temperature robust, while movement activity is optimized for the developmentally encountered temperature. These findings suggest genetically encoded relative and scalable synapse formation to develop functional, but not identical, brains and behaviors.
Collapse
Affiliation(s)
- Ferdi Ridvan Kiral
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Suchetana B Dutta
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gerit Arne Linneweber
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Selina Hilgert
- Institute of Developmental Biology and Neurobiology (iDN), Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Caroline Poppa
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Max von Kleist
- MF1 Bioinformatics, Robert Koch-Institute, 13353 Berlin, Germany
| | - Bassem A Hassan
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
8
|
Dysfunction of NMDA receptors in neuronal models of an autism spectrum disorder patient with a DSCAM mutation and in Dscam-knockout mice. Mol Psychiatry 2021; 26:7538-7549. [PMID: 34253863 PMCID: PMC8873012 DOI: 10.1038/s41380-021-01216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Heterogeneity in the etiopathology of autism spectrum disorders (ASD) limits the development of generic remedies, requires individualistic and patient-specific research. Recent progress in human-induced pluripotent stem cell (iPSC) technology provides a novel platform for modeling ASDs for studying complex neuronal phenotypes. In this study, we generated telencephalic induced neuronal (iN) cells from iPSCs derived from an ASD patient with a heterozygous point mutation in the DSCAM gene. The mRNA of DSCAM and the density of DSCAM in dendrites were significantly decreased in ASD compared to control iN cells. RNA sequencing analysis revealed that several synaptic function-related genes including NMDA receptor subunits were downregulated in ASD iN cells. Moreover, NMDA receptor (R)-mediated currents were significantly reduced in ASD compared to control iN cells. Normal NMDA-R-mediated current levels were rescued by expressing wild-type DSCAM in ASD iN cells, and reduced currents were observed by truncated DSCAM expression in control iN cells. shRNA-mediated DSCAM knockdown in control iN cells resulted in the downregulation of an NMDA-R subunit, which was rescued by the overexpression of shRNA-resistant DSCAM. Furthermore, DSCAM was co-localized with NMDA-R components in the dendritic spines of iN cells whereas their co-localizations were significantly reduced in ASD iN cells. Levels of phospho-ERK1/2 were significantly lower in ASD iN cells, suggesting a potential mechanism. A neural stem cell-specific Dscam heterozygous knockout mouse model, showing deficits in social interaction and social memory with reduced NMDA-R currents. These data suggest that DSCAM mutation causes pathological symptoms of ASD by dysregulating NMDA-R function.
Collapse
|
9
|
Klein R, Pasterkamp RJ. Recent advances in inter-cellular interactions during neural circuit assembly. Curr Opin Neurobiol 2021; 69:25-32. [PMID: 33383489 DOI: 10.1016/j.conb.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Neural circuit assembly is regulated by inter-cellular interactions involving secreted and surface-tethered guidance molecules. Here, we review recent progress in our understanding of their mechanisms-of-action and biological effects. We discuss mechanisms through which the secreted cue Netrin-1 regulates neuron migration and highlight novel roles for axon-derived secreted guidance cues. We cover recent structural work at atomic resolution that provides new insights into the activation mechanisms of axon guidance receptors and into protein complexes containing cell adhesion molecules, such as Teneurin (Ten), Latrophilin (Lphn) and FLRT. Ten-Ten homophilic, Ten-Lphn heterophilic, and Ten-Lphn-FLRT tripartite complexes seem to elicit distinct context-dependent cellular responses. Seemingly opposite responses can also be triggered by the Eph/ephrin signaling system. Here, recent work provides a simple mechanism for the decision of forming a new synapse versus rejection of the pre-synaptic partner. These studies identify novel regulatory mechanisms and biological functions that will apply generally in developing neural systems.
