1
|
Gdowicz-Kłosok A, Krześniak M, Łasut-Szyszka B, Butkiewicz D, Rusin M. Antibacterial Activity of the p53 Tumor Suppressor Protein-How Strong Is the Evidence? Int J Mol Sci 2025; 26:4416. [PMID: 40362653 PMCID: PMC12072856 DOI: 10.3390/ijms26094416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
The p53 tumor suppressor is best known for controlling the cell cycle, apoptosis, DNA repair, and metabolism, but it also regulates immunity and is able to impede the live cycle of viruses. For this reason, these infectious agents encode proteins which inactivate p53. However, what is less known is that p53 can also be inactivated by human pathogenic bacteria. It is probably not due to collateral damage, but specific targeting, because p53 could interfere with their multiplication. The mechanisms of the antibacterial activity of p53 are poorly known. However, they can be inferred from the results of high-throughput studies, which have identified more than a thousand p53-activated genes. As it turns out, many of these genes code proteins which have proven or plausible antibacterial functions like the efficient detection of bacteria by pattern recognition receptors, the induction of pro-inflammatory pyroptosis, the recruitment of immune cells, direct bactericidal activity, and the presentation of bacterial metabolites to lymphocytes. Probably there are more antibacterial, p53-regulated functions which were overlooked because laboratory animals are kept in sterile conditions. In this review, we present the outlines of some intriguing antibacterial mechanisms of p53 which await further exploration. Definitely, this area of research deserves more attention, especially in light of the appearance of antibiotic-resistant bacterial strains.
Collapse
Affiliation(s)
| | | | | | | | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland; (A.G.-K.); (M.K.); (B.Ł.-S.); (D.B.)
| |
Collapse
|
2
|
Xie J, Liu H, Yang C, Shen W, Zhang J. VANGL2 downregulates HINT1 to inhibit the ATM-p53 pathway and promote cisplatin resistance in small cell lung cancer. Cell Death Discov 2025; 11:153. [PMID: 40199845 PMCID: PMC11979007 DOI: 10.1038/s41420-025-02424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Cisplatin is a first-line drug for the treatment of small cell lung cancer (SCLC). Although the majority of patients with SCLC initially respond to cisplatin therapy, cisplatin resistance readily develops, leading to tumor progression. Therefore, this study aims to elucidate the mechanisms underlying cisplatin resistance in SCLC. We found that VANGL2 is a poor prognostic factor and promotes cisplatin resistance in SCLC. Mechanistically, in cisplatin-resistant cells, VANGL2 overexpression leads to the autophagic degradation of HINT1. This reduction in HINT1 expression further reduces the phosphorylation of ATM and p53 induced by cisplatin-mediated DNA damage. The decreased phosphorylation of p53 inhibits downstream apoptotic pathways, thereby reducing cisplatin-induced apoptosis. In conclusion, VANGL2 regulates the ATM-p53 pathway-mediated apoptotic response of SCLC to cisplatin by downregulating HINT1, thereby promoting cisplatin resistance. Thus, VANGL2 may serve as a potential therapeutic target for reversing cisplatin resistance in SCLC patients.
Collapse
Affiliation(s)
- Jiayi Xie
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huiying Liu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunqian Yang
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Weitao Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Carvalho C, Silva R, Melo TMVDPE, Inga A, Saraiva L. P53 and the Ultraviolet Radiation-Induced Skin Response: Finding the Light in the Darkness of Triggered Carcinogenesis. Cancers (Basel) 2024; 16:3978. [PMID: 39682165 DOI: 10.3390/cancers16233978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review delves into the significant cellular and molecular responses triggered by UVR exposure in human skin, emphasizing the pivotal role of mutant p53 (mutp53) in the carcinogenic process elicited by radiation. By underlining the role of a functional p53 in safeguarding skin cells from UVR-induced damage, this work underscores the potential significance of targeting mutp53, aiming to restore its wild-type-like activity (reactivation), as a protective strategy against skin cancer (SC), particularly NMSC. Most importantly, an interesting crosstalk between p53 and its vitamin D receptor (VDR) transcriptional target is also highlighted in the suppression of skin carcinogenesis, which opens the way to promising chemopreventive strategies involving synergistic combinations between mutp53 reactivators and vitamin D. Collectively, this review not only opens new avenues for future research, but also offers promising prospects for the development of novel beneficial approaches in the field of SC.
Collapse
Affiliation(s)
- Carla Carvalho
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Silva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Zhang J, Sun P, Wu Z, Wu J, Jia J, Zou H, Mo Y, Zhou Z, Liu B, Ao Y, Wang Z. Targeting CK2 eliminates senescent cells and prolongs lifespan in Zmpste24-deficient mice. Cell Death Dis 2024; 15:380. [PMID: 38816370 PMCID: PMC11139886 DOI: 10.1038/s41419-024-06760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Senescent cell clearance is emerging as a promising strategy for treating age-related diseases. Senolytics are small molecules that promote the clearance of senescent cells; however, senolytics are uncommon and their underlying mechanisms remain largely unknown. Here, we investigated whether genomic instability is a potential target for senolytic. We screened small-molecule kinase inhibitors involved in the DNA damage response (DDR) in Zmpste24-/- mouse embryonic fibroblasts, a progeroid model characterized with impaired DDR and DNA repair. 4,5,6,7-tetrabromo-2-azabenzamidazole (TBB), which specifically inhibits casein kinase 2 (CK2), was selected and discovered to preferentially trigger apoptosis in Zmpste24-/- cells. Mechanistically, inhibition of CK2 abolished the phosphorylation of heterochromatin protein 1α (HP1α), which retarded the dynamic HP1α dissociation from repressive histone mark H3K9me3 and its relocalization with γH2AX to DNA damage sites, suggesting that disrupting heterochromatin remodeling in the initiation of DDR accelerates apoptosis in senescent cells. Furthermore, feeding Zmpste24-deficient mice with TBB alleviated progeroid features and extended their lifespan. Our study identified TBB as a new class senolytic compound that can reduce age-related symptoms and prolong lifespan in progeroid mice.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China
| | - Pengfei Sun
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Zhuping Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Jie Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Jiali Jia
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Haoman Zou
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Yanzhen Mo
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China
| | - Ying Ao
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China.
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China.
| | - Zimei Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China.
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
He J, Zhao Y, Zhang Y, Zhang Z, Li D, Xu Q. FTO regulates osteoclast development by modulating the proliferation and apoptosis of osteoclast precursors in inflammatory conditions. Cell Signal 2024; 117:111098. [PMID: 38365111 DOI: 10.1016/j.cellsig.2024.111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Periodontitis is an oral inflammatory disease that causes alveolar bone destruction by activating osteoclast. FTO, a crucial demethylase of N6-methyladenosine(m6A), exerts essential function in maintaining bone homeostasis. However, the effects of FTO on periodontitis-related bone destruction remain unknown. To investigate its role in inflammatory osteoclastogenesis, we overexpressed FTO in osteoclast precursor cells; RNA-seq revealed that differentially expressed genes were mainly enriched in cell cycle, DNA replication, DNA damage response and apoptosis in FTO overexpression cells during RANKL and LPS-stimulated osteoclast differentiation. FTO overexpression upregulated the expression of S phase-related proteins (Cyclin A2, CDK2), and decreased the expression of DNA damage related proteins in osteoclast precursor cells. FTO promoted cell proliferation demonstrated by EdU and CCK8 assay, and reduced apoptotic rate and the expression of apoptosis-related proteins in osteoclast precursor cell. Conversely, FTO inhibitor FB23-2 produced the reverse effect. Mechanistically, FTO overexpression promoted the stability of CyclinA2 and CDK2 mRNA. These results were consistent in m6A binding protein YTHDF2 knockdown cells. Moreover, FB23-2 suppressed osteoclast-related gene expression, osteoclast formation and bone resorption ability. Treatment of FB23-2 reduced the alveolar bone loss in mice of experimental periodontitis. Collectively, our findings revealed that FTO enhanced the mRNA stability and expression of Cyclin A2, CDK2 in a YTHDF2-dependent manner in osteoclast precursor cells, promoted cell proliferation and inhibited cell apoptosis. FB23-2 reduced the formation of osteoclasts, resulted in alleviating the bone destruction in periodontitis mice. These findings indicated that FTO might be the potential target of the treatment of bone loss in periodontitis.
