1
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Chong RA, Mueller RL. Polymorphic duplicate genes and persistent non-coding sequences reveal heterogeneous patterns of mitochondrial DNA loss in salamanders. BMC Genomics 2017; 18:992. [PMID: 29281973 PMCID: PMC5745709 DOI: 10.1186/s12864-017-4358-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 11/29/2017] [Indexed: 12/03/2022] Open
Abstract
Background Mitochondria are the site of the citric acid cycle and oxidative phosphorylation (OXPHOS). In metazoans, the mitochondrial genome is a small, circular molecule averaging 16.5 kb in length. Despite evolutionarily conserved gene content, metazoan mitochondrial genomes show a diversity of gene orders most commonly explained by the duplication-random loss (DRL) model. In the DRL model, (1) a sequence of genes is duplicated in tandem, (2) one paralog sustains a loss-of-function mutation, resulting in selection to retain the other copy, and (3) the non-functional paralog is eventually deleted from the genome. Despite its apparent role in generating mitochondrial gene order diversity, little is known about the tempo and mode of random gene loss after duplication events. Here, we determine mitochondrial gene order across the salamander genus Aneides, which was previously shown to include at least two DRL-mediated rearrangement events. We then analyze these gene orders in a phylogenetic context to reveal patterns of DNA loss after mitochondrial gene duplication. Results We identified two separate duplication events that resulted in mitochondrial gene rearrangements in Aneides; one occurred at the base of the clade tens of millions of years ago, while the other occurred much more recently (i.e. within a single species), resulting in gene order polymorphism and paralogs that are readily identifiable. We demonstrate that near-complete removal of duplicate rRNA genes has occurred since the recent duplication event, whereas duplicate protein-coding genes persist as pseudogenes and duplicate tRNAs persist as functionally intact paralogs. In addition, we show that non-coding DNA duplicated at the base of the clade has persisted across species for tens of millions of years. Conclusions The evolutionary history of the mitochondrial genome, from its inception as a bacterial endosymbiont, includes massive genomic reduction. Consistent with this overall trend, selection for efficiency of mitochondrial replication and transcription has been hypothesized to favor elimination of extra sequence. Our results, however, suggest that there may be no strong disadvantage to extraneous sequences in salamander mitochondrial genomes, although duplicate rRNA genes may be deleterious. Electronic supplementary material The online version of this article (10.1186/s12864-017-4358-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca A Chong
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA. .,Present address: Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | | |
Collapse
|
3
|
Keller J, Rousseau-Gueutin M, Martin GE, Morice J, Boutte J, Coissac E, Ourari M, Aïnouche M, Salmon A, Cabello-Hurtado F, Aïnouche A. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA Res 2017; 24:343-358. [PMID: 28338826 PMCID: PMC5737547 DOI: 10.1093/dnares/dsx006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/02/2017] [Indexed: 01/21/2023] Open
Abstract
The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades.
Collapse
Affiliation(s)
- J Keller
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - M Rousseau-Gueutin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France.,IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, 35653 Le Rheu Cedex, France
| | - G E Martin
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398 Montpellier, France
| | - J Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, 35653 Le Rheu Cedex, France
| | - J Boutte
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - E Coissac
- Laboratoire d'Ecologie Alpine, CNRS - Université de Grenoble 1 - Université de Savoie, 38041 Grenoble, France
| | - M Ourari
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie, Université Abderrahmane Mira, 06000 Bejaia, Algeria
| | - M Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Salmon
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - F Cabello-Hurtado
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| |
Collapse
|
4
|
Egamberdiev SS, Saha S, Salakhutdinov I, Jenkins JN, Deng D, Y Abdurakhmonov I. Comparative assessment of genetic diversity in cytoplasmic and nuclear genome of upland cotton. Genetica 2016; 144:289-306. [PMID: 27155886 DOI: 10.1007/s10709-016-9898-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/07/2016] [Indexed: 02/05/2023]
Abstract
The importance of the cytoplasmic genome for many economically important traits is well documented in several crop species, including cotton. There is no report on application of cotton chloroplast specific SSR markers as a diagnostic tool to study genetic diversity among improved Upland cotton lines. The complete plastome sequence information in GenBank provided us an opportunity to report on 17 chloroplast specific SSR markers using a cost-effective data mining strategy. Here we report the comparative analysis of genetic diversity among a set of 42 improved Upland cotton lines using SSR markers specific to chloroplast and nuclear genome, respectively. Our results revealed that low to moderate level of genetic diversity existed in both nuclear and cytoplasm genome among this set of cotton lines. However, the specific estimation suggested that genetic diversity is lower in cytoplasmic genome compared to the nuclear genome among this set of Upland cotton lines. In summary, this research is important from several perspectives. We detected a set of cytoplasm genome specific SSR primer pairs by using a cost-effective data mining strategy. We reported for the first time the genetic diversity in the cytoplasmic genome within a set of improved Upland cotton accessions. Results revealed that the genetic diversity in cytoplasmic genome is narrow, compared to the nuclear genome within this set of Upland cotton accessions. Our results suggested that most of these polymorphic chloroplast SSRs would be a valuable complementary tool in addition to the nuclear SSR in the study of evolution, gene flow and genetic diversity in Upland cotton.
