1
|
Ma X, Chen C, Chen X, Dan S, Li J, Zhang X, She S, Hu J, Zhou YW, Kang B, Wang YJ, Chen W. ATR regulates OCT4 phosphorylation and safeguards human naïve pluripotency. Sci Rep 2025; 15:15274. [PMID: 40312477 PMCID: PMC12045964 DOI: 10.1038/s41598-025-97829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Under specific conditions, cultured human embryonic stem cells (hESCs) corresponding to primed post-implantation epiblasts can be converted back to a 'naïve pluripotency' state that resembles the pre-implantation epiblasts. The core pluripotency factor OCT4 is known to be crucial in regulating different states of pluripotency, but its potential regulatory role in human naïve pluripotency remains unexplored. In this study, we systematically mapped out phosphorylation sites in OCT4 protein that are differentially phosphorylated between two states of pluripotency, and further identified ATR as a key kinase that phosphorylated OCT4 in naïve but not primed hESCs. The kinase activity levels of ATR in naïve hESCs were higher than those in primed hESCs. Ablating cellular ATR activity significantly halted the induction of naïve hESCs from their primed counterparts, and increased early apoptotic death of naïve hESCs upon UV and CPT treatment. Thus, our work reveals the importance of ATR activity in safeguarding human naïve pluripotency, and implicates a potential association of OCT4 phosphorylation, DNA damage sensing and repairing system in regulating different states of pluripotency during early development.
Collapse
Affiliation(s)
- Xudong Ma
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Cheng Chen
- Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Xinyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Songsong Dan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Jianqiong Li
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Xiaobing Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Zhejiang Museum of Natural History, Hangzhou, 310014, Zhejiang, China
| | - Jianwen Hu
- Shanghai Bioprofile Technology Co., Ltd., Shanghai, 200241, China
| | - Yan-Wen Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
2
|
Choi H, Oh D, Kim M, Jawad A, Zheng H, Cai L, Lee J, Kim E, Lee G, Jang H, Moon C, Hyun SH. Establishment of porcine embryonic stem cells in simplified serum free media and feeder free expansion. Stem Cell Res Ther 2024; 15:245. [PMID: 39113095 PMCID: PMC11304784 DOI: 10.1186/s13287-024-03858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium. METHODS We evaluated the establishment efficiency of pESCs from in vitro blastocysts using various basal media (DMEM/F10 (1:1), DMEM/F12, and a-MEM) and factors (FGF2, IWR-1, CHIR99021, and WH-4-023). The pluripotency and self-renewal capacity of the established pESCs were analyzed under feeder or feeder-free conditions. Ultimately, we developed a simplified culture medium (FIW) composed of FGF2, IWR-1, and WH-4-023 under serum-free conditions. RESULTS The pESC-FIW lines were capable of single-cell passaging with short cell doubling times and expressed the pluripotency markers POU5F1, SOX2, and NANOG, as well as cell surface markers SSEA1, SSEA4, and TRA-1-60. pESC-FIW showed a stable proliferation rate and normal karyotype, even after 50 passages. Transcriptome analysis revealed that pESC-FIW were similar to reported pESC maintained in complex media and showed gastrulating epiblast cell characteristics. pESC-FIW were maintained for multiple passages under feeder-free conditions on fibronectin-coated plates using mTeSR™, a commercial medium used for feeder-free culture, exhibiting characteristics similar to those observed under feeder conditions. CONCLUSIONS These results indicated that inhibition of WNT and SRC was sufficient to establish pESCs capable of single-cell passaging and feeder-free expansion under serum-free conditions. The easy maintenance of pESCs facilitates their application in gene editing technology for agriculture and biomedicine, as well as lineage commitment studies.
Collapse
Affiliation(s)
- Hyerin Choi
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Haomiao Zheng
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Department of Companion Animal Industry, Semyung University, Jecheon, 27136, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins Medicine, Baltimore, ML, USA
| | - Hyewon Jang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea.
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea.
- Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea.
- Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
3
|
Liu Q, Chen C, Fan Z, Song H, Sha Y, Yu L, Wang Y, Qin W, Yi W. O-GlcNAcase regulates pluripotency states of human embryonic stem cells. Stem Cell Reports 2024; 19:993-1009. [PMID: 38942028 PMCID: PMC11252487 DOI: 10.1016/j.stemcr.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/30/2024] Open
Abstract
Understanding the regulation of human embryonic stem cells (hESCs) pluripotency is critical to advance the field of developmental biology and regenerative medicine. Despite the recent progress, molecular events regulating hESC pluripotency, especially the transition between naive and primed states, still remain unclear. Here we show that naive hESCs display lower levels of O-linked N-acetylglucosamine (O-GlcNAcylation) than primed hESCs. O-GlcNAcase (OGA), the key enzyme catalyzing the removal of O-GlcNAc from proteins, is highly expressed in naive hESCs and is important for naive pluripotency. Depletion of OGA accelerates naive-to-primed pluripotency transition. OGA is transcriptionally regulated by EP300 and acts as a transcription regulator of genes important for maintaining naive pluripotency. Moreover, we profile protein O-GlcNAcylation of the two pluripotency states by quantitative proteomics. Together, this study identifies OGA as an important factor of naive pluripotency in hESCs and suggests that O-GlcNAcylation has a broad effect on hESCs homeostasis.