Collapse
Affiliation(s)
- Jinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yiwen Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Zhanqi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Di Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
7
|
Guo X, Li Y, Chen X, Sun B, Guo X. Urocortin-1 promotes colorectal cancer cell migration and proliferation and inhibits apoptosis via inhibition of the p53 signaling pathway. J Cancer Res Clin Oncol 2024; 150:163. [PMID: 38546882 PMCID: PMC10978644 DOI: 10.1007/s00432-024-05693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
PURPOSE To investigate the effect of urocortin-1 (UCN-1) on growth, migration, and apoptosis in colorectal cancer (CRC) in vivo and vitro and the mechanism by which UCN-1 modulates CRC cells in vitro. METHODS The correlation between UCN-1 and CRC was evaluated using The Cancer Genome Atlas (TCGA) database and a tissue microarray. The expression of UCN-1 in CRC cells was assessed using quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. In vitro, the influence of UCN-1 on the proliferation, apoptosis, and migration of HT-29, HCT-116, and RKO cells was explored using the celigo cell counting assay or cell counting kit-8 (CCK8), flow cytometry, and wound healing or Transwell assays, respectively. In vivo, the effect of UCN-1 on CRC growth and progression was evaluated in nude mice. The downstream pathway underlying UCN-1-mediated regulation of CRC was determined using the phospho-kinase profiler array in RKO cells. Lentiviruses were used to knockdown or upregulate UCN-1 expression in cells. RESULTS Both the TCGA and tissue microarray results showed that UCN-1 was strongly expressed in the tissues of patients with CRC. Furthermore, the tissue microarray results showed that the expression of UCN-1 was higher in male than in female patients, and high expression of UCN-1 was associated with higher risk of lymphatic metastasis and later pathological stage. UCN-1 knockdown caused a reduction in CRC cell proliferation, migration, and colony formation, as well as an increase in apoptosis. In xenograft experiments, tumors generated from RKO cells with UCN-1 knockdown exhibited reduced volumes and weights. A reduction in the expression of Ki-67 in xenograft tumors indicated that UCN-1 knockdown curbed tumor growth. The human phospho-kinase array showed that the p53 signaling pathway participated in UCN-1-mediated CRC development. The suppression in migration and proliferation caused by UCN-1 knockdown was reversed by inhibitors of p53 signal pathway, while the increase in cell apoptosis was suppressed. On the other hand, overexpression of UCN-1 promoted proliferation and migration and inhibited apoptosis in CRC cells. Overexpression of p53 reversed the effect of UCN-1 overexpression on CRC development. CONCLUSION UCN-1 promotes migration and proliferation and inhibits apoptosis via inhibition of the p53 signaling pathway.
Collapse
Affiliation(s)
- Xiaolan Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolan Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Shishkova D, Lobov A, Repkin E, Markova V, Markova Y, Sinitskaya A, Sinitsky M, Kondratiev E, Torgunakova E, Kutikhin A. Calciprotein Particles Induce Cellular Compartment-Specific Proteome Alterations in Human Arterial Endothelial Cells. J Cardiovasc Dev Dis 2023; 11:5. [PMID: 38248875 PMCID: PMC10816121 DOI: 10.3390/jcdd11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Calciprotein particles (CPPs) are indispensable scavengers of excessive Ca2+ and PO43- ions in blood, being internalised and recycled by liver and spleen macrophages, monocytes, and endothelial cells (ECs). Here, we performed a pathway enrichment analysis of cellular compartment-specific proteomes in primary human coronary artery ECs (HCAEC) and human internal thoracic artery ECs (HITAEC) treated with primary (amorphous) or secondary (crystalline) CPPs (CPP-P and CPPs, respectively). Exposure to CPP-P and CPP-S induced notable upregulation of: (1) cytokine- and chemokine-mediated signaling, Ca2+-dependent events, and apoptosis in cytosolic and nuclear proteomes; (2) H+ and Ca2+ transmembrane transport, generation of reactive oxygen species, mitochondrial outer membrane permeabilisation, and intrinsic apoptosis in the mitochondrial proteome; (3) oxidative, calcium, and endoplasmic reticulum (ER) stress, unfolded protein binding, and apoptosis in the ER proteome. In contrast, transcription, post-transcriptional regulation, translation, cell cycle, and cell-cell adhesion pathways were underrepresented in cytosol and nuclear compartments, whilst biosynthesis of amino acids, mitochondrial translation, fatty acid oxidation, pyruvate dehydrogenase activity, and energy generation were downregulated in the mitochondrial proteome of CPP-treated ECs. Differentially expressed organelle-specific pathways were coherent in HCAEC and HITAEC and between ECs treated with CPP-P or CPP-S. Proteomic analysis of mitochondrial and nuclear lysates from CPP-treated ECs confirmed bioinformatic filtration findings.
Collapse
Affiliation(s)
- Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Arseniy Lobov
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia;
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, St. Petersburg State University, Universitetskaya Embankment, 7/9, 199034 St. Petersburg, Russia;
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Anna Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Maxim Sinitsky
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Egor Kondratiev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Evgenia Torgunakova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.S.); (V.M.); (Y.M.); (A.S.); (M.S.); (E.K.); (E.T.)
| |
Collapse
|
9
|
Takano Y, Yogosawa S, Imaizumi Y, Kamioka H, Kanegae Y, Eto K, Yoshida K. DYRK2 promotes chemosensitivity via p53-mediated apoptosis after DNA damage in colorectal cancer. Cancer Sci 2023; 114:4558-4570. [PMID: 37776195 PMCID: PMC10728020 DOI: 10.1111/cas.15973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023] Open
Abstract
Dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a protein kinase that phosphorylates p53-Ser46 and induces apoptosis in response to DNA damage. However, the relationship between DYRK2 expression and chemosensitivity after DNA damage in colorectal cancer has not been well investigated. The aim of the present study was to examine whether DYRK2 could be a novel marker for predicting chemosensitivity after 5-fluorouracil- and oxaliplatin-induced DNA damage in colorectal cancer. Here we showed that DYRK2 knockout decreased the chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type colorectal cancer cells, whereas the chemosensitivity remained unchanged in p53-deficient/mutated colorectal cancer cells. In addition, no significant differences in chemosensitivity to 5-fluorouracil and oxaliplatin between scramble and siDYRK2 p53(-/-) colorectal cancer cells were observed. Conversely, the combination of adenovirus-mediated overexpression of DYRK2 with 5-fluorouracil or oxaliplatin enhanced apoptosis and chemosensitivity through p53-Ser46 phosphorylation in p53 wild-type colorectal cancer cells. Furthermore, DYRK2 knockout decreased chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type xenograft mouse models. Taken together, these findings demonstrated that DYRK2 expression was associated with chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type colorectal cancer, suggesting the importance of evaluating the p53 status and DYRK2 expression as a novel marker in therapeutic strategies for colorectal cancer.
Collapse
Affiliation(s)
- Yasuhiro Takano
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Satomi Yogosawa
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
| | - Yuta Imaizumi
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Hiroshi Kamioka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of MedicineTokyoJapan
| | - Yumi Kanegae
- Core Research Facilities for Basic Science, Research Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Ken Eto
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Kiyotsugu Yoshida
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
| |
Collapse
|
10
|
Xu X, Zhang L, Ye G, Shi J, Peng Y, Xin F, Lin Y, Wu Q, Lin X, Chen W. Hepatitis B doubly spliced protein (HBDSP) promotes hepatocellular carcinoma cell apoptosis via ETS1/GATA2/YY1-mediated p53 transcription. J Virol 2023; 97:e0108723. [PMID: 37929990 PMCID: PMC10688342 DOI: 10.1128/jvi.01087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Hepatitis B virus (HBV) spliced variants are associated with viral persistence or pathogenicity. Hepatitis B doubly spliced protein (HBDSP), which has been previously reported as a pleiotropic transactivator protein, can potentially serve as an HBV virulence factor. However, the underlying mechanisms of HBDSP in HBV-associated liver diseases remain to be elucidated. In this study, we revealed that HBDSP promotes cellular apoptosis and induces wt-p53-dependent apoptotic signaling pathway in wt-p53 hepatocellular cells by transactivating p53 transcription, and increases the release of HBV progeny. Therefore, HBDSP may promote the HBV particles release through wt-p53-dependent hepatocellular apoptosis. Our findings suggest that blocking HBDSP-induced wt-p53-dependent apoptosis might have therapeutic values for chronic hepatitis B.
Collapse
Affiliation(s)
- Xiazhen Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lu Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guiying Ye
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiajian Shi
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yibin Peng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fan Xin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yi Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiong Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wannan Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Schmidt B, Sers C, Klein N. BannMI deciphers potential n-to-1 information transduction in signaling pathways to unravel message of intrinsic apoptosis. BIOINFORMATICS ADVANCES 2023; 4:vbad175. [PMID: 38187472 PMCID: PMC10769817 DOI: 10.1093/bioadv/vbad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Motivation Cell fate decisions, such as apoptosis or proliferation, are communicated via signaling pathways. The pathways are heavily intertwined and often consist of sequential interaction of proteins (kinases). Information integration takes place on the protein level via n-to-1 interactions. A state-of-the-art procedure to quantify information flow (edges) between signaling proteins (nodes) is network inference. However, edge weight calculation typically refers to 1-to-1 interactions only and relies on mean protein phosphorylation levels instead of single cell distributions. Information theoretic measures such as the mutual information (MI) have the potential to overcome these shortcomings but are still rarely used. Results This work proposes a Bayesian nearest neighbor-based MI estimator (BannMI) to quantify n-to-1 kinase dependency in signaling pathways. BannMI outperforms the state-of-the-art MI estimator on protein-like data in terms of mean squared error and Pearson correlation. Using BannMI, we analyze apoptotic signaling in phosphoproteomic cancerous and noncancerous breast cell line data. Our work provides evidence for cooperative signaling of several kinases in programmed cell death and identifies a potential key role of the mitogen-activated protein kinase p38. Availability and implementation Source code and applications are available at: https://github.com/zuiop11/nn_info and can be downloaded via Pip as Python package: nn-info.
