1
|
Lemmers SAM, Le Luyer M, Stoll SJ, Hoffnagle AG, Ferrell RJ, Gamble JA, Guatelli-Steinberg D, Gurian KN, McGrath K, O’Hara MC, Smith ADAC, Dunn EC. Inter-rater reliability of stress signatures in exfoliated primary dentition - Improving scientific rigor and reproducibility in histological data collection. PLoS One 2025; 20:e0318700. [PMID: 40106466 PMCID: PMC11922276 DOI: 10.1371/journal.pone.0318700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/20/2025] [Indexed: 03/22/2025] Open
Abstract
Accentuated Lines (ALs) in tooth enamel can reflect metabolic disruptions from physiological or psychological stresses during development. They can therefore serve as a retrospective biomarker of generalized stress exposure in archaeological and clinical research. However, little consensus exists on when ALs are identified and inter-rater reliability is poorly quantified across studies. Here, we sought to address this gap by examining the reliability of accentuated (AL) markings across raters, in terms of both the presence versus absence of ALs and their intensity (HAL= Highly Accentuated, MAL= Mildly Accentuated, RL= Retzius Line). Ratings were made and compared across observers (with different levels of experience) and pairs of raters (who agreed on AL coding through consensus meetings) (N = 15 teeth, eight observers). Results indicated that more experience in AL assessment does not necessarily produce higher reliability between raters. Most disagreements in intensity ratings occurred in categories other than HAL. Furthermore, when AL assessment was performed by pairs of raters, reliability was significantly higher than individual assessments (Gwet's AC1 = 0.28 to 0.56 for line presence assessment; Gwet's AC1 = 0.48 to 0.64 for line intensity assessment). Based on these results, we recommend a workflow called IRRISS (Improving Reliability and Reporting In Scoring of Stress-markers) to increase rigor and reproducibility in histological analysis of dental collections. The introduction of IRRISS is well-timed, given the surge in studies of teeth occurring across anthropological, epidemiological, medical, forensic, and climate research fields.
Collapse
Affiliation(s)
- Simone A. M. Lemmers
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Mona Le Luyer
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samantha J. Stoll
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alison G. Hoffnagle
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rebecca J. Ferrell
- National Science Foundation, Alexandria, Virginia, United States of America
| | - Julia A. Gamble
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Kaita N. Gurian
- Department of Anthropology, The Ohio State University, Columbus, Ohio, United States of America
| | - Kate McGrath
- Department of Anthropology, SUNY Oneonta, New York, United States of America
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington District of Columbia, United States of America
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Mackie C. O’Hara
- School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
- Department of Sociology, College of Liberal Arts, Purdue University, West Lafayette, Indiana, United States of America
| | - Andrew D. A. C. Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, United Kingdom
| | - Erin C. Dunn
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Sociology, College of Liberal Arts, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
2
|
Parker WMG, Adams JW, Hocking DP, Fitzgerald EMG, Shaw G, Renfree MB, Evans AR. Synchrotron X-ray Fluorescence Microscopy Reveals Trace Elemental Indicators of Life History in Marsupial Teeth. Biol Trace Elem Res 2025:10.1007/s12011-024-04502-z. [PMID: 39821184 DOI: 10.1007/s12011-024-04502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
As teeth develop, their mineralised composition is a bio-recorder of diet, environment, and growth. High-resolution elemental mapping provides a tool to reveal records of life history within teeth. The relative concentrations of a range of trace elements change between in utero development, birth, and weaning in eutherian mammals. Marsupials, however, have a different mode of development: altricial birth and growth within the pouch facilitated by compositional transitions in milk. How these differences alter patterns of elemental mineralisation and become recorded in marsupial teeth is previously unknown. This study analyses the distribution of calcium (major element), zinc (actively incorporated trace element), and strontium (passively incorporated trace element) in the teeth of five species of diprotodontian marsupial using synchrotron X-ray fluorescence microscopy. We find that the diprotodontian lower incisor concatenates elemental variation from across the molariform dentition, preserving a prolonged record of life history in four of the five species. Patterns of elemental incorporation in enamel, dentine, and cementum are presented, with Ca, Zn, and Sr having differing distributions. Zn accretion indicates a role in mineralisation and/or prevention of tooth degradation. Zn also demarcates incremental cementum lines. Sr is shown to be passively incorporated into marsupial teeth, with increasing Sr concentration in milk recorded in dental tissues formed contemporaneously. Older individuals have oscillatory signals in Sr that appear linked to seasonality. These findings highlight some similarities between eutherian and marsupial trace element incorporation, particularly in the distribution of Zn. Sr signals in marsupial teeth record key aspects of life history.