Collapse
Affiliation(s)
- Qianyu Liu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Chen
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhiya Fan
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 100026, China
| | - Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yutong Sha
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liyang Yu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingjie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 100026, China.
| | - Wen Yi
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Chen C, Liu Q, Chen W, Gong Z, Kang B, Sui M, Huang L, Wang YJ. PRODH safeguards human naive pluripotency by limiting mitochondrial oxidative phosphorylation and reactive oxygen species production. EMBO Rep 2024; 25:2015-2044. [PMID: 38480845 PMCID: PMC11014864 DOI: 10.1038/s44319-024-00110-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/14/2024] Open
Abstract
Naive human embryonic stem cells (hESCs) that resemble the pre-implantation epiblasts are fueled by a combination of aerobic glycolysis and oxidative phosphorylation, but their mitochondrial regulators are poorly understood. Here we report that, proline dehydrogenase (PRODH), a mitochondria-localized proline metabolism enzyme, is dramatically upregulated in naive hESCs compared to their primed counterparts. The upregulation of PRODH is induced by a reduction in c-Myc expression that is dependent on PD0325901, a MEK inhibitor routinely present in naive hESC culture media. PRODH knockdown in naive hESCs significantly promoted mitochondrial oxidative phosphorylation (mtOXPHOS) and reactive oxygen species (ROS) production that triggered autophagy, DNA damage, and apoptosis. Remarkably, MitoQ, a mitochondria-targeted antioxidant, effectively restored the pluripotency and proliferation of PRODH-knockdown naive hESCs, indicating that PRODH maintains naive pluripotency by preventing excessive ROS production. Concomitantly, PRODH knockdown significantly slowed down the proteolytic degradation of multiple key mitochondrial electron transport chain complex proteins. Thus, we revealed a crucial role of PRODH in limiting mtOXPHOS and ROS production, and thereby safeguarding naive pluripotency of hESCs.
Collapse
Affiliation(s)
- Cheng Chen
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qianyu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Zhiyuan Gong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Meihua Sui
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Liming Huang
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China.
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
5
|
Andrews PW, Gokhale PJ. A short history of pluripotent stem cells markers. Stem Cell Reports 2024; 19:1-10. [PMID: 38157849 PMCID: PMC10828816 DOI: 10.1016/j.stemcr.2023.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The expression of one or more of a small number of molecules, typically cell surface-associated antigens, or transcription factors, is widely used for identifying pluripotent stem cells (PSCs) or for monitoring their differentiation. However, none of these marker molecules are uniquely expressed by PSCs and all are expressed by stem cells that have lost the ability to differentiate. Consequently, none are indicators of pluripotency, per se. Here we summarize the nature and characteristics of several markers that are in wide use, including the cell surface antigens, stage-specific embryonic antigen (SSEA)-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, GCTM2, and the transcription factors POUF5/OCT4, NANOG, and SOX2, highlighting issues that must be considered when interpreting data about their expression on putative PSCs.
Collapse
Affiliation(s)
- Peter W Andrews
- The School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Paul J Gokhale
- The School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
6
|
Anwised P, Moorawong R, Samruan W, Somredngan S, Srisutush J, Laowtammathron C, Aksoy I, Parnpai R, Savatier P. An expedition in the jungle of pluripotent stem cells of non-human primates. Stem Cell Reports 2023; 18:2016-2037. [PMID: 37863046 PMCID: PMC10679654 DOI: 10.1016/j.stemcr.2023.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
For nearly three decades, more than 80 embryonic stem cell lines and more than 100 induced pluripotent stem cell lines have been derived from New World monkeys, Old World monkeys, and great apes. In this comprehensive review, we examine these cell lines originating from marmoset, cynomolgus macaque, rhesus macaque, pig-tailed macaque, Japanese macaque, African green monkey, baboon, chimpanzee, bonobo, gorilla, and orangutan. We outline the methodologies implemented for their establishment, the culture protocols for their long-term maintenance, and their basic molecular characterization. Further, we spotlight any cell lines that express fluorescent reporters. Additionally, we compare these cell lines with human pluripotent stem cell lines, and we discuss cell lines reprogrammed into a pluripotent naive state, detailing the processes used to attain this. Last, we present the findings from the application of these cell lines in two emerging fields: intra- and interspecies embryonic chimeras and blastoids.
