1
|
Anuarbekov A, Kléma J. Utilizing RNA-seq data in monotone iterative generalized linear model to elevate prior knowledge quality of the circRNA-miRNA-mRNA regulatory axis. BMC Bioinformatics 2025; 26:139. [PMID: 40426030 PMCID: PMC12117772 DOI: 10.1186/s12859-025-06161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Current experimental data on RNA interactions remain limited, particularly for non-coding RNAs, many of which have only recently been discovered and operate within complex regulatory networks. Researchers often rely on in-silico interaction detection algorithms, such as TargetScan, which are based on biochemical sequence alignment. However, these algorithms have limited performance. RNA-seq expression data can provide valuable insights into regulatory networks, especially for understudied interactions such as circRNA-miRNA-mRNA. By integrating RNA-seq data with prior interaction networks obtained experimentally or through in-silico predictions, researchers can discover novel interactions, validate existing ones, and improve interaction prediction accuracy. RESULTS This paper introduces Pi-GMIFS, an extension of the generalized monotone incremental forward stagewise (GMIFS) regression algorithm that incorporates prior knowledge. The algorithm first estimates prior response values through a prior-only regression, interpolates between these prior values and the original data, and then applies the GMIFS method. Our experimental results on circRNA-miRNA-mRNA regulatory interaction networks demonstrate that Pi-GMIFS consistently enhances precision and recall in RNA interaction prediction by leveraging implicit information from bulk RNA-seq expression data, outperforming the initial prior knowledge. CONCLUSION Pi-GMIFS is a robust algorithm for inferring acyclic interaction networks when the variable ordering is known. Its effectiveness was confirmed through extensive experimental validation. We proved that RNA-seq data of a representative size help infer previously unknown interactions available in TarBase v9 and improve the quality of circRNA disease annotation.
Collapse
Affiliation(s)
- Alikhan Anuarbekov
- Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627, Prague, Czech Republic.
| |
Collapse
|
2
|
Aathira NS, Kaur A, Kumar A, Dar GM, Nimisha, Sharma AK, Bera P, Mahajan B, Chatterjee A, Saluja SS. The genetic risk factors, molecular pathways, microRNAs, and the gut microbiome in Alzheimer's disease. Neuroscience 2025; 577:217-227. [PMID: 40374065 DOI: 10.1016/j.neuroscience.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia worldwide. It is a multifaceted condition resulting from interplay of genetic mutations (e.g., APP, PSEN1, PSEN2) that account for less than 5% of cases, several genetic risk variants such as APOE4, TREM2, CD33, CLU, SORL1, and CR1 contribute to disease susceptibility and epigenetic factors, which may mediate the influence of environmental and lifestyle factors over time. Other critical contributors such as aging, protein misfolding and aggregation (amyloid-β and tau), molecular and transcriptomic dysregulation affecting neuronal function, and modifiable lifestyle factors like diet, physical activity, and environmental exposures presents challenges in accurate diagnosis and management. Research has predominantly focused on the diverse molecular pathways in the pathogenesis of AD, with particular attention given to the amyloidogenic pathways, tau pathology, calcium signalling, endolysosomal pathways, and others, whether they are directly or indirectly involved. Apart from these known molecular pathways, miRNAs are gaining attention as important regulators, which have been implicated in moderating the expression of mRNA targets involved in various processes associated with the clearance of pathogenic β-amyloid proteins. A mounting body of research suggests the possible role of gut microbiota in AD which regulates inflammation, neurotransmitters, and the blood-brain barrier. Gut dysbiosis can trigger neuroinflammation and amyloid-beta aggregation, making microbiome composition a potential early AD biomarker. This review aims to explore briefly the diverse risk encompassing genetic polymorphisms, altered molecular pathways implicated in AD pathogenesis, miRNA regulatory mechanisms, and the potential impact of gut microbiota on AD risk.
Collapse
Affiliation(s)
- N S Aathira
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Amanpreet Kaur
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Pinki Bera
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Atri Chatterjee
- Department of Neurology, VMMC and Safdarjung Hospital, New Delhi, India.
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
3
|
Sullivan R, Becker JA, Samsing F. Integrative analysis of the microRNA and mRNA response of barramundi (Lates calcarifer) under acute cold stress and Vibrio harveyi challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 167:105385. [PMID: 40354847 DOI: 10.1016/j.dci.2025.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Barramundi (Lates calcarifer) are emerging as a key species in warm-water aquaculture worldwide; however, disease outbreaks caused by Vibrio spp. are impeding industry expansion. Climate change is expected to exacerbate this issue by intensifying extreme weather events, including unusually cold temperatures, thereby increasing the risk of disease. In this study, we investigated the combined effect of cold stress and V. harveyi infection on the early transcriptome (mRNA) and microRNA responses of juvenile barramundi to enhance our understanding of host-pathogen interactions. High levels of differential gene expression were observed in fish subjected to cold stress (22 °C) post-infection with V. harveyi, with 3231 differentially expressed genes and an extensive pro-inflammatory immune response. In contrast, most differentially expressed microRNAs were associated with fish infected with V. harveyi housed under optimal temperature conditions (30 °C). MicroRNAs play a crucial role in regulating gene expression, typically through downregulation of target mRNAs. The significant upregulation of miRNAs in barramundi kept at 30 °C, and the lack of miRNA upregulation in cold stressed fish, suggests that cold stress impaired the immune-regulatory capacity of affected fish, resulting in a hyper-inflammatory response that may account for the increased mortality observed. This study is the first dual study of the transcriptome and microRNA response of barramundi to V. harveyi infection and expands understanding of the innate immune response in barramundi and the regulatory role of microRNAs in teleost fish.
Collapse
Affiliation(s)
- Roisin Sullivan
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia; Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Joy A Becker
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Francisca Samsing
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia.
| |
Collapse
|
4
|
Eneh S, Hartikainen JM, Heikkinen S, Sironen R, Tengström M, Kosma VM, Ahuja S, Mannermaa A. High expression of miR-7974 predicts poor prognosis and is associated with autophagy in estrogen receptor-positive breast cancer. PLoS One 2025; 20:e0322179. [PMID: 40300005 PMCID: PMC12040258 DOI: 10.1371/journal.pone.0322179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
Estrogen receptor-positive (ER+) breast cancers (BC) cause death despite well-established treatments. MicroRNAs (miRNAs) have potential as biomarkers specific to cancer subtypes and tissues, therefore miRNA-based biomarkers could help improve patient survival. In this study, we investigated a relatively unknown miRNA, miR-7974. We utilized small RNA data from 204 breast tissue samples to study miR-7974 association with clinicopathological features and outcomes for BC patients. Additionally, in vitro and in ovo methods were used to identify miR-7974 role at molecular and cellular level in MCF-7 cells. Findings were validated using MDA-MB-453 cells. MiR-7974 was upregulated in many clinicopathological features of BC (P<0.05). Furthermore, the highest expression of miR-7974 was associated with poor relapse-free survival in ER+ BC patients [hazard ratio (HR)=8.70; 95% confidence interval (CI)=3.28-23.06; P=1.37x10-05] and poor BC-specific survival in patients receiving only surgical treatment (HR=8.36; 95% CI=1.01-69.06; P=0.049). Our studies revealed that miR-7974 targets autophagy gene, MAP1LC3B, identified as direct miR-7974 target (P<0.05) in MCF-7 cells. In vitro analyses indicated overexpressing miR-7974 had anti-proliferative effect in MCF7 and MDA-MB-453 cells. Overall, our results demonstrate potential prognostic role of miR-7974 in ER+ BC.
Collapse
Affiliation(s)
- Stralina Eneh
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jaana M. Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Genome Center of Eastern Finland, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Tengström
- Cancer Center, Department of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland.
| | - Saket Ahuja
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Multidisciplinary Cancer Research Community (Cancer RC), University of Eastern Finland, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
5
|
Acerbi da Silva LN, Stumpp T. Bioinformatic Analysis of Autism-Related miRNAs and Their PoTential as Biomarkers for Autism Epigenetic Inheritance. Genes (Basel) 2025; 16:418. [PMID: 40282383 PMCID: PMC12026732 DOI: 10.3390/genes16040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The dysregulation of miRNA expression in samples from autistic individuals indicates that they are involved in autism. The participation of miRNAs in paternal epigenetic inheritance has also been reported. This study used bioinformatics tools to analyze the literature and genetic databases to search for miRNAs associated with autism, aiming to explore their suitability to investigate paternal epigenetic inheritance. METHODS Autism-related miRNAs were searched in public databases using bioinformatic tools (miRNA-to-genes analysis). The genes targeted by these autism-related miRNAs, which are common to neurons, sperm, and PBMCs, were identified. Enrichment analyses were performed to identify the biological processes regulated by the candidate miRNAs. Autism-related miRNAs were also identified by an inverse analysis (genes-to-miRNA analysis), starting from autism-related genes. RESULTS In the miRNA-to-gene analysis, 416 miRNAs involved in autism were found, of which 77 were expressed in sperm, PBMCs, and neurons. From these, 18 were differentially expressed in the brain and in at least one peripheral sample (saliva or blood), suggesting that they might be suitable to be used in the investigation of autism biomarkers and inheritance. In the genes-to-miRNA analysis, 36 miRNAs were identified, from which 9 coincided with the results of direct analysis. CONCLUSIONS Although there is no consensus about miRNAs related to autism, there are candidate miRNAs that show clear potential to be explored as biomarkers. The coincidence in the expression of miRNAs in sperm, neurons, and PBMCs indicates that they are valuable biological samples to study the role of miRNAs in the paternal epigenetic inheritance of autism.
Collapse
Affiliation(s)
| | - Taiza Stumpp
- Laboratory of Developmental Biology, Department of Morphology and Genetics–Paulista Medicine School, Federal University of São Paulo (UNIFESP), Sao Paulo 04021-001, Brazil;
| |
Collapse
|
6
|
European Food Safety Authority (EFSA), Barro F, Braeuning A, Goumperis T, Lewandowska A, Moxon S, Papadopoulou N, Sánchez‐Brunete E. Risk assessment considerations for RNAi-based genetically modified plants. EFSA J 2025; 23:e9321. [PMID: 40124972 PMCID: PMC11926569 DOI: 10.2903/j.efsa.2025.9321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
The risk assessment (RA) requirements for genetically modified plants (GMPs) are defined in Regulation (EU) No 503/2013 and the EFSA guidance on the RA of food and feed from GM plants (EFSA GMO Panel, 2011). When a GMP is developed to silence transcripts by RNA interference (RNAi), some specific additional analysis needs to be provided by the applicant. This guidance describes the requirements and recommendations for the GMP applications submitted to EFSA. It covers the molecular characterisation, focusing on bioinformatic analysis and confirmation of the trait, as well as the food and feed safety and dietary exposure assessment of RNAi-based GMPs. This document replaces the GMO panel strategy for the risk assessment of RNAi off targets in plants, described in Annex II to the minutes of the 118th Plenary meeting of the Scientific Panel on GMO and takes into account the current knowledge on the mechanisms of RNAi in plants.