Collapse
Affiliation(s)
- Bettina Schmidt
- Research Center Trustworthy Data Science and Security, Universitätsallianz Ruhr, 44227 Dortmund, North Rhine-Westphalia, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Christine Sers
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Nadja Klein
- Research Center Trustworthy Data Science and Security, Universitätsallianz Ruhr, 44227 Dortmund, North Rhine-Westphalia, Germany
- Department of Statistics, Technische Universität Dortmund, 44227 Dortmund, North Rhine-Westphalia, Germany
| |
Collapse
|
12
|
Wu YQ, Zhang CS, Xiong J, Cai DQ, Wang CZ, Wang Y, Liu YH, Wang Y, Li Y, Wu J, Wu J, Lan B, Wang X, Chen S, Cao X, Wei X, Hu HH, Guo H, Yu Y, Ghafoor A, Xie C, Wu Y, Xu Z, Zhang C, Zhu M, Huang X, Sun X, Lin SY, Piao HL, Zhou J, Lin SC. Low glucose metabolite 3-phosphoglycerate switches PHGDH from serine synthesis to p53 activation to control cell fate. Cell Res 2023; 33:835-850. [PMID: 37726403 PMCID: PMC10624847 DOI: 10.1038/s41422-023-00874-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.
Collapse
Affiliation(s)
- Yu-Qing Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dong-Qi Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Zhe Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yiming Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian, China
| | - Bin Lan
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Xiamen, Fujian, China
| | - Xuefeng Wang
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Xiamen, Fujian, China
| | - Siwei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xianglei Cao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui-Hui Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaxin Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Abdul Ghafoor
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Jianyin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
13
|
Müller A, Weyerhäuser P, Berte N, Jonin F, Lyubarskyy B, Sprang B, Kantelhardt SR, Salinas G, Opitz L, Schulz-Schaeffer W, Giese A, Kim EL. Concurrent Activation of Both Survival-Promoting and Death-Inducing Signaling by Chloroquine in Glioblastoma Stem Cells: Implications for Potential Risks and Benefits of Using Chloroquine as Radiosensitizer. Cells 2023; 12:cells12091290. [PMID: 37174691 PMCID: PMC10177603 DOI: 10.3390/cells12091290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Lysosomotropic agent chloroquine was shown to sensitize non-stem glioblastoma cells to radiation in vitro with p53-dependent apoptosis implicated as one of the underlying mechanisms. The in vivo outcomes of chloroquine or its effects on glioblastoma stem cells have not been previously addressed. This study undertakes a combinatorial approach encompassing in vitro, in vivo and in silico investigations to address the relationship between chloroquine-mediated radiosensitization and p53 status in glioblastoma stem cells. Our findings reveal that chloroquine elicits antagonistic impacts on signaling pathways involved in the regulation of cell fate via both transcription-dependent and transcription-independent mechanisms. Evidence is provided that transcriptional impacts of chloroquine are primarily determined by p53 with chloroquine-mediated activation of pro-survival mevalonate and p21-DREAM pathways being the dominant response in the background of wild type p53. Non-transcriptional effects of chloroquine are conserved and converge on key cell fate regulators ATM, HIPK2 and AKT in glioblastoma stem cells irrespective of their p53 status. Our findings indicate that pro-survival responses elicited by chloroquine predominate in the context of wild type p53 and are diminished in cells with transcriptionally impaired p53. We conclude that p53 is an important determinant of the balance between pro-survival and pro-death impacts of chloroquine and propose that p53 functional status should be taken into consideration when evaluating the efficacy of glioblastoma radiosensitization by chloroquine.
Collapse
Affiliation(s)
- Andreas Müller
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Patrick Weyerhäuser
- Institute of Toxicology, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Nancy Berte
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Fitriasari Jonin
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Bogdan Lyubarskyy
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Bettina Sprang
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Sven Rainer Kantelhardt
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit (NIG), Institute for Human Genetics, University Medical Centre, 37075 Göttingen, Germany
| | - Lennart Opitz
- Functional Genomics Center Zurich, ETH Zurich, University of Zurich, 8092 Zurich, Switzerland
| | | | - Alf Giese
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Ella L Kim
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| |
Collapse
|
14
|
Huang P, Wang F, Wang X, Meng X, Qiao W, Meng L. RNA-sequencing analysis reveals the potential molecular mechanism of RAD54B in the proliferation of inflamed human dental pulp cells. Int Endod J 2023; 56:39-52. [PMID: 36196684 DOI: 10.1111/iej.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
AIM To investigate the role of RAD54B in the proliferation of inflamed human dental pulp cells (hDPCs) induced by lipopolysaccharide (LPS). METHODOLOGY Normal, carious and pulpitic human dental pulp tissues were collected. Total RNA was subjected to RNA-sequencing (seq) and gene expression profiles were studied by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Differentially expressed genes (DEGs) in homologous recombination repair (HRR) were validated with qRT-PCR. The expression of RAD54B and TNF-α in human dental pulp tissues was detected using immunohistochemistry. HDPCs were cultured and RAD54B level in hDPCs was detected after LPS stimulation using western blot. CCK-8 was used to investigate the proliferation of hDPCs transfected with negative control (Nc) small interfering RNA (siRNA), RAD54B siRNA, P53 siRNA or both siRNAs with or without LPS stimulation. Flow cytometry was used to detect the cell cycle distribution, and western blot and immunofluorescence were used to analyse the expression of RAD54B, P53 and P21 under the above treatments. One-way and two-way anova followed by least significant difference posttest were used for statistical analysis. RESULTS RNA-seq results identified DEGs amongst the three groups. KEGG pathway analysis revealed enrichment of DEGs in the replication and repair pathway. HRR and non-homologous end joining (NHEJ) components were further verified and qRT-PCR results were basically consistent with the sequencing data. RAD54B, an HRR accessory factor highly expressed in carious and pulpitic tissues as compared to that in normal pulps, was chosen as our gene of interest. High RAD54B expression was confirmed in inflamed human dental pulp tissues and LPS-stimulated hDPCs. Upon RAD54B knockdown, P53 and P21 expressions in hDPCs were upregulated whereas the proliferation was significantly downregulated, accompanied by increased G2/M phase arrest. After inhibiting P53 expression in RAD54B-knockdown hDPCs, P21 expression and cell proliferation were reversed. CONCLUSIONS Gene expression profiles of normal, carious and pulpitic human dental pulp tissues were revealed. HRR components were elucidated to function in dental pulp inflammation. Amongst the DEGs in HRR, RAD54B regulated the proliferation of inflamed hDPCs via P53/P21 signalling. This research deepens our understanding of dental pulp inflammation and provides new insight to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Pei Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fushi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinhuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiujiao Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Weiwei Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liuyan Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Yang CC, Masai H. Claspin is Required for Growth Recovery from Serum Starvation through Regulating the PI3K-PDK1-mTOR Pathway in Mammalian Cells. Mol Cell Biol 2023; 43:1-21. [PMID: 36720467 PMCID: PMC9936878 DOI: 10.1080/10985549.2022.2160598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Claspin plays multiple important roles in regulation of DNA replication as a mediator for the cellular response to replication stress, an integral replication fork factor that facilitates replication fork progression and a factor that promotes initiation by recruiting Cdc7 kinase. Here, we report a novel role of Claspin in growth recovery from serum starvation, which requires the activation of PI3 kinase (PI3K)-PDK1-Akt-mTOR pathways. In the absence of Claspin, cells do not proceed into S phase and eventually die partially in a ROS- and p53-dependent manner. Claspin directly interacts with PI3K and mTOR, and is required for activation of PI3K-PDK1-mTOR and for that of mTOR downstream factors, p70S6K and 4EBP1, but not for p38 MAPK cascade during the recovery from serum starvation. PDK1 physically interacts with Claspin, notably with CKBD, in a manner dependent on phosphorylation of the latter protein, and is required for interaction of mTOR with Claspin. Thus, Claspin plays a novel role as a key regulator for nutrition-induced proliferation/survival signaling by activating the mTOR pathway. The results also suggest a possibility that Claspin may serve as a common mediator that receives signals from different PI3K-related kinases and transmit them to specific downstream kinases.