Collapse
Affiliation(s)
- Rüdiger Klein
- Department Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Hiesinger PR. Brain wiring with composite instructions. Bioessays 2020; 43:e2000166. [PMID: 33145823 DOI: 10.1002/bies.202000166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/12/2022]
Abstract
The quest for molecular mechanisms that guide axons or specify synaptic contacts has largely focused on molecules that intuitively relate to the idea of an "instruction." By contrast, "permissive" factors are traditionally considered background machinery without contribution to the information content of a molecularly executed instruction. In this essay, I recast this dichotomy as a continuum from permissive to instructive actions of single factors that provide relative contributions to a necessarily collaborative effort. Individual molecules or other factors do not constitute absolute instructions by themselves; they provide necessary context for each other, thereby creating a composite that defines the overall instruction. The idea of composite instructions leads to two main conclusions: first, a composite of many seemingly permissive factors can define a specific instruction even in the absence of a single dominant contributor; second, individual factors are not necessarily related intuitively to the overall instruction or phenotypic outcome.
Collapse
Affiliation(s)
- P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Trans-Axonal Signaling in Neural Circuit Wiring. Int J Mol Sci 2020; 21:ijms21145170. [PMID: 32708320 PMCID: PMC7404203 DOI: 10.3390/ijms21145170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The development of neural circuits is a complex process that relies on the proper navigation of axons through their environment to their appropriate targets. While axon–environment and axon–target interactions have long been known as essential for circuit formation, communication between axons themselves has only more recently emerged as another crucial mechanism. Trans-axonal signaling governs many axonal behaviors, including fasciculation for proper guidance to targets, defasciculation for pathfinding at important choice points, repulsion along and within tracts for pre-target sorting and target selection, repulsion at the target for precise synaptic connectivity, and potentially selective degeneration for circuit refinement. This review outlines the recent advances in identifying the molecular mechanisms of trans-axonal signaling and discusses the role of axon–axon interactions during the different steps of neural circuit formation.
Collapse
|
12
|
Brignani S, Raj DDA, Schmidt ERE, Düdükcü Ö, Adolfs Y, De Ruiter AA, Rybiczka-Tesulov M, Verhagen MG, van der Meer C, Broekhoven MH, Moreno-Bravo JA, Grossouw LM, Dumontier E, Cloutier JF, Chédotal A, Pasterkamp RJ. Remotely Produced and Axon-Derived Netrin-1 Instructs GABAergic Neuron Migration and Dopaminergic Substantia Nigra Development. Neuron 2020; 107:684-702.e9. [PMID: 32562661 DOI: 10.1016/j.neuron.2020.05.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/17/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Abstract
The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviors and show select disease vulnerability, including in Parkinson's disease. Despite progress in identifying mDA neuron subtypes, how these neuronal subsets develop and organize into functional brain structures remains poorly understood. Here we generate and use an intersectional genetic platform, Pitx3-ITC, to dissect the mechanisms of substantia nigra (SN) development and implicate the guidance molecule Netrin-1 in the migration and positioning of mDA neuron subtypes in the SN. Unexpectedly, we show that Netrin-1, produced in the forebrain and provided to the midbrain through axon projections, instructs the migration of GABAergic neurons into the ventral SN. This migration is required to confine mDA neurons to the dorsal SN. These data demonstrate that neuron migration can be controlled by remotely produced and axon-derived secreted guidance cues, a principle that is likely to apply more generally.
Collapse
Affiliation(s)
- Sara Brignani
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Divya D A Raj
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ewoud R E Schmidt
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Özge Düdükcü
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Anna A De Ruiter
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Mateja Rybiczka-Tesulov
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Marieke G Verhagen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Christiaan van der Meer
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Mark H Broekhoven
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Juan A Moreno-Bravo
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France
| | - Laurens M Grossouw
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Emilie Dumontier
- Montreal Neurological Institute, 3801 University, Montréal, QC H3A 2B4, Canada
| | | | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
13
|
Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons. J Neurosci 2020; 40:3720-3740. [PMID: 32273484 DOI: 10.1523/jneurosci.2471-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Nestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Last, we use cortical cultures derived from Dcx KO mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown.SIGNIFICANCE STATEMENT Nestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons.