Collapse
Grants
- XFM12001, XFM14356, XFM15825, XFM19997 Australian Nuclear Science and Technology Organisation
- XFM12001, XFM14356, XFM15825, XFM19997 Australian Nuclear Science and Technology Organisation
- XFM12001, XFM14356, XFM15825, XFM19997 Australian Nuclear Science and Technology Organisation
- XFM12001, XFM14356, XFM15825, XFM19997 Australian Nuclear Science and Technology Organisation
- DP230100613, RTP Stipend Australian Government
- DP230100613, RTP Stipend Australian Government
- Monash University - Museums Victoria Robert Blackwood Top-up Scholarship Museums Victoria
Collapse
Affiliation(s)
- William M G Parker
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
- Museums Victoria Research Institute, Museums Victoria, Melbourne, VIC, 3001, Australia.
| | - Justin W Adams
- Museums Victoria Research Institute, Museums Victoria, Melbourne, VIC, 3001, Australia
- Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - David P Hocking
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
- Vertebrate Zoology and Palaeontology, Tasmanian Museum and Art Gallery, Hobart, TAS, 7001, Australia
| | - Erich M G Fitzgerald
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
- Museums Victoria Research Institute, Museums Victoria, Melbourne, VIC, 3001, Australia
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alistair R Evans
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
- Museums Victoria Research Institute, Museums Victoria, Melbourne, VIC, 3001, Australia
| |
Collapse
|
3
|
Smith TM, Ávila JN, Arora M, Austin C, Drake T, Kinaston R, Sudron E, Wang Y, Williams IS. Brief communication: New method for measuring nitrogen isotopes in tooth dentine at high temporal resolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e24991. [PMID: 38923412 DOI: 10.1002/ajpa.24991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES Nitrogen isotopes (δ15N) are widely used to study human nursing and weaning ages. Conventional methods involve sampling 1-mm thick sections of tooth dentine-producing an averaging effect that integrates months of formation. We introduce a novel protocol for measuring δ15N by multicollector secondary ion mass spectrometry (SIMS). MATERIALS AND METHODS We sampled dentine δ15N on a weekly to monthly basis along the developmental axis in two first molars of healthy children from Australia and New Zealand (n = 217 measurements). Nitrogen isotope ratios were determined from measurements of CN- secondary molecular ions in ~35 μm spots. By relating spot position to enamel formation, we identified prenatal dentine, as well as sampling ages over more than 3 years. We also created calcium-normalized barium and strontium maps with laser ablation-inductively coupled plasma-mass spectrometry. RESULTS We found rapid postnatal δ15N increases of ~2‰-3‰, during which time the children were exclusively breastfed, followed by declines as the breastfeeding frequency decreased. After weaning, δ15N values remained stable for several months, coinciding with diets that did not include meat or cow's milk; values then varied by ~2‰ starting in the third year of life. Barium did not show an immediate postnatal increase, rising after a few months until ~1-1.5 years of age, and falling until or shortly after the cessation of suckling. Initial strontium trends varied but both individuals peaked months after weaning. DISCUSSION Developmentally informed SIMS measurements of δ15N minimize time averaging and can be precisely related to an individual's early dietary history.
