1
|
O'Malley MA. The concept of balance in microbiome research. Bioessays 2024; 46:e2400050. [PMID: 38924108 DOI: 10.1002/bies.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Microbiome research is changing how ecosystems, including animal bodies, are understood. In the case of humans, microbiome knowledge is transforming medical approaches and applications. However, the field is still young, and many conceptual and explanatory issues need resolving. These include how microbiome causality is understood, and how to conceptualize the role microbiomes have in the health status of their hosts and other ecosystems. A key concept that crops up in the medical microbiome literature is "balance." A balanced microbiome is thought to produce health and an imbalanced one disease. Based on a quantitative and qualitative analysis of how balance is used in the microbiome literature, this "think again" essay critically analyses each of the several subconceptions of balance. As well as identifying problems with these uses, the essay suggests some starting points for filling this conceptual gap in microbiome research.
Collapse
Affiliation(s)
- Maureen A O'Malley
- School of History and Philosophy of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Laurich JR, Lash E, O'Brien AM, Pogoutse O, Frederickson ME. Community interactions among microbes give rise to host-microbiome mutualisms in an aquatic plant. mBio 2024; 15:e0097224. [PMID: 38904411 PMCID: PMC11324027 DOI: 10.1128/mbio.00972-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Microbiomes often benefit plants, conferring resistance to pathogens, improving stress tolerance, or promoting plant growth. As potential plant mutualists, however, microbiomes are not a single organism but a community of species with complex interactions among microbial taxa and between microbes and their shared host. The nature of ecological interactions among microbes in the microbiome can have important consequences for the net effects of microbiomes on hosts. Here, we compared the effects of individual microbial strains and 10-strain synthetic communities on microbial productivity and host growth using the common duckweed Lemna minor and a synthetic, simplified version of its native microbiome. Except for Pseudomonas protegens, which was a mutualist when tested alone, all of the single strains we tested were commensals on hosts, benefiting from plant presence but not increasing host growth relative to uninoculated controls. However, 10-strain synthetic microbial communities increased both microbial productivity and duckweed growth more than the average single-strain inoculation and uninoculated controls, meaning that host-microbiome mutualisms can emerge from community interactions among microbes on hosts. The effects of community inoculation were sub-additive, suggesting at least some competition among microbes in the duckweed microbiome. We also investigated the relationship between L. minor fitness and that of its microbes, providing some of the first empirical estimates of broad fitness alignment between plants and members of their microbiomes; hosts grew faster with more productive microbes or microbiomes. IMPORTANCE There is currently substantial interest in engineering synthetic microbiomes for health or agricultural applications. One key question is how multi-strain microbial communities differ from single microbial strains in their productivity and effects on hosts. We tested 20 single bacterial strains and 2 distinct 10-strain synthetic communities on plant hosts and found that 10-strain communities led to faster host growth and greater microbial productivity than the average, but not the best, single strain. Furthermore, the microbial strains or communities that achieved the greatest cell densities were also the most beneficial to their hosts, showing that both specific single strains and multi-strain synthetic communities can engage in high-quality mutualisms with their hosts. Our results suggest that ~5% of single strains, as well as multi-strain synthetic communities comprised largely of commensal microbes, can benefit hosts and result in effective host-microbe mutualisms.
Collapse
Affiliation(s)
- Jason R. Laurich
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Emma Lash
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Anna M. O'Brien
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
- Department of
Molecular, Cellular, and Biomedical Sciences, University of New
Hampshire, Durham,
New Hampshire, USA
| | - Oxana Pogoutse
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Megan E. Frederickson
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
3
|
Gayford JH. The multidimensional spectrum of eco-evolutionary relationships between sharks and remoras. JOURNAL OF FISH BIOLOGY 2024; 105:4-9. [PMID: 38622824 DOI: 10.1111/jfb.15759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Remoras are a highly specialised group of fishes known to associate with a range of marine megafauna, including elasmobranchs, cetaceans and marine reptiles. Remoras appear to benefit from these interspecific interactions through consumption of host dermal parasites or reduced cost of transport. Shark-remora associations are widely documented, yet our understanding of the costs and benefits involved in these interactions is poor. Studies frequently make claims about mutualistic, commensalistic or parasitic relationships without providing the necessary quantitative information necessary to make these claims. Here I explain why this approach is problematic, and proceed to examine shark-remora interactions in a rigorous eco-evolutionary framework. These interactions cannot be properly classified without considering net evolutionary fitness and context dependence. In reality, shark-remora interactions are best defined by a multidimensional spectrum of fitness consequences, with net fitness outcomes shifting between mutualism and parasitism (and vice versa) through space and time.
Collapse
Affiliation(s)
- Joel H Gayford
- Department of Life Sciences, Silwood Park Campus, Imperial College London, London, UK
- Shark Measurements, London, UK
| |
Collapse
|
4
|
Hoang KL, Salguero-Gómez R, Pike VL, King KC. The impacts of host association and perturbation on symbiont fitness. Symbiosis 2024; 92:439-451. [PMID: 38666134 PMCID: PMC11039428 DOI: 10.1007/s13199-024-00984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-024-00984-6.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of Biology, University of Oxford, Oxford, UK
- Emory University School of Medicine, Atlanta, GA USA
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Stante M, Weiland-Bräuer N, von Hoyningen-Huene AJE, Schmitz RA. Marine bacteriophages disturb the associated microbiota of Aurelia aurita with a recoverable effect on host morphology. Front Microbiol 2024; 15:1356337. [PMID: 38533338 PMCID: PMC10964490 DOI: 10.3389/fmicb.2024.1356337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
The concept of the metaorganism describes a multicellular host and its diverse microbial community, which form one biological unit with a combined genetic repertoire that significantly influences health and survival of the host. The present study delved into the emerging field of bacteriophage research within metaorganisms, focusing on the moon jellyfish Aurelia aurita as a model organism. The previously isolated Pseudomonas phage BSwM KMM1 and Citrobacter phages BSwM KMM2 - KMM4 demonstrated potent infectivity on bacteria present in the A. aurita-associated microbiota. In a host-fitness experiment, Baltic Sea subpopulation polyps were exposed to individual phages and a phage cocktail, monitoring polyp survival and morphology, as well as microbiome changes. The following effects were obtained. First, phage exposure in general led to recoverable malformations in polyps without affecting their survival. Second, analyses of the community structure, using 16S rRNA amplicon sequencing, revealed alterations in the associated microbial community in response to phage exposure. Third, the native microbiota is dominated by an uncultured likely novel Mycoplasma species, potentially specific to A. aurita. Notably, this main colonizer showed resilience through the recovery after initial declines, which aligned with abundance changes in Bacteroidota and Proteobacteria, suggesting a dynamic and adaptable microbial community. Overall, this study demonstrates the resilience of the A. aurita metaorganism facing phage-induced perturbations, emphasizing the importance of understanding host-phage interactions in metaorganism biology. These findings have implications for ecological adaptation and conservation in the rapidly changing marine environment, particularly regarding the regulation of blooming species and the health of marine ecosystems during ongoing environmental changes.