Collapse
Affiliation(s)
- Sharof S Egamberdiev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan, 111215
| | - Sukumar Saha
- Crop Science Research Laboratory, Genetics and Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS, 39762, USA.
| | - Ilkhom Salakhutdinov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan, 111215
| | - Johnie N Jenkins
- Crop Science Research Laboratory, Genetics and Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS, 39762, USA
| | - Dewayne Deng
- Crop Science Research Laboratory, Genetics and Sustainable Agriculture Research Unit, USDA-ARS, Mississippi State, MS, 39762, USA
| | - Ibrokhim Y Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan, 111215
| |
Collapse
|
5
|
Raven JA. Implications of mutation of organelle genomes for organelle function and evolution. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5639-50. [PMID: 26077836 DOI: 10.1093/jxb/erv298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Organelle genomes undergo more variation, including that resulting from damage, than eukaryotic nuclear genomes, or bacterial genomes, under the same conditions. Recent advances in characterizing the changes to genomes of chloroplasts and mitochondria of Zea mays should, when applied more widely, help our understanding of how damage to organelle genomes relates to how organelle function is maintained through the life of individuals and in succeeding generations. Understanding of the degree of variation in the changes to organelle DNA and its repair among photosynthetic organisms might help to explain the variations in the rate of nucleotide substitution among organelle genomes. Further studies of organelle DNA variation, including that due to damage and its repair might also help us to understand why the extent of DNA turnover in the organelles is so much greater than that in their bacterial (cyanobacteria for chloroplasts, proteobacteria for mitochondria) relatives with similar rates of production of DNA-damaging reactive oxygen species. Finally, from the available data, even the longest-lived organelle-encoded proteins, and the RNAs needed for their synthesis, are unlikely to maintain organelle function for much more than a week after the complete loss of organelle DNA.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK †School of Plant Biology, University of Western Australia, M048, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
6
|
Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 2015; 112:10231-8. [PMID: 26286985 DOI: 10.1073/pnas.1500012112] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.
Collapse
|
7
|
Maier UG, Zauner S, Woehle C, Bolte K, Hempel F, Allen JF, Martin WF. Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes. Genome Biol Evol 2014; 5:2318-29. [PMID: 24259312 PMCID: PMC3879969 DOI: 10.1093/gbe/evt181] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force.
Collapse
Affiliation(s)
- Uwe-G Maier
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
9
|
Lane N. Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations. Bioessays 2011; 33:860-9. [PMID: 21922504 DOI: 10.1002/bies.201100051] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many conserved eukaryotic traits, including apoptosis, two sexes, speciation and ageing, can be causally linked to a bioenergetic requirement for mitochondrial genes. Mitochondrial genes encode proteins involved in cell respiration, which interact closely with proteins encoded by nuclear genes. Functional respiration requires the coadaptation of mitochondrial and nuclear genes, despite divergent tempi and modes of evolution. Free-radical signals emerge directly from the biophysics of mosaic respiratory chains encoded by two genomes prone to mismatch, with apoptosis being the default penalty for compromised respiration. Selection for genomic matching is facilitated by two sexes, and optimizes fitness, adaptability and fertility in youth. Mismatches cause infertility, low fitness, hybrid breakdown, and potentially speciation. The dynamics of selection for mitonuclear function optimize fitness over generations, but the same selective processes also operate within generations, driving ageing and age-related diseases. This coherent view of eukaryotic energetics offers striking insights into infertility and age-related diseases.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
10
|
Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I. Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 2011; 28:2077-86. [PMID: 21289370 PMCID: PMC3112369 DOI: 10.1093/molbev/msr028] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the endosymbiotic origin of chloroplasts from cyanobacteria 2 billion years ago, the evolution of plastids has been characterized by massive loss of genes. Most plants and algae depend on photosynthesis for energy and have retained ∼110 genes in their chloroplast genome that encode components of the gene expression machinery and subunits of the photosystems. However, nonphotosynthetic parasitic plants have retained a reduced plastid genome, showing that plastids have other essential functions besides photosynthesis. We sequenced the complete plastid genome of the underground orchid, Rhizanthella gardneri. This remarkable parasitic subterranean orchid possesses the smallest organelle genome yet described in land plants. With only 20 proteins, 4 rRNAs, and 9 tRNAs encoded in 59,190 bp, it is the least gene-rich plastid genome known to date apart from the fragmented plastid genome of some dinoflagellates. Despite numerous differences, striking similarities with plastid genomes from unrelated parasitic plants identify a minimal set of protein-encoding and tRNA genes required to reside in plant plastids. This prime example of convergent evolution implies shared selective constraints on gene loss or transfer.