Collapse
Affiliation(s)
- Chi-Chun Yang
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
16
|
Liebl MC, Hofmann TG. Regulating the p53 Tumor Suppressor Network at PML Biomolecular Condensates. Cancers (Basel) 2022; 14:4549. [PMID: 36230470 PMCID: PMC9558958 DOI: 10.3390/cancers14194549] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
By forming specific functional entities, nuclear biomolecular condensates play an important function in guiding biological processes. PML biomolecular condensates, also known as PML nuclear bodies (NBs), are macro-molecular sub-nuclear organelles involved in central biological processes, including anti-viral response and cell fate control upon genotoxic stress. PML condensate formation is stimulated upon cellular stress, and relies on protein-protein interactions establishing a PML protein meshwork capable of recruiting the tumor suppressor p53, along with numerous modifiers of p53, thus balancing p53 posttranslational modifications and activity. This stress-regulated process appears to be controlled by liquid-liquid phase separation (LLPS), which may facilitate regulated protein-unmixing of p53 and its regulators into PML nuclear condensates. In this review, we summarize and discuss the molecular mechanisms underlying PML nuclear condensate formation, and how these impact the biological function of p53 in driving the cell death and senescence responses. In addition, by using an in silico approach, we identify 299 proteins which share PML and p53 as binding partners, thus representing novel candidate proteins controlling p53 function and cell fate decision-making at the level of PML nuclear biocondensates.
Collapse
Affiliation(s)
| | - Thomas G. Hofmann
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
17
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
18
|
Huang M, Ding J, Wu X, Peng X, Wu G, Peng C, Zhang H, Mao C, Huang B. EZH2 affects malignant progression and DNA damage repair of lung adenocarcinoma cells by regulating RAI2 expression. Mutat Res 2022; 825:111792. [PMID: 35939884 DOI: 10.1016/j.mrfmmm.2022.111792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is featured in high morbidity and mortality. Aberrant activation of the histone methyltransferase EZH2 has close association with cancer progression. This research aimed to deeply dive into the role and possible molecular mechanisms of EZH2 and its downstream genes in malignant progression and DNA damage repair of LUAD cells. METHODS Expression of EZH2 in LUAD cells was analyzed by qRT-PCR, and the effects of EZH2 on proliferation, and apoptosis of LUAD cells were examined by CCK-8, colony formation and flow cytometry assays. The downstream targets of EZH2 were predicted by bioinformatics analysis. Then, the targeting relationship between EZH2 and RAI2 was examined by CHIP and luciferase reporter assays. Rescue assay were used to further validate the effect of EZH2/RAI2 on the malignant progression of LUAD cells. The expression levels of EZH2, RAI2 and p53 were examined by Western blot. RESULTS Upregulation of EZH2 was identified in LUAD tissues and cells. RAI2 was a downstream target gene of EZH2, and the two were negatively correlated. Silencing EZH2 suppressed proliferation of LUAD cells, promoted expression of p53, cell cycle arrest and apoptosis. While silencing RAI2 could reverse the above-mentioned effects caused by EZH2 silencing. CONCLUSION These results demonstrated that EZH2 promoted malignant progression and DNA damage repair of LUAD cells by targeting and negatively regulating RAI2.
Collapse
Affiliation(s)
- Mingjiang Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Congxiong Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| |
Collapse
|
19
|
Zhang L, Hou N, Chen B, Kan C, Han F, Zhang J, Sun X. Post-Translational Modifications of p53 in Ferroptosis: Novel Pharmacological Targets for Cancer Therapy. Front Pharmacol 2022; 13:908772. [PMID: 35685623 PMCID: PMC9171069 DOI: 10.3389/fphar.2022.908772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor p53 is a well-known cellular guardian of genomic integrity that blocks cell cycle progression or induces apoptosis upon exposure to cellular stresses. However, it is unclear how the remaining activities of p53 are regulated after the abrogation of these routine activities. Ferroptosis is a form of iron- and lipid-peroxide-mediated cell death; it is particularly important in p53-mediated carcinogenesis and corresponding cancer prevention. Post-translational modifications have clear impacts on the tumor suppressor function of p53. Here, we review the roles of post-translational modifications in p53-mediated ferroptosis, which promotes the elimination of tumor cells. A thorough understanding of the p53 functional network will be extremely useful in future strategies to identify pharmacological targets for cancer therapy.
Collapse
Affiliation(s)
- Le Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Bing Chen
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
20
|
Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer. Biomolecules 2022; 12:biom12040548. [PMID: 35454137 PMCID: PMC9029346 DOI: 10.3390/biom12040548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli; it upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. TP53 is the most frequently mutated gene in tumors, with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) that promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for (1) boosting p53 activity in cancer, (2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, (3) targeting p53 in immunotherapy, and (4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.
Collapse
|
21
|
Chen X, Qi G, Fang F, Miao Y, Wang L. Silence of MLK3 alleviates lipopolysaccharide-induced lung epithelial cell injury via inhibiting p53-mediated ferroptosis. J Mol Histol 2022; 53:503-510. [PMID: 35247112 DOI: 10.1007/s10735-022-10064-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/29/2022] [Indexed: 02/08/2023]
Abstract
Acute lung injury (ALI) is characterized with a high rate of morbidity and mortality. The injury and apoptosis of lung epithelial cells play crucial roles in the progression of ALI. Mixed lineage kinase 3 (MLK3) has been reported to be involved in the regulation of cellular biological functions, such as cell proliferation, apoptosis and ferroptosis. However, the effect of MLK3 exerted on ALI has not been reported. Here, LPS-stimulated MLE12 pulmonary epithelial cells were used as an in vitro model for ALI. In this research, LPS elevated the expression of MLK3 in MLE12 cells. The silence of MLK3 alleviated LPS-induced cell injury. Notably, LPS promoted ferroptosis through enhancing GSH depletion and the productions of MDA and iron, which was attenuated by MLK3 knockdown. Moreover, the silence of MLK3 inhibited p53 expression in LPS-induced cells along with a decrease in the expressions of p21 and Bax, while overexpressing p53 reversed these effects of MLK3 silence. Meanwhile, p53 overexpression reversed the positive effects of MLK3 knockdown on LPS-induced cell ferroptosis and injury. Together, our results confirmed that the silence of MLK3 alleviated LPS-induced lung epithelial cell injury by inhibiting p53-mediated ferroptosis.
Collapse
Affiliation(s)
- Xiangjun Chen
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, 710061, Xi'an, Shaanxi, China
| | - Gangqiang Qi
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, 710061, Xi'an, Shaanxi, China
| | - Fang Fang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, 710061, Xi'an, Shaanxi, China
| | - Yi Miao
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Li Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, 710061, Xi'an, Shaanxi, China.
- East section of Hangtian Avenue, Chang'an District, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
22
|
Zhang X, Zheng Q, Yue X, Yuan Z, Ling J, Yuan Y, Liang Y, Sun A, Liu Y, Li H, Xu K, He F, Wang J, Wu J, Zhao C, Tian C. ZNF498 promotes hepatocellular carcinogenesis by suppressing p53-mediated apoptosis and ferroptosis via the attenuation of p53 Ser46 phosphorylation. J Exp Clin Cancer Res 2022; 41:79. [PMID: 35227287 PMCID: PMC8883630 DOI: 10.1186/s13046-022-02288-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
Background Dysfunctional p53 signaling is one of the major causes of hepatocellular carcinoma (HCC) tumorigenesis and development, but the mechanisms underlying p53 inactivation in HCC have not been fully clarified. The role of Krüppel-associated box (KRAB)-type zinc-finger protein ZNF498 in tumorigenesis and the underlying mechanisms are poorly understood. Methods Clinical HCC samples were used to assess the association of ZNF498 expression with clinicopathological characteristics and patient outcomes. A mouse model in which HCC was induced by diethylnitrosamine (DEN) was used to explore the role of ZNF498 in HCC initiation and progression. ZNF498 overexpression and knockdown HCC cell lines were employed to examine the effects of ZNF498 on cellular proliferation, apoptosis, ferroptosis and tumor growth. Western blotting, immunoprecipitation, qPCR, luciferase assays and flow cytometry were also conducted to determine the underlying mechanisms related to ZNF498 function. Results ZNF498 was found to be highly expressed in HCC, and increased ZNF498 expression was positively correlated with advanced pathological grade and poor survival in HCC patients. Furthermore, ZNF498 promoted DEN-induced hepatocarcinogenesis and progression in mice. Mechanistically, ZNF498 directly interacted with p53 and suppressed p53 transcriptional activation by inhibiting p53 Ser46 phosphorylation. ZNF498 competed with p53INP1 for p53 binding and suppressed PKCδ- and p53INP1-mediated p53 Ser46 phosphorylation. In addition, functional assays revealed that ZNF498 promoted liver cancer cell growth in vivo and in vitro in a p53-dependent manner. Moreover, ZNF498 inhibited p53-mediated apoptosis and ferroptosis by attenuating p53 Ser46 phosphorylation. Conclusions Our results strongly suggest that ZNF498 suppresses apoptosis and ferroptosis by attenuating p53 Ser46 phosphorylation in hepatocellular carcinogenesis, revealing a novel ZNF498-PKCδ-p53INP1-p53 axis in HCC cells that would enrich the non-mutation p53-inactivating mechanisms in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02288-3.