Collapse
|
14
|
Autophagy-dependent filopodial kinetics restrict synaptic partner choice during Drosophila brain wiring. Nat Commun 2020; 11:1325. [PMID: 32165611 PMCID: PMC7067798 DOI: 10.1038/s41467-020-14781-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
Brain wiring is remarkably precise, yet most neurons readily form synapses with incorrect partners when given the opportunity. Dynamic axon-dendritic positioning can restrict synaptogenic encounters, but the spatiotemporal interaction kinetics and their regulation remain essentially unknown inside developing brains. Here we show that the kinetics of axonal filopodia restrict synapse formation and partner choice for neurons that are not otherwise prevented from making incorrect synapses. Using 4D imaging in developing Drosophila brains, we show that filopodial kinetics are regulated by autophagy, a prevalent degradation mechanism whose role in brain development remains poorly understood. With surprising specificity, autophagosomes form in synaptogenic filopodia, followed by filopodial collapse. Altered autophagic degradation of synaptic building material quantitatively regulates synapse formation as shown by computational modeling and genetic experiments. Increased filopodial stability enables incorrect synaptic partnerships. Hence, filopodial autophagy restricts inappropriate partner choice through a process of kinetic exclusion that critically contributes to wiring specificity.
Collapse
|
15
|
Agi E, Kulkarni A, Hiesinger PR. Neuronal strategies for meeting the right partner during brain wiring. Curr Opin Neurobiol 2020; 63:1-8. [PMID: 32036252 DOI: 10.1016/j.conb.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Two neurons can only form a synapse if their axonal and dendritic projections meet at the same time and place. While spatiotemporal proximity is necessary for synapse formation, it remains unclear to what extent the underlying positional strategies are sufficient to ensure synapse formation between the right partners. Many neurons readily form synapses with wrong partners if they find themselves at the wrong place or time. Minimally, restricting spatiotemporal proximity can prevent incorrect synapses. Maximally, restricting encounters in time and space could be sufficient to ensure correct partnerships between neurons that can form synapses promiscuously. In this review we explore recent findings on positional strategies during developmental growth that contribute to precise outcomes in brain wiring.
Collapse
|
16
|
Picocci S, Bizzoca A, Corsi P, Magrone T, Jirillo E, Gennarini G. Modulation of Nerve Cell Differentiation: Role of Polyphenols and of Contactin Family Components. Front Cell Dev Biol 2019; 7:119. [PMID: 31380366 PMCID: PMC6656924 DOI: 10.3389/fcell.2019.00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
In this study the mechanisms are explored, which modulate expression and function of cell surface adhesive glycoproteins of the Immunoglobulin Supergene Family (IgSF), and in particular of its Contactin subset, during neuronal precursor developmental events. In this context, a specific topic concerns the significance of the expression profile of such molecules and their ability to modulate signaling pathways activated through nutraceuticals, in particular polyphenols, administration. Both in vitro and in vivo approaches are chosen. As for the former, by using as a model the human SH-SY5Y neuroblastoma line, the effects of grape seed polyphenols are evaluated on proliferation and commitment/differentiation events along the neuronal lineage. In SH-SY5Y cell cultures, polyphenols were found to counteract precursor proliferation while promoting their differentiation, as deduced by studying their developmental parameters through the expression of cell cycle and neuronal commitment/differentiation markers as well as by measuring neurite growth. In such cultures, Cyclin E expression and BrdU incorporation were downregulated, indicating reduced precursor proliferation while increased neuronal differentiation was inferred from upregulation of cell cycle exit (p27–Kip) and neuronal commitment (NeuN) markers as well as by measuring neurite length through morphometric analysis. The polyphenol effects on developmental parameters were also explored in vivo, in cerebellar cortex, by using as a model the TAG/F3 transgenic line, which undergoes delayed neural development as a consequence of Contactin1 adhesive glycoprotein upregulation and premature expression under control of the Contactin2 gene (Cntn-2) promoter. In this transgenic line, a Notch pathway activation is known to occur and polyphenol treatment was found to counteract such an effect, demonstrated through downregulation of the Hes-1 transcription factor. Polyphenols also downregulated the expression of adhesive glycoproteins of the Contactin family themselves, demonstrated for both Contactin1 and Contactin2, indicating the involvement of changes in the expression of the underlying genes in the observed phenotype. These data support the hypothesis that the complex control exerted by polyphenols on neural development involves modulation of expression and function of the genes encoding cell adhesion molecules of the Contactin family and of the associated signaling pathways, indicating potential mechanisms whereby such compounds may control neurogenesis.
