1
|
Johnson MG, Barrett M. Review: Exploring correctness, usefulness, and feasibility of potential physiological operational welfare indicators for farmed insects to establish research priorities. Animal 2025:101501. [PMID: 40288947 DOI: 10.1016/j.animal.2025.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
While insects are already the largest group of terrestrial food and feed livestock animals in terms of absolute number of individuals, the insect farming industry is expected to continue growing rapidly in order to meet the nutritional demands of the human population during the 21st century. Accordingly, consumers, producers, legislators, and industry-adjacent researchers have expressed interest in further research and assessment of farmed insect welfare. Operational indicators of animal welfare are those that can be used to putatively assess the welfare of animals in the absence of true indicators of affective state (e.g., valenced/emotional state) and are commonly used for farmed vertebrate livestock species; however, significant behavioral and physiological differences between vertebrates and insects means these indicators must be examined for their correctness, usefulness, and feasibility prior to use with insect livestock. The most valuable operational welfare indicators would (1) correctly correspond to the insect's putative welfare state; (2) provide useful information about what is affecting the insect's welfare; and (3) be feasible for deployment at a large scale on farms. As there are many possible indicators that could be further researched in insects, evaluating the likely correctness, feasibility, and usefulness of these indicators in insects will allow researchers to prioritize which indicators to investigate first for use on farms. Thus, in this review, we explore whether physiological or somatic indicators of farmed vertebrate welfare, including whole-body, immune, neurobiological, and respiratory/cardiac indicators, may be correct, feasible, and useful for assessing farmed insect welfare. We review insect physiological systems, as well as any existing, welfare-relevant data from farmed or closely related insects. We end by proposing a priority list for physiological, operational welfare indicators that are most likely to correctly, usefully, and feasibly assess farmed insect welfare, which may guide indicator validation research priorities for insect welfare scientists.
Collapse
Affiliation(s)
- M G Johnson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - M Barrett
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN 46202 USA.
| |
Collapse
|
2
|
Xing F, Han F, Wu Y, Lv B, Tian H, Wang W, Tian X, Xu C, Duan H, Zhang D, Wu Y. An epigenome-wide association study of waist circumference in Chinese monozygotic twins. Int J Obes (Lond) 2024; 48:1148-1156. [PMID: 38773251 DOI: 10.1038/s41366-024-01538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES Central obesity poses significant health risks because it increases susceptibility to multiple chronic diseases. Epigenetic features such as DNA methylation may be associated with specific obesity traits, which could help us understand how genetic and environmental factors interact to influence the development of obesity. This study aims to identify DNA methylation sites associated with the waist circumference (WC) in Northern Han Chinese population, and to elucidate potential causal relationships. METHODS A total of 59 pairs of WC discordant monozygotic twins (ΔWC >0) were selected from the Qingdao Twin Registry in China. Generalized estimated equation model was employed to estimate the methylation levels of CpG sites on WC. Causal relationships between methylation and WC were assessed through the examination of family confounding factors using FAmiliaL CONfounding (ICE FALCON). Additionally, the findings of the epigenome-wide analysis were corroborated in the validation stage. RESULTS We identified 26 CpG sites with differential methylation reached false discovery rate (FDR) < 0.05 and 22 differentially methylated regions (slk-corrected p < 0.05) strongly linked to WC. These findings provided annotations for 26 genes, with notable emphasis on MMP17, ITGA11, COL23A1, TFPI, A2ML1-AS1, MRGPRE, C2orf82, and NINJ2. ICE FALCON analysis indicated the DNA methylation of ITGA11 and TFPI had a causal effect on WC and vice versa (p < 0.05). Subsequent validation analysis successfully replicated 10 (p < 0.05) out of the 26 identified sites. CONCLUSIONS Our research has ascertained an association between specific epigenetic variations and WC in the Northern Han Chinese population. These DNA methylation features can offer fresh insights into the epigenetic regulation of obesity and WC as well as hints to plausible biological mechanisms.