Collapse
Affiliation(s)
- Etienne Delannoy
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia.
| | | | | | | | | |
Collapse
|
11
|
Martín C, Cervera MT, González-Benito ME. Genetic stability analysis of chrysanthemum (Chrysanthemum x morifolium Ramat) after different stages of an encapsulation-dehydration cryopreservation protocol. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:158-66. [PMID: 20801547 DOI: 10.1016/j.jplph.2010.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 05/22/2023]
Abstract
Genetic stability in chrysanthemum (cultivar 'Pasodoble') apices was studied at each step of an encapsulation-dehydration cryopreservation protocol: control shoots (A), nodal segments after cold treatment (N), apices after osmotic stress (0.3M sucrose) and cold treatment (P), encapsulation and culture in 0.8M sucrose (S), dehydration (D), and cryopreservation (Cr). Two different markers were employed: RAPDs and AFLPs. Throughout the process, the origin of the apices (in vitro shoot from which they were excised) was recorded. Eight complete lines (from which DNA could be amplified after all the steps considered) were studied. Two out of twelve arbitrary primers showed polymorphisms. Three RAPD markers were replaced by three new ones in the Cr sample in one line. Using a different primer, a 700bp fragment was absent from all samples from the 0.3M sucrose-culture step ('P') onwards, in all the lines studied. The sequences of these fragments were studied to find similarities with known sequences. Polymorphic AFLP fragments were also observed, and most of the differences appeared from step 'P' onwards, pointing out the possible effect of this process (preculture on 0.3M sucrose) in the DNA variation. These results show that genetic variation can appear throughout the cryopreservation process, and the low temperature itself is not the only stress risk of the technique. Therefore, genetic stability of the regenerants obtained after cryopreservation should be monitored.
Collapse
Affiliation(s)
- Carmen Martín
- Departamento de Biología Vegetal, Universidad Politécnica de Madrid, Cuidad Universitaria s/n, Madrid, Spain.
| | | | | |
Collapse
|
12
|
Leister D, Kleine T. Role of intercompartmental DNA transfer in producing genetic diversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:73-114. [PMID: 22017974 DOI: 10.1016/b978-0-12-386035-4.00003-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genes are found in three compartments-the nucleus, mitochondria, and plastids-and extensive gene transfer has occurred between them. Most organellar genes in the nucleus migrated there long ago, but transfer is ongoing and ubiquitous. It now generates mostly noncoding nuclear DNA, can also disrupt gene functions, and reshape genes by adding novel exons. Plastid or nuclear sequences have also contributed to the formation of mitochondrial tRNA genes. It is now clear that organelle-to-nucleus DNA transfer involves the escape of DNA molecules from the organelles at times of stress or at certain developmental stages, and their subsequent incorporation at sites of double-stranded breaks in nuclear DNA by nonhomologous recombination. Intercompartmental DNA transfer thus appears to be an inescapable phenomenon that has had a broad impact on eukaryotic evolution, affecting DNA repair, gene and genome evolution, and redirecting proteins to different target compartments.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen, Department Biologie I, Ludwig-Maximilians-Universität München-LMU, Planegg-Martinsried, Germany
| | | |
Collapse
|
13
|
Lommer M, Roy AS, Schilhabel M, Schreiber S, Rosenstiel P, LaRoche J. Recent transfer of an iron-regulated gene from the plastid to the nuclear genome in an oceanic diatom adapted to chronic iron limitation. BMC Genomics 2010; 11:718. [PMID: 21171997 PMCID: PMC3022921 DOI: 10.1186/1471-2164-11-718] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 12/20/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Although the importance and widespread occurrence of iron limitation in the contemporary ocean is well documented, we still know relatively little about genetic adaptation of phytoplankton to these environments. Compared to its coastal relative Thalassiosira pseudonana, the oceanic diatom Thalassiosira oceanica is highly tolerant to iron limitation. The adaptation to low-iron conditions in T. oceanica has been attributed to a decrease in the photosynthetic components that are rich in iron. Genomic information on T. oceanica may shed light on the genetic basis of the physiological differences between the two species. RESULTS The complete 141790 bp sequence of the T. oceanica chloroplast genome [GenBank: GU323224], assembled from massively parallel pyrosequencing (454) shotgun reads, revealed that the petF gene encoding for ferredoxin, which is localized in the chloroplast genome in T. pseudonana and other diatoms, has been transferred to the nucleus in T. oceanica. The iron-sulfur protein ferredoxin, a key element of the chloroplast electron transport chain, can be replaced by the iron-free flavodoxin under iron-limited growth conditions thereby contributing to a reduction in the cellular iron requirements. From a comparison to the genomic context of the T. pseudonana petF gene, the T. oceanica ortholog can be traced back to its chloroplast origin. The coding potential of the T. oceanica chloroplast genome is comparable to that of T. pseudonana and Phaeodactylum tricornutum, though a novel expressed ORF appears in the genomic region that has been subjected to rearrangements linked to the petF gene transfer event. CONCLUSIONS The transfer of the petF from the cp to the nuclear genome in T. oceanica represents a major difference between the two closely related species. The ability of T. oceanica to tolerate iron limitation suggests that the transfer of petF from the chloroplast to the nuclear genome might have contributed to the ecological success of this species.