Collapse
Affiliation(s)
| | | | | | - Ruth Anne Schmitz
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
6
|
Ben Cheikh Y, Massol F, Giusti-Petrucciani N, Travers MA. Impact of epizootics on mussel farms: Insights into microbiota composition of Mytilus species. Microbiol Res 2024; 280:127593. [PMID: 38184970 DOI: 10.1016/j.micres.2023.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Outbreaks of marine mussel mortality on French farms could have different aetiologies. One of them implies Vibrio splendidus strains. Beyond the involvement of this pathogen, there is considerable evidence that diseases often result from interactions between several microbes and the host. In this study, we explored the bacterial communities associated with mussel species and the surrounding water collected from a mussel farm affected by mortalities. The microbiota of Mytilus edulis, Mytilus galloprovincialis and their hybrids displayed an abnormal abundance of Proteobacteria, in particular the genera Vibrio, Cobetia and Arcobacter. Despite the dysbiosis, the Mediterranean mussel showed a different microbiota profile with a higher richness and presence of the phylum Bacteroidetes. Bipartite network analyses at the level of bacteria families confirmed this finding and showed that the microbiomes of M. edulis and the hybrids tended to cluster together. In addition, injection of mussels with the virulent V. splendidus induced less mortality rate in M. galloprovincialis compared to the other Mytilus sp. suggesting a better resistance of the Mediterranean mussel to infection. Our findings point to a probable aetiology of pathobiome-mediated disease in mussels. To fully understand this phenomenon, more knowledge is needed on the roles of pathobiotic systems and their development during disease establishment.
Collapse
Affiliation(s)
- Yosra Ben Cheikh
- UMR-I 02 Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO), Université Le Havre Normandie, Cedex 76063 Le Havre, France.
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nathalie Giusti-Petrucciani
- UMR-I 02 Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO), Université Le Havre Normandie, Cedex 76063 Le Havre, France
| | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, F-34090 Montpellier, France
| |
Collapse
|
7
|
Medina JM, Queller DC, Strassmann JE, Garcia JR. The social amoeba Dictyostelium discoideum rescues Paraburkholderia hayleyella, but not P. agricolaris, from interspecific competition. FEMS Microbiol Ecol 2023; 99:fiad055. [PMID: 37226596 PMCID: PMC10243984 DOI: 10.1093/femsec/fiad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023] Open
Abstract
Bacterial endosymbionts can provide benefits for their eukaryotic hosts, but it is often unclear if endosymbionts benefit from these relationships. The social amoeba Dictyostelium discoideum associates with three species of Paraburkholderia endosymbionts, including P. agricolaris and P. hayleyella. These endosymbionts can be costly to the host but are beneficial in certain contexts because they allow D. discoideum to carry prey bacteria through the dispersal stage. In experiments where no other species are present, P. hayleyella benefits from D. discoideum while P. agricolaris does not. However, the presence of other species may influence this symbiosis. We tested if P. agricolaris and P. hayleyella benefit from D. discoideum in the context of resource competition with Klebsiella pneumoniae, the typical laboratory prey of D. discoideum. Without D. discoideum, K. pneumoniae depressed the growth of both Paraburkholderia symbionts, consistent with competition. P. hayleyella was more harmed by interspecific competition than P. agricolaris. We found that P. hayleyella was rescued from competition by D. discoideum, while P. agricolaris was not. This may be because P. hayleyella is more specialized as an endosymbiont; it has a highly reduced genome compared to P. agricolaris and may have lost genes relevant for resource competition outside of its host.
Collapse
Affiliation(s)
- James M Medina
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David C Queller
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joan E Strassmann
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Justine R Garcia
- Department of Biology, New Mexico Highlands University, 1005 Diamond Ave, Las Vegas, NM 87701, USA
| |
Collapse
|
8
|
Mioduchowska M, Konecka E, Gołdyn B, Pinceel T, Brendonck L, Lukić D, Kaczmarek Ł, Namiotko T, Zając K, Zając T, Jastrzębski JP, Bartoszek K. Playing Peekaboo with a Master Manipulator: Metagenetic Detection and Phylogenetic Analysis of Wolbachia Supergroups in Freshwater Invertebrates. Int J Mol Sci 2023; 24:ijms24119400. [PMID: 37298356 DOI: 10.3390/ijms24119400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The infamous "master manipulators"-intracellular bacteria of the genus Wolbachia-infect a broad range of phylogenetically diverse invertebrate hosts in terrestrial ecosystems. Wolbachia has an important impact on the ecology and evolution of their host with documented effects including induced parthenogenesis, male killing, feminization, and cytoplasmic incompatibility. Nonetheless, data on Wolbachia infections in non-terrestrial invertebrates are scarce. Sampling bias and methodological limitations are some of the reasons limiting the detection of these bacteria in aquatic organisms. In this study, we present a new metagenetic method for detecting the co-occurrence of different Wolbachia strains in freshwater invertebrates host species, i.e., freshwater Arthropoda (Crustacea), Mollusca (Bivalvia), and water bears (Tardigrada) by applying NGS primers designed by us and a Python script that allows the identification of Wolbachia target sequences from the microbiome communities. We also compare the results obtained using the commonly applied NGS primers and the Sanger sequencing approach. Finally, we describe three supergroups of Wolbachia: (i) a new supergroup V identified in Crustacea and Bivalvia hosts; (ii) supergroup A identified in Crustacea, Bivalvia, and Eutardigrada hosts, and (iii) supergroup E infection in the Crustacea host microbiome community.
Collapse
Affiliation(s)
- Monika Mioduchowska
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, 80-308 Gdańsk, Poland
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland
- Department of Marine Plankton Research, Institute of Oceanography, University of Gdansk, 81-378 Gdynia, Poland
| | - Edyta Konecka
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznań, Poland
| | - Bartłomiej Gołdyn
- Department of General Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznań, Poland
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, 3000 Leuven, Belgium
- Centre for Environmental Management, University of the Free State, Potchefstroom 2520, South Africa
- Community Ecology Laboratory, Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, 3000 Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Dunja Lukić
- Department of Wetland Ecology, Estación Biológica de Doñana-CSIC, 41092 Sevilla, Spain
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznań, Poland
| | - Tadeusz Namiotko
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, 80-308 Gdańsk, Poland
| | - Katarzyna Zając
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Kraków, Poland
| | - Tadeusz Zając
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Kraków, Poland
| | - Jan P Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Division of Statistics and Machine Learning, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
9
|
Hasik AZ, de Angeli Dutra D, Doherty JF, Duffy MA, Poulin R, Siepielski AM. Resetting our expectations for parasites and their effects on species interactions: a meta-analysis. Ecol Lett 2023; 26:184-199. [PMID: 36335559 PMCID: PMC10099232 DOI: 10.1111/ele.14139] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
Despite the ubiquitous nature of parasitism, how parasitism alters the outcome of host-species interactions such as competition, mutualism and predation remains unknown. Using a phylogenetically informed meta-analysis of 154 studies, we examined how the mean and variance in the outcomes of species interactions differed between parasitized and non-parasitized hosts. Overall, parasitism did not significantly affect the mean or variance of host-species interaction outcomes, nor did the shared evolutionary histories of hosts and parasites have an effect. Instead, there was considerable variation in outcomes, ranging from strongly detrimental to strongly beneficial for infected hosts. Trophically-transmitted parasites increased the negative effects of predation, parasites increased and decreased the negative effects of interspecific competition for parasitized and non-parasitized heterospecifics, respectively, and parasites had particularly strong negative effects on host species interactions in freshwater and marine habitats, yet were beneficial in terrestrial environments. Our results illuminate the diverse ways in which parasites modify critical linkages in ecological networks, implying that whether the cumulative effects of parasitism are considered detrimental depends not only on the interactions between hosts and their parasites but also on the many other interactions that hosts experience.