Collapse
Affiliation(s)
- Fangjie Xing
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Fulei Han
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Yan Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Bosen Lv
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Huimin Tian
- Zhonglou District Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Suwa Y, Kunimatsu J, Kamata A, Matsumoto M, Yamada H. A Method for Evaluating Hunger and Thirst in Monkeys by Measuring Blood Ghrelin and Osmolality Levels. eNeuro 2024; 11:ENEURO.0481-23.2024. [PMID: 39013584 PMCID: PMC11361293 DOI: 10.1523/eneuro.0481-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Hunger and thirst drive animals' consumption behavior and regulate their decision-making concerning rewards. We previously assessed the thirst states of monkeys by measuring blood osmolality under controlled water access and examined how these thirst states influenced their risk-taking behavior in decisions involving fluid rewards. However, hunger assessment in monkeys remains poorly performed. Moreover, the lack of precise measures for hunger states leads to another issue regarding how hunger and thirst states interact with each other in each individual. Thus, when controlling food access to motivate performance, it remains unclear how these two physiological needs are satisfied in captive monkeys. Here, we measured blood ghrelin and osmolality levels to respectively assess hunger and thirst in four captive macaques. Using an enzyme-linked immunosorbent assay, we identified that the levels of blood ghrelin, a widely measured hunger-related peptide hormone in humans, were high after 20 h of no food access (with ad libitum water). This reflects a typical controlled food access condition. One hour after consuming a regular dry meal, the blood ghrelin levels in three out of four monkeys decreased to within their baseline range. Additionally, blood osmolality measured from the same blood sample, the standard hematological index of hydration status, increased after consuming the regular dry meal with no water access. Thus, ghrelin and osmolality may reflect the physiological states of individual monkeys regarding hunger and thirst, suggesting that these indices can be used as tools for monitoring hunger and thirst levels that mediate an animal's decision to consume rewards.
Collapse
Affiliation(s)
- Yuki Suwa
- Academic Service Office for the Medical Science Area, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Jun Kunimatsu
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Akua Kamata
- Medical Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Masayuki Matsumoto
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiroshi Yamada
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
4
|
Jaramillo JCM, Aitken CM, Lawrence AJ, Ryan PJ. Oxytocin-receptor-expressing neurons in the lateral parabrachial nucleus activate widespread brain regions predominantly involved in fluid satiation. J Chem Neuroanat 2024; 137:102403. [PMID: 38452468 DOI: 10.1016/j.jchemneu.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (OxtrPBN) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of OxtrPBN neurons in order to better characterise the fluid satiation neurocircuitry in mice. Chemogenetic activation of OxtrPBN neurons increased Fos expression (a proxy marker for neuronal activation) in known fluid-regulating brain nuclei, as well as other regions that have unclear links to fluid regulation and which are likely involved in regulating other functions such as arousal and stress relief. In addition, we analysed and compared Fos expression patterns between chemogenetically-activated fluid satiation and physiological-induced fluid satiation. Both models of fluid satiation activated similar brain regions, suggesting that the chemogenetic model of stimulating OxtrPBN neurons is a relevant model of physiological fluid satiation. A deeper understanding of this neural circuit may lead to novel molecular targets and creation of therapeutic agents to treat fluid-related disorders.
Collapse
Affiliation(s)
- Janine C M Jaramillo
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Connor M Aitken
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Boem F, Greslehner GP, Konsman JP, Chiu L. Minding the gut: extending embodied cognition and perception to the gut complex. Front Neurosci 2024; 17:1172783. [PMID: 38260022 PMCID: PMC10800657 DOI: 10.3389/fnins.2023.1172783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/30/2023] [Indexed: 01/24/2024] Open
Abstract
Scientific and philosophical accounts of cognition and perception have traditionally focused on the brain and external sense organs. The extended view of embodied cognition suggests including other parts of the body in these processes. However, one organ has often been overlooked: the gut. Frequently conceptualized as merely a tube for digesting food, there is much more to the gut than meets the eye. Having its own enteric nervous system, sometimes referred to as the "second brain," the gut is also an immune organ and has a large surface area interacting with gut microbiota. The gut has been shown to play an important role in many physiological processes, and may arguably do so as well in perception and cognition. We argue that proposals of embodied perception and cognition should take into account the role of the "gut complex," which considers the enteric nervous, endocrine, immune, and microbiota systems as well as gut tissue and mucosal structures. The gut complex is an interface between bodily tissues and the "internalized external environment" of the gut lumen, involved in many aspects of organismic activity beyond food intake. We thus extend current embodiment theories and suggest a more inclusive account of how to "mind the gut" in studying cognitive processes.