Collapse
Affiliation(s)
- Tanya M Smith
- Griffith Centre for Social and Cultural Research, Griffith University, Gold Coast, Queensland, Australia
- Australian Research Centre for Human Evolution, Griffith University, Gold Coast, Queensland, Australia
| | - Janaína N Ávila
- Griffith Centre for Social and Cultural Research, Griffith University, Gold Coast, Queensland, Australia
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Teresa Drake
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Rebecca Kinaston
- Griffith Centre for Social and Cultural Research, Griffith University, Gold Coast, Queensland, Australia
- BioArch South, Waitati, New Zealand
| | - Emma Sudron
- Griffith Centre for Social and Cultural Research, Griffith University, Gold Coast, Queensland, Australia
- Australian Research Centre for Human Evolution, Griffith University, Gold Coast, Queensland, Australia
| | - Yue Wang
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ian S Williams
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
4
|
Bauer JA, Punshon T, Barr MN, Jackson BP, Weisskopf MG, Bidlack FB, Coker MO, Peacock JL, Karagas MR. Deciduous teeth from the New Hampshire birth cohort study: Early life environmental and dietary predictors of dentin elements. ENVIRONMENTAL RESEARCH 2024; 256:119170. [PMID: 38768888 PMCID: PMC11748168 DOI: 10.1016/j.envres.2024.119170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Sparse research exists on predictors of element concentrations measured in deciduous teeth. OBJECTIVE To estimate associations between maternal/child characteristics, elements measured in home tap water during pregnancy and element concentrations in the dentin of shed deciduous teeth. METHODS Our analysis included 152 pregnant person-infant dyads followed from the second trimester through the end of the first postnatal year from the New Hampshire Birth Cohort Study. During pregnancy and early infancy, we collected dietary and sociodemographic information via surveys, measured elements in home tap water, and later collected naturally exfoliated teeth from child participants. We measured longitudinal deposition of elements in dentin using LA-ICP-MS. Multivariable linear mixed models were used to estimate associations between predictors and dentin element concentrations. RESULTS We measured 12 elements in dentin including those previously reported (Ba, Mn, Pb, Sr, Zn) and less frequently reported (Al, As, Cd, Cu, Hg, Li, and W). A doubling of Pb or Sr concentrations in water was associated with higher dentin Pb or Sr respectively in prenatally formed [9% (95%CI: 3%, 15%); 3% (1%, 6%)] and postnatally formed [10% (2%, 19%); 6% (2%, 10%)] dentin. Formula feeding from birth to 6 weeks or 6 weeks to 4 months was associated with higher element concentrations in postnatal dentin within the given time period as compared to exclusive human milk feeding: Sr: 6 weeks: 61% (36%, 90%) and 4 months: 85% (54%, 121%); Ba: 6 weeks: 35% (3.3%, 77%) and 4 months: 42% (10%, 83%); and Li: 6 weeks: 61% (33%, 95%) and 4 months: 58% (31%, 90%). SIGNIFICANCE These findings offer insights into predictors of dentin elements and potential confounders in exposure-health outcome relationships during critical developmental periods.
Collapse
Affiliation(s)
- Julia A Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA.
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Matthew N Barr
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Modupe O Coker
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Department of Oral Biology, School of Dental Medicine, Rutgers University, Newark, NJ, USA
| | - Janet L Peacock
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
5
|
Smith BH. Mammalian Life History: Weaning and Tooth Emergence in a Seasonal World. BIOLOGY 2024; 13:612. [PMID: 39194550 DOI: 10.3390/biology13080612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
The young of toothed mammals must have teeth to reach feeding independence. How tooth eruption integrates with gestation, birth and weaning is examined in a life-history perspective for 71 species of placental mammals. Questions developed from high-quality primate data are then addressed in the total sample. Rather than correlation, comparisons focus on equivalence, sequence, the relation to absolutes (six months, one year), the distribution of error and adaptive extremes. These mammals differ widely at birth, from no teeth to all deciduous teeth emerging, but commonalities appear when infants transit to independent feeding. Weaning follows completion of the deciduous dentition, closest in time to emergence of the first permanent molars and well before second molars emerge. Another layer of meaning appears when developmental age is counted from conception because the total time to produce young feeding independently comes up against seasonal boundaries that are costly to cross for reproductive fitness. Mammals of a vast range of sizes and taxa, from squirrel monkey to moose, hold conception-to-first molars in just under one year. Integrating tooth emergence into life history gives insight into living mammals and builds a framework for interpreting the fossil record.