Collapse
Affiliation(s)
- Markus Lommer
- Leibniz Institute of Marine Sciences at Kiel University IFM-GEOMAR, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Puthiyaveetil S, Ibrahim IM, Jeličić B, Tomašić A, Fulgosi H, Allen JF. Transcriptional control of photosynthesis genes: the evolutionarily conserved regulatory mechanism in plastid genome function. Genome Biol Evol 2010; 2:888-96. [PMID: 21071627 PMCID: PMC3012001 DOI: 10.1093/gbe/evq073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chloroplast sensor kinase (CSK) is a bacterial-type sensor histidine kinase found in chloroplasts—photosynthetic plastids—in eukaryotic plants and algae. Using a yeast two-hybrid screen, we demonstrate recognition and interactions between: CSK, plastid transcription kinase (PTK), and a bacterial-type RNA polymerase sigma factor-1 (SIG-1). CSK interacts with itself, with SIG-1, and with PTK. PTK also interacts directly with SIG-1. PTK has previously been shown to catalyze phosphorylation of plastid-encoded RNA polymerase (PEP), suppressing plastid transcription nonspecifically. Phospho-PTK is inactive as a PEP kinase. Here, we propose that phospho-CSK acts as a PTK kinase, releasing PTK repression of chloroplast transcription, while CSK also acts as a SIG-1 kinase, blocking transcription specifically at the gene promoter of chloroplast photosystem I. Oxidation of the photosynthetic electron carrier plastoquinone triggers phosphorylation of CSK, inducing chloroplast photosystem II while suppressing photosystem I. CSK places photosystem gene transcription under the control of photosynthetic electron transport. This redox signaling pathway has its origin in cyanobacteria, photosynthetic prokaryotes from which chloroplasts evolved. The persistence of this mechanism in cytoplasmic organelles of photosynthetic eukaryotes is in precise agreement with the CoRR hypothesis for the function of organellar genomes: the plastid genome and its primary gene products are Co-located for Redox Regulation. Genes are retained in plastids primarily in order for their expression to be subject to this rapid and robust redox regulatory transcriptional control mechanism, whereas plastid genes also encode genetic system components, such as some ribosomal proteins and RNAs, that exist in order to support this primary, redox regulatory control of photosynthesis genes. Plastid genome function permits adaptation of the photosynthetic apparatus to changing environmental conditions of light quantity and quality.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Iskander M. Ibrahim
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Branka Jeličić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Tomašić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Hrvoje Fulgosi
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - John F. Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
- Corresponding author: E-mail:
| |
Collapse
|
15
|
Dani MA, Dani SU. Improving upon nature's somatic mitochondrial DNA therapies. Med Hypotheses 2010; 74:1021-5. [PMID: 20116178 DOI: 10.1016/j.mehy.2010.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 01/10/2010] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA (mtDNA) directs key metabolic functions in eukaryotic cells. While a number of mtDNA mutations are known causes of human diseases and age-related dysfunctions, some mtDNA haplotypes are associated with extreme longevity. Despite the mutagenic mitochondrial environment naturally enhancing somatic mtDNA mutation rates, mtDNA remains grossly stable along generations of plant and animal species including man. This relative stability can be accounted for by the purging of deleterious mutations by natural selection operating on growing cells, tissues, organisms and populations, as observed in gametogenesis, embryogenesis, oncogenesis and cladogenesis. In the adult multicellular organism, however, mtDNA mutations accumulate in slowly dividing cells, and, to a much higher degree, in postmitotic cells and tissues. Dynamic mitochondrial fusion and fission, by redistributing polymorphic mtDNA molecules; mitophagy, by clearing defective mitochondria and mutated mtDNA; compensatory mutations and mtDNA repair can compensate for the accumulation of mtDNA mutations only to a certain extent, thereby creating a dysfunctional threshold. Here we hypothesize that this threshold is naturally up-regulated by both vertical and horizontal transfers of mtDNA from stem cells or cell types which retain the capacity of purging deleterious mtDNA through cell division and natural selection in the adult organism. When these natural cell and tissue mtDNA reserves are exhausted, artificial mtDNA therapy may provide for additional threshold up-regulation. Replacement of mtDNA has been already successfully accomplished in early stage embryos and stem cells in a number of species including primates. It is thus simply a matter of refinement of technique that somatic mtDNA therapy, i.e., therapy of pathological conditions based on the transfer of mtDNA to somatic eukaryotic cells and tissues, becomes a medical reality.
