1
|
Ji E, Pal A, Claybourne QC, Michel M, Munk R, McDevitt RA, Cui CY, Gorospe M. Reducing HuD Levels Alleviates Alzheimer's Disease Pathology in 5xFAD Mice. Aging Cell 2025:e70080. [PMID: 40351099 DOI: 10.1111/acel.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative pathology in older persons. The accumulation of amyloid β (Aβ) plaques is a major contributor to AD development. The RNA-binding protein HuD/ELAVL4 has been implicated in the formation of Aβ plaques, but its role in AD is unclear. Here, we report that ablation of HuD from CAMK2A+ neurons (HuDcKO) in the 5xFAD mouse model of AD results in a significant reduction of Aβ plaques and the alleviation of some AD-associated behaviors. Given the lack of effective therapies for AD, we propose that reducing HuD levels or function can contribute to diminishing Aβ plaque formation and AD-associated pathology.
Collapse
Affiliation(s)
- Eunbyul Ji
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Apala Pal
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Quia C Claybourne
- Comparative Medicine Section, National Institute on Aging (NIA) Intramural Research Program, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Marc Michel
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Ross A McDevitt
- Comparative Medicine Section, National Institute on Aging (NIA) Intramural Research Program, National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, Maryland, USA
| |
Collapse
|
2
|
Gaikwad N, Sarwade R, Halder S, Agarwal G, Seshadri V. HuD regulates apoptosis in N2a cells by regulating Msi2 expression. PLoS One 2024; 19:e0315535. [PMID: 39680531 DOI: 10.1371/journal.pone.0315535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
HuD plays a critical role in neurite outgrowth, neuronal plasticity, and survival. However, HuD autoantibodies from patients with paraneoplastic gut dysmotility can trigger the apoptotic cascade in human neuroblastoma cell line and myenteric neurons. The mechanism by which HuD regulates the apoptotic pathway is unclear. Apoptosis is one of the underlying causes of neurodegenerative diseases like Alzheimer's disease. In the current study, we found that HuD interacts with Msi2 transcript and positively regulates it in the mouse neuroblastoma (N2a) cells. MSI2 being an RNA binding protein has diverse mRNA targets and regulates the mitochondrial apoptotic pathway by interacting with and repressing APAF1 transcript. Conversely, the reduced levels of HuD leads to decreased Msi2 expression and increased APAF1 levels, which results in apoptosis in N2a cells. Overall, our research indicates that HuD and Msi2 possess an anti-apoptotic role in N2A cells.
Collapse
Affiliation(s)
- Naina Gaikwad
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Rucha Sarwade
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Sourav Halder
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Gaurav Agarwal
- National Centre for Cell Science, Ganeshkhind, Pune, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | | |
Collapse
|
3
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Sivananthan S, Gosse JT, Huard S, Baetz K. Pab1 acetylation at K131 decreases stress granule formation in Saccharomyces cerevisiae. J Biol Chem 2022; 299:102834. [PMID: 36572187 PMCID: PMC9867979 DOI: 10.1016/j.jbc.2022.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Under environmental stress, such as glucose deprivation, cells form stress granules-the accumulation of cytoplasmic aggregates of repressed translational initiation complexes, proteins, and stalled mRNAs. Recent research implicates stress granules in various diseases, such as neurodegenerative diseases, but the exact regulators responsible for the assembly and disassembly of stress granules are unknown. An important aspect of stress granule formation is the presence of posttranslational modifications on core proteins. One of those modifications is lysine acetylation, which is regulated by either a lysine acetyltransferase or a lysine deacetylase enzyme. This work deciphers the impact of lysine acetylation on an essential protein found in Saccharomyces cerevisiae stress granules, poly(A)-binding protein (Pab1). We demonstrated that an acetylation mimic of the lysine residue in position 131 reduces stress granule formation upon glucose deprivation and other stressors such as ethanol, raffinose, and vanillin. We present genetic evidence that the enzyme Rpd3 is the primary candidate for the deacetylation of Pab1-K131. Further, our electromobility shift assay studies suggest that the acetylation of Pab1-K131 negatively impacts poly(A) RNA binding. Due to the conserved nature of stress granules, therapeutics targeting the activity of lysine acetyltransferases and lysine deacetylase enzymes may be a promising route to modulate stress granule dynamics in the disease state.