Collapse
Affiliation(s)
- Xiuyuan Zhang
- School of Life science and Technology, Weifang Medical University, Weifang, 261053, Shandong Province, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Qijian Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiuying Yue
- Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China
| | - Zhanna Yuan
- Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China
| | - Jiming Ling
- School of Life science and Technology, Weifang Medical University, Weifang, 261053, Shandong Province, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yanzhi Yuan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yanying Liang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong, China
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yuchen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Hui Li
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Kaikun Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Jin Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China. .,Department of Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
| | - Chunling Zhao
- School of Life science and Technology, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| | - Chunyan Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
23
|
Zhao Y, Yue S, Zhou X, Guo J, Ma S, Chen Q. O-GlcNAc transferase promotes the nuclear localization of the focal adhesion-associated protein Zyxin to regulate UV-induced cell death. J Biol Chem 2022; 298:101776. [PMID: 35227760 PMCID: PMC8988012 DOI: 10.1016/j.jbc.2022.101776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
Zyxin is a zinc-binding phosphoprotein known to regulate cell migration, adhesion, and cell survival. Zyxin also plays a role in signal transduction between focal adhesions and the nuclear compartment. However, the mechanism of Zyxin shuttling to nucleus is still unclear. Here, we identify that the GlcNAc transferase (O-linked GlcNAc [O-GlcNAc] transferase) can O-GlcNAcylate Zyxin and regulate its nuclear localization. We show that O-GlcNAc transferase O-GlcNAcylates Zyxin at two residues, serine 169 (Ser-169) and Ser-246. In addition, O-GlcNAcylation of Ser-169, but not Ser-246, enhances its interaction with 14-3-3γ, which is a phosphoserine/threonine-binding protein and is reported to bind with phosphorylated Zyxin. Furthermore, we found that 14-3-3γ could promote the nuclear localization of Zyxin after Ser-169 O-GlcNAcylation by affecting the function of the N-terminal nuclear export signal sequence; functionally, UV treatment increases the O-GlcNAcylation of Zyxin, which may enhance the nuclear location of Zyxin. Finally, Zyxin in the nucleus maintains homeodomain-interacting protein kinase 2 stability and promotes UV-induced cell death. In conclusion, we uncover that the nuclear localization of Zyxin can be regulated by its O-GlcNAcylation, and that this protein may regulate UV-induced cell death.
Collapse
|
24
|
Torquato HFV, Junior MTR, Lima CS, Júnior RTDA, Talhati F, Dias DA, Justo GZ, Ferreira AT, Pilli RA, Paredes-Gamero EJ. A canthin-6-one derivative induces cell death by apoptosis/necroptosis-like with DNA damage in acute myeloid cells. Biomed Pharmacother 2022; 145:112439. [PMID: 34808555 DOI: 10.1016/j.biopha.2021.112439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Natural products have long been considered a relevant source of new antitumor agents. Despite advances in the treatment of younger patients with acute myeloid leukemia (AML), the prognosis of elderly patients remains poor, with a high frequency of relapse. The cytotoxicity of canthin-6-one alkaloids has been extensively studied in different cell types, including leukemic strains. Among the canthin-6-one analogs tested, 10-methoxycanthin-6-one (Mtx-C) showed the highest cytotoxicity in the malignant AML cells Kasumi-1 and KG-1. Thus, we evaluated the cytotoxicity and cell death mechanisms related to Mtx-C using the EC50 (80 µM for Kasumi-1 and 36 µM for KG-1) treatment for 24 h. Our results identify reactive oxygen species production, mitochondrial depolarization, annexin V-FITC/7-AAD double staining, caspase cleave and upregulation of mitochondria-dependent apoptosis proteins (Bax, Bim, Bik, Puma and phosphorylation of p53) for both cell lineages. However, downregulation of Bcl-2 and the simultaneous execution of the apoptotic and necroptotic programs associated with the phosphorylation of the proteins receptor-interacting serine/threonine-protein kinase 3 and mixed lineage kinase domain-like pseudokinase occurred only in Kasumi-1 cells. About the lasted events, Kasumi-1 cell death was inhibited by pharmacological agents such as Zvad-FMK and necrostatin-1. The underlying molecular mechanisms of Mtx-C still include participation in the DNA damage and stress-signaling pathways involving p38 and c-Jun N-terminal mitogen-activated protein kinases and interaction with DNA. Thus, Mtx-C represents a promising tool for the development of new antileukemic molecules.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | | | - Cauê Santos Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Roberto Theodoro de Araujo Júnior
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil
| | - Fernanda Talhati
- Faculdade de Farmácia, Centro Universitário Braz Cubas, 08773-380 Mogi das Cruzes, SP, Brazil
| | - Dhebora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil
| | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil
| | - Ronaldo Aloise Pilli
- Instituto de Química, Universidade Estadual de Campinas, 13084-971 Campinas, SP, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020 São Paulo, SP, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, 79070-900 Campo Grande, MS, Brazil.
| |
Collapse
|
25
|
Zhang H, Wang J, Ge Y, Ye M, Jin X. Siah1 in cancer and nervous system diseases (Review). Oncol Rep 2021; 47:35. [PMID: 34958110 DOI: 10.3892/or.2021.8246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of the ubiquitin‑proteasome system will result in the abnormal accumulation and dysfunction of proteins, thus leading to severe diseases. Seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase, has attracted wide attention due to its varied functions in physiological and pathological conditions, and the numerous newly discovered Siah1 substrates. In cancer and nervous system diseases, the functions of Siah1 as a promoter or a suppressor of diseases are related to the change in cellular microenvironment and subcellular localization. At the same time, complex upstream regulations make Siah1 different from other E3 ubiquitin ligases. Understanding the molecular mechanism of Siah1 will help the study of various signaling pathways and benefit the therapeutic strategy of human diseases (e.g., cancer and nervous system diseases). In the present review, the functions and regulations of Siah1 are described. Moreover, novel substrates of Siah1 discovered in recent studies will be highlighted in cancer and nervous system diseases, providing ideas for future research and clinical targeted therapies using Siah1.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jie Wang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yidong Ge
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
26
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Morrione A, Giordano A, Cenciarelli C. p53 signaling in cancer progression and therapy. Cancer Cell Int 2021; 21:703. [PMID: 34952583 PMCID: PMC8709944 DOI: 10.1186/s12935-021-02396-8] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
The p53 protein is a transcription factor known as the "guardian of the genome" because of its critical function in preserving genomic integrity. The TP53 gene is mutated in approximately half of all human malignancies, including those of the breast, colon, lung, liver, prostate, bladder, and skin. When DNA damage occurs, the TP53 gene on human chromosome 17 stops the cell cycle. If p53 protein is mutated, the cell cycle is unrestricted and the damaged DNA is replicated, resulting in uncontrolled cell proliferation and cancer tumours. Tumor-associated p53 mutations are usually associated with phenotypes distinct from those caused by the loss of the tumor-suppressing function exerted by wild-type p53protein. Many of these mutant p53 proteins have oncogenic characteristics, and therefore modulate the ability of cancer cells to proliferate, escape apoptosis, invade and metastasize. Because p53 deficiency is so common in human cancer, this protein is an excellent option for cancer treatment. In this review, we will discuss some of the molecular pathways by which mutant p53 proteins might perform their oncogenic activities, as well as prospective treatment methods based on restoring tumor suppressive p53 functions.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Giacomo Pozzoli
- Pharmacology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine. Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine. Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | | |
Collapse
|
27
|
Rizzotto D, Englmaier L, Villunger A. At a Crossroads to Cancer: How p53-Induced Cell Fate Decisions Secure Genome Integrity. Int J Mol Sci 2021; 22:ijms221910883. [PMID: 34639222 PMCID: PMC8509445 DOI: 10.3390/ijms221910883] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
P53 is known as the most critical tumor suppressor and is often referred to as the guardian of our genome. More than 40 years after its discovery, we are still struggling to understand all molecular details on how this transcription factor prevents oncogenesis or how to leverage current knowledge about its function to improve cancer treatment. Multiple cues, including DNA-damage or mitotic errors, can lead to the stabilization and nuclear translocation of p53, initiating the expression of multiple target genes. These transcriptional programs may be cell-type- and stimulus-specific, as is their outcome that ultimately imposes a barrier to cellular transformation. Cell cycle arrest and cell death are two well-studied consequences of p53 activation, but, while being considered critical, they do not fully explain the consequences of p53 loss-of-function phenotypes in cancer. Here, we discuss how mitotic errors alert the p53 network and give an overview of multiple ways that p53 can trigger cell death. We argue that a comparative analysis of different types of p53 responses, elicited by different triggers in a time-resolved manner in well-defined model systems, is critical to understand the cell-type-specific cell fate induced by p53 upon its activation in order to resolve the remaining mystery of its tumor-suppressive function.