Collapse
Affiliation(s)
- M A Dani
- Department of Neuro- and Sensory Physiology, University of Göttingen, Germany.
| | | |
Collapse
|
16
|
Lipinski KA, Kaniak-Golik A, Golik P. Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1086-98. [PMID: 20056105 DOI: 10.1016/j.bbabio.2009.12.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
As a legacy of their endosymbiotic eubacterial origin, mitochondria possess a residual genome, encoding only a few proteins and dependent on a variety of factors encoded by the nuclear genome for its maintenance and expression. As a facultative anaerobe with well understood genetics and molecular biology, Saccharomyces cerevisiae is the model system of choice for studying nucleo-mitochondrial genetic interactions. Maintenance of the mitochondrial genome is controlled by a set of nuclear-coded factors forming intricately interconnected circuits responsible for replication, recombination, repair and transmission to buds. Expression of the yeast mitochondrial genome is regulated mostly at the post-transcriptional level, and involves many general and gene-specific factors regulating splicing, RNA processing and stability and translation. A very interesting aspect of the yeast mitochondrial system is the relationship between genome maintenance and gene expression. Deletions of genes involved in many different aspects of mitochondrial gene expression, notably translation, result in an irreversible loss of functional mtDNA. The mitochondrial genetic system viewed from the systems biology perspective is therefore very fragile and lacks robustness compared to the remaining systems of the cell. This lack of robustness could be a legacy of the reductive evolution of the mitochondrial genome, but explanations involving selective advantages of increased evolvability have also been postulated.
Collapse
Affiliation(s)
- Kamil A Lipinski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | |
Collapse
|
17
|
Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev 2009; 19:613-9. [PMID: 19897356 DOI: 10.1016/j.gde.2009.10.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/31/2009] [Accepted: 10/07/2009] [Indexed: 11/20/2022]
Abstract
Horizontal gene transfer (HGT) is known to have contributed to the content of eukaryotic genomes, but the direct effects of HGT on eukaryotic evolution are more obscure because many of the best supported cases involve a new gene replacing a functionally similar homologue. Here, several cases of HGT conferring a plausible adaptive advantage are reviewed to examine emerging trends in such transfer events. In particular, HGT seems to play an important role in adaptation to parasitism and pathogenesis, as well as to other specific environmental conditions such as anaerobiosis or nitrogen and iron limitation in marine environments. Most, but not all, of the functionally significant HGT to eukaryotes comes from bacteria, in part due to chance, but probably also because bacteria have greater metabolic diversity to offer.
Collapse
|
18
|
Puthiyaveetil S, Allen JF. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression. Proc Biol Sci 2009; 276:2133-45. [PMID: 19324807 PMCID: PMC2677595 DOI: 10.1098/rspb.2008.1426] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 01/15/2009] [Indexed: 11/12/2022] Open
Abstract
Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.
Collapse
Affiliation(s)
| | - John F. Allen
- School of Biological and Chemical Sciences, Queen Mary, University of LondonMile End Road, London E1 4NS, UK
| |
Collapse
|
19
|
Kleine T, Maier UG, Leister D. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:115-38. [PMID: 19014347 DOI: 10.1146/annurev.arplant.043008.092119] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In eukaryotes, DNA is exchanged between endosymbiosis-derived compartments (mitochondria and chloroplasts) and the nucleus. Organelle-to-nucleus DNA transfer involves repair of double-stranded breaks by nonhomologous end-joining, and resulted during early organelle evolution in massive relocation of organelle genes to the nucleus. A large fraction of the products of the nuclear genes so acquired are retargeted to their ancestral compartment; many others now function in new subcellular locations. Almost all present-day nuclear transfers of mitochondrial or plastid DNA give rise to noncoding sequences, dubbed nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs). Some of these sequences were recruited as exons, thus introducing new coding sequences into preexisting nuclear genes by a novel mechanism. In organisms derived from secondary or tertiary endosymbiosis, serial gene transfers involving nucleus-to-nucleus migration of DNA have also occurred. Intercompartmental DNA transfer therefore represents a significant driving force for gene and genome evolution, relocating and refashioning genes and contributing to genetic diversity.