Collapse
Affiliation(s)
- Sangavi Sivananthan
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica T. Gosse
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sylvain Huard
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Silvestri B, Mochi M, Garone MG, Rosa A. Emerging Roles for the RNA-Binding Protein HuD (ELAVL4) in Nervous System Diseases. Int J Mol Sci 2022; 23:14606. [PMID: 36498933 PMCID: PMC9736382 DOI: 10.3390/ijms232314606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The main goal of this review is to provide an updated overview of the involvement of the RNA-binding protein (RBP) HuD, encoded by the ELAVL4 gene, in nervous system development, maintenance, and function, and its emerging role in nervous system diseases. A particular focus is on recent studies reporting altered HuD levels, or activity, in disease models and patients. Substantial evidence suggests HuD involvement in Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). Interestingly, while possible disease-causing mutations in the ELAVL4 gene remain elusive, a common theme in these diseases seems to be the altered regulation of HuD at multiple steps, including post-transcriptional and post-translational levels. In turn, the changed activity of HuD can have profound implications for its target transcripts, which are overly stabilized in case of HuD gain of function (as proposed in PD and ALS) or reduced in case of decreased HuD binding (as suggested by some studies in AD). Moreover, the recent discovery that HuD is a component of pathological cytoplasmic inclusion in both familial and sporadic ALS patients might help uncover the common molecular mechanisms underlying such complex diseases. We believe that deepening our understanding of the involvement of HuD in neurodegeneration could help developing new diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Beatrice Silvestri
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Michela Mochi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Giovanna Garone
- Department of Stem Cell Biology, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Alessandro Rosa
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| |
Collapse
|
6
|
van der Linden RJ, Gerritsen JS, Liao M, Widomska J, Pearse RV, White FM, Franke B, Young-Pearse TL, Poelmans G. RNA-binding protein ELAVL4/HuD ameliorates Alzheimer's disease-related molecular changes in human iPSC-derived neurons. Prog Neurobiol 2022; 217:102316. [PMID: 35843356 PMCID: PMC9912016 DOI: 10.1016/j.pneurobio.2022.102316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
The RNA binding protein ELAVL4/HuD regulates the translation and splicing of multiple Alzheimer's disease (AD) candidate genes. We generated ELAVL4 knockout (KO) human induced pluripotent stem cell-derived neurons to study the effect that ELAVL4 has on AD-related cellular phenotypes. ELAVL4 KO significantly increased the levels of specific APP isoforms and intracellular phosphorylated tau, molecular changes that are related to the pathological hallmarks of AD. Overexpression of ELAVL4 in wild-type neurons and rescue experiments in ELAVL4 KO cells showed opposite effects and also led to a reduction of the extracellular amyloid-beta (Aβ)42/40 ratio. All these observations were made in familial AD (fAD) and fAD-corrected neurons. To gain insight into the molecular cascades involved in neuronal ELAVL4 signaling, we conducted pathway and upstream regulator analyses of transcriptomic and proteomic data from the generated neurons. These analyses revealed that ELAVL4 affects multiple biological pathways linked to AD, including those involved in synaptic function, as well as gene expression downstream of APP and tau signaling. The analyses also suggest that ELAVL4 expression is regulated by insulin receptor-FOXO1 signaling in neurons. Taken together, ELAVL4 expression ameliorates AD-related molecular changes in neurons and affects multiple synaptic pathways, making it a promising target for novel drug development.