Collapse
Affiliation(s)
- Preeyanan Anwised
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ratree Moorawong
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Worawalan Samruan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jittanun Srisutush
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Irene Aksoy
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Pierre Savatier
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
7
|
Kaufmann C, Wutz A. IndiSPENsable for X Chromosome Inactivation and Gene Silencing. EPIGENOMES 2023; 7:28. [PMID: 37987303 PMCID: PMC10660550 DOI: 10.3390/epigenomes7040028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
For about 30 years, SPEN has been the subject of research in many different fields due to its variety of functions and its conservation throughout a wide spectrum of species, like worms, arthropods, and vertebrates. To date, 216 orthologues have been documented. SPEN had been studied for its role in gene regulation in the context of cell signaling, including the NOTCH or nuclear hormone receptor signaling pathways. More recently, SPEN has been identified as a major regulator of initiation of chromosome-wide gene silencing during X chromosome inactivation (XCI) in mammals, where its function remains to be fully understood. Dependent on the biological context, SPEN functions via mechanisms which include different domains. While some domains of SPEN are highly conserved in sequence and secondary structure, species-to-species differences exist that might lead to mechanistic differences. Initiation of XCI appears to be different between humans and mice, which raises additional questions about the extent of generalization of SPEN's function in XCI. In this review, we dissect the mechanism of SPEN in XCI. We discuss its subregions and domains, focusing on its role as a major regulator. We further highlight species-related research, specifically of mouse and human SPEN, with the aim to reveal and clarify potential species-to-species differences in SPEN's function.
Collapse
Affiliation(s)
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, 8093 Zurich, Switzerland;
| |
Collapse
|
8
|
Barrachina L, Arshaghi TE, O'Brien A, Ivanovska A, Barry F. Induced pluripotent stem cells in companion animals: how can we move the field forward? Front Vet Sci 2023; 10:1176772. [PMID: 37180067 PMCID: PMC10168294 DOI: 10.3389/fvets.2023.1176772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Following a one medicine approach, the development of regenerative therapies for human patients leads to innovative treatments for animals, while pre-clinical studies on animals provide knowledge to advance human medicine. Among many different biological products under investigation, stem cells are among the most prominent. Mesenchymal stromal cells (MSCs) are extensively investigated, but they present challenges such as senescence and limited differentiation ability. Embryonic stem cells (ESCs) are pluripotent cells with a virtually unlimited capacity for self-renewal and differentiation, but the use of embryos carries ethical concerns. Induced pluripotent stem cells (iPSCs) can overcome all of these limitations, as they closely resemble ESCs but are derived from adult cells by reprogramming in the laboratory using pluripotency-associated transcription factors. iPSCs hold great potential for applications in therapy, disease modeling, drug screening, and even species preservation strategies. However, iPSC technology is less developed in veterinary species compared to human. This review attempts to address the specific challenges associated with generating and applying iPSCs from companion animals. Firstly, we discuss strategies for the preparation of iPSCs in veterinary species and secondly, we address the potential for different applications of iPSCs in companion animals. Our aim is to provide an overview on the state of the art of iPSCs in companion animals, focusing on equine, canine, and feline species, as well as to identify which aspects need further optimization and, where possible, to provide guidance on future advancements. Following a "step-by-step" approach, we cover the generation of iPSCs in companion animals from the selection of somatic cells and the reprogramming strategies, to the expansion and characterization of iPSCs. Subsequently, we revise the current applications of iPSCs in companion animals, identify the main hurdles, and propose future paths to move the field forward. Transferring the knowledge gained from human iPSCs can increase our understanding in the biology of pluripotent cells in animals, but it is critical to further investigate the differences among species to develop specific approaches for animal iPSCs. This is key for significantly advancing iPSC application in veterinary medicine, which at the same time will also allow gaining pre-clinical knowledge transferable to human medicine.
Collapse
Affiliation(s)
| | | | | | | | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, University of Galway, Galway, Ireland
| |
Collapse
|
9
|
Lord A, Ficz G. Corrupted devolution: how normal cells are reborn as cancer precursors. Int J Biochem Cell Biol 2022; 149:106263. [DOI: 10.1016/j.biocel.2022.106263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022]
|
10
|
Romayor I, Herrera L, Burón M, Martin-Inaraja M, Prieto L, Etxaniz J, Inglés-Ferrándiz M, Pineda JR, Eguizabal C. A Comparative Study of Cell Culture Conditions during Conversion from Primed to Naive Human Pluripotent Stem Cells. Biomedicines 2022; 10:biomedicines10061358. [PMID: 35740381 PMCID: PMC9219795 DOI: 10.3390/biomedicines10061358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
The successful reprogramming of human somatic cells into induced pluripotent stem cells (hiPSCs) represented a turning point in the stem cell research field, owing to their ability to differentiate into any cell type with fewer ethical issues than human embryonic stem cells (hESCs). In mice, PSCs are thought to exist in a naive state, the cell culture equivalent of the immature pre-implantation embryo, whereas in humans, PSCs are in a primed state, which is a more committed pluripotent state than a naive state. Recent studies have focused on capturing a similar cell stage in human cells. Given their earlier developmental stage and therefore lack of cell-of-origin epigenetic memory, these cells would be better candidates for further re-differentiation, use in disease modeling, regenerative medicine and drug discovery. In this study, we used primed hiPSCs and hESCs to evaluate the successful establishment and maintenance of a naive cell stage using three different naive-conversion media, both in the feeder and feeder-free cells conditions. In addition, we compared the directed differentiation capacity of primed and naive cells into the three germ layers and characterized these different cell stages with commonly used pluripotent and lineage-specific markers. Our results show that, in general, naive culture NHSM medium (in both feeder and feeder-free systems) confers greater hiPSCs and hESCs viability and the highest naive pluripotency markers expression. This medium also allows better cell differentiation cells toward endoderm and mesoderm.