Collapse
Affiliation(s)
- Tatjana Kleine
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
20
|
Blackstone N. Mitochondria and the redox control of development in cnidarians. Semin Cell Dev Biol 2008; 20:330-6. [PMID: 19136068 DOI: 10.1016/j.semcdb.2008.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/21/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
Mitochondria are the product of an ancient symbiosis between bacteria and host cells. While mitochondria function primarily in energy conversion, increasing amounts of evidence indicate that mitochondrial metabolic state can influence various emergent features of eukaryotic cells. Important intermediaries in such redox signaling include by-products of metabolism, particularly reactive oxygen species (ROS). This review uses cnidarians, a group of basally branching animals, to illustrate the many and varied effects of ROS on development. ROS from both mitochondria and algal symbionts are considered. Because some applications of ROS may lack specificity, the signaling demands of mitochondria and algae may to some extent conflict. An extensive algal symbiosis may thus be incompatible with a well-developed capacity for mitochondrial signaling.
Collapse
Affiliation(s)
- Neil Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
21
|
Carter DR. Plastocyanin-ferredoxin oxidoreduction and endosymbiotic gene transfer. PHOTOSYNTHESIS RESEARCH 2008; 97:245-253. [PMID: 18661249 DOI: 10.1007/s11120-008-9333-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Accepted: 07/10/2008] [Indexed: 05/26/2023]
Abstract
Sequence similarities of proteins associated with plastocyanin-ferredoxin oxidoreduction (PcFdOR) activity of Photosystem I (PSI) were grouped and compared. PsaA, psaB, psaC, and petG represent genes that have been retained in the chloroplasts of both green- and red-lineage species. PsaD, psaE, psaF, and petF represent genes that have been retained in the chloroplast of red-lineage species, but have been transferred to the nuclear genome of green-lineage species. Translated sequences from red- and green-lineage proteins were compared to that of contemporary cyanobacteria, Synechocystis PCC 6803, and Gloeobacter violaceus PCC 7421. Within the green lineage, a lower level of sequence conservation coincided with gene transfer to the nuclear genome. Surprisingly, a similar pattern of sequence conservation existed for the same set of genes found in the red lineage even though all those genes were retained in their chloroplast genomes. This discrepancy between green and red lineage is discussed in terms of endosymbiotic gene transfer.
Collapse
Affiliation(s)
- Douglas R Carter
- Department of Biology, Central Connecticut State University, 1615 Stanley St., New Britain, CT, 06050, USA.
| |
Collapse
|
22
|
|
23
|
Bock R, Timmis JN. Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays 2008; 30:556-66. [PMID: 18478535 DOI: 10.1002/bies.20761] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During evolution, the genomes of eukaryotic cells have undergone major restructuring to meet the new regulatory challenges associated with compartmentalization of the genetic material in the nucleus and the organelles acquired by endosymbiosis (mitochondria and plastids). Restructuring involved the loss of dispensable or redundant genes and the massive translocation of genes from the ancestral organelles to the nucleus. Genomics and bioinformatic data suggest that the process of DNA transfer from organelles to the nucleus still continues, providing raw material for evolutionary tinkering in the nuclear genome. Recent reconstruction of these events in the laboratory has provided a unique tool to observe genome evolution in real time and to study the molecular mechanisms by which plastid genes are converted into functional nuclear genes. Here, we summarize current knowledge about plastid-to-nuclear gene transfer in the context of genome evolution and discuss new insights gained from experiments that recapitulate endosymbiotic gene transfer in the laboratory.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| | | |
Collapse
|
24
|
Russell MJ. The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 2007; 55:133-79. [PMID: 17704896 DOI: 10.1007/s10441-007-9018-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 11/27/2022]
Abstract
The Earth agglomerates and heats. Convection cells within the planetary interior expedite the cooling process. Volcanoes evolve steam, carbon dioxide, sulfur dioxide and pyrophosphate. An acidulous Hadean ocean condenses from the carbon dioxide atmosphere. Dusts and stratospheric sulfurous smogs absorb a proportion of the Sun's rays. The cooled ocean leaks into the stressed crust and also convects. High temperature acid springs, coupled to magmatic plumes and spreading centers, emit iron, manganese, zinc, cobalt and nickel ions to the ocean. Away from the spreading centers cooler alkaline spring waters emanate from the ocean floor. These bear hydrogen, formate, ammonia, hydrosulfide and minor methane thiol. The thermal potential begins to be dissipated but the chemical potential is dammed. The exhaling alkaline solutions are frustrated in their further attempt to mix thoroughly with their oceanic source by the spontaneous precipitation of biomorphic barriers of colloidal iron compounds and other minerals. It is here we surmise that organic molecules are synthesized, filtered, concentrated and adsorbed, while acetate and methane--separate products of the precursor