Collapse
Affiliation(s)
- Robert J van der Linden
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacqueline S Gerritsen
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Meichen Liao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Targeting an MDM2/MYC Axis to Overcome Drug Resistance in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14061592. [PMID: 35326742 PMCID: PMC8945937 DOI: 10.3390/cancers14061592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND MDM2 is elevated in multiple myeloma (MM). Although traditionally, MDM2 negatively regulates p53, a growing body of research suggests that MDM2 plays several p53-independent roles in cancer pathogenesis as a regulator of oncogene mRNA stability and translation. Yet, the molecular mechanisms underlying MDM2 overexpression and its role in drug resistance in MM remain undefined. METHODS Both myeloma cell lines and primary MM samples were employed. Cell viability, cell cycle and apoptosis assays, siRNA transfection, quantitative real-time PCR, immunoblotting, co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), soft agar colony formation and migration assay, pulse-chase assay, UV cross-linking, gel-shift assay, RNA-protein binding assays, MEME-analysis for discovering c-Myc DNA binding motifs studies, reporter gene constructs procedure, gene transfection and reporter assay, MM xenograft mouse model studies, and statistical analysis were applied in this study. RESULTS We show that MDM2 is associated with poor prognosis. Importantly, its upregulation in primary MM samples and human myeloma cell lines (HMCLs) drives drug resistance. Inhibition of MDM2 by RNAi, or by the MDM2/XIAP dual inhibitor MX69, significantly enhanced the sensitivity of resistant HMCLs and primary MM samples to bortezomib and other anti-myeloma drugs, demonstrating that MDM2 can modulate drug response. MDM2 inhibition resulted in a remarkable suppression of relapsed MM cell growth, colony formation, migration and induction of apoptosis through p53-dependent and -independent pathways. Mechanistically, MDM2 was found to reciprocally regulate c-Myc in MM; MDM2 binds to AREs on c-Myc 3'UTR to increase c-Myc mRNA stability and translation, while MDM2 is a direct transcriptional target of c-Myc. MDM2 inhibition rendered c-Myc mRNA unstable, and reduced c-Myc protein expression in MM cells. Importantly, in vivo delivery of MX69 in combination with bortezomib led to significant regression of tumors and prolonged survival in an MM xenograft model. CONCLUSION Our findings provide a rationale for the therapeutic targeting of MDM2/c-Myc axis to improve clinical outcome of patients with refractory/relapsed MM.
Collapse
|
8
|
Ni YQ, Xu H, Liu YS. Roles of Long Non-coding RNAs in the Development of Aging-Related Neurodegenerative Diseases. Front Mol Neurosci 2022; 15:844193. [PMID: 35359573 PMCID: PMC8964039 DOI: 10.3389/fnmol.2022.844193] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Aging-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are gradually becoming the primary burden of society and cause significant health-care concerns. Aging is a critical independent risk factor for neurodegenerative diseases. The pathological alterations of neurodegenerative diseases are tightly associated with mitochondrial dysfunction, inflammation, and oxidative stress, which in turn stimulates the further progression of neurodegenerative diseases. Given the potential research value, lncRNAs have attracted considerable attention. LncRNAs play complex and dynamic roles in multiple signal transduction axis of neurodegeneration. Emerging evidence indicates that lncRNAs exert crucial regulatory effects in the initiation and development of aging-related neurodegenerative diseases. This review compiles the underlying pathological mechanisms of aging and related neurodegenerative diseases. Besides, we discuss the roles of lncRNAs in aging. In addition, the crosstalk and network of lncRNAs in neurodegenerative diseases are also explored.