Collapse
Affiliation(s)
- Federico Boem
- Section Philosophy, University of Twente, Enschede, Netherlands
| | | | - Jan Pieter Konsman
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR, University of Bordeaux, Bordeaux, France
| | - Lynn Chiu
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Ruedenauer FA, Parreño MA, Grunwald Kadow IC, Spaethe J, Leonhardt SD. The ecology of nutrient sensation and perception in insects. Trends Ecol Evol 2023; 38:994-1004. [PMID: 37328389 DOI: 10.1016/j.tree.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/18/2023]
Abstract
Insects are equipped with neurological, physiological, and behavioral tools to locate potential food sources and assess their nutritional quality based on volatile and chemotactile cues. We summarize current knowledge on insect taste perception and the different modalities of reception and perception. We suggest that the neurophysiological mechanisms of reception and perception are closely linked to the species-specific ecology of different insects. Understanding these links consequently requires a multidisciplinary approach. We also highlight existing knowledge gaps, especially in terms of the exact ligands of receptors, and provide evidence for a perceptional hierarchy suggesting that insects have adapted their reception and perception to preferentially perceive nutrient stimuli that are important for their fitness.
Collapse
Affiliation(s)
- Fabian A Ruedenauer
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany.
| | - Maria Alejandra Parreño
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Ilona C Grunwald Kadow
- Institute of Physiology II, University of Bonn, University Clinic Bonn (UKB), Bonn, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Sara D Leonhardt
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
7
|
González Segarra AJ, Pontes G, Jourjine N, Del Toro A, Scott K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. eLife 2023; 12:RP88143. [PMID: 37732734 PMCID: PMC10513480 DOI: 10.7554/elife.88143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.
Collapse
Affiliation(s)
| | - Gina Pontes
- University of California, BerkeleyBerkeleyUnited States
| | | | | | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
8
|
Guo D, Zhang YJ, Zhang S, Li J, Guo C, Pan YF, Zhang N, Liu CX, Jia YL, Li CY, Ma JY, Nässel DR, Gao CF, Wu SF. Cholecystokinin-like peptide mediates satiety by inhibiting sugar attraction. PLoS Genet 2021; 17:e1009724. [PMID: 34398892 PMCID: PMC8366971 DOI: 10.1371/journal.pgen.1009724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022] Open
Abstract
Feeding is essential for animal survival and reproduction and is regulated by both internal states and external stimuli. However, little is known about how internal states influence the perception of external sensory cues that regulate feeding behavior. Here, we investigated the neuronal and molecular mechanisms behind nutritional state-mediated regulation of gustatory perception in control of feeding behavior in the brown planthopper and Drosophila. We found that feeding increases the expression of the cholecystokinin-like peptide, sulfakinin (SK), and the activity of a set of SK-expressing neurons. Starvation elevates the transcription of the sugar receptor Gr64f and SK negatively regulates the expression of Gr64f in both insects. Interestingly, we found that one of the two known SK receptors, CCKLR-17D3, is expressed by some of Gr64f-expressing neurons in the proboscis and proleg tarsi. Thus, we have identified SK as a neuropeptide signal in a neuronal circuitry that responds to food intake, and regulates feeding behavior by diminishing gustatory receptor gene expression and activity of sweet sensing GRNs. Our findings demonstrate one nutritional state-dependent pathway that modulates sweet perception and thereby feeding behavior, but our experiments cannot exclude further parallel pathways. Importantly, we show that the underlying mechanisms are conserved in the two distantly related insect species. Food intake is critical for animal survival and reproduction and is regulated both by internal states that signal appetite or satiety, and by external sensory stimuli. It is well known that the internal nutritional state influences the strength of the chemosensory perception of food signals. Thus, both gustatory and olfactory signals of preferred food are strengthened in hungry animals. However, the molecular mechanisms behind satiety-mediated modulation of taste are still not known. We show here that cholecystokinin-like (SK) peptide in brown planthopper and Drosophila signals satiety and inhibits sugar attraction by lowering the activity of sweet-sensing gustatory neurons and transcription of a sugar receptor gene, Gr64f. We show that SK peptide signaling reflects the nutritional state and inhibits feeding behavior. Re-feeding after starvation increases SK peptide expression and spontaneous activity of SK producing neurons. Interestingly, we found that SK peptide negatively regulates the expression of the sweet gustatory receptor and that activation of SK producing neurons inhibits the activity of sweet-sensing gustatory neurons (GRNs). Furthermore, we found that one of the two known SK peptide receptors is expressed in some sweet-sensing GRNs in the proboscis and proleg tarsi. In summary, our findings provide a mechanism that is conserved in distantly related insects and which explains how feeding state modulates sweet perception to regulate feeding behavior. Thus, we have identified a neuropeptide signal and its neuronal circuitry that respond to satiety, and that regulate feeding behavior by inhibiting gustatory receptor gene expression and activity of sweet sensing GRNs.