to the reductive acetyl-coenzyme-A pathway-are exhaled as waste. Reactions in mineral compartments produce acetate, amino acids, and the components of nucleosides. Short peptides, condensed from the simple amino acids, sequester 'ready-made' iron sulfide clusters to form protoferredoxins, and also bind phosphates. Nucleotides are assembled from amino acids, simple phosphates carbon dioxide and ribose phosphate upon nanocrystalline mineral surfaces. The side chains of particular amino acids register to fitting nucleotide triplet clefts. Keyed in, the amino acids are polymerized, through acid-base catalysis, to alpha chains. Peptides, the tenuous outer-most filaments of the nanocrysts, continually peel away from bound RNA. The polymers are concentrated at cooler regions of the mineral compartments through thermophoresis. RNA is reproduced through a convective polymerase chain reaction operating between 40 and 100 degrees C. The coded peptides produce true ferredoxins, the ubiquitous proteins with the longest evolutionary pedigree. They take over the role of catalyst and electron transfer agent from the iron sulfides. Other iron-nickel sulfide clusters, sequestered now by cysteine residues as CO-dehydrogenase and acetyl-coenzyme-A synthase, promote further chemosynthesis and support the hatchery--the electrochemical reactor--from which they sprang. Reactions and interactions fall into step as further pathways are negotiated. This hydrothermal circuitry offers a continuous supply of material and chemical energy, as well as electricity and proticity at a potential appropriate for the onset of life in the dark, a rapidly emerging kinetic structure born to persist, evolve and generate entropy while the sun shines.
Collapse
Affiliation(s)
- Michael J Russell
- Planetary Science and Life Detection Section 3220, MS:183-601, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109-8099, USA.
| |
Collapse
|
25
|
Doolen JF, Geddes GC, Blackstone NW. Multicellular Redox Regulation in an Early‐Evolving Animal Treated with Glutathione. Physiol Biochem Zool 2007; 80:317-25. [PMID: 17390287 DOI: 10.1086/512587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2006] [Indexed: 11/03/2022]
Abstract
Redox signaling has emerged as a unifying theme in many seemingly disparate disciplines. Such signaling has been widely studied in bacteria and eukaryotic organelles and is often mediated by reactive oxygen species (ROS). In this context, reduced glutathione (GSH) acts as an important intracellular antioxidant, diminishing ROS and potentially affecting redox signaling. Complementing this cell-level perspective, colonial hydroids can be a useful model for understanding organism-level redox signaling. These simple, early-evolving animals consist of feeding polyps connected by tubelike stolons. Colonies treated exogenously with GSH or reduced glutathione ethyl ester (GEE) were expected to show a morphological change to sheetlike growth typical of low levels of ROS. Contrary to expectations, diminished stolon branching and polyp initiation was observed. Such runnerlike growth is associated with higher levels of ROS, and surprisingly, such higher levels were found in GSH- and GEE-treated colonies. Further investigations show that GSH triggered a feeding response in hydroid polyps, increasing oxygen uptake but at the same time relaxing mitochondrion-rich contractile regions at the base of polyps. Diminished gastrovascular flow and increased emissions of mitochondrial ROS also correlated with the observed runnerlike growth. In contrast to cell-level, "bottom-up" views of redox signaling, here the phenotype may arise from a "top-down" interaction of mitochondrion-rich regions and organism-level physiology. Such multicellular redox regulation may commonly occur in other animals as well.
Collapse
Affiliation(s)
- Joseph F Doolen
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | |
Collapse
|
26
|
Cavalier-Smith T. Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc Biol Sci 2006; 273:1943-52. [PMID: 16822756 PMCID: PMC1634775 DOI: 10.1098/rspb.2006.3531] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 02/22/2006] [Indexed: 11/12/2022] Open
Abstract
Mitochondria originated by permanent enslavement of purple non-sulphur bacteria. These endosymbionts became organelles through the origin of complex protein-import machinery and insertion into their inner membranes of protein carriers for extracting energy for the host. A chicken-and-egg problem exists: selective advantages for evolving import machinery were absent until inner membrane carriers were present, but this very machinery is now required for carrier insertion. I argue here that this problem was probably circumvented by conversion of the symbiont protein-export machinery into protein-import machinery, in three phases. I suggest that the first carrier entered the periplasmic space via pre-existing beta-barrel proteins in the bacterial outer membrane that later became Tom40, and inserted into the inner membrane probably helped by a pre-existing inner membrane protein, thereby immediately providing the protoeukaryote host with photosynthesate. This would have created a powerful selective advantage for evolving more efficient carrier import by inserting Tom70 receptors. Massive gene transfer to the nucleus inevitably occurred by mutation pressure. Finally, pressure from harmful, non-selected gene transfer to the nucleus probably caused evolution of the presequence mechanism, and photosynthesis was lost.