Collapse
Affiliation(s)
- Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
- *Correspondence: You-Shuo Liu,
| |
Collapse
|
9
|
Hafez AK, Zimmerman AJ, Papageorgiou G, Chandrasekaran J, Amoah SK, Lin R, Lozano E, Pierotti C, Dell'Orco M, Hartley BJ, Alural B, Lalonde J, Esposito JM, Berretta S, Squassina A, Chillotti C, Voloudakis G, Shao Z, Fullard JF, Brennand KJ, Turecki G, Roussos P, Perlis RH, Haggarty SJ, Perrone-Bizzozero N, Brigman JL, Mellios N. A bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning. Cell Rep 2022; 38:110282. [PMID: 35045295 PMCID: PMC8809079 DOI: 10.1016/j.celrep.2021.110282] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/28/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Although circular RNAs (circRNAs) are enriched in the brain, their relevance for brain function and psychiatric disorders is poorly understood. Here, we show that circHomer1 is inversely associated with relative HOMER1B mRNA isoform levels in both the orbitofrontal cortex (OFC) and stem-cell-derived neuronal cultures of subjects with psychiatric disorders. We further demonstrate that in vivo circHomer1 knockdown (KD) within the OFC can inhibit the synaptic expression of Homer1b mRNA. Furthermore, we show that circHomer1 directly binds to Homer1b mRNA and that Homer1b-specific KD increases synaptic circHomer1 levels and improves OFC-mediated behavioral flexibility. Importantly, double circHomer1 and Homer1b in vivo co-KD results in a complete rescue in circHomer1-associated alterations in both chance reversal learning and synaptic gene expression. Lastly, we uncover an RNA-binding protein that can directly bind to circHomer1 and promote its biogenesis. Taken together, our data provide mechanistic insights into the importance of circRNAs in brain function and disease.
Collapse
Affiliation(s)
- Alexander K Hafez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Amber J Zimmerman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Grigorios Papageorgiou
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Stephen K Amoah
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rixing Lin
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Evelyn Lozano
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Caroline Pierotti
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michela Dell'Orco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Brigham J Hartley
- Pamela Sklar Division of Psychiatric Genomics, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Begüm Alural
- Center for Genomic Medicine, Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jasmin Lalonde
- Center for Genomic Medicine, Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Georgios Voloudakis
- Pamela Sklar Division of Psychiatric Genomics, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Pamela Sklar Division of Psychiatric Genomics, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
| | - John F Fullard
- Pamela Sklar Division of Psychiatric Genomics, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Roy H Perlis
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA; Center for Experimental Drugs and Diagnostics, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen J Haggarty
- Center for Genomic Medicine, Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
10
|
Kron NS, Fieber LA. Aplysia Neurons as a Model of Alzheimer's Disease: Shared Genes and Differential Expression. J Mol Neurosci 2021; 72:287-302. [PMID: 34664226 PMCID: PMC8840921 DOI: 10.1007/s12031-021-01918-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Although Alzheimer’s disease (AD) is the most common form of dementia in the United States, development of therapeutics has proven difficult. Invertebrate alternatives to current mammalian AD models have been successfully employed to study the etiology of the molecular hallmarks of AD. The marine snail Aplysia californica offers a unique and underutilized system in which to study the physiological, behavioral, and molecular impacts of AD. Mapping of the Aplysia proteome to humans and cross-referencing with two databases of genes of interest in AD research identified 898 potential orthologs of interest in Aplysia. Included among these orthologs were alpha, beta and gamma secretases, amyloid-beta, and tau. Comparison of age-associated differential expression in Aplysia sensory neurons with that of late-onset AD in the frontal lobe identified 59 ortholog with concordant differential expression across data sets. The 21 concordantly upregulated genes suggested increased cellular stress and protein dyshomeostasis. The 47 concordantly downregulated genes included important components of diverse neuronal processes, including energy metabolism, mitochondrial homeostasis, synaptic signaling, Ca++ regulation, and cellular cargo transport. Compromised functions in these processes are known hallmarks of both human aging and AD, the ramifications of which are suggested to underpin cognitive declines in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