Collapse
|
7
|
Joshi M, Khan MM. In Silico Prediction of Maize microRNA as a Xanthine Oxidase Inhibitor: A New Approach to Treating Hyperuricemia Patients. Noncoding RNA 2025; 11:6. [PMID: 39846684 PMCID: PMC11755550 DOI: 10.3390/ncrna11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Hyperuricemia is characterized by increased uric acid (UA) in the body. The ability to block xanthine oxidase (XO) is a useful way to check how different bioactive molecules affect hyperuricemia. Previous reports showed the significant effect of corn against hyperuricemia disorder with its anti-XO activity. The identification of stable Zea mays miRNA (zma-miR) in humans has opened up a new avenue for speculation about its part in regulating novel human gene targets. AIMS The aim of this study was to investigate the prospects of zma-miRs in XO gene regulation, the possible mechanism, and the interaction analysis of the zma-miR-XO mRNA transcript. METHOD Significant features of miRNA-mRNA interaction were revealed using two popular miRNA target prediction software-intaRNA (version 3.3.1) and RNA hybrid (version 2.2.1) Results: Only 12 zma-miR-156 variants, out of the 325 zma-miR's sequences reported in the miRNA database, efficiently interact with the 3'UTR of the XO gene. Characteristics of miRNA-mRNA interaction were as follows: the positioning of zma-miR-156 variants shows that they all have the same 11-mer binding sites, guanine (G), and uracil (U) loops at the 13th and 14th positions from the 5' end, and no G: U wobble pairing. These factors are related to the inhibition of functional mRNA expression. Additionally, the zma-miR-156 variants exhibit a single-base variation (SBV), which leads to distinct yet highly effective alterations in their interaction pattern with the XO mRNA transcript and the corresponding free energy values. CONCLUSION Therefore, we propose that zma-miR-156 variants may be a promising new bioactive compound against hyperuricemia and related diseases.
Collapse
Affiliation(s)
- Manas Joshi
- Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Mohd Mabood Khan
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Quah S, Subramanian G, Tan JSL, Utami KH, Sampath P. MicroRNAs: a symphony orchestrating evolution and disease dynamics. Trends Mol Med 2025; 31:21-35. [PMID: 39112313 DOI: 10.1016/j.molmed.2024.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 01/11/2025]
Abstract
The genesis of human disease lies in our evolutionary past. Evolution has featured a general trend towards increased morphological complexity, partly conferred by expansion in gene regulatory capacity via microRNA (miRNA) innovation. Many human diseases are directly related to the evolved roles of these miRNAs, and miRNA-based therapies are emerging as an appealing strategy for precision medicine. We focus on three categories of human disease - cancer, inflammation-linked pathologies, and neurological disorders - which are highly prevalent and are associated with substantial disease burden worldwide. In each category we discuss the pathogenic roles of miRNAs in the context of their evolved functions, as well as current and potential advances in targeting these miRNAs for disease therapy.
Collapse
Affiliation(s)
- Shan Quah
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Republic of Singapore
| | - Gowtham Subramanian
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Republic of Singapore
| | - Jonathan S L Tan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Republic of Singapore
| | | | - Prabha Sampath
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Republic of Singapore; Genome Institute of Singapore, Agency for Science, Technology, and Research, 60 Biopolis Street, #02-01 Genome, Singapore 138672, Republic of Singapore; Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Republic of Singapore; Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Republic of Singapore.
| |
Collapse
|
9
|
Jusic A, Erpapazoglou Z, Dalgaard LT, Lakkisto P, de Gonzalo-Calvo D, Benczik B, Ágg B, Ferdinandy P, Fiedorowicz K, Schroen B, Lazou A, Devaux Y, on behalf of EU-CardioRNA COST Action CA17129, AtheroNET COST Action CA21153. Guidelines for mitochondrial RNA analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102262. [PMID: 39091381 PMCID: PMC11292373 DOI: 10.1016/j.omtn.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mitochondria are the energy-producing organelles of mammalian cells with critical involvement in metabolism and signaling. Studying their regulation in pathological conditions may lead to the discovery of novel drugs to treat, for instance, cardiovascular or neurological diseases, which affect high-energy-consuming cells such as cardiomyocytes, hepatocytes, or neurons. Mitochondria possess both protein-coding and noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and piwi-interacting RNAs, encoded by the mitochondria or the nuclear genome. Mitochondrial RNAs are involved in anterograde-retrograde communication between the nucleus and mitochondria and play an important role in physiological and pathological conditions. Despite accumulating evidence on the presence and biogenesis of mitochondrial RNAs, their study continues to pose significant challenges. Currently, there are no standardized protocols and guidelines to conduct deep functional characterization and expression profiling of mitochondrial RNAs. To overcome major obstacles in this emerging field, the EU-CardioRNA and AtheroNET COST Action networks summarize currently available techniques and emphasize critical points that may constitute sources of variability and explain discrepancies between published results. Standardized methods and adherence to guidelines to quantify and study mitochondrial RNAs in normal and disease states will improve research outputs, their reproducibility, and translation potential to clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Zoi Erpapazoglou
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bettina Benczik
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | | | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - on behalf of EU-CardioRNA COST Action CA17129
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - AtheroNET COST Action CA21153
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Khemka N, Morris G, Kazemzadeh L, Costard LS, Neubert V, Bauer S, Rosenow F, Venø MT, Kjems J, Henshall DC, Prehn JHM, Connolly NMC. Integrative network analysis of miRNA-mRNA expression profiles during epileptogenesis in rats reveals therapeutic targets after emergence of first spontaneous seizure. Sci Rep 2024; 14:15313. [PMID: 38961125 PMCID: PMC11222454 DOI: 10.1038/s41598-024-66117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Epileptogenesis is the process by which a normal brain becomes hyperexcitable and capable of generating spontaneous recurrent seizures. The extensive dysregulation of gene expression associated with epileptogenesis is shaped, in part, by microRNAs (miRNAs) - short, non-coding RNAs that negatively regulate protein levels. Functional miRNA-mediated regulation can, however, be difficult to elucidate due to the complexity of miRNA-mRNA interactions. Here, we integrated miRNA and mRNA expression profiles sampled over multiple time-points during and after epileptogenesis in rats, and applied bi-clustering and Bayesian modelling to construct temporal miRNA-mRNA-mRNA interaction networks. Network analysis and enrichment of network inference with sequence- and human disease-specific information identified key regulatory miRNAs with the strongest influence on the mRNA landscape, and miRNA-mRNA interactions closely associated with epileptogenesis and subsequent epilepsy. Our findings underscore the complexity of miRNA-mRNA regulation, can be used to prioritise miRNA targets in specific systems, and offer insights into key regulatory processes in epileptogenesis with therapeutic potential for further investigation.
Collapse
Affiliation(s)
- Niraj Khemka
- Centre for Systems Medicine & Dept. of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gareth Morris
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Laleh Kazemzadeh
- Centre for Systems Medicine & Dept. of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Lara S Costard
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe-University, Frankfurt, Germany
| | - Valentin Neubert
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe-University, Frankfurt, Germany
| | - Sebastian Bauer
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe-University, Frankfurt, Germany
| | - Felix Rosenow
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe-University, Frankfurt, Germany
| | - Morten T Venø
- Interdisciplinary Nanoscience Center, Dept. of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Dept. of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - David C Henshall
- Centre for Systems Medicine & Dept. of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine & Dept. of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Niamh M C Connolly
- Centre for Systems Medicine & Dept. of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
11
|
Zhang W, Zhang P, Sun W, Xu J, Liao L, Cao Y, Han Y. Improving plant miRNA-target prediction with self-supervised k-mer embedding and spectral graph convolutional neural network. PeerJ 2024; 12:e17396. [PMID: 38799058 PMCID: PMC11122044 DOI: 10.7717/peerj.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Deciphering the targets of microRNAs (miRNAs) in plants is crucial for comprehending their function and the variation in phenotype that they cause. As the highly cell-specific nature of miRNA regulation, recent computational approaches usually utilize expression data to identify the most physiologically relevant targets. Although these methods are effective, they typically require a large sample size and high-depth sequencing to detect potential miRNA-target pairs, thereby limiting their applicability in improving plant breeding. In this study, we propose a novel miRNA-target prediction framework named kmerPMTF (k-mer-based prediction framework for plant miRNA-target). Our framework effectively extracts the latent semantic embeddings of sequences by utilizing k-mer splitting and a deep self-supervised neural network. We construct multiple similarity networks based on k-mer embeddings and employ graph convolutional networks to derive deep representations of miRNAs and targets and calculate the probabilities of potential associations. We evaluated the performance of kmerPMTF on four typical plant datasets: Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, and Prunus persica. The results demonstrate its ability to achieve AUPRC values of 84.9%, 91.0%, 80.1%, and 82.1% in 5-fold cross-validation, respectively. Compared with several state-of-the-art existing methods, our framework achieves better performance on threshold-independent evaluation metrics. Overall, our study provides an efficient and simplified methodology for identifying plant miRNA-target associations, which will contribute to a deeper comprehension of miRNA regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Weihan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Ping Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jinsheng Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Horta-Lacueva QJB, Jónsson ZO, Thorholludottir DAV, Hallgrímsson B, Kapralova KH. Rapid and biased evolution of canalization during adaptive divergence revealed by dominance in gene expression variability during Arctic charr early development. Commun Biol 2023; 6:897. [PMID: 37652977 PMCID: PMC10471602 DOI: 10.1038/s42003-023-05264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Adaptive evolution may be influenced by canalization, the buffering of developmental processes from environmental and genetic perturbations, but how this occurs is poorly understood. Here, we explore how gene expression variability evolves in diverging and hybridizing populations, by focusing on the Arctic charr (Salvelinus alpinus) of Thingvallavatn, a classic case of divergence between feeding habitats. We report distinct profiles of gene expression variance for both coding RNAs and microRNAs between the offspring of two contrasting morphs (benthic/limnetic) and their hybrids reared in common conditions and sampled at two key points of cranial development. Gene expression variance in the hybrids is substantially affected by maternal effects, and many genes show biased expression variance toward the limnetic morph. This suggests that canalization, as inferred by gene expression variance, can rapidly diverge in sympatry through multiple gene pathways, which are associated with dominance patterns possibly biasing evolutionary trajectories and mitigating the effects of hybridization on adaptive evolution.