Collapse
|
27
|
Abstract
Recent work identifies two kinases required for phosphorylation of proteins of chloroplast thylakoid membranes. One kinase, STN7, is required for phosphorylation of light-harvesting complex II; another, STN8, is required for phosphorylation of photosystem II. How do these kinases interact, what do they do, and what are they for?
Collapse
Affiliation(s)
- John F Allen
- School of Biological and Chemical Sciences Queen Mary, University of London.
| |
Collapse
|
28
|
Blackstone NW. Multicellular redox regulation: integrating organismal biology and redox chemistry. Bioessays 2006; 28:72-7. [PMID: 16369939 DOI: 10.1002/bies.20337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Early in the 20th century, Charles Manning Child attributed organismal gradients in metabolism to interactions among groups of cells. Metabolic gradients are now firmly grounded in redox chemistry, yet modern work on metabolic signaling has consistently focused on the cellular level. Multicellular redox regulation, however, may occur when redox state is determined by the behavior of a group of cells. For instance, typically an abundance of substrate will shift the redox state of mitochondria in the direction of reduction, leading to increased reactive oxygen species (ROS). These ROS, in turn, may modify the conformation and activity of proteins involved in signaling pathways, resulting in phenotypic changes. In contrast, if substrate triggers the contractions of a muscular structure comprising mitochondrion-rich cells, the resulting metabolic demand may shift the redox state in the direction of oxidation, with a corresponding decrease of ROS and different phenotypic effects. Indeed, colonial hydroids exemplify this process. Parallel examples may occur whenever mitochondria are concentrated in cells of structures that can respond to environmental perturbations with increased metabolic demand. In these circumstances, predicting the direction of metabolic signaling may require an understanding of events at the organismal level.
Collapse
Affiliation(s)
- Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, illinois 60115, USA.
| |
Collapse
|
29
|
Choi C, Liu Z, Adams KL. Evolutionary transfers of mitochondrial genes to the nucleus in the Populus lineage and coexpression of nuclear and mitochondrial Sdh4 genes. THE NEW PHYTOLOGIST 2006; 172:429-39. [PMID: 17083674 DOI: 10.1111/j.1469-8137.2006.01821.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The transfer of mitochondrial genes to the nucleus is an ongoing evolutionary process in flowering plants. Evolutionarily recent gene transfers provide insights into the evolutionary dynamics of the process and the way in which transferred genes become functional in the nucleus. Genes that are present in the mitochondrion of some angiosperms but have been transferred to the nucleus in the Populus lineage were identified by searches of Populus sequence databases. Sequence analyses and expression experiments were used to characterize the transferred genes. Two succinate dehydrogenase genes and six mitochondrial ribosomal protein genes have been transferred to the nucleus in the Populus lineage and have become expressed. Three transferred genes have gained an N-terminal mitochondrial targeting presequence from other pre-existing genes and two of the transferred genes do not contain an N-terminal targeting presequence. Intact copies of the succinate dehydrogenase gene Sdh4 are present in both the mitochondrion and the nucleus. Both copies of Sdh4 are expressed in multiple organs of two Populus species and RNA editing occurs in the mitochondrial copy. These results provide a genome-wide perspective on mitochondrial genes that were transferred to the nucleus and became expressed, functional genes during the evolutionary history of Populus.
Collapse
Affiliation(s)
- Catherine Choi
- UBC Botanical Garden & Centre for Plant Research, and Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | | | | |
Collapse
|
30
|
Abstract
Mitochondria are the organelles of aerobic respiration. They consume the oxygen we breathe to stay alive and generate energy for cells to function. But oxygen can be dangerous. Indeed, mitochondria generate the majority of reactive oxygen species that are prime suspects among the causes of aging. Mitochondria have been influential elements of evolving eukaryotic cells for perhaps 2 billion years, since a eubacterium fused with an archaebacterium. The picture that has emerged from this long history of genomic fusion is that of a complex network of nuclear-mitochondrial cross-talk. Here, we discuss the biochemical and genetic conflicts between mitochondria and nucleus, which have shaped the role of mitochondria in aging, and point to new paths for further investigations.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|