Collapse
Affiliation(s)
- Sabrina Picocci
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Bizzoca
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Patrizia Corsi
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Thea Magrone
- Laboratories of Immunology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Jirillo
- Laboratories of Immunology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Gennarini
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
17
|
Jin Y, Li H. Revisiting Dscam diversity: lessons from clustered protocadherins. Cell Mol Life Sci 2019; 76:667-680. [PMID: 30343321 PMCID: PMC11105660 DOI: 10.1007/s00018-018-2951-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
The complexity of neuronal wiring relies on the extraordinary recognition diversity of cell surface molecules. Drosophila Dscam1 and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the striking diversity from a complex genomic locus, wherein the former encodes more than 10,000 distinct isoforms via alternative splicing, while the latter employs alternative promoters to attain isoform diversity. These structurally unrelated families show remarkably striking molecular parallels and even similar functions. Recent studies revealed a novel Dscam gene family with tandemly arrayed 5' cassettes in Chelicerata (e.g., the scorpion Mesobuthus martensii and the tick Ixodes scapularis), similar to vertebrate clustered Pcdhs. Likewise, octopus shows a more remarkable expansion of the Pcdh isoform repertoire than human. These discoveries of Dscam and Pcdh diversification reshape the evolutionary landscape of recognition molecule diversity and provide a greater understanding of convergent molecular strategies for isoform diversity. This article reviews new insights into the evolution, regulatory mechanisms, and functions of Dscam and Pcdh isoform diversity. In particular, the convergence of clustered Dscams and Pcdhs is highlighted.
Collapse
Affiliation(s)
- Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China.
| | - Hao Li
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China
| |
Collapse
|
18
|
Park EC, Rongo C. RPM-1 and DLK-1 regulate pioneer axon outgrowth by controlling Wnt signaling. Development 2018; 145:dev.164897. [PMID: 30093552 DOI: 10.1242/dev.164897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022]
Abstract
Axons must correctly reach their targets for proper nervous system function, although we do not fully understand the underlying mechanism, particularly for the first 'pioneer' axons. In C. elegans, AVG is the first neuron to extend an axon along the ventral midline, and this pioneer axon facilitates the proper extension and guidance of follower axons that comprise the ventral nerve cord. Here, we show that the ubiquitin ligase RPM-1 prevents the overgrowth of the AVG axon by repressing the activity of the DLK-1/p38 MAPK pathway. Unlike in damaged neurons, where this pathway activates CEBP-1, we find that RPM-1 and the DLK-1 pathway instead regulate the response to extracellular Wnt cues in developing AVG axons. The Wnt LIN-44 promotes the posterior growth of the AVG axon. In the absence of RPM-1 activity, AVG becomes responsive to a different Wnt, EGL-20, through a mechanism that appears to be independent of canonical Fz-type receptors. Our results suggest that RPM-1 and the DLK-1 pathway regulate axon guidance and growth by preventing Wnt signaling crosstalk.