Collapse
Affiliation(s)
- Irene Romayor
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.R.); (L.H.); (M.B.); (M.M.-I.); (L.P.); (J.E.); (M.I.-F.)
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Lara Herrera
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.R.); (L.H.); (M.B.); (M.M.-I.); (L.P.); (J.E.); (M.I.-F.)
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain
| | - Maria Burón
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.R.); (L.H.); (M.B.); (M.M.-I.); (L.P.); (J.E.); (M.I.-F.)
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain
| | - Myriam Martin-Inaraja
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.R.); (L.H.); (M.B.); (M.M.-I.); (L.P.); (J.E.); (M.I.-F.)
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain
| | - Laura Prieto
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.R.); (L.H.); (M.B.); (M.M.-I.); (L.P.); (J.E.); (M.I.-F.)
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain
| | - Jone Etxaniz
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.R.); (L.H.); (M.B.); (M.M.-I.); (L.P.); (J.E.); (M.I.-F.)
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain
| | - Marta Inglés-Ferrándiz
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.R.); (L.H.); (M.B.); (M.M.-I.); (L.P.); (J.E.); (M.I.-F.)
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain
| | - Jose Ramon Pineda
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Achucarro Basque Center for Neuroscience, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.R.); (L.H.); (M.B.); (M.M.-I.); (L.P.); (J.E.); (M.I.-F.)
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain
- Correspondence: ; Tel.: +34-944-007-151
| |
Collapse
|
11
|
Choi HS, Lee HM, Kim MK, Ryu CJ. Role of heat shock protein 60 in primed and naïve states of human pluripotent stem cells. PLoS One 2022; 17:e0269547. [PMID: 35679330 PMCID: PMC9182300 DOI: 10.1371/journal.pone.0269547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) exist in at least two distinct states in mammals: naïve pluripotency that represents several molecular characteristics in pre-implantation epiblast and primed pluripotency that corresponds to cells poised for differentiation in post-implantation epiblast. To identify and characterize the surface molecules that are necessary for the maintenance of naïve hPSCs, we generated a panel of murine monoclonal antibodies (MAbs) specific to the naïve state of hPSCs. Flow cytometry showed that N1-A4, one of the MAbs, bound to naïve hPSCs but not to primed hPSCs. Cell surface biotinylation and immunoprecipitation analysis identified that N1-A4 recognized heat shock protein 60 (HSP60) expressed on the surface of naïve hPSCs. Quantitative polymerase chain reaction (qPCR) analysis showed that HSP60 expression was rapidly downregulated during the embryoid body (EB) differentiation of primed hPSCs. HSP60 knockdown led to a decrease in the expression of pluripotency genes in primed hPSCs. HSP60 depletion also led to a decrease in the expression of pluripotency genes and representative naïve-state-specific genes in naïve hPSCs. Taken together, the results suggest that HSP60 is downregulated during differentiation of hPSCs and is required for the maintenance of pluripotency genes in both primed and naïve hPSCs, suggesting that HSP60 is a regulator of hPSC pluripotency and differentiation.