Collapse
Affiliation(s)
- Quentin Jean-Baptiste Horta-Lacueva
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland.
- Department of Biology, Lund University, Lund, Sweden.
| | | | - Dagny A V Thorholludottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- University of Veterinary Medicine Vienna, Institute of Population Genetics, Vienna, Austria
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kalina Hristova Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland.
- The Institute for Experimental Pathology at Keldur, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
14
|
Chen C, Luo L, Zheng C, Ding P, Liu H, Luo H. Self-prediction of relations in GO facilitates its quality auditing. J Biomed Inform 2023; 144:104441. [PMID: 37437682 DOI: 10.1016/j.jbi.2023.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
As applications of the gene ontology (GO) increase rapidly in the biomedical field, quality auditing of it is becoming more and more important. Existing auditing methods are mostly based on rules, observed patterns or hypotheses. In this study, we propose a machine-learning-based framework for GO to audit itself: we first predict the IS-A relations among concepts in GO, then use differences between predicted results and existing relations to uncover potential errors. Specifically, we transfer the taxonomy of GO 2020 January release into a dataset with concept pairs as items and relations between them as labels(pairs with no direct IS-A relation are labeled as ndrs). To fully obtain the representation of each pair, we integrate the embeddings for the concept name, concept definition, as well as concept node in a substring-based topological graph. We divide the dataset into 10 parts, and rotate over all the parts by choosing one part as the testing set and the remaining as the training set each time. After 10 rotations, the prediction model predicted 4,640 existing IS-A pairs as ndrs. In the GO 2022 March release, 340 of these predictions were validated, demonstrating significance with a p-value of 1.60e-46 when compared to the results of randomly selected pairs. On the other hand, the model predicted 2,840 out of 17,079 selected ndrs in GO to be IS-A's relations. After deleting those that caused redundancies and circles, 924 predicted IS-A's relations remained. Among 200 pairs randomly selected, 30 were validated as missing IS-A's by domain experts. In conclusion, this study investigates a novel way of auditing biomedical ontologies by predicting the relations in it, which was shown to be useful for discovering potential errors.
Collapse
Affiliation(s)
- Cheng Chen
- School of Computer Science, University of South China, Hengyang, Hunan, 421001, China
| | - Lingyun Luo
- School of Computer Science, University of South China, Hengyang, Hunan, 421001, China.
| | - Chunlei Zheng
- VA Boston Cooperative Studies Program, MAVERIC, VA Boston Healthcare System, Boston, MA, USA
| | - Pingjian Ding
- School of Computer Science, University of South China, Hengyang, Hunan, 421001, China.
| | - Huan Liu
- School of Computer Science, University of South China, Hengyang, Hunan, 421001, China
| | - Hanyu Luo
- School of Computer Science, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
15
|
Stott J, Wright T, Holmes J, Wilson J, Griffiths-Jones S, Foster D, Wright B. A systematic review of non-coding RNA genes with differential expression profiles associated with autism spectrum disorders. PLoS One 2023; 18:e0287131. [PMID: 37319303 PMCID: PMC10270643 DOI: 10.1371/journal.pone.0287131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
AIMS To identify differential expression of shorter non-coding RNA (ncRNA) genes associated with autism spectrum disorders (ASD). BACKGROUND ncRNA are functional molecules that derive from non-translated DNA sequence. The HUGO Gene Nomenclature Committee (HGNC) have approved ncRNA gene classes with alignment to the reference human genome. One subset is microRNA (miRNA), which are highly conserved, short RNA molecules that regulate gene expression by direct post-transcriptional repression of messenger RNA. Several miRNA genes are implicated in the development and regulation of the nervous system. Expression of miRNA genes in ASD cohorts have been examined by multiple research groups. Other shorter classes of ncRNA have been examined less. A comprehensive systematic review examining expression of shorter ncRNA gene classes in ASD is timely to inform the direction of research. METHODS We extracted data from studies examining ncRNA gene expression in ASD compared with non-ASD controls. We included studies on miRNA, piwi-interacting RNA (piRNA), small NF90 (ILF3) associated RNA (snaR), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), transfer RNA (tRNA), vault RNA (vtRNA) and Y RNA. The following electronic databases were searched: Cochrane Library, EMBASE, PubMed, Web of Science, PsycINFO, ERIC, AMED and CINAHL for papers published from January 2000 to May 2022. Studies were screened by two independent investigators with a third resolving discrepancies. Data was extracted from eligible papers. RESULTS Forty-eight eligible studies were included in our systematic review with the majority examining miRNA gene expression alone. Sixty-four miRNA genes had differential expression in ASD compared to controls as reported in two or more studies, but often in opposing directions. Four miRNA genes had differential expression in the same direction in the same tissue type in at least 3 separate studies. Increased expression was reported in miR-106b-5p, miR-155-5p and miR-146a-5p in blood, post-mortem brain, and across several tissue types, respectively. Decreased expression was reported in miR-328-3p in bloods samples. Seven studies examined differential expression from other classes of ncRNA, including piRNA, snRNA, snoRNA and Y RNA. No individual ncRNA genes were reported in more than one study. Six studies reported differentially expressed snoRNA genes in ASD. A meta-analysis was not possible because of inconsistent methodologies, disparate tissue types examined, and varying forms of data presented. CONCLUSION There is limited but promising evidence associating the expression of certain miRNA genes and ASD, although the studies are of variable methodological quality and the results are largely inconsistent. There is emerging evidence associating differential expression of snoRNA genes in ASD. It is not currently possible to say whether the reports of differential expression in ncRNA may relate to ASD aetiology, a response to shared environmental factors linked to ASD such as sleep and nutrition, other molecular functions, human diversity, or chance findings. To improve our understanding of any potential association, we recommend improved and standardised methodologies and reporting of raw data. Further high-quality research is required to shine a light on possible associations, which may yet yield important information.
Collapse
Affiliation(s)
- Jon Stott
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Clinical Genetics Service, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jannah Holmes
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, York, United Kingdom
| | - Sam Griffiths-Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Deborah Foster
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Barry Wright
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| |
Collapse
|
16
|
Yu C, Huang Z, Xu Y, Zhang B, Li Y. Deep sequencing of microRNAs reveals circadian-dependent microRNA expression in the eyestalks of the Chinese mitten crab Eriocheir sinensis. Sci Rep 2023; 13:5253. [PMID: 37002260 PMCID: PMC10066325 DOI: 10.1038/s41598-023-32277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs. In crustaceans, miRNAs might be involved in the regulation of circadian rhythms. Many physiological functions of crustaceans including immunity and hormone secretion exhibit circadian rhythms, but it remains unclear whether specific miRNAs contribute to the alteration of crustacean physiological processes under circadian rhythms. This study investigated the mechanisms of miRNA regulation of circadian rhythms in the Chinese mitten crab (Eriocheir sinensis), one of China's most important aquaculture species. We obtained eyestalks from crab specimens at four time points (6:00; 12:00; 18:00; 24:00) during a 24-h period. We identified 725 mature miRNAs, with 23 known miRNAs differentially expressed depending on the time of day. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the putative target genes for differentially expressed miRNAs were significantly enriched in the immune response and endocrine-related pathways. Numerous putative target genes are involved in the circadian-related pathways and enriched on circadian-control genes. These results suggest that the expression of miRNAs regulates some specific physiological functions in E. sinensis under circadian cycles. We also profiled various putative target genes enriched under the circadian-related pathway. This study performed miRNA expression in the eyestalks of E. sinensis during a 24-h daily cycle, providing insights into the molecular mechanism underlying crustacean circadian rhythms and suggesting miRNAs' role in studying crustacean physiology should not be overlooked.
Collapse
Affiliation(s)
- Changyue Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiwei Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingkai Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Baoli Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
17
|
Homberg N, Galvão Ferrarini M, Gaspin C, Sagot MF. MicroRNA Target Identification: Revisiting Accessibility and Seed Anchoring. Genes (Basel) 2023; 14:genes14030664. [PMID: 36980936 PMCID: PMC10048102 DOI: 10.3390/genes14030664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
By pairing to messenger RNAs (mRNAs for short), microRNAs (miRNAs) regulate gene expression in animals and plants. Accurately identifying which mRNAs interact with a given miRNA and the precise location of the interaction sites is crucial to reaching a more complete view of the regulatory network of an organism. Only a few experimental approaches, however, allow the identification of both within a single experiment. Computational predictions of miRNA–mRNA interactions thus remain generally the first step used, despite their drawback of a high rate of false-positive predictions. The major computational approaches available rely on a diversity of features, among which anchoring the miRNA seed and measuring mRNA accessibility are the key ones, with the first being universally used, while the use of the second remains controversial. Revisiting the importance of each is the aim of this paper, which uses Cross-Linking, Ligation, And Sequencing of Hybrids (CLASH) datasets to achieve this goal. Contrary to what might be expected, the results are more ambiguous regarding the use of the seed match as a feature, while accessibility appears to be a feature worth considering, indicating that, at least under some conditions, it may favour anchoring by miRNAs.
Collapse
Affiliation(s)
- Nicolas Homberg
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, 69622 Villeurbanne, France
- INRIA Lyon Centre, 69100 Villeurbanne, France
- UR0875 MIAT, INRAE, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, 69622 Villeurbanne, France
- INRIA Lyon Centre, 69100 Villeurbanne, France
| | - Christine Gaspin
- UR0875 MIAT, INRAE, Université de Toulouse, 31326 Castanet-Tolosan, France
- Correspondence: (C.G.); (M.-F.S.)
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, 69622 Villeurbanne, France
- INRIA Lyon Centre, 69100 Villeurbanne, France
- Correspondence: (C.G.); (M.-F.S.)
| |
Collapse
|
18
|
Abstract
Wheat grain development is an important biological process to determine grain yield and quality, which is controlled by the interplay of genetic, epigenetic, and environmental factors. Wheat grain development has been extensively characterized at the phenotypic and genetic levels. The advent of innovative molecular technologies allows us to characterize genes, proteins, and regulatory factors involved in wheat grain development, which have enhanced our understanding of the wheat seed development process. However, wheat is an allohexaploid with a large genome size, the molecular mechanisms underlying the wheat grain development have not been well understood as those in diploids. Understanding grain development, and how it is regulated, is of fundamental importance for improving grain yield and quality through conventional breeding or genetic engineering. Herein, we review the current discoveries on the molecular mechanisms underlying wheat grain development. Notably, only a handful of genes that control wheat grain development have, thus far, been well characterized, their interplay underlying the grain development remains elusive. The synergistic network-integrated genomics and epigenetics underlying wheat grain development and how the subgenome divergence dynamically and precisely regulates wheat grain development are unknown.