Collapse
Affiliation(s)
- Eun Chan Park
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
19
|
Hiesinger PR, Hassan BA. The Evolution of Variability and Robustness in Neural Development. Trends Neurosci 2018; 41:577-586. [DOI: 10.1016/j.tins.2018.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/26/2022]
|
20
|
Combinations of DIPs and Dprs control organization of olfactory receptor neuron terminals in Drosophila. PLoS Genet 2018; 14:e1007560. [PMID: 30102700 PMCID: PMC6107282 DOI: 10.1371/journal.pgen.1007560] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/23/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
In Drosophila, 50 classes of olfactory receptor neurons (ORNs) connect to 50 class-specific and uniquely positioned glomeruli in the antennal lobe. Despite the identification of cell surface receptors regulating axon guidance, how ORN axons sort to form 50 stereotypical glomeruli remains unclear. Here we show that the heterophilic cell adhesion proteins, DIPs and Dprs, are expressed in ORNs during glomerular formation. Many ORN classes express a unique combination of DIPs/dprs, with neurons of the same class expressing interacting partners, suggesting a role in class-specific self-adhesion between ORN axons. Analysis of DIP/Dpr expression revealed that ORNs that target neighboring glomeruli have different combinations, and ORNs with very similar DIP/Dpr combinations can project to distant glomeruli in the antennal lobe. DIP/Dpr profiles are dynamic during development and correlate with sensilla type lineage for some ORN classes. Perturbations of DIP/dpr gene function result in local projection defects of ORN axons and glomerular positioning, without altering correct matching of ORNs with their target neurons. Our results suggest that context-dependent differential adhesion through DIP/Dpr combinations regulate self-adhesion and sort ORN axons into uniquely positioned glomeruli. In the human brain there are over 80 billion neurons that form approximately 100 trillion specific connections. How the brain organizes the axon terminals of these neurons into distinct synaptic units on such a large scale is largely unknown. In Drosophila, 50 classes of olfactory receptor neurons (ORNs) connect to 50 class-specific and uniquely positioned glomeruli in the antennal lobe, providing a complex yet workable model to understand the organization of glomerular structures and morphology. Here we show that the heterophilic cell adhesion proteins, DIPs and Dprs, are expressed in ORNs during glomerular formation. Many ORN classes express a unique combination of DIPs/dprs, with neurons of the same class expressing interacting partners, suggesting a role in class-specific self-adhesion between ORN axons. Analysis of DIP/Dpr expression revealed that ORNs that target neighboring glomeruli have different combinations, and ORNs with very similar DIP/Dpr combinations can project to distant glomeruli in the antennal lobe. Perturbations of DIP/dpr gene function result in local projection defects of ORN axons and glomerular positioning, without altering correct matching of ORNs with their target neurons. Our results suggest that context-dependent differential adhesion through DIP/Dpr combinations regulate self-adhesion and sort ORN axons into uniquely positioned glomeruli.
Collapse
|
21
|
Mazzochette EA, Nekimken AL, Loizeau F, Whitworth J, Huynh B, Goodman MB, Pruitt BL. The tactile receptive fields of freely moving Caenorhabditis elegans nematodes. Integr Biol (Camb) 2018; 10:450-463. [PMID: 30027970 PMCID: PMC6168290 DOI: 10.1039/c8ib00045j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sensory neurons embedded in skin are responsible for the sense of touch. In humans and other mammals, touch sensation depends on thousands of diverse somatosensory neurons. By contrast, Caenorhabditis elegans nematodes have six gentle touch receptor neurons linked to simple behaviors. The classical touch assay uses an eyebrow hair to stimulate freely moving C. elegans, evoking evasive behavioral responses. This assay has led to the discovery of genes required for touch sensation, but does not provide control over stimulus strength or position. Here, we present an integrated system for performing automated, quantitative touch assays that circumvents these limitations and incorporates automated measurements of behavioral responses. The Highly Automated Worm Kicker (HAWK) unites a microfabricated silicon force sensor holding a glass bead forming the contact surface and video analysis with real-time force and position control. Using this system, we stimulated animals along the anterior-posterior axis and compared responses in wild-type and spc-1(dn) transgenic animals, which have a touch defect due to expression of a dominant-negative α-spectrin protein fragment. As expected from prior studies, delivering large stimuli anterior and posterior to the mid-point of the body evoked a reversal and a speed-up, respectively. The probability of evoking a response of either kind depended on stimulus strength and location; once initiated, the magnitude and quality of both reversal and speed-up behavioral responses were uncorrelated with stimulus location, strength, or the absence or presence of the spc-1(dn) transgene. Wild-type animals failed to respond when the stimulus was applied near the mid-point. These results show that stimulus strength and location govern the activation of a characteristic motor program and that the C. elegans body surface consists of two receptive fields separated by a gap.
Collapse
Affiliation(s)
- E A Mazzochette
- Department of Electrical Engineering, Stanford University, 94305, USA
| | - A L Nekimken
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA
| | - F Loizeau
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - J Whitworth
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - B Huynh
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - M B Goodman
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA
| | - B L Pruitt
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA and Department of Bioengineering, Stanford University, 94305, USA and Department of Mechanical Engineering, University of California, Santa Barbara, 93106, USA.
| |
Collapse
|
22
|
Dumoulin A, Ter-Avetisyan G, Schmidt H, Rathjen FG. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade. Int J Mol Sci 2018; 19:E1266. [PMID: 29695045 PMCID: PMC5983660 DOI: 10.3390/ijms19051266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 01/11/2023] Open
Abstract
Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.