Collapse
Affiliation(s)
- Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Min Kyu Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
- * E-mail:
| |
Collapse
|
12
|
Chen C, Zhang X, Wang Y, Chen X, Chen W, Dan S, She S, Hu W, Dai J, Hu J, Cao Q, Liu Q, Huang Y, Qin B, Kang B, Wang YJ. Translational and post-translational control of human naïve versus primed pluripotency. iScience 2022; 25:103645. [PMID: 35005567 PMCID: PMC8718978 DOI: 10.1016/j.isci.2021.103645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023] Open
Abstract
Deciphering the regulatory network for human naive and primed pluripotency is of fundamental theoretical and applicable significance. Here, by combining quantitative proteomics, phosphoproteomics, and acetylproteomics analyses, we revealed RNA processing and translation as the most differentially regulated processes between naive and primed human embryonic stem cells (hESCs). Although glycolytic primed hESCs rely predominantly on the eukaryotic initiation factor 4E (eIF4E)-mediated cap-dependent pathway for protein translation, naive hESCs with reduced mammalian target of rapamycin complex (mTORC1) activity are more tolerant to eIF4E inhibition, and their bivalent metabolism allows for translating selective mRNAs via both eIF4E-dependent and eIF4E-independent/eIF4A2-dependent pathways to form a more compact naive proteome. Globally up-regulated proteostasis and down-regulated post-translational modifications help to further refine the naive proteome that is compatible with the more rapid cycling of naive hESCs, where CDK1 plays an indispensable coordinative role. These findings may assist in better understanding the unrestricted lineage potential of naive hESCs and in further optimizing conditions for future clinical applications RNA processing and translation are most different between naive and primed hESCs Glycolytic primed hESCs mainly rely on eIF4E-dependent translation Bivalent metabolism in naive hESCs promotes eIF4E-independent translation CDK1 is required for naive pluripotency partially by activating E-cadherin signaling
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China
| | - Xiaobing Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yisha Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xinyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Wenjie Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Songsong Dan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,Zhejiang Museum of Natural History, Hangzhou, Zhejiang 310014, China
| | - Weiwei Hu
- Shanghai Bioprofile Technology Co., Ltd., Shanghai 200241, China
| | - Jie Dai
- Shanghai Bioprofile Technology Co., Ltd., Shanghai 200241, China
| | - Jianwen Hu
- Shanghai Bioprofile Technology Co., Ltd., Shanghai 200241, China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Qianyu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yinghua Huang
- Laboratory of Metabolism and Cell Fate, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Baoming Qin
- Laboratory of Metabolism and Cell Fate, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Induced pluripotency in the context of stem cell expansion bioprocess development, optimization, and manufacturing: a roadmap to the clinic. NPJ Regen Med 2021; 6:72. [PMID: 34725374 PMCID: PMC8560749 DOI: 10.1038/s41536-021-00183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
The translation of laboratory-scale bioprocess protocols and technologies to industrial scales and the application of human induced pluripotent stem cell (hiPSC) derivatives in clinical trials globally presents optimism for the future of stem-cell products to impact healthcare. However, while many promising therapeutic approaches are being tested in pre-clinical studies, hiPSC-derived products currently account for a small fraction of active clinical trials. The complexity and volatility of hiPSCs present several bioprocessing challenges, where the goal is to generate a sufficiently large, high-quality, homogeneous population for downstream differentiation-the derivatives of which must retain functional efficacy and meet regulatory safety criteria in application. It is argued herein that one of the major challenges currently faced in improving the robustness of routine stem-cell biomanufacturing is in utilizing continuous, meaningful assessments of molecular and cellular characteristics from process to application. This includes integrating process data with biological characteristic and functional assessment data to model the interplay between variables in the search for global optimization strategies. Coupling complete datasets with relevant computational methods will contribute significantly to model development and automation in achieving process robustness. This overarching approach is thus crucially important in realizing the potential of hiPSC biomanufacturing for transformation of regenerative medicine and the healthcare industry.
Collapse
|
14
|
Savatier P, Aksoy I. [Interspecies systemic chimeras]. Med Sci (Paris) 2021; 37:863-872. [PMID: 34647874 DOI: 10.1051/medsci/2021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inter-species chimeras are both fantastic and monstrous creatures from Greek or Egyptian mythology, and a long-established research tool. Recent advances in the field of pluripotent stem cells have made it possible to extend the repertoire of inter-species chimeras to "systemic" chimeras, in which the mixing of cells from both species involves all organs including the germline. These chimeric embryos and fetuses open up new research avenues and potential medical applications. We will review the latest advances in the field. We will discuss the concepts of developmental complementation and developmental equivalence. We will discuss the methodological hurdles to be unlocked, as well as the biological and ethical limits of these new technologies.