Collapse
Affiliation(s)
- Yiling Wang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Canada
| |
Collapse
|
19
|
Lin C, Zeng S, Li M. miR-424-5p combined with miR-17-5p has high diagnostic efficacy for endometriosis. Arch Gynecol Obstet 2023; 307:169-177. [PMID: 35366691 DOI: 10.1007/s00404-022-06492-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE Endometriosis (EMT) is a chronic benign disease with high prevalence. This study investigated the diagnostic value of serum miR-17-5p, miR-424-5p, and their combined expressions for EMT. METHODS Total 80 EMT patients of reproductive age who underwent laparoscopy or laparotomy and were confirmed by pathological examination were included as the study subjects, and another 80 healthy women of reproductive age receiving gynecological examination and ultrasonography with no pelvic abnormalities were selected as the control group. The whole blood samples of enrolled subjects were collected and clinical characteristics were recorded. The miR-17-5p, miR-424-5p, VEGFA, IL-4, and IL-6 levels in the serum were measured. ROC curve was used to evaluate the diagnostic efficacy of miR-17-5p and miR-424-5p expressions for EMT. Pearson correlation was performed to analyze the correlation of miR-17-5p and miR-424-5p with clinical indexes in EMT patients. RESULTS miR-17-5p and miR-424-5p were downregulated in EMT patients. For diagnosing EMT, the AUC of miR-17-5p was 0.865 and cutoff value was 0.890 (91.3% sensitivity and 85% specificity), the AUC of miR-424-5p was 0.737, and cutoff value was 0.915 (98.8% sensitivity and 61.2% specificity), and the AUC of miR-424-5p combined with miR-17-5p was 0.938 and cutoff value was 2.205 (93.8% sensitivity and 88.7% specificity), with the diagnostic efficacy higher than miR-424-5p or miR-17-5p alone. miR-17-5p and miR-424-5p expressions were negatively correlated with dysmenorrhea, infertility, pelvic pain, and rASRM stage, but not with age, BMI, menstrual disorder, and nulliparity. VEGFA, IL-4, IL-6, and CA-125 were increased in EMT patients and were inversely associated with miR-17-5p and miR-424-5p. CONCLUSION miR-424-5p combined with miR-17-5p has high diagnostic efficacy for EMT.
Collapse
Affiliation(s)
- Chunli Lin
- Department of Gynecology, Hunan Province Maternal and Child Health Care Hospital, 53 Xiangchun Road, Kaifu District, Changsha, 410008, Hunan, China.
| | - Saili Zeng
- Department of Respiratory Medicine, The Second Hospital of University of South China, 30 Jiefang Road, Shigu District, Hengyang, 421000, Hunan, China.
| | - Miaojie Li
- Department of Gynecology, People's Hospital of Yuxi City, Yuxi, 653100, Yunnan, China
| |
Collapse
|
20
|
Arif KMT, Okolicsanyi RK, Haupt LM, Griffiths LR. MicroRNA-Target Identification: A Combinatorial In Silico Approach. Methods Mol Biol 2023; 2630:215-230. [PMID: 36689185 DOI: 10.1007/978-1-0716-2982-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Contemporary computational target prediction tools with their distinctive properties and stringency have been playing a vital role in pursuing putative targets for a solitary miRNA or a subcategory of miRNAs. These tools utilize a defined set of probabilistic algorithms, machine learning techniques, and information of experimentally validated miRNA targets to provide the best selection. However, there are numerous false-positive predictions, and a method to choose an archetypal approach and put the data provided by the prediction tools into context is still lacking. Moreover, sensitivity, specificity, and overall efficiency of a single tool have not yet been achieved. Therefore, a systematic combination of selective online tools combining elementary and advanced factors of miRNA target identification might reinforce the current target prediction regime. The focus of this study was to build a comprehensive workflow by combining six available online tools to facilitate the current understanding of miRNA-target prediction.
Collapse
Affiliation(s)
- K M Taufiqul Arif
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Rachel K Okolicsanyi
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia.
| |
Collapse
|
21
|
Vincent D, Bui A, Ezernieks V, Shahinfar S, Luke T, Ram D, Rigas N, Panozzo J, Rochfort S, Daetwyler H, Hayden M. A community resource to mass explore the wheat grain proteome and its application to the late-maturity alpha-amylase (LMA) problem. Gigascience 2022; 12:giad084. [PMID: 37919977 PMCID: PMC10627334 DOI: 10.1093/gigascience/giad084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Late-maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high isoelectric point alpha-amylase following a temperature shock during mid-grain development or prolonged cold throughout grain development, both leading to starch degradation. While the physiology is well understood, the biochemical mechanisms involved in grain LMA response remain unclear. We have applied high-throughput proteomics to 4,061 wheat flours displaying a range of LMA activities. Using an array of statistical analyses to select LMA-responsive biomarkers, we have mined them using a suite of tools applicable to wheat proteins. RESULTS We observed that LMA-affected grains activated their primary metabolisms such as glycolysis and gluconeogenesis; TCA cycle, along with DNA- and RNA- binding mechanisms; and protein translation. This logically transitioned to protein folding activities driven by chaperones and protein disulfide isomerase, as well as protein assembly via dimerisation and complexing. The secondary metabolism was also mobilized with the upregulation of phytohormones and chemical and defence responses. LMA further invoked cellular structures, including ribosomes, microtubules, and chromatin. Finally, and unsurprisingly, LMA expression greatly impacted grain storage proteins, as well as starch and other carbohydrates, with the upregulation of alpha-gliadins and starch metabolism, whereas LMW glutenin, stachyose, sucrose, UDP-galactose, and UDP-glucose were downregulated. CONCLUSIONS To our knowledge, this is not only the first proteomics study tackling the wheat LMA issue but also the largest plant-based proteomics study published to date. Logistics, technicalities, requirements, and bottlenecks of such an ambitious large-scale high-throughput proteomics experiment along with the challenges associated with big data analyses are discussed.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - AnhDuyen Bui
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Vilnis Ezernieks
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Saleh Shahinfar
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Timothy Luke
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Doris Ram
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Nicholas Rigas
- Agriculture Victoria Research, Grains Innovation Park, Horsham, VIC 3400, Australia
| | - Joe Panozzo
- Agriculture Victoria Research, Grains Innovation Park, Horsham, VIC 3400, Australia
- Centre for Agricultural Innovation, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Hans Daetwyler
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
22
|
Feitosa RM, Prieto-Oliveira P, Brentani H, Machado-Lima A. MicroRNA target prediction tools for animals: Where we are at and where we are going to - A systematic review. Comput Biol Chem 2022; 100:107729. [DOI: 10.1016/j.compbiolchem.2022.107729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
|
23
|
Deciphering the Molecular Mechanism of Incurable Muscle Disease by a Novel Method for the Interpretation of miRNA Dysregulation. Noncoding RNA 2022; 8:ncrna8040048. [PMID: 35893231 PMCID: PMC9326546 DOI: 10.3390/ncrna8040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well-established that microRNA dysregulation is a hallmark of human diseases, and that aberrant expression of miRNA is not randomly associated with human pathologies but plays a causal role in the pathological process. Investigations of the molecular mechanism that links miRNA dysregulation to pathophysiology can therefore further the understanding of human diseases. The biological effect of miRNA is thought to be mediated principally by miRNA target genes. Consequently, the target genes of dysregulated miRNA serve as a proxy for the biological interpretation of miRNA dysregulation, which is performed by target gene pathway enrichment analysis. However, this method unfortunately often fails to provide testable hypotheses concerning disease mechanisms. In this paper, we describe a method for the interpretation of miRNA dysregulation, which is based on miRNA host genes rather than target genes. Using this approach, we have recently identified the perturbations of lipid metabolism, and cholesterol in particular, in Duchenne muscular dystrophy (DMD). The host gene-based interpretation of miRNA dysregulation therefore represents an attractive alternative method for the biological interpretation of miRNA dysregulation.
Collapse
|
24
|
Sun X, Zhang T, Li L, Tu K, Yu T, Wu B, Zhou L, Tian J, Liu Z. MicroRNA expression signature in the striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis. Genomics 2022; 114:110409. [PMID: 35714827 DOI: 10.1016/j.ygeno.2022.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Increasing evidences point to the potential role of microRNAs (miRNAs) in muscle growth and development in animals. However, knowledge on the identity of miRNAs and their targets in molluscs remains largely unknown. Scallops have one large adductor muscle, composed of fast (striated) and slow (smooth) muscle types, which display great differences in muscle fibers, meat quality, cell types and molecular components. In the present study, we performed a comprehensive investigation of miRNA transcriptomes in fast and slow adductor muscles of Yesso scallop Patinopecten yessoensis. As a result, 47 differentially expressed miRNAs representing ten miRNA families were identified between the striated and smooth adductor muscles. The KEGG enrichment analysis of their target genes were mainly associated with amino acid metabolism, energy metabolism and glycan biosynthesis. The target genes of miR-133 and miR-71 were validated by the dual-luciferase reporter assays and miRNA antagomir treatment in vivo. The identification and functional validation of these different miRNAs in scallops will greatly help our understanding of miRNA regulatory mechanism that achieves the unique muscle phenotypes in scallops. The present findings provide the direct evidences for muscle-specific miRNAs involved in muscle growth and differentiation in molluscs.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Tianshi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Li Li
- National Oceanographic Center, Qingdao 266104, China
| | - Kang Tu
- Putian Institute of Aquaculture Science of Fujian Province, Putian 351100, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Jiteng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China.
| |
Collapse
|
25
|
Hearn J, Little TJ. Daphnia magna egg piRNA cluster expression profiles change as mothers age. BMC Genomics 2022; 23:429. [PMID: 35672706 PMCID: PMC9175491 DOI: 10.1186/s12864-022-08660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PiRNAs prevent transposable elements wreaking havoc on the germline genome. Changes in piRNA expression over the lifetime of an individual may impact on ageing through continued suppression, or release, of transposable element expression. We identified piRNA producing clusters in the genome of Daphnia magna by a combination of bioinformatic methods, and then contrasted their expression between parthenogenetically produced eggs representing maternally-deposited germline piRNAs of young (having their 1st clutch) and old (having their 5th clutch) mothers. Results from eggs were compared to cluster expression in three generations of adults. RESULTS As for other arthropods, D. magna encodes long uni-directionally transcribed non-coding RNAs consisting of fragmented transposable elements which account for most piRNAs expressed. Egg tissues showed extensive differences between clutches from young mothers and those from old mothers, with 578 and 686 piRNA clusters upregulated, respectively. Most log fold-change differences for significant clusters were modest, however. When considering only highly expressed clusters, there was a bias towards 1st clutch eggs at 41 upregulated versus eight clusters in the eggs from older mothers. F0 generation differences between young and old mothers were fewer than eggs, as 179 clusters were up-regulated in young versus 170 old mothers. This dropped to 31 versus 22 piRNA clusters when comparing adults in the F1 generation, and no differences were detected in the F3 generation. Inter-generational losses of differential piRNA cluster were similar to that observed for D. magna micro-RNA expression. CONCLUSIONS Little overlap in differentially expressed clusters was found between adults containing mixed somatic and germline (ovary) tissues and germ-line representing eggs. A cluster encompassing a Tudor domain containing gene important in the piRNA pathway was upregulated in the eggs from old mothers. We hypothesise that regulation of this gene could form part of a feedback loop that reduces piRNA pathway activity explaining the reduced number of highly-expressed clusters in eggs from old mothers.