Collapse
Affiliation(s)
- Adam Z Hasik
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA.,Jacob Blaustein Center for Scientific Cooperation, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | | | - Jean-François Doherty
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
10
|
Ravigné V, Becker N, Massol F, Guichoux E, Boury C, Mahé F, Facon B. Fruit fly phylogeny imprints bacterial gut microbiota. Evol Appl 2022; 15:1621-1638. [PMID: 36330298 PMCID: PMC9624087 DOI: 10.1111/eva.13352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
One promising avenue for reconciling the goals of crop production and ecosystem preservation consists in the manipulation of beneficial biotic interactions, such as between insects and microbes. Insect gut microbiota can affect host fitness by contributing to development, host immunity, nutrition, or behavior. However, the determinants of gut microbiota composition and structure, including host phylogeny and host ecology, remain poorly known. Here, we used a well-studied community of eight sympatric fruit fly species to test the contributions of fly phylogeny, fly specialization, and fly sampling environment on the composition and structure of bacterial gut microbiota. Comprising both specialists and generalists, these species belong to five genera from to two tribes of the Tephritidae family. For each fly species, one field and one laboratory samples were studied. Bacterial inventories to the genus level were produced using 16S metabarcoding with the Oxford Nanopore Technology. Sample bacterial compositions were analyzed with recent network-based clustering techniques. Whereas gut microbiota were dominated by the Enterobacteriaceae family in all samples, microbial profiles varied across samples, mainly in relation to fly identity and sampling environment. Alpha diversity varied across samples and was higher in the Dacinae tribe than in the Ceratitinae tribe. Network analyses allowed grouping samples according to their microbial profiles. The resulting groups were very congruent with fly phylogeny, with a significant modulation of sampling environment, and with a very low impact of fly specialization. Such a strong imprint of host phylogeny in sympatric fly species, some of which share much of their host plants, suggests important control of fruit flies on their gut microbiota through vertical transmission and/or intense filtering of environmental bacteria.
Collapse
Affiliation(s)
- Virginie Ravigné
- CIRADUMR PHIMMontpellierFrance
- PHIMUniv MontpellierCIRADINRAEInstitut AgroIRDMontpellierFrance
| | | | - François Massol
- InsermCHU LilleInstitut Pasteur de LilleU1019 – UMR 9017Center for Infection and Immunity of Lille (CIIL)CNRSUniversité de LilleLilleFrance
| | - Erwan Guichoux
- INRAE ‐ UMR 1202 BIOGECO ‐ Plateforme Genome Transcriptome de BordeauxCestasFrance
| | - Christophe Boury
- INRAE ‐ UMR 1202 BIOGECO ‐ Plateforme Genome Transcriptome de BordeauxCestasFrance
| | - Frédéric Mahé
- CIRADUMR PHIMMontpellierFrance
- PHIMUniv MontpellierCIRADINRAEInstitut AgroIRDMontpellierFrance
| | | |
Collapse
|
11
|
Alberdi A, Andersen SB, Limborg MT, Dunn RR, Gilbert MTP. Disentangling host-microbiota complexity through hologenomics. Nat Rev Genet 2022; 23:281-297. [PMID: 34675394 DOI: 10.1038/s41576-021-00421-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Research on animal-microbiota interactions has become a central topic in biological sciences because of its relevance to basic eco-evolutionary processes and applied questions in agriculture and health. However, animal hosts and their associated microbial communities are still seldom studied in a systemic fashion. Hologenomics, the integrated study of the genetic features of a eukaryotic host alongside that of its associated microbes, is becoming a feasible - yet still underexploited - approach that overcomes this limitation. Acknowledging the biological and genetic properties of both hosts and microbes, along with the advantages and disadvantages of implemented techniques, is essential for designing optimal studies that enable some of the major questions in biology to be addressed.
Collapse
Affiliation(s)
- Antton Alberdi
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Sandra B Andersen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
12
|
Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol 2021; 19:623-638. [PMID: 33875863 PMCID: PMC8054256 DOI: 10.1038/s41579-021-00550-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Virtually all plants and animals, including humans, are home to symbiotic microorganisms. Symbiotic interactions can be neutral, harmful or have beneficial effects on the host organism. However, growing evidence suggests that microbial symbionts can evolve rapidly, resulting in drastic transitions along the parasite-mutualist continuum. In this Review, we integrate theoretical and empirical findings to discuss the mechanisms underpinning these evolutionary shifts, as well as the ecological drivers and why some host-microorganism interactions may be stuck at the end of the continuum. In addition to having biomedical consequences, understanding the dynamic life of microorganisms reveals how symbioses can shape an organism's biology and the entire community, particularly in a changing world.