Collapse
Affiliation(s)
- Pierre Savatier
- Université Lyon 1, unité Inserm 1208, Cellules souches et cerveau (Stem Cell and Brain Research Institute, SBRI), 18 avenue Doyen Lépine, 69500 Bron, France
| | - Irène Aksoy
- Université Lyon 1, unité Inserm 1208, Cellules souches et cerveau (Stem Cell and Brain Research Institute, SBRI), 18 avenue Doyen Lépine, 69500 Bron, France
| |
Collapse
|
15
|
Mishra S, Taelman J, Popovic M, Tilleman L, Duthoo E, van der Jeught M, Deforce D, van Nieuwerburgh F, Menten B, de Sutter P, Boel A, Chuva De Sousa Lopes SM, Heindryckx B. Activin A-derived human embryonic stem cells show increased competence to differentiate into primordial germ cell-like cells. Stem Cells 2021; 39:551-563. [PMID: 33470497 PMCID: PMC8248136 DOI: 10.1002/stem.3335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Protocols for specifying human primordial germ cell-like cells (hPGCLCs) from human embryonic stem cells (hESCs) remain hindered by differences between hESC lines, their derivation methods, and maintenance culture conditions. This poses significant challenges for establishing reproducible in vitro models of human gametogenesis. Here, we investigated the influence of activin A (ActA) during derivation and maintenance on the propensity of hESCs to differentiate into PGCLCs. We show that continuous ActA supplementation during hESC derivation (from blastocyst until the formation of the post-inner cell mass intermediate [PICMI]) and supplementation (from the first passage of the PICMI onwards) is beneficial to differentiate hESCs to PGCLCs subsequently. Moreover, comparing isogenic primed and naïve states prior to differentiation, we showed that conversion of hESCs to the 4i-state improves differentiation to (TNAP [tissue nonspecific alkaline phosphatase]+/PDPN [podoplanin]+) PGCLCs. Those PGCLCs expressed several germ cell markers, including TFAP2C (transcription factor AP-2 gamma), SOX17 (SRY-box transcription factor 17), and NANOS3 (nanos C2HC-type zinc finger 3), and markers associated with germ cell migration, CXCR4 (C-X-C motif chemokine receptor 4), LAMA4 (laminin subunit alpha 4), ITGA6 (integrin subunit alpha 6), and CDH4 (cadherin 4), suggesting that the large numbers of PGCLCs obtained may be suitable to differentiate further into more mature germ cells. Finally, hESCs derived in the presence of ActA showed higher competence to differentiate to hPGCLC, in particular if transiently converted to the 4i-state. Our work provides insights into the differences in differentiation propensity of hESCs and delivers an optimized protocol to support efficient human germ cell derivation.
Collapse
Affiliation(s)
- Swati Mishra
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Jasin Taelman
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Mina Popovic
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Evi Duthoo
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Margot van der Jeught
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Filip van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical SciencesGhent UniversityGhentBelgium
| | - Björn Menten
- Department of Pediatrics and Medical Genetics, Center for Medical GeneticsGhent University HospitalGhentBelgium
| | - Petra de Sutter
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Annekatrien Boel
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| | - Susana M. Chuva De Sousa Lopes
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
- Department of Anatomy and EmbryologyLeiden University Medical CentreLeidenThe Netherlands
| | - Björn Heindryckx
- Ghent‐Fertility and Stem cell Team (G‐FAST), Department of Reproductive MedicineGhent University HospitalGhentBelgium
| |
Collapse
|
16
|
Panda A, Zylicz JJ, Pasque V. New Insights into X-Chromosome Reactivation during Reprogramming to Pluripotency. Cells 2020; 9:E2706. [PMID: 33348832 PMCID: PMC7766869 DOI: 10.3390/cells9122706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dosage compensation between the sexes results in one X chromosome being inactivated during female mammalian development. Chromosome-wide transcriptional silencing from the inactive X chromosome (Xi) in mammalian cells is erased in a process termed X-chromosome reactivation (XCR), which has emerged as a paradigm for studying the reversal of chromatin silencing. XCR is linked with germline development and induction of naive pluripotency in the epiblast, and also takes place upon reprogramming somatic cells to induced pluripotency. XCR depends on silencing of the long non-coding RNA (lncRNA) X inactive specific transcript (Xist) and is linked with the erasure of chromatin silencing. Over the past years, the advent of transcriptomics and epigenomics has provided new insights into the transcriptional and chromatin dynamics with which XCR takes place. However, multiple questions remain unanswered about how chromatin and transcription related processes enable XCR. Here, we review recent work on establishing the transcriptional and chromatin kinetics of XCR, as well as discuss a model by which transcription factors mediate XCR not only via Xist repression, but also by direct targeting of X-linked genes.
Collapse
Affiliation(s)
- Amitesh Panda
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| | - Jan J. Zylicz
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Vincent Pasque
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
17
|
An C, Feng G, Zhang J, Cao S, Wang Y, Wang N, Lu F, Zhou Q, Wang H. Overcoming Autocrine FGF Signaling-Induced Heterogeneity in Naive Human ESCs Enables Modeling of Random X Chromosome Inactivation. Cell Stem Cell 2020; 27:482-497.e4. [DOI: 10.1016/j.stem.2020.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
|
18
|
Panina Y, Karagiannis P, Kurtz A, Stacey GN, Fujibuchi W. Human Cell Atlas and cell-type authentication for regenerative medicine. Exp Mol Med 2020; 52:1443-1451. [PMID: 32929224 PMCID: PMC8080834 DOI: 10.1038/s12276-020-0421-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
In modern biology, the correct identification of cell types is required for the developmental study of tissues and organs and the production of functional cells for cell therapies and disease modeling. For decades, cell types have been defined on the basis of morphological and physiological markers and, more recently, immunological markers and molecular properties. Recent advances in single-cell RNA sequencing have opened new doors for the characterization of cells at the individual and spatiotemporal levels on the basis of their RNA profiles, vastly transforming our understanding of cell types. The objective of this review is to survey the current progress in the field of cell-type identification, starting with the Human Cell Atlas project, which aims to sequence every cell in the human body, to molecular marker databases for individual cell types and other sources that address cell-type identification for regenerative medicine based on cell data guidelines.