Collapse
Affiliation(s)
- Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tom J. Little
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Huang S, Nishiumi S, Asaduzzaman M, Pan Y, Liu G, Yoshitake K, Maeyama K, Kinoshita S, Nagai K, Watabe S, Yoshida T, Asakawa S. Exosome-derived small non-coding RNAs reveal immune response upon grafting transplantation in Pinctada fucata (Mollusca). Open Biol 2022; 12:210317. [PMID: 35506205 PMCID: PMC9065966 DOI: 10.1098/rsob.210317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exosomes, a subset of small extracellular vesicles, carry various nucleic acids, proteins, lipids, amino acids and metabolites. They function as a mode of intercellular communication and molecular transfer. Exosome cargo molecules, including small non-coding RNAs (sncRNAs), are involved in the immune response in various organisms. However, the role of exosome-derived sncRNAs in immune responses in molluscs remains unclear. Here, we aimed to reveal the sncRNAs involved in the immune response during grafting transplantation by the pearl oyster Pinctada fucata. Exosomes were successfully extracted from the P. fucata haemolymph during graft transplantation. Abundant microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) were simultaneously discovered in P. fucata exosomes by small RNA sequencing. The expression patterns of the miRNAs and piRNAs at the grafting and initial stages were not substantially different, but varied significantly between the initial and later stages. Target prediction and functional analysis indicate that these miRNAs and piRNAs are related to immune response upon grafting transplantation, whereas piRNAs may also be associated with transposon silencing by targeting with genome transposon elements. This work provides the basis for a functional understanding of exosome-derived sncRNAs and helps to gain further insight into the PIWI/piRNA pathway function outside of germline cells in molluscs.
Collapse
Affiliation(s)
- Songqian Huang
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shinya Nishiumi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Md Asaduzzaman
- Department of Marine Bioresources Science, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi 4225, Chittagong, Bangladesh
| | - Yida Pan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Guanting Liu
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical Co., Ltd., Kurose 1425, Ise, Mie 516-8581, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. Mikimoto & Co., Ltd., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0313, Japan
| | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
27
|
Li H, Li K, Zhu Q, Tang Z, Wang Z. Transcriptomic analysis of bladder tissue in a rat model of ketamine-induced bladder fibrosis. Neurourol Urodyn 2022; 41:765-776. [PMID: 35170809 DOI: 10.1002/nau.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Ketamine-induced cystitis (KIC) is a disease caused by ketamine that can cause lower urinary tract symptoms (LUTS). Its end-stage is bladder contracture, which is related to bladder fibrosis and poses a serious burden to patient lives. METHODS We established a KIC model in female Sprague Dawley rats and verified bladder fibrosis in the model by Masson trichrome staining and western blot analysis. The bladders of the rats from the ketamine and control groups were used to perform transcriptome analysis. In particular, association analysis with metabolomics was also used to determine the potential mechanisms of ketamine-induced bladder fibrosis. RESULTS A total of 685 differentially expressed messenger RNAs, 71 differentially expressed long noncoding RNAs, 23 differentially expressed microRNAs, and 68 differentially expressed circular RNAs were identified. We found that ribosome, Wnt signaling, vascular endothelial growth factor signaling, cytoskeleton organization, and cytoskeletal protein binding may be potential pathways in ketamine-induced bladder fibrosis as identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. In addition, the mitogen-activated protein kinase pathway appeared to be closely related to the development of ketamine-induced bladder fibrosis according to association analysis. CONCLUSIONS In this study, using transcriptomic and correlation analyses of metabolomics, we identified pathways that may be potential targets for the prevention and treatment of ketamine-induced bladder fibrosis.
Collapse
Affiliation(s)
- Haozhen Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Urology, The second hospital of Dalian medical university, Dalian, Liaoning, China
| | - Kaixuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Xin Z, Cai Y, Dang LT, Burke HMS, Revote J, Charitakis N, Bienroth D, Nim HT, Li YF, Ramialison M. MonaGO: a novel gene ontology enrichment analysis visualisation system. BMC Bioinformatics 2022; 23:69. [PMID: 35164667 PMCID: PMC8845231 DOI: 10.1186/s12859-022-04594-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/31/2022] [Indexed: 11/12/2022] Open
Abstract
Background Gene ontology (GO) enrichment analysis is frequently undertaken during exploration of various -omics data sets. Despite the wide array of tools available to biologists to perform this analysis, meaningful visualisation of the overrepresented GO in a manner which is easy to interpret is still lacking. Results Monash Gene Ontology (MonaGO) is a novel web-based visualisation system that provides an intuitive, interactive and responsive interface for performing GO enrichment analysis and visualising the results. MonaGO supports gene lists as well as GO terms as inputs. Visualisation results can be exported as high-resolution images or restored in new sessions, allowing reproducibility of the analysis. An extensive comparison between MonaGO and 11 state-of-the-art GO enrichment visualisation tools based on 9 features revealed that MonaGO is a unique platform that simultaneously allows interactive visualisation within one single output page, directly accessible through a web browser with customisable display options. Conclusion MonaGO combines dynamic clustering and interactive visualisation as well as customisation options to assist biologists in obtaining meaningful representation of overrepresented GO terms, producing simplified outputs in an unbiased manner. MonaGO will facilitate the interpretation of GO analysis and will assist the biologists into the representation of the results. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04594-1.
Collapse
Affiliation(s)
- Ziyin Xin
- Faculty of IT, Monash University, Clayton, VIC, Australia
| | - Yujun Cai
- Faculty of IT, Monash University, Clayton, VIC, Australia.,Southeast University, Nanjing, China
| | - Louis T Dang
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.,Systems Biology Institute Australia, Clayton, VIC, Australia
| | - Hannah M S Burke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.,Systems Biology Institute Australia, Clayton, VIC, Australia
| | - Jerico Revote
- Monash eResearch Centre, Monash University, Melbourne, VIC, Australia
| | | | - Denis Bienroth
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Hieu T Nim
- Faculty of IT, Monash University, Clayton, VIC, Australia. .,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia. .,Systems Biology Institute Australia, Clayton, VIC, Australia. .,Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Yuan-Fang Li
- Faculty of IT, Monash University, Clayton, VIC, Australia. .,Systems Biology Institute Australia, Clayton, VIC, Australia.
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia. .,Systems Biology Institute Australia, Clayton, VIC, Australia. .,Murdoch Children's Research Institute, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Abstract
MicroRNAs (miRNAs) are small noncoding elements that play essential roles in the posttranscriptional regulation of biochemical processes. miRNAs recognize and target multiple mRNAs; therefore, investigating miRNA dysregulation is an indispensable strategy to understand pathological conditions and to design innovative drugs. Targeting miRNAs in diseases improve outcomes of several therapeutic strategies thus, this present study highlights miRNA targeting methods through experimental assays and bioinformatics tools. The first part of this review focuses on experimental miRNA targeting approaches for elucidating key biochemical pathways. A growing body of evidence about the miRNA world reveals the fact that it is not possible to uncover these molecules' structural and functional characteristics related to the biological processes with a deterministic approach. Instead, a systemic point of view is needed to truly understand the facts behind the natural complexity of interactions and regulations that miRNA regulations present. This task heavily depends both on computational and experimental capabilities. Fortunately, several miRNA bioinformatics tools catering to nonexperts are available as complementary wet-lab approaches. For this purpose, this work provides recent research and information about computational tools for miRNA targeting research.
Collapse
Affiliation(s)
- Hossein Ghanbarian
- Biotechnology Department & Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehmet Taha Yıldız
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences-Turkey, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy & Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences-Turkey, Istanbul, Turkey.
| |
Collapse
|
30
|
Mueller RC, Ellström P, Howe K, Uliano-Silva M, Kuo RI, Miedzinska K, Warr A, Fedrigo O, Haase B, Mountcastle J, Chow W, Torrance J, Wood JMD, Järhult JD, Naguib MM, Olsen B, Jarvis ED, Smith J, Eöry L, Kraus RHS. A high-quality genome and comparison of short- versus long-read transcriptome of the palaearctic duck Aythya fuligula (tufted duck). Gigascience 2021; 10:giab081. [PMID: 34927191 PMCID: PMC8685854 DOI: 10.1093/gigascience/giab081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/15/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The tufted duck is a non-model organism that experiences high mortality in highly pathogenic avian influenza outbreaks. It belongs to the same bird family (Anatidae) as the mallard, one of the best-studied natural hosts of low-pathogenic avian influenza viruses. Studies in non-model bird species are crucial to disentangle the role of the host response in avian influenza virus infection in the natural reservoir. Such endeavour requires a high-quality genome assembly and transcriptome. FINDINGS This study presents the first high-quality, chromosome-level reference genome assembly of the tufted duck using the Vertebrate Genomes Project pipeline. We sequenced RNA (complementary DNA) from brain, ileum, lung, ovary, spleen, and testis using Illumina short-read and Pacific Biosciences long-read sequencing platforms, which were used for annotation. We found 34 autosomes plus Z and W sex chromosomes in the curated genome assembly, with 99.6% of the sequence assigned to chromosomes. Functional annotation revealed 14,099 protein-coding genes that generate 111,934 transcripts, which implies a mean of 7.9 isoforms per gene. We also identified 246 small RNA families. CONCLUSIONS This annotated genome contributes to continuing research into the host response in avian influenza virus infections in a natural reservoir. Our findings from a comparison between short-read and long-read reference transcriptomics contribute to a deeper understanding of these competing options. In this study, both technologies complemented each other. We expect this annotation to be a foundation for further comparative and evolutionary genomic studies, including many waterfowl relatives with differing susceptibilities to avian influenza viruses.