Collapse
Affiliation(s)
| | | | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Fritz G Rathjen
- Max-Delbrück-Center, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
23
|
Plazaola-Sasieta H, Fernández-Pineda A, Zhu Q, Morey M. Untangling the wiring of the Drosophila visual system: developmental principles and molecular strategies. J Neurogenet 2017; 31:231-249. [DOI: 10.1080/01677063.2017.1391249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haritz Plazaola-Sasieta
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Alejandra Fernández-Pineda
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Qi Zhu
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marta Morey
- Department of Genetics, Microbiology and Statistics; School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Kaiser M. Mechanisms of Connectome Development. Trends Cogn Sci 2017; 21:703-717. [PMID: 28610804 DOI: 10.1016/j.tics.2017.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
At the centenary of D'Arcy Thompson's seminal work 'On Growth and Form', pioneering the description of principles of morphological changes during development and evolution, recent experimental advances allow us to study change in anatomical brain networks. Here, we outline potential principles for connectome development. We will describe recent results on how spatial and temporal factors shape connectome development in health and disease. Understanding the developmental origins of brain diseases in individuals will be crucial for deciding on personalized treatment options. We argue that longitudinal studies, experimentally derived parameters for connection formation, and biologically realistic computational models are needed to better understand the link between brain network development, network structure, and network function.
Collapse
Affiliation(s)
- Marcus Kaiser
- ICOS Research Group, School of Computing Science, Newcastle University, Newcastle upon Tyne, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
25
|
Armitage SAO, Kurtz J, Brites D, Dong Y, Du Pasquier L, Wang HC. Dscam1 in Pancrustacean Immunity: Current Status and a Look to the Future. Front Immunol 2017. [PMID: 28649249 PMCID: PMC5465998 DOI: 10.3389/fimmu.2017.00662] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Down syndrome cell adhesion molecule 1 (Dscam1) gene is an extraordinary example of diversity: by combining alternatively spliced exons, thousands of isoforms can be produced from just one gene. So far, such diversity in this gene has only been found in insects and crustaceans, and its essential part in neural wiring has been well-characterized for Drosophila melanogaster. Ten years ago evidence from D. melanogaster showed that the Dscam1 gene is involved in insect immune defense and work on Anopheles gambiae indicated that it is a hypervariable immune receptor. These exciting findings showed that via processes of somatic diversification insects have the possibility to produce unexpected immune molecule diversity, and it was hypothesized that Dscam1 could provide the mechanistic underpinnings of specific immune responses. Since these first publications the quest to understand the function of this gene has uncovered fascinating insights from insects and crustaceans. However, we are still far from a complete understanding of how Dscam1 functions in relation to parasites and pathogens and its full relevance for the immune system. In this Hypothesis and Theory article, we first briefly introduce Dscam1 and what we know so far about how it might function in immunity. By focusing on seven questions, we then share our sometimes contrasting thoughts on what the evidence tells us so far, what essential experiments remain to be done, and the future prospects, with the aim to provide a multiangled view on what this fascinating gene has to do with immune defense.
Collapse
Affiliation(s)
- Sophie A O Armitage
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Daniela Brites
- Tuberculosis Research Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Zoological Institute, University of Basel, Basel, Switzerland
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, United States
| | | | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
26
|
Armijo-Weingart L, Gallo G. It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches. Mol Cell Neurosci 2017; 84:36-47. [PMID: 28359843 DOI: 10.1016/j.mcn.2017.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/03/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
The formation of axon collateral branches from the pre-existing shafts of axons is an important aspect of neurodevelopment and the response of the nervous system to injury. This article provides an overview of the role of the cytoskeleton and signaling mechanisms in the formation of axon collateral branches. Both the actin filament and microtubule components of the cytoskeleton are required for the formation of axon branches. Recent work has begun to shed light on how these two elements of the cytoskeleton are integrated by proteins that functionally or physically link the cytoskeleton. While a number of signaling pathways have been determined as having a role in the formation of axon branches, the complexity of the downstream mechanisms and links to specific signaling pathways remain to be fully determined. The regulation of intra-axonal protein synthesis and organelle function are also emerging as components of signal-induced axon branching. Although much has been learned in the last couple of decades about the mechanistic basis of axon branching we can look forward to continue elucidating this complex biological phenomenon with the aim of understanding how multiple signaling pathways, cytoskeletal regulators and organelles are coordinated locally along the axon to give rise to a branch.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States
| | - Gianluca Gallo
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States.