Collapse
Affiliation(s)
- Yulia Panina
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Peter Karagiannis
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Herts, SG88HZ, UK
- National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, 100190, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
19
|
Wojdyla K, Collier AJ, Fabian C, Nisi PS, Biggins L, Oxley D, Rugg-Gunn PJ. Cell-Surface Proteomics Identifies Differences in Signaling and Adhesion Protein Expression between Naive and Primed Human Pluripotent Stem Cells. Stem Cell Reports 2020; 14:972-988. [PMID: 32302559 PMCID: PMC7220956 DOI: 10.1016/j.stemcr.2020.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Naive and primed human pluripotent stem cells (hPSC) provide valuable models to study cellular and molecular developmental processes. The lack of detailed information about cell-surface protein expression in these two pluripotent cell types prevents an understanding of how the cells communicate and interact with their microenvironments. Here, we used plasma membrane profiling to directly measure cell-surface protein expression in naive and primed hPSC. This unbiased approach quantified over 1,700 plasma membrane proteins, including those involved in cell adhesion, signaling, and cell interactions. Notably, multiple cytokine receptors upstream of JAK-STAT signaling were more abundant in naive hPSC. In addition, functional experiments showed that FOLR1 and SUSD2 proteins are highly expressed at the cell surface in naive hPSC but are not required to establish human naive pluripotency. This study provides a comprehensive stem cell proteomic resource that uncovers differences in signaling pathway activity and has identified new markers to define human pluripotent states.
Collapse
Affiliation(s)
- Katarzyna Wojdyla
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | | | - Charlene Fabian
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Paola S Nisi
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Laura Biggins
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
20
|
Hadjantonakis AK, Siggia ED, Simunovic M. In vitro modeling of early mammalian embryogenesis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 13:134-143. [PMID: 32440574 DOI: 10.1016/j.cobme.2020.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic embryology endeavors to use stem cells to recapitulate the first steps of mammalian development that define the body axes and first stages of fate assignment. Well-engineered synthetic systems provide an unparalleled assay to disentangle and quantify the contributions of individual tissues as well as the molecular components driving embryogenesis. Experiments using a mixture of mouse embryonic and extra-embryonic stem cell lines show a surprising degree of self-organization akin to certain milestones in the development of intact mouse embryos. To further advance the field and extend the mouse results to human, it is crucial to develop a better control of the assembly process as well as to establish a deeper understanding of the developmental state and potency of cells used in experiments at each step of the process. We review recent advances in the derivation of embryonic and extraembryonic stem cells, and we highlight recent efforts in reconstructing the structural and signaling aspects of embryogenesis in three-dimensional tissue cultures.
Collapse
Affiliation(s)
- Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mijo Simunovic
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,Department of Chemical Engineering, Columbia Univerisity, 116 and Broadway, New York, NY 10025
| |
Collapse
|
21
|
Pluripotency on Lockdown after Deletion of Three Transcription Regulators. Cell Stem Cell 2020; 24:681-683. [PMID: 31051130 DOI: 10.1016/j.stem.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Exit from the naive pluripotent state occurs through a series of changes in the gene regulatory circuitry, allowing cells to become primed for lineage commitment. In this issue of Cell Stem Cell, Kalkan et al. (2019) show that three transcription regulators are required for naive mouse embryonic stem cells (ESCs) to exit the pluripotent state.
Collapse
|
22
|
Goodwin J, Laslett AL, Rugg-Gunn PJ. The application of cell surface markers to demarcate distinct human pluripotent states. Exp Cell Res 2020; 387:111749. [PMID: 31790696 PMCID: PMC6983944 DOI: 10.1016/j.yexcr.2019.111749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 01/24/2023]
Abstract
Recent advances in human pluripotent stem cell (hPSC) research have uncovered different subpopulations within stem cell cultures and have captured a range of pluripotent states that hold distinct molecular and functional properties. At the two ends of the pluripotency spectrum are naïve and primed hPSC, whereby naïve hPSC grown in stringent conditions recapitulate features of the preimplantation human embryo, and the conventionally grown primed hPSC align closer to the early postimplantation embryo. Investigating these cell types will help to define the mechanisms that control early development and should provide new insights into stem cell properties such as cell identity, differentiation and reprogramming. Monitoring cell surface marker expression provides a valuable approach to resolve complex cell populations, to directly compare between cell types, and to isolate viable cells for functional experiments. This review discusses the discovery and applications of cell surface markers to study human pluripotent cell types with a particular focus on the transitions between naïve and primed states. Highlighted areas for future study include the potential functions for the identified cell surface proteins in pluripotency, the production of new high-quality monoclonal antibodies to naïve-specific protein epitopes and the use of cell surface markers to characterise subpopulations within pluripotent states.