Collapse
Affiliation(s)
- Dario Rizzotto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
28
|
Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res 2021; 12:200225. [PMID: 34500123 PMCID: PMC8449131 DOI: 10.1016/j.tvr.2021.200225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
29
|
Jin X, Qing S, Li Q, Zhuang H, Shen L, Li J, Qi H, Lin T, Lin Z, Wang J, Cao X, Yang J, Ma Q, Cong L, Xi Y, Fang S, Meng X, Gong Z, Ye M, Wang S, Wang C, Gao K. Prostate cancer-associated SPOP mutations lead to genomic instability through disruption of the SPOP-HIPK2 axis. Nucleic Acids Res 2021; 49:6788-6803. [PMID: 34133717 PMCID: PMC8266658 DOI: 10.1093/nar/gkab489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Speckle-type Poz protein (SPOP), an E3 ubiquitin ligase adaptor, is the most frequently mutated gene in prostate cancer. The SPOP-mutated subtype of prostate cancer shows high genomic instability, but the underlying mechanisms causing this phenotype are still largely unknown. Here, we report that upon DNA damage, SPOP is phosphorylated at Ser119 by the ATM serine/threonine kinase, which potentiates the binding of SPOP to homeodomain-interacting protein kinase 2 (HIPK2), resulting in a nondegradative ubiquitination of HIPK2. This modification subsequently increases the phosphorylation activity of HIPK2 toward HP1γ, and then promotes the dissociation of HP1γ from trimethylated (Lys9) histone H3 (H3K9me3) to initiate DNA damage repair. Moreover, the effect of SPOP on the HIPK2-HP1γ axis is abrogated by prostate cancer-associated SPOP mutations. Our findings provide new insights into the molecular mechanism of SPOP mutations-driven genomic instability in prostate cancer.
Collapse
Affiliation(s)
- Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Shi Qing
- State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Hui Zhuang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Liliang Shen
- Department of Urology, Department of Hematology, the Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo 315040, China
| | - Jinhui Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Honggang Qi
- Department of Urology, the Affiliated Yinzhou Second Hospital of Medical School of Ningbo University, Ningbo 315100, China
| | - Ting Lin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Zihan Lin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jian Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xinyi Cao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jianye Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Qi Ma
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City. Ningbo First Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Linghua Cong
- Department of Urology, Department of Hematology, the Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo 315040, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Shuyun Wang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Chenji Wang
- State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
30
|
Beneventi G, Munita R, Cao Thi Ngoc P, Madej M, Cieśla M, Muthukumar S, Krogh N, Nielsen H, Swaminathan V, Bellodi C. The small Cajal body-specific RNA 15 (SCARNA15) directs p53 and redox homeostasis via selective splicing in cancer cells. NAR Cancer 2021; 3:zcab026. [PMID: 34316713 PMCID: PMC8271217 DOI: 10.1093/narcan/zcab026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/19/2021] [Accepted: 06/18/2021] [Indexed: 01/05/2023] Open
Abstract
Small Cajal body-specific RNAs (scaRNAs) guide post-transcriptional modification of spliceosomal RNA and, while commonly altered in cancer, have poorly defined roles in tumorigenesis. Here, we uncover that SCARNA15 directs alternative splicing (AS) and stress adaptation in cancer cells. Specifically, we find that SCARNA15 guides critical pseudouridylation (Ψ) of U2 spliceosomal RNA to fine-tune AS of distinct transcripts enriched for chromatin and transcriptional regulators in malignant cells. This critically impacts the expression and function of the key tumor suppressors ATRX and p53. Significantly, SCARNA15 loss impairs p53-mediated redox homeostasis and hampers cancer cell survival, motility and anchorage-independent growth. In sum, these findings highlight an unanticipated role for SCARNA15 and Ψ in directing cancer-associated splicing programs.
Collapse
Affiliation(s)
- Giulia Beneventi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Magdalena Madej
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Maciej Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| |
Collapse
|
31
|
Wang K, Liu W, Xu Q, Gu C, Hu D. Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153553. [PMID: 33906076 DOI: 10.1016/j.phymed.2021.153553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most malignant tumors worldwide with poor prognosis and low survival rate. Since the clinical efficacy of the commonly used 5-fluorouracil (5-FU) based chemotherapy in CRC patients is limited because of its intolerable adverse effects, there is an urgent need to explore agents that can enhance the anti-cancer activity of 5-FU, reduce adverse effects and prevent resistance. PURPOSE This study aims to investigate Tenacissoside G (TG)'s synergistic potentiation with 5-FU in inhibitory activity to colorectal cancer cells. METHODS The anti-proliferation effect of TG on 5 colorectal cancer cell lines was assessed by CCK-8 assay. The isobologram analysis and combination index methods were used to detect the synergistic effect of TG and 5-FU by the CompuSyn software using the T.C. Chou Method. The effects of TG/5-FU combination on cell cycle distribution and apoptosis induction were detected by flow cytometry. DNA damage degrees of cells treated with TG, 5-FU and their combination were evaluated by the alkaline comet assay. Protein expression regulated by the TG/5-FU combination was investigated by western blotting. Furthermore, a xenograft mouse model was established to investigate the synergistic anti-tumor effect in vivo. RESULTS In this work, we observed a dose-dependent growth inhibitory activity and cell cycle arrest induction of TG, a monomeric substance originated from Marsdenia tenacissima (Roxb.) Wight et Arn, in colorectal cancer cells. It was found that TG potentiated the anticancer effects of 5-FU with a synergism for the first time. And the co-treatment effects were also validated by in vivo experiments. The underlying mechanisms involved in the synergistic effects were probably included: (1) increased activation of caspase cascade; (2) enhancement of DNA damage degree and (3) induction of p53 phosphorylation at Serine 46. CONCLUSION TG potentiated 5-FU's inhibitory activity to human colorectal cancer through arresting cell cycle progression and inducing p53-mediated apoptosis, which may present a novel strategy in CRC therapies and contribute to the optimizing clinical application of 5-FU.
Collapse
Affiliation(s)
- Kaichun Wang
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Liu
- Department of Clinical Pharmacology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Qinfen Xu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao Gu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daode Hu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
32
|
Gupta A, Hadj-Moussa H, Al-Attar R, Seibel BA, Storey KB. Hypoxic Jumbo Squid Activate Neuronal Apoptosis but Not MAPK or Antioxidant Enzymes during Oxidative Stress. Physiol Biochem Zool 2021; 94:171-179. [PMID: 33830886 DOI: 10.1086/714097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe limitations that hypoxia imparts on mitochondrial oxygen supply are circumvented by the activation of anaerobic metabolism and prosurvival mechanisms in hypoxia-tolerant animals. To deal with the hypoxia that jumbo squid (Dosidicus gigas) experience in the ocean's depth, they depress their metabolic rate by up to 52% relative to normoxic conditions. This is coupled with molecular reorganization to facilitate their daily descents into the ocean's oxygen minimum zone, where they face not only low oxygen levels but also higher pressures and colder frigid waters. Our current study explores the tissue-specific hypoxia responses of three central processes: (1) antioxidant enzymes responsible for defending against oxidative stress, (2) early apoptotic machinery that signals the activation of cell death, and (3) mitogen-activated protein kinases (MAPKs) that act as central regulators of numerous cellular processes. Luminex xMAP technology was used to assess protein levels and phosphorylation states under normoxic and hypoxic conditions in brains, branchial hearts, and mantle muscles. Hypoxic brains were found to activate apoptosis via upregulation of phospho-p38, phospho-p53, activated caspase 8, and activated caspase 9, whereas branchial hearts were the only tissue to show an increase in antioxidant enzyme levels. Hypoxic muscles seemed the least affected by hypoxia. Our results suggest that hypoxic squid do not undergo large dynamic changes in the phosphorylation states of key apoptotic and central MAPK factors, except for brains, suggesting that these mechanisms are involved in squid hypometabolic responses.
Collapse
|
33
|
Liebl MC, Hofmann TG. The Role of p53 Signaling in Colorectal Cancer. Cancers (Basel) 2021; 13:2125. [PMID: 33924934 PMCID: PMC8125348 DOI: 10.3390/cancers13092125] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
The transcription factor p53 functions as a critical tumor suppressor by orchestrating a plethora of cellular responses such as DNA repair, cell cycle arrest, cellular senescence, cell death, cell differentiation, and metabolism. In unstressed cells, p53 levels are kept low due to its polyubiquitination by the E3 ubiquitin ligase MDM2. In response to various stress signals, including DNA damage and aberrant growth signals, the interaction between p53 and MDM2 is blocked and p53 becomes stabilized, allowing p53 to regulate a diverse set of cellular responses mainly through the transactivation of its target genes. The outcome of p53 activation is controlled by its dynamics, its interactions with other proteins, and post-translational modifications. Due to its involvement in several tumor-suppressing pathways, p53 function is frequently impaired in human cancers. In colorectal cancer (CRC), the TP53 gene is mutated in 43% of tumors, and the remaining tumors often have compromised p53 functioning because of alterations in the genes encoding proteins involved in p53 regulation, such as ATM (13%) or DNA-PKcs (11%). TP53 mutations in CRC are usually missense mutations that impair wild-type p53 function (loss-of-function) and that even might provide neo-morphic (gain-of-function) activities such as promoting cancer cell stemness, cell proliferation, invasion, and metastasis, thereby promoting cancer progression. Although the first compounds targeting p53 are in clinical trials, a better understanding of wild-type and mutant p53 functions will likely pave the way for novel CRC therapies.