| |
Collapse
|
27
|
DSCAM promotes axon fasciculation and growth in the developing optic pathway. Proc Natl Acad Sci U S A 2017; 114:1702-1707. [PMID: 28137836 DOI: 10.1073/pnas.1618606114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many aspects of optic pathway development are beginning to be understood, the mechanisms promoting the growth of retinal ganglion cell (RGC) axons toward visual targets remain largely unknown. Down syndrome cell adhesion molecule (Dscam) is expressed by mouse RGCs shortly after they differentiate at embryonic day 12 and is essential for multiple aspects of postnatal visual system development. Here we show that Dscam is also required during embryonic development for the fasciculation and growth of RGC axons. Dscam is expressed along the developing optic pathway in a pattern consistent with a role in regulating RGC axon outgrowth. In mice carrying spontaneous mutations in Dscam (Dscamdel17 ; Dscam2J), RGC axons pathfind normally, but growth from the chiasm toward their targets is impaired, resulting in a delay in RGC axons reaching the dorsal thalamus compared with that seen in wild-type littermates. Conversely, Dscam gain of function results in exuberant growth into the dorsal thalamus. The growth of ipsilaterally projecting axons is particularly affected. Axon organization in the optic chiasm and tract and RGC growth cone morphologies are also altered in Dscam mutants. In vitro DSCAM promotes RGC axon growth and fasciculation, and can act independently of cell contact. In vitro and in situ DSCAM is required both in the RGC axons and in their environment for the promotion of axon outgrowth, consistent with a homotypic mode of action. These findings identify DSCAM as a permissive signal that promotes the growth and fasciculation of RGC axons, controlling the timing of when RGC axons reach their targets.
Collapse
|
28
|
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2016; 81:49-63. [PMID: 27871938 DOI: 10.1016/j.mcn.2016.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.38)% identity at the aminoacid level. They are components of the cell surface, from which they may be released in soluble forms. They bind heterophilically to multiple partners in cis and in trans, including members of the related L1CAM family and of the Neurexin family Contactin-associated proteins (CNTNAPs or Casprs). Such interactions are important for organising the neuronal membrane, as well as for modulating the growth and pathfinding of axon tracts. In addition, they also mediate the functional maturation of axons by promoting their interactions with myelinating cells at the nodal, paranodal and juxtaparanodal regions. Such interactions also mediate differential ionic channels (both Na+ and K+) distribution, which is of critical relevance in the generation of the peak-shaped action potential. Indeed, thanks to their interactions with Ankyrin G, Na+ channels map within the nodal regions, where they drive axonal depolarization. However, no ionic channels are found in the flanking Contactin1-containing paranodal regions, where CNTN1 interactions with Caspr1 and with the Ig superfamily component Neurofascin 155 in cis and in trans, respectively, build a molecular barrier between the node and the juxtaparanode. In this region K+ channels are clustered, depending upon molecular interactions with Contactin 2 and with Caspr2. In addition to these functions, the Contactins appear to have also a role in degenerative and inflammatory disorders: indeed Contactin 2 is involved in neurodegenerative disorders with a special reference to the Alzheimer disease, given its ability to work as a ligand of the Alzheimer Precursor Protein (APP), which results in increased Alzheimer Intracellular Domain (AICD) release in a γ-secretase-dependent manner. On the other hand Contactin 1 drives Notch signalling activation via the Hes pathway, which could be consistent with its ability to modulate neuroinflammation events, and with the possibility that Contactin 1-dependent interactions may participate to the pathogenesis of the Multiple Sclerosis and of other inflammatory disorders.