Collapse
Affiliation(s)
- Di Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Yi-Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Su Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Jian Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chao Guo
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yu-Feng Pan
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ning Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chen-Xi Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Ya-Long Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chen-Yu Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Jun-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
- * E-mail:
| |
Collapse
|
9
|
Wang P, Jia Y, Liu T, Jan YN, Zhang W. Visceral Mechano-sensing Neurons Control Drosophila Feeding by Using Piezo as a Sensor. Neuron 2020; 108:640-650.e4. [PMID: 32910893 DOI: 10.1016/j.neuron.2020.08.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Animal feeding is controlled by external sensory cues and internal metabolic states. Does it also depend on enteric neurons that sense mechanical cues to signal fullness of the digestive tract? Here, we identify a group of piezo-expressing neurons innervating the Drosophila crop (the fly equivalent of the stomach) that monitor crop volume to avoid food overconsumption. These neurons reside in the pars intercerebralis (PI), a neuro-secretory center in the brain involved in homeostatic control, and express insulin-like peptides with well-established roles in regulating food intake and metabolism. Piezo knockdown in these neurons of wild-type flies phenocopies the food overconsumption phenotype of piezo-null mutant flies. Conversely, expression of either fly Piezo or mammalian Piezo1 in these neurons of piezo-null mutants suppresses the overconsumption phenotype. Importantly, Piezo+ neurons at the PI are activated directly by crop distension, thus conveying a rapid satiety signal along the "brain-gut axis" to control feeding.
Collapse
Affiliation(s)
- Pingping Wang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yinjun Jia
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Gáliková M, Dircksen H, Nässel DR. The thirsty fly: Ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in Drosophila. PLoS Genet 2018; 14:e1007618. [PMID: 30138334 PMCID: PMC6124785 DOI: 10.1371/journal.pgen.1007618] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/05/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Animals need to continuously adjust their water metabolism to the internal and external conditions. Homeostasis of body fluids thus requires tight regulation of water intake and excretion, and a balance between ingestion of water and solid food. Here, we investigated how these processes are coordinated in Drosophila melanogaster. We identified the first thirst-promoting and anti-diuretic hormone of Drosophila, encoded by the gene Ion transport peptide (ITP). This endocrine regulator belongs to the CHH (crustacean hyperglycemic hormone) family of peptide hormones. Using genetic gain- and loss-of-function experiments, we show that ITP signaling acts analogous to the human vasopressin and renin-angiotensin systems; expression of ITP is elevated by dehydration of the fly, and the peptide increases thirst while repressing excretion, promoting thus conservation of water resources. ITP responds to both osmotic and desiccation stress, and dysregulation of ITP signaling compromises the fly's ability to cope with these stressors. In addition to the regulation of thirst and excretion, ITP also suppresses food intake. Altogether, our work identifies ITP as an important endocrine regulator of thirst and excretion, which integrates water homeostasis with feeding of Drosophila.
Collapse
Affiliation(s)
| | | | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Burgess CR, Livneh Y, Ramesh RN, Andermann ML. Gating of visual processing by physiological need. Curr Opin Neurobiol 2017; 49:16-23. [PMID: 29125986 DOI: 10.1016/j.conb.2017.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 11/27/2022]
Abstract
Physiological need states and associated motivational drives can bias visual processing of cues that help meet these needs. Human neuroimaging studies consistently show a hunger-dependent, selective enhancement of responses to images of food in association cortex and amygdala. More recently, cellular-resolution imaging combined with circuit mapping experiments in behaving mice have revealed underlying neuronal population dynamics and enabled tracing of pathways by which hunger circuits influence the assignment of value to visual objects in visual association cortex, insular cortex, and amygdala. These experiments begin to provide a mechanistic understanding of motivation-specific neural processing of need-relevant cues in healthy humans and in disease states such as obesity and other eating disorders.
Collapse
Affiliation(s)
- Christian R Burgess
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Yoav Livneh
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rohan N Ramesh
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|