Collapse
Affiliation(s)
- Magdalena C. Liebl
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany;
| | | |
Collapse
|
34
|
Liebl MC, Moehlenbrink J, Becker H, Raddatz G, Abdeen SK, Aqeilan RI, Lyko F, Hofmann TG. DAZAP2 acts as specifier of the p53 response to DNA damage. Nucleic Acids Res 2021; 49:2759-2776. [PMID: 33591310 PMCID: PMC7969023 DOI: 10.1093/nar/gkab084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.
Collapse
Affiliation(s)
- Magdalena C Liebl
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Jutta Moehlenbrink
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Huong Becker
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Günter Raddatz
- Division of Epigenetics, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Suhaib K Abdeen
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Frank Lyko
- Division of Epigenetics, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
35
|
Němec V, Maier L, Berger BT, Chaikuad A, Drápela S, Souček K, Knapp S, Paruch K. Highly selective inhibitors of protein kinases CLK and HIPK with the furo[3,2-b]pyridine core. Eur J Med Chem 2021; 215:113299. [PMID: 33636538 DOI: 10.1016/j.ejmech.2021.113299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
The furo [3,2-b]pyridine motif represents a relatively underexplored central pharmacophore in the area of kinase inhibitors. Herein, we report flexible synthesis of 3,5-disubstituted furo [3,2-b]pyridines that relies on chemoselective couplings of newly prepared 5-chloro-3-iodofuro [3,2-b]pyridine. This methodology allowed efficient second-generation synthesis of the state-of-the-art chemical biology probe for CLK1/2/4 MU1210, and identification of the highly selective inhibitors of HIPKs MU135 and MU1787 which are presented and characterized in this study, including the X-ray crystal structure of MU135 in HIPK2. chemical biology probe.
Collapse
Affiliation(s)
- Václav Němec
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Lukáš Maier
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Benedict-Tilman Berger
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany; Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany; Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Stanislav Drápela
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Pekařská 53, 656 91, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Karel Souček
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Pekařská 53, 656 91, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany; Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
36
|
Tandon V, de la Vega L, Banerjee S. Emerging roles of DYRK2 in cancer. J Biol Chem 2021; 296:100233. [PMID: 33376136 PMCID: PMC7948649 DOI: 10.1074/jbc.rev120.015217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the CMGC kinase DYRK2 has been reported as a tumor suppressor across various cancers triggering major antitumor and proapoptotic signals in breast, colon, liver, ovary, brain, and lung cancers, with lower DYRK2 expression correlated with poorer prognosis in patients. Contrary to this, various medicinal chemistry studies reported robust antiproliferative properties of DYRK2 inhibitors, whereas unbiased 'omics' and genome-wide association study-based studies identified DYRK2 as a highly overexpressed kinase in various patient tumor samples. A major paradigm shift occurred in the last 4 years when DYRK2 was found to regulate proteostasis in cancer via a two-pronged mechanism. DYRK2 phosphorylated and activated the 26S proteasome to enhance degradation of misfolded/tumor-suppressor proteins while also promoting the nuclear stability and transcriptional activity of its substrate, heat-shock factor 1 triggering protein folding. Together, DYRK2 regulates proteostasis and promotes protumorigenic survival for specific cancers. Indeed, potent and selective small-molecule inhibitors of DYRK2 exhibit in vitro and in vivo anti-tumor activity in triple-negative breast cancer and myeloma models. However, with conflicting and contradictory reports across different cancers, the overarching role of DYRK2 remains enigmatic. Specific cancer (sub)types coupled to spatiotemporal interactions with substrates could decide the procancer or anticancer role of DYRK2. The current review aims to provide a balanced and critical appreciation of the literature to date, highlighting top substrates such as p53, c-Myc, c-Jun, heat-shock factor 1, proteasome, or NOTCH1, to discuss DYRK2 inhibitors available to the scientific community and to shed light on this duality of protumorigenic and antitumorigenic roles of DYRK2.
Collapse
Affiliation(s)
- Vasudha Tandon
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Sourav Banerjee
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
37
|
Wang XQ, Wang XQ, Hsu ATYW, Goytain A, Ng TLT, Nielsen TO. A Rapid and Cost-Effective Gene Expression Assay for the Diagnosis of Well-Differentiated and Dedifferentiated Liposarcomas. J Mol Diagn 2020; 23:274-284. [PMID: 33346147 DOI: 10.1016/j.jmoldx.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Histologic examination neither reliably distinguishes benign lipomas from atypical lipomatous tumor/well-differentiated liposarcoma, nor dedifferentiated liposarcoma from other pleomorphic sarcomas, entities with different prognoses and management. Molecular confirmation of pathognomonic 12q13-15 amplifications leading to MDM2 overexpression is a diagnostic gold standard. Currently the most commonly used assay for this purpose is fluorescence in situ hybridization (FISH), but this is labor intensive. This study assessed whether newer NanoString-based technology could allow for more rapid and cost-efficient diagnosis of liposarcomas on standard formalin-fixed tissues through gene expression. Leveraging large-scale transcriptome data from The Cancer Genome Atlas, 20 genes were identified, most from the 12q13-15 amplicon, that distinguish dedifferentiated liposarcoma from other sarcomas and can be measured within a single NanoString assay. Using 21 cases of histologically ambiguous low-grade adipocytic tumors with available MDM2 amplification status, a machine learning-based analytical pipeline was built that assigns a given sample as negative or positive for liposarcoma based on quantitative gene expression. The effectiveness of the assay was validated on an independent set of 100 sarcoma samples (including 40 incident prospective cases), where histologic examination was considered insufficient for clinical diagnosis. The NanoString assay had a 93% technical success rate, and an accuracy of 97.8% versus an MDM2 amplification FISH gold standard. NanoString had a considerably faster turnaround time and was cheaper than FISH.
Collapse
Affiliation(s)
- Xiu Q Wang
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xue Q Wang
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anika T Y W Hsu
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela Goytain
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tony L T Ng
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada.
| |
Collapse
|
38
|
Shackelford R, Ozluk E, Islam MZ, Hopper B, Meram A, Ghali G, Kevil CG. Hydrogen sulfide and DNA repair. Redox Biol 2020; 38:101675. [PMID: 33202302 PMCID: PMC7677119 DOI: 10.1016/j.redox.2020.101675] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/12/2020] [Accepted: 08/02/2020] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has revealed that exposing cells to exogenous H 2 S or inhibiting cellular H 2 S synthesis can modulate cell cycle checkpoints, DNA damage and repair, and the expression of proteins involved in the maintenance of genomic stability, all suggesting that H 2 S plays an important role in the DNA damage response (DDR). Here we review the role of H 2 S in the DRR and maintenance of genomic stability. Treatment of various cell types with pharmacologic H 2 S donors or cellular H 2 S synthesis inhibitors modulate the G 1 checkpoint, inhibition of DNA synthesis, and cause p21, and p53 induction. Moreover, in some cell models H 2 S exposure induces PARP-1 and g-H2AX foci formation, increases PCNA, CHK2, Ku70, Ku80, and DNA polymerase-d protein expression, and maintains mitochondrial genomic stability. Our group has also revealed that H 2 S bioavailability and the ATR kinase regulate each other with ATR inhibition lowering cellular H 2 S concentrations, whereas intracellular H 2 S concentrations regulate ATR kinase activity via ATR serine 435 phosphorylation. In summary, these findings have many implications for the DDR, for cancer chemotherapy, and fundamental biochemical metabolic pathways involving H 2 S. Inhibition of the ATR kinase lowers intracellular H2S concentrations. Inhibition of H2S synthesis activates the ATR kinase and increases its kinase activity. Inhibition of H2S synthesis combined with low-level oxidative stress increases genomic instability. These findings may have applications the cancer chemotherapeutics.