Collapse
Affiliation(s)
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Hoang KL, Gerardo NM, Morran LT. Association with a novel protective microbe facilitates host adaptation to a stressful environment. Evol Lett 2021; 5:118-129. [PMID: 33868708 PMCID: PMC8045907 DOI: 10.1002/evl3.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Protective symbionts can allow hosts to occupy otherwise uninhabitable niches. Despite the importance of symbionts in host evolution, we know little about how these associations arise. Encountering a microbe that can improve host fitness in a stressful environment may favor persistent interactions with that microbe, potentially facilitating a long-term association. The bacterium Bacillus subtilis protects Caenorhabditis elegans nematodes from heat shock by increasing host fecundity compared to the nonprotective Escherichia coli. In this study, we ask how the protection provided by the bacterium affects the host's evolutionary trajectory. Because of the stark fitness contrast between hosts heat shocked on B. subtilis versus E. coli, we tested whether the protection conferred by the bacteria could increase the rate of host adaptation to a stressful environment. We passaged nematodes on B. subtilis or E. coli, under heat stress or standard conditions for 20 host generations of selection. When assayed under heat stress, we found that hosts exhibited the greatest fitness increase when evolved with B. subtilis under stress compared to when evolved with E. coli or under standard (nonstressful) conditions. Furthermore, despite not directly selecting for increased B. subtilis fitness, we found that hosts evolved to harbor more B. subtilis as they adapted to heat stress. Our findings demonstrate that the context under which hosts evolve is important for the evolution of beneficial associations and that protective microbes can facilitate host adaptation to stress. In turn, such host adaptation can benefit the microbe.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
- Department of ZoologyUniversity of OxfordOxfordOX1 3SZUnited Kingdom
| | | | - Levi T. Morran
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
| |
Collapse
|
14
|
Goulet TL, Goulet D. Climate Change Leads to a Reduction in Symbiotic Derived Cnidarian Biodiversity on Coral Reefs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Symbiotic relationships enable partners to thrive and survive in habitats where they would either not be as successful, or potentially not exist, without the symbiosis. The coral reef ecosystem, and its immense biodiversity, relies on the symbioses between cnidarians (e.g., scleractinian corals, octocorals, sea anemones, jellyfish) and multiple organisms including dinoflagellate algae (family Symbiodiniaceae), bivalves, crabs, shrimps, and fishes. In this review, we discuss the ramifications of whether coral reef cnidarian symbioses are obligatory, whereby at least one of the partners must be in the symbiosis in order to survive or are facultative. Furthermore, we cover the consequences of cnidarian symbioses exhibiting partner flexibility or fidelity. Fidelity, where a symbiotic partner can only engage in symbiosis with a subset of partners, may be absolute or context dependent. Current literature demonstrates that many cnidarian symbioses are highly obligative and appear to exhibit absolute fidelity. Consequently, for many coral reef cnidarian symbioses, surviving changing environmental conditions will depend on the robustness and potential plasticity of the existing host-symbiont(s) combination. If environmental conditions detrimentally affect even one component of this symbiotic consortium, it may lead to a cascade effect and the collapse of the entire symbiosis. Symbiosis is at the heart of the coral reef ecosystem, its existence, and its high biodiversity. Climate change may cause the demise of some of the cnidarian symbioses, leading to subsequent reduction in biodiversity on coral reefs.
Collapse
|
15
|
Goodrich-Blair H. Interactions of host-associated multispecies bacterial communities. Periodontol 2000 2021; 86:14-31. [PMID: 33690897 DOI: 10.1111/prd.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.
Collapse
Affiliation(s)
- Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
16
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Zhang X, Ohtsuki H, Makino W, Kato Y, Watanabe H, Urabe J. Variations in effects of ectosymbiotic microbes on the growth rates among different species and genotypes of
Daphnia
fed different algal diets. Ecol Res 2020. [DOI: 10.1111/1440-1703.12194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xuan Zhang
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Hajime Ohtsuki
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Wataru Makino
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering Osaka University Suita Osaka Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering Osaka University Suita Osaka Japan
| | - Jotaro Urabe
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| |
Collapse
|
18
|
Tragust S, Herrmann C, Häfner J, Braasch R, Tilgen C, Hoock M, Milidakis MA, Gross R, Feldhaar H. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife 2020; 9:e60287. [PMID: 33138912 PMCID: PMC7609056 DOI: 10.7554/elife.60287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Animals continuously encounter microorganisms that are essential for health or cause disease. They are thus challenged to control harmful microbes while allowing the acquisition of beneficial microbes. This challenge is likely especially important for social insects with respect to microbes in food, as they often store food and exchange food among colony members. Here we show that formicine ants actively swallow their antimicrobial, highly acidic poison gland secretion. The ensuing acidic environment in the stomach, the crop, can limit the establishment of pathogenic and opportunistic microbes ingested with food and improve the survival of ants when faced with pathogen contaminated food. At the same time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae, known bacterial gut associates of formicine ants. This suggests that swallowing of the poison in formicine ants acts as a microbial filter and that antimicrobials have a potentially widespread but so far underappreciated dual role in host-microbe interactions.
Collapse
Affiliation(s)
- Simon Tragust
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Claudia Herrmann
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Jane Häfner
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Ronja Braasch
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Christina Tilgen
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Maria Hoock
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Margarita Artemis Milidakis
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Roy Gross
- Microbiology, Biocenter, University of Würzburg, Am HublandWürzburgGermany
| | - Heike Feldhaar
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| |
Collapse
|
19
|
Better off alone? New insights in the symbiotic relationship between the flatworm Symsagittifera roscoffensis and the microalgae Tetraselmis convolutae. Symbiosis 2020. [DOI: 10.1007/s13199-020-00691-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Ireland EV, Woznica A, King N. Synergistic Cues from Diverse Bacteria Enhance Multicellular Development in a Choanoflagellate. Appl Environ Microbiol 2020; 86:e02920-19. [PMID: 32220848 PMCID: PMC7237790 DOI: 10.1128/aem.02920-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria regulate the life histories of diverse eukaryotes, but relatively little is known about how eukaryotes interpret and respond to multiple bacterial cues encountered simultaneously. To explore how a eukaryote might respond to a combination of bioactive molecules from multiple bacteria, we treated the choanoflagellate Salpingoeca rosetta with two sets of bacterial cues, one that induces mating and another that induces multicellular development. We found that simultaneous exposure to both sets of cues enhanced multicellular development in S. rosetta, eliciting both larger multicellular colonies and an increase in the number of colonies. Thus, rather than conveying conflicting sets of information, these distinct bacterial cues synergize to augment multicellular development. This study demonstrates how a eukaryote can integrate and modulate its response to cues from diverse bacteria, underscoring the potential impact of complex microbial communities on eukaryotic life histories.IMPORTANCE Eukaryotic biology is profoundly influenced by interactions with diverse environmental and host-associated bacteria. However, it is not well understood how eukaryotes interpret multiple bacterial cues encountered simultaneously. This question has been challenging to address because of the complexity of many eukaryotic model systems and their associated bacterial communities. Here, we studied a close relative of animals, the choanoflagellate Salpingoeca rosetta, to explore how eukaryotes respond to diverse bacterial cues. We found that a bacterial chondroitinase that induces mating on its own can also synergize with bacterial lipids that induce multicellular "rosette" development. When encountered together, these cues enhance rosette development, resulting in both the formation of larger rosettes and an increase in the number of rosettes compared to rosette development in the absence of the chondroitinase. These findings highlight how synergistic interactions among bacterial cues can influence the biology of eukaryotes.
Collapse
Affiliation(s)
- Ella V Ireland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Arielle Woznica
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Nicole King
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
21
|
Figueiredo ART, Kramer J. Cooperation and Conflict Within the Microbiota and Their Effects On Animal Hosts. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
22
|
Nalepa CA. Origin of Mutualism Between Termites and Flagellated Gut Protists: Transition From Horizontal to Vertical Transmission. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
23
|
Can We Talk About Feminist Epistemic Values Beyond Gender? Lessons from the Gut Microbiome. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13752-019-00335-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Hoang KL, Morran LT, Gerardo NM. Can a Symbiont (Also) Be Food? Front Microbiol 2019; 10:2539. [PMID: 31787946 PMCID: PMC6854002 DOI: 10.3389/fmicb.2019.02539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kim L Hoang
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA, United States
| | - Levi T Morran
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA, United States
| | - Nicole M Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
25
|
Hooks KB, O'Malley MA. Contrasting Strategies: Human Eukaryotic Versus Bacterial Microbiome Research. J Eukaryot Microbiol 2019; 67:279-295. [PMID: 31583780 PMCID: PMC7154641 DOI: 10.1111/jeu.12766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022]
Abstract
Most discussions of human microbiome research have focused on bacterial investigations and findings. Our target is to understand how human eukaryotic microbiome research is developing, its potential distinctiveness, and how problems can be addressed. We start with an overview of the entire eukaryotic microbiome literature (578 papers), show tendencies in the human‐based microbiome literature, and then compare the eukaryotic field to more developed human bacterial microbiome research. We are particularly concerned with problems of interpretation that are already apparent in human bacterial microbiome research (e.g. disease causality, probiotic interventions, evolutionary claims). We show where each field converges and diverges, and what this might mean for progress in human eukaryotic microbiome research. Our analysis then makes constructive suggestions for the future of the field.