Collapse
Affiliation(s)
- Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy.
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Andrew J W Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| |
Collapse
|
29
|
Kulkarni A, Ertekin D, Lee CH, Hummel T. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system. eLife 2016; 5:e13715. [PMID: 26987017 PMCID: PMC4846375 DOI: 10.7554/elife.13715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.
Collapse
Affiliation(s)
| | - Deniz Ertekin
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Hassan BA, Hiesinger PR. Beyond Molecular Codes: Simple Rules to Wire Complex Brains. Cell 2016; 163:285-91. [PMID: 26451480 DOI: 10.1016/j.cell.2015.09.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 11/30/2022]
Abstract
Molecular codes, like postal zip codes, are generally considered a robust way to ensure the specificity of neuronal target selection. However, a code capable of unambiguously generating complex neural circuits is difficult to conceive. Here, we re-examine the notion of molecular codes in the light of developmental algorithms. We explore how molecules and mechanisms that have been considered part of a code may alternatively implement simple pattern formation rules sufficient to ensure wiring specificity in neural circuits. This analysis delineates a pattern-based framework for circuit construction that may contribute to our understanding of brain wiring.
Collapse
Affiliation(s)
- Bassem A Hassan
- Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, 3000 Leuven, Belgium.
| | - P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charite Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
31
|
Özel MN, Langen M, Hassan BA, Hiesinger PR. Filopodial dynamics and growth cone stabilization in Drosophila visual circuit development. eLife 2015; 4. [PMID: 26512889 PMCID: PMC4728134 DOI: 10.7554/elife.10721] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/26/2015] [Indexed: 01/04/2023] Open
Abstract
Filopodial dynamics are thought to control growth cone guidance, but the types and roles of growth cone dynamics underlying neural circuit assembly in a living brain are largely unknown. To address this issue, we have developed long-term, continuous, fast and high-resolution imaging of growth cone dynamics from axon growth to synapse formation in cultured Drosophila brains. Using R7 photoreceptor neurons as a model we show that >90% of the growth cone filopodia exhibit fast, stochastic dynamics that persist despite ongoing stepwise layer formation. Correspondingly, R7 growth cones stabilize early and change their final position by passive dislocation. N-Cadherin controls both fast filopodial dynamics and growth cone stabilization. Surprisingly, loss of N-Cadherin causes no primary targeting defects, but destabilizes R7 growth cones to jump between correct and incorrect layers. Hence, growth cone dynamics can influence wiring specificity without a direct role in target recognition and implement simple rules during circuit assembly. DOI:http://dx.doi.org/10.7554/eLife.10721.001 Genes encode complicated developmental processes, but it is clear that genetic information cannot encode each and every individual connection that forms between the nerve cells in a brain. Instead, the individual cells and nerve endings must make decisions during brain development. Up until now, few examples were known for how these nerve endings move and choose their paths and partners in a living, developing brain. The fruit fly Drosophila provides a useful model to explore the ‘wiring’ of nerve cells in the brain, partly because a fruit fly’s brain develops within a few days. However, most previous studies have relied on identifying mutant flies with disrupted brain wiring and studying them using still images. Now, Özel et al. have developed a new imaging method that has enough resolution and speed over sufficiently long periods to track the growing nerve endings in a developing fly brain. The method was applied to a model nerve cell in the fly’s visual system. This revealed that most of this nerve’s dynamic changes are short-lived and random, and appear to help to stabilize the developing nerve ending, rather than guide it to a target. Özel et al. also found that a protein called N-Cadherin, previously thought to be required for the targeting of developing nerve endings, actually plays a role in their stabilization. These findings uncover the roles of changes in nerve endings during long-term brain development; this was previously largely unknown for any organism. The next stage in this research will involve further analyses of both wild type and mutant flies to try and work out general principles about how the brain develops via the decoding of genetic information. DOI:http://dx.doi.org/10.7554/eLife.10721.002
Collapse
Affiliation(s)
- Mehmet Neset Özel
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States.,Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Marion Langen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bassem A Hassan
- Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - P Robin Hiesinger
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States.,Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charite Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|