Collapse
Affiliation(s)
- Rodney Shackelford
- LSU Health Shreveport, Department of Pathology, Shreveport, LA, United States.
| | - Ekin Ozluk
- Department of Pathology & Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| | - Mohammad Z Islam
- Department of Pathology & Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| | - Brian Hopper
- Department of Pathology & Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| | - Andrew Meram
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| | - Ghali Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| | - Christopher G Kevil
- Department of Pathology & Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| |
Collapse
|
39
|
Quell KM, Dutta K, Korkmaz ÜR, Nogueira de Almeida L, Vollbrandt T, König P, Lewkowich I, Deepe GS, Verschoor A, Köhl J, Laumonnier Y. GM-CSF and IL-33 Orchestrate Polynucleation and Polyploidy of Resident Murine Alveolar Macrophages in a Murine Model of Allergic Asthma. Int J Mol Sci 2020; 21:ijms21207487. [PMID: 33050608 PMCID: PMC7589978 DOI: 10.3390/ijms21207487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Allergic asthma is a chronical pulmonary disease with high prevalence. It manifests as a maladaptive immune response to common airborne allergens and is characterized by airway hyperresponsiveness, eosinophilia, type 2 cytokine-associated inflammation, and mucus overproduction. Alveolar macrophages (AMs), although contributing to lung homeostasis and tolerance to allergens at steady state, have attracted less attention compared to professional antigen-presenting and adaptive immune cells in their contributions. Using an acute model of house dust mite-driven allergic asthma in mice, we showed that a fraction of resident tissue-associated AMs, while polarizing to the alternatively activated M2 phenotype, exhibited signs of polynucleation and polyploidy. Mechanistically, in vitro assays showed that only Granulocyte-Macrophage Colony Stimulating Factor and interleukins IL-13 and IL-33, but not IL-4 or IL-5, participate in the establishment of this phenotype, which resulted from division defects and not cell-cell fusion as shown by microscopy. Intriguingly, mRNA analysis of AMs isolated from allergic asthmatic lungs failed to show changes in the expression of genes involved in DNA damage control except for MafB. Altogether, our data support the idea that upon allergic inflammation, AMs undergo DNA damage-induced stresses, which may provide new unconventional therapeutical approaches to treat allergic asthma.
Collapse
Affiliation(s)
- Katharina M. Quell
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Kuheli Dutta
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Ülkü R. Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Larissa Nogueira de Almeida
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Tillman Vollbrandt
- Cell Analysis Core Facility, University of Lübeck, 23538 Lübeck, Germany;
| | - Peter König
- Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany;
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23538 Lübeck, Germany
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - George S. Deepe
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Admar Verschoor
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany;
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23538 Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23538 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-31018940; Fax: +49-451-31018904
| |
Collapse
|
40
|
Abstract
![]()
The cellular outcomes of chemical
exposure are as much about the
cellular response to the chemical as it is an effect of the chemical. We are growing in our understanding
of the genotoxic interaction between chemistry and biology. For example,
recent data has revealed the biological basis for mutation induction
curves for a methylating chemical, which has been shown to be dependent
on the repair capacity of the cells. However, this is just one end
point in the toxicity pathway from chemical exposure to cell death.
Much remains to be known in order for us to predict how cells will
respond to a certain dose. Methylating agents, a subset of alkylating
agents, are of particular interest, because of the variety of adverse
genetic end points that can result, not only at increasing doses,
but also over time. For instance, methylating agents are mutagenic,
their potency, for this end point, is determined by the cellular repair
capacity of an enzyme called methylguanine DNA-methyltransferase (MGMT)
and its ability to repair the induceed methyl adducts. However, methyl
adducts can become clastogenic. Erroneous biological processing will
convert mutagenic adducts to clastogenic events in the form of double
strand breaks (DSBs). How the cell responds to DSBs is via a cascade
of protein kinases, which is called the DNA damage response (DDR),
which will determine if the damage is repaired effectively, via homologous
recombination, or with errors, via nonhomologous end joining, or whether
the cell dies via apoptosis or enters senescence. The fate of cells
may be determined by the extent of damage and the resulting strength
of DDR signaling. Therefore, thresholds of damage may exist that determine
cell fate. Such thresholds would be dependent on each of the repair
and response mechanisms that these methyl adducts stimulate. The molecular
mechanism of how methyl adducts kill cells is still to be fully resolved.
If we are able to quantify each of these thresholds of damage for
a given cell, then we can ascertain, of the many adducts that are
induced, what proportion of them are mutagenic, what proportion are
clastogenic, and how many of these clastogenic events are toxic. This
review examines the possibility of dose and damage thresholds for
methylating agents, from the perspective of the underlying evolutionary
mechanisms that may be accountable.
Collapse
Affiliation(s)
- Adam D Thomas
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
41
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
42
|
Reszegi A, Horváth Z, Fehér H, Wichmann B, Tátrai P, Kovalszky I, Baghy K. Protective Role of Decorin in Primary Hepatocellular Carcinoma. Front Oncol 2020; 10:645. [PMID: 32477937 PMCID: PMC7235294 DOI: 10.3389/fonc.2020.00645] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/07/2020] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents one of the most frequent type of primary liver cancers. Decorin, a small leucine-rich proteoglycan of the extracellular matrix, represents a powerful tumor cell growth and migration inhibitor by hindering receptor tyrosine kinases and inducing p21WAF1/CIP1. In this study, first we tested decorin expression in HCCs utilizing in silico data, as well as formalin fixed paraffin embedded tissue samples of HCC in a tissue microarray (TMA). In silico data revealed that DCN/SMA mRNA ratio is decreased in HCC compared to normal tissues and follows the staging of the disease. Among TMA samples, 52% of HCCs were decorin negative, 33% exhibited low, and 15% high decorin levels corroborating in silico results. In addition, applying conditioned media of hepatoma cells inhibited decorin expression in LX2 stellate cells in vitro. These results raise the possibility that decorin acts as a tumor suppressor in liver cancer and that is why its expression decreased in HCCs. To further test the protective role of decorin, the proteoglycan was overexpressed in a mouse model of hepatocarcinogenesis evoked by thioacetamide (TA). After transfection, the excessive proteoglycan amount was mainly detected in hepatocytes around the central veins. Upon TA-induced hepatocarcinogenesis, the highest tumor count was observed in mice with no decorin production. Decorin gene delivery reduced tumor formation, in parallel with decreased pEGFR, increased pIGF1R levels, and with concomitant induction of pAkt (T308) and phopho-p53, suggesting a novel mechanism of action. Our results suggest the idea that decorin can be utilized as an anti-cancer agent.
Collapse
Affiliation(s)
- Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Horváth
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Hajnalka Fehér
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Barnabás Wichmann
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
43
|
Bailly C. Anticancer properties and mechanism of action of the quassinoid ailanthone. Phytother Res 2020; 34:2203-2213. [PMID: 32239572 DOI: 10.1002/ptr.6681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Ailanthone (AIT) is a quassinoid natural product isolated from the worldwide-distributed plant Ailanthus altissima. The drug displays multiple pharmacological properties, in particular significant antitumor effects against a variety of cancer cell lines in vitro. Potent in vivo activities have been evidenced in mice bearing hepatocellular carcinoma, nonsmall cell lung cancer and castration-resistant prostate cancer. This review focusses on the mechanism of action of AIT, notably to highlight the capacity of the drug to activate DNA damage responses, to inhibit the Hsp90 co-chaperone p23 and to modulate the expression of several microRNA. The interconnexion between these effects is discussed. The unique capacity of AIT to downregulate oncogenic miR-21 and to upregulate the tumor suppressor miRNAs miR-126, miR-148a, miR-195, and miR-449a is presented. AIT exploits several microRNAs to exert its anticancer effects in distinct tumor types. AIT is one of the rare antitumor natural products that binds to and strongly inhibits cochaperone p23, opening interesting perspectives to treat cancers. However, the toxicity profile of the molecule may limit its development as an anticancer drug, unless it can be properly formulated to prevent AIT-induced gastro-intestinal damages in particular. The antitumor properties of AIT and analogs are underlined, with the aim to encourage further pharmacological studies with this underexplored natural product and related quassinoids. HIGHLIGHTS: Ailanthone (AIT) is an anticancer quassinoid isolated from Ailanthus altissima It inhibits proliferation and induces cell death of many cancer cell types The drug activates DNA damage response and targets p23 cochaperone Up or downregulation of several microRNA by AIT contributes to the anticancer activity Analogs or specific formulations must be developed to prevent the toxicity of AIT.
Collapse
|
44
|
Tepary Bean ( Phaseolus acutifolius) Lectins Induce Apoptosis and Cell Arrest in G0/G1 by P53(Ser46) Phosphorylation in Colon Cancer Cells. Molecules 2020; 25:molecules25051021. [PMID: 32106533 PMCID: PMC7179131 DOI: 10.3390/molecules25051021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022] Open
Abstract
A Tepary bean lectin fraction (TBLF) has been studied because it exhibits differential cytotoxic and anticancer effects on colon cancer. The present work focuses on the evaluation of the apoptotic mechanism of action on colon cancer cells. Initially, lethal concentrations (LC50) were obtained for the three studied cell lines (HT-29, RKO and SW-480). HT-29 showed the highest LC50, 10 and 100 times higher than that of RKO and SW-480 cells, respectively. Apoptosis was evaluated by flow cytometry, where HT-29 cells showed the highest levels of early and total apoptosis, caspases activity was confirmed and necrosis was discarded. The effect on cell cycle arrest was shown in the G0/G1 phase. Specific apoptosis-related gene expression was determined, where an increase in p53 and a decrease in Bcl-2 were observed. Expression of p53 gene showed the maximum level at 8 h with an important decrease at 12 and 24 h, also the phosphorylated p53(ser46) increased at 8 h. Our results show that TBLF induces apoptosis in colon cancer cells by p-p53(ser46) involvement. Further studies will focus on studying the specific signal transduction pathway.
Collapse
|