Collapse
Affiliation(s)
- Katarzyna B Hooks
- CBiB, University of Bordeaux, Bordeaux, 33076, France.,CNRS/LaBRI, University of Bordeaux, Talence, 33405, France
| | - Maureen A O'Malley
- School of History and Philosophy of Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
26
|
Garcia JR, Larsen TJ, Queller DC, Strassmann JE. Fitness costs and benefits vary for two facultative Burkholderia symbionts of the social amoeba, Dictyostelium discoideum. Ecol Evol 2019; 9:9878-9890. [PMID: 31534701 PMCID: PMC6745654 DOI: 10.1002/ece3.5529] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Hosts and their associated microbes can enter into different relationships, which can range from mutualism, where both partners benefit, to exploitation, where one partner benefits at the expense of the other. Many host-microbe relationships have been presumed to be mutualistic, but frequently only benefits to the host, and not the microbial symbiont, have been considered. Here, we address this issue by looking at the effect of host association on the fitness of two facultative members of the Dictyostelium discoideum microbiome (Burkholderia agricolaris and Burkholderia hayleyella). Using two indicators of bacterial fitness, growth rate and abundance, we determined the effect of D. discoideum on Burkholderia fitness. In liquid culture, we found that D. discoideum amoebas lowered the growth rate of both Burkholderia species. In soil microcosms, we tracked the abundance of Burkholderia grown with and without D. discoideum over a month and found that B. hayleyella had larger populations when associating with D. discoideum while B. agricolaris was not significantly affected. Overall, we find that both B. agricolaris and B. hayleyella pay a cost to associate with D. discoideum, but B. hayleyella can also benefit under some conditions. Understanding how fitness varies in facultative symbionts will help us understand the persistence of host-symbiont relationships. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://openscholarship.wustl.edu/data/15/.
Collapse
Affiliation(s)
- Justine R. Garcia
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
- Present address:
Department of BiologyNew Mexico Highlands UniversityLas VegasNMUSA
| | - Tyler J. Larsen
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | - David C. Queller
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | | |
Collapse
|
27
|
Lim SJ, Alexander L, Engel AS, Paterson AT, Anderson LC, Campbell BJ. Extensive Thioautotrophic Gill Endosymbiont Diversity within a Single Ctena orbiculata (Bivalvia: Lucinidae) Population and Implications for Defining Host-Symbiont Specificity and Species Recognition. mSystems 2019; 4:e00280-19. [PMID: 31455638 PMCID: PMC6712303 DOI: 10.1128/msystems.00280-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Seagrass-dwelling members of the bivalve family Lucinidae harbor environmentally acquired gill endosymbionts. According to previous studies, lucinid symbionts potentially represent multiple strains from a single thioautotrophic gammaproteobacterium species. This study utilized genomic- and transcriptomic-level data to resolve symbiont taxonomic, genetic, and functional diversity from Ctena orbiculata endosymbiont populations inhabiting carbonate-rich sediment at Sugarloaf Key, FL (USA). The sediment had mixed seagrass and calcareous green alga coverage and also was colonized by at least five other lucinid species. Four coexisting, thioautotrophic endosymbiont operational taxonomic units (OTUs), likely representing four strains from two different bacterial species, were identified from C. orbiculata Three of these OTUs also occurred at high relative abundances in the other sympatric lucinid species. Interspecies genetic differences averaged about 5% lower at both pairwise average nucleotide identity and amino acid identity than interstrain differences. Despite these genetic differences, C. orbiculata endosymbionts shared a high number of metabolic functions, including highly expressed thioautotrophy-related genes and a moderately to weakly expressed conserved one-carbon (C1) oxidation gene cluster previously undescribed in lucinid symbionts. Few symbiont- and host-related genes, including those encoding symbiotic sulfurtransferase, host respiratory functions, and host sulfide oxidation functions, were differentially expressed between seagrass- and alga-covered sediment locations. In contrast to previous studies, the identification of multiple endosymbiont taxa within and across C. orbiculata individuals, which were also shared with other sympatric lucinid species, suggests that neither host nor endosymbiont displays strict taxonomic specificity. This necessitates further investigations into the nature and extent of specificity of lucinid hosts and their symbionts.IMPORTANCE Symbiont diversity and host/symbiont functions have been comprehensively profiled for only a few lucinid species. In this work, unprecedented thioautotrophic gill endosymbiont taxonomic diversity was characterized within a Ctena orbiculata population associated with both seagrass- and alga-covered sediments. Endosymbiont metabolisms included known chemosynthetic functions and an additional conserved, previously uncharacterized C1 oxidation pathway. Lucinid-symbiont associations were not species specific because this C. orbiculata population hosted multiple endosymbiont strains and species, and other sympatric lucinid species shared overlapping symbiont 16S rRNA gene diversity profiles with C. orbiculata Our results suggest that lucinid-symbiont association patterns within some host species could be more taxonomically diverse than previously thought. As such, this study highlights the importance of holistic analyses, at the population, community, and even ecosystem levels, in understanding host-microbe association patterns.
Collapse
Affiliation(s)
- Shen Jean Lim
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Louie Alexander
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Annette Summers Engel
- Department of Earth and Planetary Sciences, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - Audrey T Paterson
- Department of Earth and Planetary Sciences, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - Laurie C Anderson
- Department of Geology and Geological Engineering, South Dakota School of Mines & Technology, Rapid City, South Dakota, USA
| | - Barbara J Campbell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
28
|
Paight C, Slamovits CH, Saffo MB, Lane CE. Nephromyces Encodes a Urate Metabolism Pathway and Predicted Peroxisomes, Demonstrating That These Are Not Ancient Losses of Apicomplexans. Genome Biol Evol 2019; 11:41-53. [PMID: 30500900 PMCID: PMC6320678 DOI: 10.1093/gbe/evy251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred multiple times. The degradation of purines is thought to play a key role in the unusual relationship between Nephromyces and its host. Transcriptome data confirm previous biochemical results of a functional pathway for the utilization of uric acid as a primary nitrogen source for this unusual apicomplexan.