Collapse
Affiliation(s)
- Ralf C Mueller
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, 78315, Germany
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, SE-75185, Sweden
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Richard I Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Amanda Warr
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, 10065, NY
| | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, 10065, NY
| | | | - William Chow
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - James Torrance
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, SE-75185, Sweden
| | - Mahmoud M Naguib
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, 75237, Sweden
| | - Björn Olsen
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, SE-75185, Sweden
| | - Erich D Jarvis
- Vertebrate Genome Laboratory and HHMI, The Rockefeller University, New York, 10065, NY
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Lél Eöry
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Robert H S Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, 78315, Germany
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| |
Collapse
|
31
|
Quillet A, Anouar Y, Lecroq T, Dubessy C. Prediction methods for microRNA targets in bilaterian animals: Toward a better understanding by biologists. Comput Struct Biotechnol J 2021; 19:5811-5825. [PMID: 34765096 PMCID: PMC8567327 DOI: 10.1016/j.csbj.2021.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Because of their wide network of interactions, miRNAs have become the focus of many studies over the past decade, particularly in animal species. To streamline the number of potential wet lab experiments, the use of miRNA target prediction tools is currently the first step undertaken. However, the predictions made may vary considerably depending on the tool used, which is mostly due to the complex and still not fully understood mechanism of action of miRNAs. The discrepancies complicate the choice of the tool for miRNA target prediction. To provide a comprehensive view of this issue, we highlight in this review the main characteristics of miRNA-target interactions in bilaterian animals, describe the prediction models currently used, and provide some insights for the evaluation of predictor performance.
Collapse
Affiliation(s)
- Aurélien Quillet
- Normandie Université, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, 76000 Rouen, France
| | - Youssef Anouar
- Normandie Université, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, 76000 Rouen, France
| | - Thierry Lecroq
- Normandie Université, UNIROUEN, UNIHAVRE, INSA Rouen, Laboratoire d'Informatique du Traitement de l'Information et des Systèmes, 76000 Rouen, France
| | - Christophe Dubessy
- Normandie Université, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, 76000 Rouen, France.,Normandie Université, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| |
Collapse
|
32
|
Epigenetic Silencing of SOX15 Is Controlled by miRNAs rather than Methylation in Papillary Thyroid Cancer. DISEASE MARKERS 2021; 2021:1588220. [PMID: 34603557 PMCID: PMC8486500 DOI: 10.1155/2021/1588220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Methods In this study, qRT-PCR was used to investigate the expression levels of the SOX15 gene and of miR-182, miR-183, miR-375, and miR-96 in thyroid tumors and adjacent noncancerous tissues. We also investigated the methylation status of the SOX15 promoter by methylation-specific PCR in tumors and adjacent noncancerous tissues. Results We observed a statistically significant downregulation of SOX15 expression in tumors compared to noncancerous tissue samples. The methylation levels of tumors and matched noncancerous tissues were similar, but miR-182, miR-183, and miR-375 expression levels were elevated in tumor tissues compared to noncancerous tissue samples. Conclusions Our results indicate that SOX15 gene expression is associated with the pathogenesis of papillary thyroid carcinoma (PTC), and the epigenetic control of the SOX15 gene is regulated by miRNAs rather than by promoter methylation.
Collapse
|
33
|
Zhiyanov A, Nersisyan S, Tonevitsky A. Hairpin sequence and structure is associated with features of isomiR biogenesis. RNA Biol 2021; 18:430-438. [PMID: 34286662 DOI: 10.1080/15476286.2021.1952759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MiRNA isoforms (isomiRs) are single stranded small RNAs originating from the same pri-miRNA hairpin as a result of cleavage by Drosha and Dicer enzymes. Variations at the 5'-end of a miRNA alter the seed region of the molecule, thus affecting the targetome of the miRNA. In this manuscript, we analysed the distribution of miRNA cleavage positions across 31 different cancers using miRNA sequencing data of TCGA project. As a result, we found that the processing positions are not tissue specific and that all miRNAs could be correctly classified as ones exhibiting homogeneous or heterogeneous cleavage at one of the four cleavage sites. In 42% of cases (42 out of 100 miRNAs), we observed imprecise 5'-end Dicer cleavage, while this fraction was only 14% for Drosha (14 out of 99). To the contrary, almost all cleavage sites of 3'-ends (either Drosha or Dicer) were heterogeneous. With the use of only four nucleotides surrounding a 5'-end Dicer cleavage position we built a model which allowed us to distinguish between homogeneous and heterogeneous cleavage with the reliable quality (ROC AUC = 0.68). Finally, we showed the possible applications of the study by the analysis of two 5'-end isoforms originating from the same exogeneous shRNA hairpin. It turned out that the less expressed shRNA variant was functionally active, which led to the increased off-targeting. Thus, the obtained results could be applied to the design of shRNAs whose processing will result in a single 5'-variant.
Collapse
Affiliation(s)
- Anton Zhiyanov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | |
Collapse
|
34
|
Garcia A, Dunoyer-Geindre S, Fontana P. Do miRNAs Have a Role in Platelet Function Regulation? Hamostaseologie 2021; 41:217-224. [PMID: 34192780 DOI: 10.1055/a-1478-2105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs known to repress mRNA translation and subsequent protein production. miRNAs are predicted to modulate many targets and are involved in regulating various cellular processes. Identifying their role in cell function regulation may allow circulating miRNAs to be used as diagnostic or prognostic markers of various diseases. Increasing numbers of clinical studies have shown associations between circulating miRNA levels and platelet reactivity or the recurrence of cardiovascular events. However, these studies differed regarding population selection, sample types used, miRNA quantification procedures, and platelet function assays. Furthermore, they often lacked functional validation of the miRNA identified in such studies. The latter step is essential to identifying causal relationships and understanding if and how miRNAs regulate platelet function. This review describes recent advances in translational research dedicated to identifying miRNAs' roles in platelet function regulation.
Collapse
Affiliation(s)
- A Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - P Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
35
|
Ben Or G, Veksler-Lublinsky I. Comprehensive machine-learning-based analysis of microRNA-target interactions reveals variable transferability of interaction rules across species. BMC Bioinformatics 2021; 22:264. [PMID: 34030625 PMCID: PMC8146624 DOI: 10.1186/s12859-021-04164-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally via base-pairing with complementary sequences on messenger RNAs (mRNAs). Due to the technical challenges involved in the application of high-throughput experimental methods, datasets of direct bona fide miRNA targets exist only for a few model organisms. Machine learning (ML)-based target prediction models were successfully trained and tested on some of these datasets. There is a need to further apply the trained models to organisms in which experimental training data are unavailable. However, it is largely unknown how the features of miRNA-target interactions evolve and whether some features have remained fixed during evolution, raising questions regarding the general, cross-species applicability of currently available ML methods. RESULTS We examined the evolution of miRNA-target interaction rules and used data science and ML approaches to investigate whether these rules are transferable between species. We analyzed eight datasets of direct miRNA-target interactions in four species (human, mouse, worm, cattle). Using ML classifiers, we achieved high accuracy for intra-dataset classification and found that the most influential features of all datasets overlap significantly. To explore the relationships between datasets, we measured the divergence of their miRNA seed sequences and evaluated the performance of cross-dataset classification. We found that both measures coincide with the evolutionary distance between the compared species. CONCLUSIONS The transferability of miRNA-targeting rules between species depends on several factors, the most associated factors being the composition of seed families and evolutionary distance. Furthermore, our feature-importance results suggest that some miRNA-target features have evolved while others remained fixed during the evolution of the species. Our findings lay the foundation for the future development of target prediction tools that could be applied to "non-model" organisms for which minimal experimental data are available. AVAILABILITY AND IMPLEMENTATION The code is freely available at https://github.com/gbenor/TPVOD .
Collapse
Affiliation(s)
- Gilad Ben Or
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
36
|
Arif KT, Okolicsanyi RK, Haupt LM, Griffiths LR. A combinatorial in silico approach for microRNA-target identification: Order out of chaos. Biochimie 2021; 187:121-130. [PMID: 34019954 DOI: 10.1016/j.biochi.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/17/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Contemporary computational microRNA(miRNA)-target prediction tools have been playing a vital role in pursuing putative targets for a solitary miRNA or a group of miRNAs. These tools utilise a set of probabilistic algorithms, machine learning techniques and analyse experimentally validated miRNA targets to identify the potential miRNA-target pairs. Unfortunately, current tools generate a huge number of false-positive predictions. A standardized approach with a single tool or a combination of tools is still lacking. Moreover, sensitivity, specificity and overall efficiency of any single tool are yet to be satisfactory. Therefore, a systematic combination of selective online tools combining the factors regarding miRNA-target identification would be valuable as an miRNA-target prediction scheme. The focus of this study was to develop a theoretical framework by combining six available online tools to facilitate the current understanding of miRNA-target identification.
Collapse
Affiliation(s)
- Km Taufiqul Arif
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia.
| | - Rachel K Okolicsanyi
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia.
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia.
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia.
| |
Collapse
|
37
|
Los B, Borges JB, Oliveira VF, Freitas RC, Dagli-Hernandez C, Bortolin RH, Gonçalves RM, Faludi AA, Rodrigues AC, Bastos GM, Jannes CE, Pereira AC, Hirata RD, Hirata MH. Functional analysis of PCSK9 3'UTR variants and mRNA-miRNA interactions in patients with familial hypercholesterolemia. Epigenomics 2021; 13:779-791. [PMID: 33899508 DOI: 10.2217/epi-2020-0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: Functional analysis of PCSK9 3'UTR variants and mRNA-miRNA interactions were explored in patients with familial hypercholesterolemia (FH). Materials & methods: PCSK9 3'UTR variants were identified by exon-targeted gene sequencing. Functional effects of 3'UTR variants and mRNA-miRNA interactions were analyzed using in silico and in vitro studies in HEK293FT and HepG2 cells. Results: Twelve PCSK9 3'UTR variants were detected in 88 FH patients. c.*75C >T and c.*345C >T disrupted interactions with miR-6875, miR-4721 and miR-564. Transient transfection of the c.*345C >T decreased luciferase activity in HEK293FT cells. miR-4721 and miR-564 mimics reduced PCSK9 expression in HepG2 cells. Conclusion: PCSK9 c.*345C >T has a possible role as loss-of-function variant. miR-4721 and miR-564 downregulate PCSK9 and may be useful to improve lipid profile in FH patients.