Collapse
Affiliation(s)
- B Holly Smith
- Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
6
|
Nava A, Lugli F, Lemmers S, Cerrito P, Mahoney P, Bondioli L, Müller W. Reading children's teeth to reconstruct life history and the evolution of human cooperation and cognition: The role of dental enamel microstructure and chemistry. Neurosci Biobehav Rev 2024; 163:105745. [PMID: 38825260 DOI: 10.1016/j.neubiorev.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Studying infants in the past is crucial for understanding the evolution of human life history and the evolution of cooperation, cognition, and communication. An infant's growth, health, and mortality can provide information about the dynamics and structure of a population, their cultural practices, and the adaptive capacity of a community. Skeletal remains provide one way of accessing this information for humans recovered prior to the historical periods. Teeth in particular, are retrospective archives of information that can be accessed through morphological, micromorphological, and biogeochemical methods. This review discusses how the microanatomy and formation of teeth, and particularly enamel, serve as archives of somatic growth, stress, and the environment. Examining their role in the broader context of human evolution, we discuss dental biogeochemistry and emphasize how the incremental growth of tooth microstructure facilitates the reconstruction of temporal data related to health, diet, mobility, and stress in past societies. The review concludes by considering tooth microstructure as a biomarker and the potential clinical applications.
Collapse
Affiliation(s)
- Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, via Caserta 6, Rome 00161, Italy.
| | - Federico Lugli
- Institut of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Frankfurt am Main, Germany; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany; Department of Chemical and Geological Science, University of Modena and Reggio Emilia, via Giuseppe Campi, 103, Modena 41125, Italy
| | - Simone Lemmers
- Elettra Sincrotrone Trieste S.C.p.A., AREA Science Park, s.s. 14 km 163,500, Basovizza, Trieste, Italy; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, USA
| | - Paola Cerrito
- Department of Evolutionary Anthropology, University of Zürich, Zürich, Switzerland
| | - Patrick Mahoney
- School of Anthropology and Conservation, University of Kent, Giles Ln, Giles Ln, Canterbury CT2 7NZ, UK
| | - Luca Bondioli
- Department of Cultural Heritage, University of Padua, Piazza Capitaniato, 7, Padua 35139, Italy
| | - Wolfgang Müller
- Institut of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Frankfurt am Main, Germany; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Wahono NA, Wakeling LA, Dirks W, Banks DA, Shepherd TJ, Ford D, Valentine RA. Use of zinc deposited in deciduous teeth as a retrospective measurement of dietary zinc exposure during early development. FRONTIERS IN ORAL HEALTH 2023; 4:1119086. [PMID: 36908692 PMCID: PMC9998501 DOI: 10.3389/froh.2023.1119086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Purpose We proposed that zinc (Zn) deposition in deciduous teeth would be a timed record of exposure to this essential micronutrient over very early life. We tested this hypothesis by gathering information on the maternal and child's diet during pregnancy and early infancy and measuring mineral deposition in the dentine at points during deciduous tooth development. Methods We developed a short food frequency questionnaire (S-FFQ) to record consumption of food containing Zn during pregnancy and over the first year of life of the child in an Indonesian population. Zn, Sr and Ca were measured by laser ablation ICP-MS in a series of points across the developmental timeline in deciduous teeth extracted from 18 children undergoing the process as part of dental treatment whose mothers completed the SFFQ. Mothers and children were classified into either high Zn or low Zn groups according to calculated daily Zn intake. Results The Zn/Sr ratio in dentine deposited over late pregnancy and 0-3 months post-partum was higher (p < 0.001, 2-way ANOVA; p < 0.05 by Holm-Sidak post hoc test) in the teeth of children of mothers classified as high Zn consumers (n = 10) than in children of mothers classified as low Zn consumers (n = 8). Conclusion The S-FFQ was validated internally as adequately accurate to measure zinc intake retrospectively during pregnancy and post-partum (∼7 years prior) by virtue of the correlation with measurements of zinc in deciduous teeth. The ratio of Zn/Sr in deciduous teeth appears to be a biomarker of exposure to zinc nutrition during early development and offers promise for use as a record of prior exposure along a timeline for research studies and, potentially, to identify individuals at heightened risk of detrimental impacts of poor early life zinc nutrition on health in later life and to implement preventative interventions.