Collapse
Affiliation(s)
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mary Beth Saffo
- Department of Biological Sciences, University of Rhode Island
- Smithsonian National Museum of Natural History, Washington, District of Columbia
| | | |
Collapse
|
29
|
Jiménez-Cortés JG, García-Contreras R, Bucio-Torres MI, Cabrera-Bravo M, Córdoba-Aguilar A, Benelli G, Salazar-Schettino PM. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop 2018; 186:69-101. [PMID: 30003907 DOI: 10.1016/j.actatropica.2018.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Due to their high impact on public health, human blood-feeding arthropods are one of the most relevant animal groups. Bacterial symbionts have been long known to play a role in the metabolism, and reproduction of these arthropod vectors. Nowadays, we have a more complete picture of their functions, acknowledging the wide influence of bacterial symbionts on processes ranging from the immune response of the arthropod host to the possible establishment of pathogens and parasites. One or two primary symbiont species have been found to co-evolve along with their host in each taxon (being ticks an exception), leading to various kinds of symbiosis, mostly mutualistic in nature. Moreover, several secondary symbiont species are shared by all arthropod groups. With respect to gut microbiota, several bacterial symbionts genera are hosted in common, indicating that these bacterial groups are prone to invade several hematophagous arthropod species feeding on humans. The main mechanisms underlying bacterium-arthropod symbiosis are discussed, highlighting that even primary symbionts elicit an immune response from the host. Bacterial groups in the gut microbiota play a key role in immune homeostasis, and in some cases symbiont bacteria could be competing directly or indirectly with pathogens and parasites. Finally, the effects climate change, great human migrations, and the increasingly frequent interactions of wild and domestic animal species are analyzed, along with their implications on microbiota alteration and their possible impacts on public health and the control of pathogens and parasites harbored in arthropod vectors of human parasites and pathogens.
Collapse
Affiliation(s)
- J Guillermo Jiménez-Cortés
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Martha I Bucio-Torres
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Margarita Cabrera-Bravo
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Alex Córdoba-Aguilar
- Laboratorio de Ecología de la Conducta de Artrópodos, Instituto de Ecología, Universidad Nacional Autónoma de México, México
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Paz M Salazar-Schettino
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
30
|
Klassen JL. Defining microbiome function. Nat Microbiol 2018; 3:864-869. [PMID: 30046174 DOI: 10.1038/s41564-018-0189-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
Why does a microorganism associate with a host? What function does it perform? Such questions are difficult to unequivocally address and remain hotly debated. This is partially because scientists often use different philosophical definitions of 'function' ambiguously and interchangeably, as exemplified by the controversy surrounding the Encyclopedia of DNA Elements (ENCODE) project. Here, I argue that research studying host-associated microbial communities and their genomes (that is, microbiomes) faces similar pitfalls and that unclear or misapplied conceptions of function underpin many controversies in this field. In particular, experiments that support phenomenological models of function can inappropriately be used to support functional models that instead require specific measurements of evolutionary selection. Microbiome research also requires uniquely clear definitions of 'who the function is for', in contrast to most single-organism systems where this is implicit. I illustrate how obscuring either of these issues can lead to substantial confusion and misinterpretation of microbiome function, using the varied conceptions of the holobiont as a current and cogent example. Using clear functional definitions and appropriate types of evidence are essential to effectively communicate microbiome research and foster host health.
Collapse
Affiliation(s)
- Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
31
|
Van Goor J, Piatscheck F, Houston DD, Nason JD. Figs, pollinators, and parasites: A longitudinal study of the effects of nematode infection on fig wasp fitness. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1016/j.actao.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Pais IS, Valente RS, Sporniak M, Teixeira L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol 2018; 16:e2005710. [PMID: 29975680 PMCID: PMC6049943 DOI: 10.1371/journal.pbio.2005710] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/17/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
Animals live together with diverse bacteria that can impact their biology. In Drosophila melanogaster, gut-associated bacterial communities are relatively simple in composition but also have a strong impact on host development and physiology. It is generally assumed that gut bacteria in D. melanogaster are transient and their constant ingestion with food is required to maintain their presence in the gut. Here, we identify bacterial species from wild-caught D. melanogaster that stably associate with the host independently of continuous inoculation. Moreover, we show that specific Acetobacter wild isolates can proliferate in the gut. We further demonstrate that the interaction between D. melanogaster and the wild isolated Acetobacter thailandicus is mutually beneficial and that the stability of the gut association is key to this mutualism. The stable population in the gut of D. melanogaster allows continuous bacterial spreading into the environment, which is advantageous to the bacterium itself. The bacterial dissemination is in turn advantageous to the host because the next generation of flies develops in the presence of this particularly beneficial bacterium. A. thailandicus leads to a faster host development and higher fertility of emerging adults when compared to other bacteria isolated from wild-caught flies. Furthermore, A. thailandicus is sufficient and advantageous when D. melanogaster develops in axenic or freshly collected figs, respectively. This isolate of A. thailandicus colonizes several genotypes of D. melanogaster but not the closely related D. simulans, indicating that the stable association is host specific. This work establishes a new conceptual model to understand D. melanogaster-gut microbiota interactions in an ecological context; stable interactions can be mutualistic through microbial farming, a common strategy in insects. Moreover, these results develop the use of D. melanogaster as a model to study gut microbiota proliferation and colonization.
Collapse
Affiliation(s)
- Inês S. Pais
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Luis Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
33
|
Co-speciation in bedbug Wolbachia parallel the pattern in nematode hosts. Sci Rep 2018; 8:8797. [PMID: 29891919 PMCID: PMC5995804 DOI: 10.1038/s41598-018-25545-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/27/2018] [Indexed: 01/30/2023] Open
Abstract
Wolbachia bacteria, vertically transmitted intracellular endosymbionts, are associated with two major host taxa in which they show strikingly different symbiotic modes. In some taxa of filarial nematodes, where Wolbachia are strictly obligately beneficial to the host, they show complete within- and among-species prevalence as well as co-phylogeny with their hosts. In arthropods, Wolbachia usually are parasitic; if beneficial effects occurs, they can be facultative or obligate, related to host reproduction. In arthropods, the prevalence of Wolbachia varies within and among taxa, and no co-speciation events are known. However, one arthropod species, the common bedbug Cimex lectularius was recently found to be dependent on the provision of biotin and riboflavin by Wolbachia, representing a unique case of Wolbachia providing nutritional and obligate benefits to an arthropod host, perhaps even in a mutualistic manner. Using the presence of presumably functional biotin gene copies, our study demonstrates that the obligate relationship is maintained at least in 10 out of 15 species of the genera Cimex and Paracimex. The remaining five species harboured Wolbachia as well, demonstrating the first known case of 100% prevalence of Wolbachia among higher arthropod taxa. Moreover, we show the predicted co-cladogenesis between Wolbachia and their bedbug hosts, also as the first described case of Wolbachia co-speciation in arthropods.