Collapse
Affiliation(s)
- Bruna Los
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Jéssica B Borges
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.,Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Victor F Oliveira
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Renata Cc Freitas
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Raul H Bortolin
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rodrigo M Gonçalves
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - André A Faludi
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Alice C Rodrigues
- Department of Pharmacology, University of Sao Paulo Institute of Biomedical Sciences, Sao Paulo 05508-000, Brazil
| | - Gisele M Bastos
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil.,Department of Teaching and Research, Real e Benemerita Associaçao Portuguesa de Beneficiencia, Sao Paulo 01323-001, Brazil
| | - Cinthia E Jannes
- Laboratory of Genetics and Molecular Cardiology,HeartInstitute, University of Sao Paulo, Sao Paulo 05403-900 , Brazil
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology,HeartInstitute, University of Sao Paulo, Sao Paulo 05403-900 , Brazil
| | - Rosario Dc Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mario H Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
38
|
Praher D, Zimmermann B, Dnyansagar R, Miller DJ, Moya A, Modepalli V, Fridrich A, Sher D, Friis-Møller L, Sundberg P, Fôret S, Ashby R, Moran Y, Technau U. Conservation and turnover of miRNAs and their highly complementary targets in early branching animals. Proc Biol Sci 2021; 288:20203169. [PMID: 33622129 PMCID: PMC7935066 DOI: 10.1098/rspb.2020.3169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators that have been extensively studied in Bilateria, a group comprising the majority of extant animals, where more than 30 conserved miRNA families have been identified. By contrast, bilaterian miRNA targets are largely not conserved. Cnidaria is the sister group to Bilateria and thus provides a unique opportunity for comparative studies. Strikingly, like their plant counterparts, cnidarian miRNAs have been shown to predominantly have highly complementary targets leading to transcript cleavage by Argonaute proteins. Here, we assess the conservation of miRNAs and their targets by small RNA sequencing followed by miRNA target prediction in eight species of Anthozoa (sea anemones and corals), the earliest-branching cnidarian class. We uncover dozens of novel miRNAs but only a few conserved ones. Further, given their high complementarity, we were able to computationally identify miRNA targets in each species. Besides evidence for conservation of specific miRNA target sites, which are maintained between sea anemones and stony corals across 500 Myr of evolution, we also find indications for convergent evolution of target regulation by different miRNAs. Our data indicate that cnidarians have only few conserved miRNAs and corresponding targets, despite their high complementarity, suggesting a high evolutionary turnover.
Collapse
Affiliation(s)
- Daniela Praher
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Rohit Dnyansagar
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David J. Miller
- Department of Molecular and Cell Biology, Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Aurelie Moya
- Department of Molecular and Cell Biology, Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, UK
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Lene Friis-Møller
- Danish Shellfish Centre, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| | - Per Sundberg
- Department of Zoology, University of Gothenburg, Gothenburg, Sweden
| | - Sylvain Fôret
- Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia
| | - Regan Ashby
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Huang S, Yoshitake K, Asaduzzaman M, Kinoshita S, Watabe S, Asakawa S. Discovery and functional understanding of MiRNAs in molluscs: a genome-wide profiling approach. RNA Biol 2021; 18:1702-1715. [PMID: 33356816 DOI: 10.1080/15476286.2020.1867798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Small non-coding RNAs play a pivotal role in gene regulation, repression of transposable element and viral activity in various organisms. Among the various categories of these small non-coding RNAs, microRNAs (miRNAs) guide post-translational gene regulation in cellular development, proliferation, apoptosis, oncogenesis, and differentiation. Here, we performed a genome-wide computational prediction of miRNAs to improve the understanding of miRNA observation and function in molluscs. As an initial step, hundreds of conserved miRNAs were predicted in 35 species of molluscs through genome scanning. Afterwards, the miRNAs' population, isoforms, organization, and function were characterized in detail. Furthermore, the key miRNA biogenesis factors, including AGO2, DGCR8, DICER, DROSHA, TRABP2, RAN, and XPO5, were elucidated based on homologue sequence searching. We also summarized the miRNAs' function in biomineralization, immune and stress response, as well as growth and development in molluscs. Because miRNAs play a vital role in various lifeforms, this study will provide insight into miRNA biogenesis and function in molluscs, as well as other invertebrates.
Collapse
Affiliation(s)
- Songqian Huang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Md Asaduzzaman
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Hu J, Dong J, Zeng Z, Wu J, Tan X, Tang T, Yan J, Jin C. Using exosomal miRNAs extracted from porcine follicular fluid to investigate their role in oocyte development. BMC Vet Res 2020; 16:485. [PMID: 33317549 PMCID: PMC7737261 DOI: 10.1186/s12917-020-02711-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Follicular development is crucial to normal oocyte maturation, with follicular size closely related to oocyte maturation. To better understand the molecular mechanisms behind porcine oocyte maturation, we obtained exosomal miRNA from porcine follicular fluid (PFF). These miRNA samples were then sequenced and analyzed regarding their different follicular sizes, as described in the methods section. RESULTS First, these results showed that this process successfully isolated PFF exosomes. Nearly all valid reads from the PFF exosomal sequencing data were successfully mapped to the porcine genome database. Second, we used hierarchical clustering methods to determine that significantly expressed miRNAs were clustered into A, B, C, and D groups in our heatmap according to different follicle sizes. These results allowed for the targeting of potential mRNAs genes related to porcine oocyte development. Third, we chose ten, significantly expressed miRNAs and predicted their target genes for further GO analysis. These results showed that the expression levels of neurotransmitter secretion genes were greatly changed, as were many target genes involved in the regulation of FSH secretion. Notably, these are genes that are very closely related to oocyte maturation in growing follicles. We then used pathway analysis for these targeted genes based on the originally selected ten miRNAs. Results indicated that the pathways were mainly related to the biosynthesis of TGF-beta and its signaling pathway, which are very closely related to reproductive system functions. CONCLUSIONS Finally, these exosomal miRNAs obtained from PFF may provide a valuable addition to our understanding of the mechanism of porcine oocyte maturation. It is also likely that these exosomal miRNAs could function as molecular biomarkers to choose high-quality oocytes and allow for in vitro porcine embryo production.
Collapse
Affiliation(s)
- Junhe Hu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China.
| | - Jinyi Dong
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Zhi Zeng
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Juan Wu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Xiansheng Tan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Tao Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Jiao Yan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| | - Chenzhong Jin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Road Dingxing 7#, Loudi City, 417000, HuNan Province, China
| |
Collapse
|
41
|
Fridrich A, Modepalli V, Lewandowska M, Aharoni R, Moran Y. Unravelling the developmental and functional significance of an ancient Argonaute duplication. Nat Commun 2020; 11:6187. [PMID: 33273471 PMCID: PMC7713132 DOI: 10.1038/s41467-020-20003-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) base-pair to messenger RNA targets and guide Argonaute proteins to mediate their silencing. This target regulation is considered crucial for animal physiology and development. However, this notion is based exclusively on studies in bilaterians, which comprise almost all lab model animals. To fill this phylogenetic gap, we characterize the functions of two Argonaute paralogs in the sea anemone Nematostella vectensis of the phylum Cnidaria, which is separated from bilaterians by ~600 million years. Using genetic manipulations, Argonaute-immunoprecipitations and high-throughput sequencing, we provide experimental evidence for the developmental importance of miRNAs in a non-bilaterian animal. Additionally, we uncover unexpected differential distribution of distinct miRNAs between the two Argonautes and the ability of one of them to load additional types of small RNAs. This enables us to postulate a novel model for evolution of miRNA precursors in sea anemones and their relatives, revealing alternative trajectories for metazoan miRNA evolution.
Collapse
Affiliation(s)
- Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, UK
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
42
|
Kelley JL, Desvignes T, McGowan KL, Perez M, Rodriguez LA, Brown AP, Culumber Z, Tobler M. microRNA expression variation as a potential molecular mechanism contributing to adaptation to hydrogen sulphide. J Evol Biol 2020; 34:977-988. [PMID: 33124163 DOI: 10.1111/jeb.13727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022]
Abstract
microRNAs (miRNAs) are post-transcriptional regulators of gene expression and can play an important role in modulating organismal development and physiology in response to environmental stress. However, the role of miRNAs in mediating adaptation to diverse environments in natural study systems remains largely unexplored. Here, we characterized miRNAs and their expression in Poecilia mexicana, a species of small fish that inhabits both normal streams and extreme environments in the form of springs rich in toxic hydrogen sulphide (H2 S). We found that P. mexicana has a similar number of miRNA genes as other teleosts. In addition, we identified a large population of mature miRNAs that were differentially expressed between locally adapted populations in contrasting habitats, indicating that miRNAs may contribute to P. mexicana adaptation to sulphidic environments. In silico identification of differentially expressed miRNA-mRNA pairs revealed, in the sulphidic environment, the downregulation of miRNAs predicted to target mRNAs involved in sulphide detoxification and cellular homeostasis, which are pathways essential for life in H2 S-rich springs. In addition, we found that predicted targets of upregulated miRNAs act in the mitochondria (16.6% of predicted annotated targets), which is the main site of H2 S toxicity and detoxification, possibly modulating mitochondrial function. Together, the differential regulation of miRNAs between these natural populations suggests that miRNAs may be involved in H2 S adaptation by promoting functions needed for survival and reducing functions affected by H2 S. This study lays the groundwork for further research to directly demonstrate the role of miRNAs in adaptation to H2 S. Overall, this study provides a critical stepping-stone towards a comprehensive understanding of the regulatory mechanisms underlying the adaptive variation in gene expression in a natural system.