Collapse
Affiliation(s)
- Jacob Goodwin
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Andrew L Laslett
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Patrat C, Ouimette JF, Rougeulle C. X chromosome inactivation in human development. Development 2020; 147:147/1/dev183095. [PMID: 31900287 DOI: 10.1242/dev.183095] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
X chromosome inactivation (XCI) is a key developmental process taking place in female mammals to compensate for the imbalance in the dosage of X-chromosomal genes between sexes. It is a formidable example of concerted gene regulation and a paradigm for epigenetic processes. Although XCI has been substantially deciphered in the mouse model, how this process is initiated in humans has long remained unexplored. However, recent advances in the experimental capacity to access human embryonic-derived material and in the laws governing ethical considerations of human embryonic research have allowed us to enlighten this black box. Here, we will summarize the current knowledge of human XCI, mainly based on the analyses of embryos derived from in vitro fertilization and of pluripotent stem cells, and highlight any unanswered questions.
Collapse
Affiliation(s)
- Catherine Patrat
- Université de Paris, UMR 1016, Institut Cochin, 75014 Paris, France .,Service de Biologie de la Reproduction - CECOS, Paris Centre Hospital, APHP.centre, 75014 Paris, France
| | | | - Claire Rougeulle
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013 Paris, France
| |
Collapse
|
24
|
Liu W, Deng C, Godoy-Parejo C, Zhang Y, Chen G. Developments in cell culture systems for human pluripotent stem cells. World J Stem Cells 2019; 11:968-981. [PMID: 31768223 PMCID: PMC6851012 DOI: 10.4252/wjsc.v11.i11.968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are important resources for cell-based therapies and pharmaceutical applications. In order to realize the potential of hPSCs, it is critical to develop suitable technologies required for specific applications. Most hPSC technologies depend on cell culture, and are critically influenced by culture medium composition, extracellular matrices, handling methods, and culture platforms. This review summarizes the major technological advances in hPSC culture, and highlights the opportunities and challenges in future therapeutic applications.
Collapse
Affiliation(s)
- Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
25
|
Bar S, Benvenisty N. Epigenetic aberrations in human pluripotent stem cells. EMBO J 2019; 38:embj.2018101033. [PMID: 31088843 DOI: 10.15252/embj.2018101033] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are being increasingly utilized worldwide in investigating human development, and modeling and discovering therapies for a wide range of diseases as well as a source for cellular therapy. Yet, since the first isolation of human embryonic stem cells (hESCs) 20 years ago, followed by the successful reprogramming of human-induced pluripotent stem cells (hiPSCs) 10 years later, various studies shed light on abnormalities that sometimes accumulate in these cells in vitro Whereas genetic aberrations are well documented, epigenetic alterations are not as thoroughly discussed. In this review, we highlight frequent epigenetic aberrations found in hPSCs, including alterations in DNA methylation patterns, parental imprinting, and X chromosome inactivation. We discuss the potential origins of these abnormalities in hESCs and hiPSCs, survey the different methods for detecting them, and elaborate on their potential consequences for the different utilities of hPSCs.
Collapse
Affiliation(s)
- Shiran Bar
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
26
|
Afanassieff M, Aksoy I, Beaujean N, Bourillot PY, Savatier P. [Fifty shades of pluripotency]. Med Sci (Paris) 2018; 34:944-953. [PMID: 30526839 DOI: 10.1051/medsci/2018240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since the derivation of the first pluripotent embryonic stem cell lines in mice in the early 1980s, a plethora of lines has been obtained from various mammalian species including rodents, lagomorphs and primates. These lines are distinguished by their molecular and functional characteristics and correspond to the different pluripotency states observed in the developing embryo between the "blastocyst" and "gastrula" stages. These cell lines are positioned along a gradient, or continuum of pluripotency, the ends of which are epitomized by the naïve and primed states, respectively. Conventional human pluripotent stem cells self-renew in the primed state of pluripotency (ie, at the bottom of the gradient), a position that is undoubtedly the cause of their natural instability. Recent studies aim to generate naive human pluripotent stem cells (at the top of the gradient). The importance of this research in the perspective of medical applications will be discussed.
Collapse
Affiliation(s)
- Marielle Afanassieff
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Irène Aksoy
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Nathalie Beaujean
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Pierre-Yves Bourillot
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Pierre Savatier
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| |
Collapse
|