Collapse
|
34
|
Temporal dynamics of microbiota before and after host death. ISME JOURNAL 2018; 12:2076-2085. [PMID: 29867210 PMCID: PMC6052066 DOI: 10.1038/s41396-018-0157-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/24/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
The habitats that animals, humans and plants provide for microbial communities are inevitably transient, changing drastically when these hosts die. Because microbes associated with living hosts are ensured prime access to the deceased host’s organic matter, it is feasible that opportunistic, adaptable lifestyles are widespread among host-associated microbes. Here we investigate the temporal dynamics of microbiota by starving to death a host—the planktonic Crustacean Daphnia magna—and tracking the changes in its microbial community as it approaches death, dies and decomposes. Along with obligate host-associated microbes that vanished after the host’s death and decomposers that appeared after the host’s death, we also detected microbes with opportunistic lifestyles, seemingly capable of exploiting the host even before its death. We suggest that the period around host death plays an important role for host–microbiota ecology and for the evolution of hosts and their microbes.
Collapse
|
35
|
Dearing MD, Kohl KD. Beyond Fermentation: Other Important Services Provided to Endothermic Herbivores by their Gut Microbiota. Integr Comp Biol 2018; 57:723-731. [PMID: 28662572 DOI: 10.1093/icb/icx020] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For decades, comparative biologists have recognized the importance of microbial partners in facilitating herbivory as a successful feeding strategy. Most of this success is attributed to the ability of gut microbes to digest recalcitrant dietary fiber and provides usable nutrients to their hosts. Gut microbes can also provide numerous other functions, such as vitamin synthesis, nitrogen recycling, and the detoxification of plant secondary compounds. Here, we review these microbial functions in herbivorous mammals and birds, highlighting studies that utilize recently developed metagenomic techniques. Several of these studies emphasize that microbial services are the product of interactions and exchanges within a complex microbial community, rather than the product of an individual member. Additionally, a number of these microbial functions are interdependent. For example, levels of dietary nitrogen or plant toxins can influence fiber digestibility. Further studies into the variety of microbial services provided to herbivorous hosts, and how these services might interact will broaden our understanding of host-microbe interactions.
Collapse
Affiliation(s)
- M Denise Dearing
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
36
|
Abstract
Symbiosis is a process that can generate evolutionary novelties and can extend the phenotypic niche space of organisms. Symbionts can act together with their hosts to co-construct host organs, within which symbionts are housed. Once established within hosts, symbionts can also influence various aspects of host phenotype, such as resource acquisition, protection from predation by acquisition of toxicity, as well as behaviour. Once symbiosis is established, its fidelity between generations must be ensured. Hosts evolve various mechanisms to screen unwanted symbionts and to facilitate faithful transmission of mutualistic partners between generations. Microbes are the most important symbionts that have influenced plant and animal phenotypes; multicellular organisms engage in developmental symbioses with microbes at many stages in ontogeny. The co-construction of niches may result in composite organisms that are physically nested within each other. While it has been advocated that these composite organisms need new evolutionary theories and perspectives to describe their properties and evolutionary trajectories, it appears that standard evolutionary theories are adequate to explore selection pressures on their composite or individual traits. Recent advances in our understanding of composite organisms open up many important questions regarding the stability and transmission of these units.
Collapse
Affiliation(s)
- Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560 012, India.
| |
Collapse
|
37
|
Kohl KD, Brun A, Bordenstein SR, Caviedes-Vidal E, Karasov WH. Gut microbes limit growth in house sparrow nestlings (Passer domesticus) but not through limitations in digestive capacity. Integr Zool 2018; 13:139-151. [PMID: 29168619 PMCID: PMC5873389 DOI: 10.1111/1749-4877.12289] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent research often lauds the services and beneficial effects of host‐associated microbes on animals. However, hosting these microbes may come at a cost. For example, germ‐free and antibiotic‐treated birds generally grow faster than their conventional counterparts. In the wild, juvenile body size is correlated with survival, so hosting a microbiota may incur a fitness cost. Avian altricial nestlings represent an interesting study system in which to investigate these interactions, given that they exhibit the fastest growth rates among vertebrates, and growth is limited by their digestive capacity. We investigated whether reduction and restructuring of the microbiota by antibiotic treatment would: (i) increase growth and food conversion efficiency in nestling house sparrows (Passer domesticus); (ii) alter aspects of gut anatomy or function (particularly activities of digestive carbohydrases and their regulation in response to dietary change); and (iii) whether there were correlations between relative abundances of microbial taxa, digestive function and nestling growth. Antibiotic treatment significantly increased growth and food conversion efficiency in nestlings. Antibiotics did not alter aspects of gut anatomy that we considered but depressed intestinal maltase activity. There were no significant correlations between abundances of microbial taxa and aspects of host physiology. Overall, we conclude that microbial‐induced growth limitation in developing birds is not driven by interactions with digestive capacity. Rather, decreased energetic and material costs of immune function or beneficial effects from microbes enriched under antibiotic treatment may underlie these effects. Understanding the costs and tradeoffs of hosting gut microbial communities represents an avenue of future research.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Antonio Brun
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Enrique Caviedes-Vidal
- Institute for Multidisciplinary Research in Biology of San Luis, National Scientific and Technical Research Council, San Luis, Argentina.,Department of Biochemistry and Biological Sciences, Universidad Nacional de San Luis, San Luis, Argentina
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
38
|
Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M, Daniel C, Matos R, Leulier F. Drosophila Perpetuates Nutritional Mutualism by Promoting the Fitness of Its Intestinal Symbiont Lactobacillus plantarum. Cell Metab 2018; 27:362-377.e8. [PMID: 29290388 PMCID: PMC5807057 DOI: 10.1016/j.cmet.2017.11.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 10/09/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
Facultative animal-bacteria symbioses, which are critical determinants of animal fitness, are largely assumed to be mutualistic. However, whether commensal bacteria benefit from the association has not been rigorously assessed. Using a simple and tractable gnotobiotic model- Drosophila mono-associated with one of its dominant commensals, Lactobacillus plantarum-we reveal that in addition to benefiting animal growth, this facultative symbiosis has a positive impact on commensal bacteria fitness. We find that bacteria encounter a strong cost during gut transit, yet larvae-derived maintenance factors override this cost and increase bacterial population fitness, thus perpetuating symbiosis. In addition, we demonstrate that the maintenance of the association is required for achieving maximum animal growth benefits upon chronic undernutrition. Taken together, our study establishes a prototypical case of facultative nutritional mutualism, whereby a farming mechanism perpetuates animal-bacteria symbiosis, which bolsters fitness gains for both partners upon poor nutritional conditions.