Collapse
Affiliation(s)
- N A Wahono
- Pediatric Dentistry Department, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - L A Wakeling
- School of Dental Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - W Dirks
- Department of Anthropology, University of Durham, Durham, United Kingdom
| | - D A Banks
- Faculty of Environment, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - T J Shepherd
- School of Dental Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - D Ford
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - R A Valentine
- School of Dental Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
8
|
Smith TM, Arora M, Bharatiya M, Dirks W, Austin C. Brief Communication: Elemental Models of Primate Nursing and Weaning Revisited. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:216-223. [PMID: 37406034 PMCID: PMC10099337 DOI: 10.1002/ajpa.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 07/07/2023]
Abstract
Objectives Intra-tooth patterns of trace elements barium (Ba) and strontium (Sr) have been used to infer human and nonhuman primate nursing histories, including australopithecine and Neanderthal juveniles. Here we contrast the two elemental models in first molars (M1s) of four wild baboons and explore the assumptions that underlie each. Materials and Methods Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was employed to create comprehensive calcium-normalized barium and strontium (Ba/Ca, Sr/Ca) maps of M1 enamel and dentine at 35 micron resolution. Results Postnatal Ba/Ca values were typically high, peaking ~0.5 years of age and then decreasing throughout M1 crown formation; all four individuals showed minimal Ba/Ca values between ~1.2-1.8 years, consistent with field reports of the cessation of suckling. Enamel Sr/Ca did not support patterns of previous LA-ICP-MS spot sampling as the enamel rarely showed discrete Sr/Ca secretory zonation. Increases in Sr/Ca appeared in coronal dentine beginning ~0.3 years, with varied peak value ages (~0.7-2.7 years) and no evidence of a predicted postweaning decline. Discussion Inferences of baboon weaning ages from initial Ba/Ca minima are more congruent with behavioral observations than Sr/Ca maxima; this is consistent with studies of captive macaques of known weaning ages. Elemental variation is more apparent in the coronal dentine than the enamel of these baboons, which may relate to its more rapid mineralization and protection from the oral environment. Inferences of nursing histories from enamel Sr/Ca patterns alone should be reconsidered, and elevated values of Ba/Ca and Sr/Ca in teeth formed after weaning require further study.
Collapse
Affiliation(s)
- Tanya M. Smith
- Griffith Centre for Social and Cultural ResearchGriffith UniversityNathanAustralia
- Australian Research Centre for Human EvolutionGriffith UniversityNathanAustralia
| | - Manish Arora
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Maya Bharatiya
- Griffith Centre for Social and Cultural ResearchGriffith UniversityNathanAustralia
- Australian Research Centre for Human EvolutionGriffith UniversityNathanAustralia
| | - Wendy Dirks
- Department of AnthropologyDurham UniversityDurhamUK
| | - Christine Austin
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
9
|
Funston GF, dePolo PE, Sliwinski JT, Dumont M, Shelley SL, Pichevin LE, Cayzer NJ, Wible JR, Williamson TE, Rae JWB, Brusatte SL. The origin of placental mammal life histories. Nature 2022; 610:107-111. [PMID: 36045293 DOI: 10.1038/s41586-022-05150-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
After the end-Cretaceous extinction, placental mammals quickly diversified1, occupied key ecological niches2,3 and increased in size4,5, but this last was not true of other therians6. The uniquely extended gestation of placental young7 may have factored into their success and size increase8, but reproduction style in early placentals remains unknown. Here we present the earliest record of a placental life history using palaeohistology and geochemistry, in a 62 million-year-old pantodont, the clade including the first mammals to achieve truly large body sizes. We extend the application of dental trace element mapping9,10 by 60 million years, identifying chemical markers of birth and weaning, and calibrate these to a daily record of growth in the dentition. A long gestation (approximately 7 months), rapid dental development and short suckling interval (approximately 30-75 days) show that Pantolambda bathmodon was highly precocial, unlike non-placental mammals and known Mesozoic precursors. These results demonstrate that P. bathmodon reproduced like a placental and lived at a fast pace for its body size. Assuming that P. bathmodon reflects close placental relatives, our findings suggest that the ability to produce well-developed, precocial young was established early in placental evolution, and that larger neonate sizes were a possible mechanism for rapid size increase in early placentals.
Collapse
Affiliation(s)
- Gregory F Funston
- School of GeoSciences, University of Edinburgh, Edinburgh, UK. .,Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada.
| | - Paige E dePolo
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Jakub T Sliwinski
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Matthew Dumont
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Sarah L Shelley
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | | | - Nicola J Cayzer
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - John R Wible
- Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | | | - James W B Rae
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | | |
Collapse
|