Collapse
Affiliation(s)
- Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Kerry L McGowan
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Marcos Perez
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, México
| | - Anthony P Brown
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Zach Culumber
- Biological Sciences Department, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
43
|
Abstract
A diversity of gene regulatory mechanisms drives the changes in gene expression required for animal development. Here, we discuss the developmental roles of a class of gene regulatory factors composed of a core protein subunit of the Argonaute family and a 21-26-nucleotide RNA cofactor. These represent ancient regulatory complexes, originally evolved to repress genomic parasites such as transposons, viruses and retroviruses. However, over the course of evolution, small RNA-guided pathways have expanded and diversified, and they play multiple roles across all eukaryotes. Pertinent to this review, Argonaute and small RNA-mediated regulation has acquired numerous functions that affect all aspects of animal life. The regulatory function is provided by the Argonaute protein and its interactors, while the small RNA provides target specificity, guiding the Argonaute to a complementary RNA. C. elegans has 19 different, functional Argonautes, defining distinct yet interconnected pathways. Each Argonaute binds a relatively well-defined class of small RNA with distinct molecular properties. A broad classification of animal small RNA pathways distinguishes between two groups: (i) the microRNA pathway is involved in repressing relatively specific endogenous genes and (ii) the other small RNA pathways, which effectively act as a genomic immune system to primarily repress expression of foreign or "non-self" RNA while maintaining correct endogenous gene expression. microRNAs play prominent direct roles in all developmental stages, adult physiology and lifespan. The other small RNA pathways act primarily in the germline, but their impact extends far beyond, into embryogenesis and adult physiology, and even to subsequent generations. Here, we review the mechanisms and developmental functions of the diverse small RNA pathways of C. elegans.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
44
|
Yang B, Schwartz M, McJunkin K. In vivo CRISPR screening for phenotypic targets of the mir-35-42 family in C. elegans. Genes Dev 2020; 34:1227-1238. [PMID: 32820039 PMCID: PMC7462058 DOI: 10.1101/gad.339333.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
In this study, Yang et al. devised a novel strategy to test the phenotypic impact of individual microRNA–target interactions by disrupting each predicted miRNA-binding site by CRISPR–Cas9 genome editing in C. elegans. They developed a multiplexed negative selection screening approach, in which edited loci are deep sequenced, and candidate sites are prioritized based on apparent selection pressure against mutations that disrupt miRNA binding. Identifying miRNA target genes is difficult, and delineating which targets are the most biologically important is even more difficult. We devised a novel strategy to test the phenotypic impact of individual microRNA–target interactions by disrupting each predicted miRNA-binding site by CRISPR–Cas9 genome editing in C. elegans. We developed a multiplexed negative selection screening approach in which edited loci are deep sequenced, and candidate sites are prioritized based on apparent selection pressure against mutations that disrupt miRNA binding. Importantly, our screen was conducted in vivo on mutant animals, allowing us to interrogate organism-level phenotypes. We used this approach to screen for phenotypic targets of the essential mir-35-42 family. By generating 1130 novel 3′UTR alleles across all predicted targets, we identified egl-1 as a phenotypic target whose derepression partially phenocopies the mir-35-42 mutant phenotype by inducing embryonic lethality and low fecundity. These phenotypes can be rescued by compensatory CRISPR mutations that retarget mir-35 to the mutant egl-1 3′UTR. This study demonstrates that the application of in vivo whole organismal CRISPR screening has great potential to accelerate the discovery of phenotypic negative regulatory elements in the noncoding genome.
Collapse
Affiliation(s)
- Bing Yang
- National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20815, USA
| | - Matthew Schwartz
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Katherine McJunkin
- National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20815, USA
| |
Collapse
|
45
|
Hearn J, Clark J, Wilson PJ, Little TJ. Daphnia magna modifies its gene expression extensively in response to caloric restriction revealing a novel effect on haemoglobin isoform preference. Mol Ecol 2020; 29:3261-3276. [PMID: 32687619 DOI: 10.1111/mec.15557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Caloric restriction (CR) produces clear phenotypic effects within and between generations of the model crustacean Daphnia magna. We have previously established that micro-RNAs and cytosine methylation change in response to CR in this organism, and we demonstrate here that CR has a dramatic effect on gene expression. Over 6,000 genes were differentially expressed between CR and well-fed D. magna, with a bias towards up-regulation of genes under caloric restriction. We identified a highly expressed haemoglobin gene that responds to CR by changing isoform proportions. Specifically, a transcript containing three haem-binding erythrocruorin domains was strongly down-regulated under CR in favour of transcripts containing fewer or no such domains. This change in the haemoglobin mix is similar to the response to hypoxia in Daphnia, which is mediated through the transcription factor hypoxia-inducible factor 1, and ultimately the mTOR signalling pathway. This is the first report of a role for haemoglobin in the response to CR. We also observed high absolute expression of superoxide dismutase (SOD) in normally fed individuals, which contrasts with observations of high SOD levels under CR in other taxa. However, key differentially expressed genes, like SOD, were not targeted by differentially expressed micro-RNAs. Whether the link between haemoglobin and CR occurs in other organisms, or is related to the aquatic lifestyle, remains to be tested. It suggests that one response to CR may be to simply transport less oxygen and lower respiration.
Collapse
Affiliation(s)
- Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jessica Clark
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Philip J Wilson
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Tom J Little
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Wiebe KF, Elebute OO, LeMoine CMR, Cassone BJ. A Day in the Life: Identification of Developmentally Regulated MicroRNAs in the Colorado Potato Beetle (Leptinotarsa decemlineata; Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1445-1454. [PMID: 32150604 DOI: 10.1093/jee/toaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an important pest of the cultivated potato (Solanum tuberosum (L.) [Solanales: Solanaceae]). With its broad resistance toward commonly used insecticides, it is clear that more sophisticated control strategies are needed. Due to their importance in insect development, microRNAs (miRNAs) represent a potential tool to employ in insect control strategies. However, most studies conducted in this area have focused on model species with well-annotated genomes. In this study, next-generation sequencing was used to catalogue the miRNAs produced by L. decemlineata across all eight stages of its development, from eggs to adults. For most stages, the length of miRNAs peaked between 21 and 22 nt, though it was considerably longer for the egg stage (26 nt). Global profiling of miRNAs revealed three distinct developmental clusters: 1) egg stage; 2) early stage (first, second, and third instar); and 3) late stage (fourth instar, prepupae, pupae, and adult). We identified 86 conserved miRNAs and 33 bonafide novel miRNAs, including stage-specific miRNAs and those not previously identified in L. decemlineata. Most of the conserved miRNAs were found in multiple developmental stages, whereas the novel miRNAs were often stage specific with the bulk identified in the egg stage. The identified miRNAs have a myriad of putative functions, including growth, reproduction, and insecticide resistance. We discuss the putative roles of some of the most notable miRNAs in the regulation of L. decemlineata development, as well as the potential applications of this research in Colorado potato beetle management.
Collapse
Affiliation(s)
- K F Wiebe
- Department of Biology, Brandon University, Brandon, Canada
| | - O O Elebute
- Department of Biology, Brandon University, Brandon, Canada
| | - C M R LeMoine
- Department of Biology, Brandon University, Brandon, Canada
| | - B J Cassone
- Department of Biology, Brandon University, Brandon, Canada
| |
Collapse
|
47
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
48
|
Navarro E, Mallén A, Cruzado JM, Torras J, Hueso M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin Transl Med 2020; 9:5. [PMID: 32009226 PMCID: PMC6995802 DOI: 10.1186/s40169-020-0256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks.
Collapse
Affiliation(s)
- Estanislao Navarro
- Independent Researcher, Barcelona, Spain. .,Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| | - Adrian Mallén
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
49
|
Simkin A, Geissler R, McIntyre ABR, Grimson A. Evolutionary dynamics of microRNA target sites across vertebrate evolution. PLoS Genet 2020; 16:e1008285. [PMID: 32012152 PMCID: PMC7018135 DOI: 10.1371/journal.pgen.1008285] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/13/2020] [Accepted: 01/02/2020] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) control the abundance of the majority of the vertebrate transcriptome. The recognition sequences, or target sites, for bilaterian miRNAs are found predominantly in the 3' untranslated regions (3'UTRs) of mRNAs, and are amongst the most highly conserved motifs within 3'UTRs. However, little is known regarding the evolutionary pressures that lead to loss and gain of such target sites. Here, we quantify the selective pressures that act upon miRNA target sites. Notably, selective pressure extends beyond deeply conserved binding sites to those that have undergone recent substitutions. Our approach reveals that even amongst ancient animal miRNAs, which exert the strongest selective pressures on 3'UTR sequences, there are striking differences in patterns of target site evolution between miRNAs. Considering only ancient animal miRNAs, we find three distinct miRNA groups, each exhibiting characteristic rates of target site gain and loss during mammalian evolution. The first group both loses and gains sites rarely. The second group shows selection only against site loss, with site gains occurring at a neutral rate, whereas the third loses and gains sites at neutral or above expected rates. Furthermore, mutations that alter the strength of existing target sites are disfavored. Applying our approach to individual transcripts reveals variation in the distribution of selective pressure across the transcriptome and between miRNAs, ranging from strong selection acting on a small subset of targets of some miRNAs, to weak selection on many targets for other miRNAs. miR-20 and miR-30, and many other miRNAs, exhibit broad, deeply conserved targeting, while several other comparably ancient miRNAs show a lack of selective constraint, and a small number, including mir-146, exhibit evidence of rapidly evolving target sites. Our approach adds valuable perspective on the evolution of miRNAs and their targets, and can also be applied to characterize other 3'UTR regulatory motifs.
Collapse
Affiliation(s)
- Alfred Simkin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Biology, Elon University, Elon, North Carolina, United States of America
| | - Rene Geissler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Alexa B. R. McIntyre
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
50
|
Zeidler M, Hüttenhofer A, Kress M, Kummer KK. Intragenic MicroRNAs Autoregulate Their Host Genes in Both Direct and Indirect Ways-A Cross-Species Analysis. Cells 2020; 9:E232. [PMID: 31963421 PMCID: PMC7016697 DOI: 10.3390/cells9010232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) function as master switches for post-transcriptional gene expression. Their genes are either located in the extragenic space or within host genes, but these intragenic miRNA::host gene interactions are largely enigmatic. The aim of this study was to investigate the location and co-regulation of all to date available miRNA sequences and their host genes in an unbiased computational approach. The majority of miRNAs were located within intronic regions of protein-coding and non-coding genes. These intragenic miRNAs exhibited both increased target probability as well as higher target prediction scores as compared to a model of randomly permutated genes. This was associated with a higher number of miRNA recognition elements for the hosted miRNAs within their host genes. In addition, strong indirect autoregulation of host genes through modulation of functionally connected gene clusters by intragenic miRNAs was demonstrated. In addition to direct miRNA-to-host gene targeting, intragenic miRNAs also appeared to interact with functionally related genes, thus affecting their host gene function through an indirect autoregulatory mechanism. This strongly argues for the biological relevance of autoregulation not only for the host genes themselves but, more importantly, for the entire gene cluster interacting with the host gene.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Institute of Genomics and RNomics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|