Collapse
Affiliation(s)
- Gilles Storelli
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France.
| | - Maura Strigini
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France
| | - Théodore Grenier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France
| | - Loan Bozonnet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France
| | - Martin Schwarzer
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France
| | - Catherine Daniel
- Lactic Acid Bacteria and Mucosal Immunity Team, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, CNRS UMR 8204, Université de Lille, 59019 Lille, France
| | - Renata Matos
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364 Lyon Cedex 07, France.
| |
Collapse
|
39
|
Abstract
Many aspects of an individual's biology derive from its interaction with symbiotic microbes, which further define many aspects of the ecology and evolution of the host species. The centrality of microbes in the function of individual organisms has given rise to the concept of the holobiont—that an individual's biology is best understood as a composite of the ‘host organism’ and symbionts within. This concept has been further elaborated to posit the holobiont as a unit of selection. In this review, I critically examine whether it is useful to consider holobionts as a unit of selection. I argue that microbial heredity—the direct passage of microbes from parent to offspring—is a key factor determining the degree to which the holobiont can usefully be considered a level of selection. Where direct vertical transmission (VT) is common, microbes form part of extended genomes whose dynamics can be modelled with simple population genetics, but that nevertheless have subtle quantitative distinctions from the classic mutation/selection model for nuclear genes. Without direct VT, the correlation between microbial fitness and host individual fitness erodes, and microbe fitness becomes associated with host survival only (rather than reproduction). Furthermore, turnover of microbes within a host may lessen associations between microbial fitness with host survival, and in polymicrobial communities, microbial fitness may derive largely from the ability to outcompete other microbes, to avoid host immune clearance and to minimize mortality through phage infection. These competing selection pressures make holobiont fitness a very minor consideration in determining symbiont evolution. Nevertheless, the importance of non-heritable microbes in organismal function is undoubted—and as such the evolutionary and ecological processes giving rise to variation and evolution of the microbes within and between host individuals represent a key research area in biology.
Collapse
Affiliation(s)
- Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
40
|
Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature 2017; 548:43-51. [PMID: 28770836 PMCID: PMC5749636 DOI: 10.1038/nature23292] [Citation(s) in RCA: 520] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/20/2017] [Indexed: 12/11/2022]
Abstract
The human body carries vast communities of microbes that provide many benefits. Our microbiome is complex and challenging to understand, but evolutionary theory provides a universal framework with which to analyse its biology and health impacts. Here we argue that to understand a given microbiome feature, such as colonization resistance, host nutrition or immune development, we must consider how hosts and symbionts evolve. Symbionts commonly evolve to compete within the host ecosystem, while hosts evolve to keep the ecosystem on a leash. We suggest that the health benefits of the microbiome should be understood, and studied, as an interplay between microbial competition and host control.
Collapse
Affiliation(s)
- Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Jonas Schluter
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Katharine Z Coyte
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Division of Infectious Diseases and Division of Gastroenterology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Diseases and Division of Gastroenterology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Mushegian AA, Walser JC, Sullam KE, Ebert D. The microbiota of diapause: How host-microbe associations are formed after dormancy in an aquatic crustacean. J Anim Ecol 2017; 87:400-413. [DOI: 10.1111/1365-2656.12709] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/08/2017] [Indexed: 01/28/2023]
Affiliation(s)
| | - Jean-Claude Walser
- Zoological Institute; University of Basel; Basel Switzerland
- Genetic Diversity Centre; ETH Zürich; Zürich Switzerland
| | - Karen E. Sullam
- Zoological Institute; University of Basel; Basel Switzerland
| | - Dieter Ebert
- Zoological Institute; University of Basel; Basel Switzerland
| |
Collapse
|
42
|
Carrier TJ, Reitzel AM. The Hologenome Across Environments and the Implications of a Host-Associated Microbial Repertoire. Front Microbiol 2017; 8:802. [PMID: 28553264 PMCID: PMC5425589 DOI: 10.3389/fmicb.2017.00802] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the diverse interactions between hosts and microbes has grown profoundly over the past two decades and, as a product, has revolutionized our knowledge of the life sciences. Through primarily laboratory experiments, the current framework for holobionts and their respective hologenomes aims to decipher the underpinnings and implications of symbioses between host and microbiome. However, the laboratory setting restricts the full spectrum of host-associated symbionts as compared to those found in nature; thus, limiting the potential for a holistic interpretation of the functional roles the microbiome plays in host biology. When holobionts are studied in nature, associated microbial communities vary considerably between conditions, resulting in more microbial associates as part of the "hologenome" across environments than in either environment alone. We review and synthesize empirical evidence suggesting that hosts may associate with a larger microbial network that, in part, corresponds to experiencing diverse environmental conditions. To conceptualize the interactions between host and microbiome in an ecological context, we suggest the "host-associated microbial repertoire," which is the sum of microbial species a host may associate with over the course of its life-history under all encountered environmental circumstances. Furthermore, using examples from both terrestrial and marine ecosystems, we discuss how this concept may be used as a framework to compare the ability of the holobiont to acclimate and adapt to environmental variation, and propose three "signatures" of the concept.
Collapse
Affiliation(s)
- Tyler J Carrier
- Department of Biological Sciences, University of North Charlotte at CharlotteCharlotte, NC, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Charlotte at CharlotteCharlotte, NC, USA
| |
Collapse
|
43
|
López-García P, Eme L, Moreira D. Symbiosis in eukaryotic evolution. J Theor Biol 2017; 434:20-33. [PMID: 28254477 DOI: 10.1016/j.jtbi.2017.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/19/2017] [Accepted: 02/25/2017] [Indexed: 01/27/2023]
Abstract
Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.
Collapse
Affiliation(s)
- Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France.
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada NS B3H 4R2
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
44
|
|
45
|
Müller DB, Vogel C, Bai Y, Vorholt JA. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu Rev Genet 2016; 50:211-234. [DOI: 10.1146/annurev-genet-120215-034952] [Citation(s) in RCA: 408] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel B. Müller
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Christine Vogel
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Yang Bai
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| |
Collapse
|
46
|
Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The Phyllosphere: Microbial Jungle at the Plant–Climate Interface. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032238] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Arndt Hampe
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
| | | | - Ursula Sauer
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Stéphane Compant
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Cindy E. Morris
- INRA, Unité de Recherche de Pathologie Végétale, 84143 Montfavet, France
| |
Collapse
|
47
|
Kopac SM, Klassen JL. Can They Make It on Their Own? Hosts, Microbes, and the Holobiont Niche. Front Microbiol 2016; 7:1647. [PMID: 27818648 PMCID: PMC5073103 DOI: 10.3389/fmicb.2016.01647] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 11/18/2022] Open
Abstract
Virtually all multicellular organisms host a community of symbionts composed of mutualistic, commensal, and pathogenic microbes, i.e., their microbiome. The mechanism of selection on host-microbe assemblages remains contentious, particularly regarding whether selection acts differently on hosts and their microbial symbionts. Here, we attempt to reconcile these viewpoints using a model that describes how hosts and their microbial symbionts alter each other's niche and thereby fitness. We describe how host-microbe interactions might change the shape of the host niche and/or reproductive rates within it, which are directly related to host fitness. A host may also alter the niche of a symbiotic microbe, although this depends on the extent to which that microbe is dependent on the host for reproduction. Finally, we provide a mathematical model to test whether interactions between hosts and microbes are necessary to describe the niche of either partner. Our synthesis highlights the phenotypic effects of host-microbe interactions while respecting the unique lifestyles of each partner, and thereby provides a unified framework to describe how selection might act on a host that is associated with its microbiome.
Collapse
Affiliation(s)
| | - Jonathan L. Klassen
- Department of Molecular and Cell Biology, University of ConnecticutStorrs, CT, USA
| |
Collapse
|