11
|
Misiak D, Hagemann S, Bell JL, Busch B, Lederer M, Bley N, Schulte JH, Hüttelmaier S. The MicroRNA Landscape of MYCN-Amplified Neuroblastoma. Front Oncol 2021; 11:647737. [PMID: 34026620 PMCID: PMC8138323 DOI: 10.3389/fonc.2021.647737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/15/2021] [Indexed: 02/01/2023] Open
Abstract
MYCN gene amplification and upregulated expression are major hallmarks in the progression of high-risk neuroblastoma. MYCN expression and function in modulating gene synthesis in neuroblastoma is controlled at virtually every level, including poorly understood regulation at the post-transcriptional level. MYCN modulates the expression of various microRNAs including the miR-17-92 cluster. MYCN mRNA expression itself is subjected to the control by miRNAs, most prominently the miR-17-92 cluster that balances MYCN expression by feed-back regulation. This homeostasis seems disturbed in neuroblastoma where MYCN upregulation coincides with severely increased expression of the miR-17-92 cluster. In the presented study, we applied high-throughput next generation sequencing to unravel the miRNome in a cohort of 97 neuroblastomas, representing all clinical stages. Aiming to reveal the MYCN-dependent miRNome, we evaluate miRNA expression in MYCN-amplified as well as none amplified tumor samples. In correlation with survival data analysis of differentially expressed miRNAs, we present various putative oncogenic as well as tumor suppressive miRNAs in neuroblastoma. Using microRNA trapping by RNA affinity purification, we provide a comprehensive view of MYCN-regulatory miRNAs in neuroblastoma-derived cells, confirming a pivotal role of the miR-17-92 cluster and moderate association by the let-7 miRNA family. Attempting to decipher how MYCN expression escapes elevated expression of inhibitory miRNAs, we present evidence that RNA-binding proteins like the IGF2 mRNA binding protein 1 reduce miRNA-directed downregulation of MYCN in neuroblastoma. Our findings emphasize the potency of post-transcriptional regulation of MYCN in neuroblastoma and unravel new avenues to pursue inhibition of this potent oncogene.
Collapse
Affiliation(s)
- Danny Misiak
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sven Hagemann
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica L. Bell
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bianca Busch
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marcell Lederer
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Charité Berlin, Berlin, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
12
|
Impaired olfactory neurogenesis affects the performance of olfactory-guided behavior in aged female opossums. Sci Rep 2021; 11:4418. [PMID: 33627729 PMCID: PMC7904797 DOI: 10.1038/s41598-021-83834-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence has indicated that adult neurogenesis contributes to brain plasticity, although function of new neurons is still under debate. In opossums, we performed an olfactory-guided behavior task and examined the association between olfactory discrimination-guided behavior and adult neurogenesis in the olfactory bulb (OB). We found that young and aged opossums of either sex learned to find food buried in litter using olfactory cues. However, aged females required more time to find food compared to aged males and young opossums of both sexes. The levels of doublecortin, that is used as a marker for immature neurons, were the lowest in the OB of aged female opossums. Another protein, HuD that is associated with learning and memory, was detected in all layers of the OB, except the granule cell layer, where a high density of DCX cells was detected. The level of HuD was higher in aged opossums compared to young opossums. This indicates that HuD is involved in plasticity and negatively regulates olfactory perception. The majority of 2-year-old female opossums are in the post-reproductive age but males of this age are still sexually active. We suggest that in aged female opossums neural plasticity induced by adult neurogenesis decreases due to their hormonal decline.
Collapse
|
13
|
Shukla TN, Song J, Campbell ZT. Molecular entrapment by RNA: an emerging tool for disrupting protein-RNA interactions in vivo. RNA Biol 2020; 17:417-424. [PMID: 31957541 PMCID: PMC7237136 DOI: 10.1080/15476286.2020.1717059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/09/2019] [Accepted: 01/12/2020] [Indexed: 10/25/2022] Open
Abstract
mRNA function is controlled by RNA-binding proteins. The specificity of RNA-binding factors for their targets is critical in that it enables all subsequent regulation. Despite widespread recognition of the pervasive role RNA-binding proteins play in development and disease, they remain challenging to target with small molecules. A renaissance in RNA therapeutics has led to the identification of modifications that substantially increase RNA stability. When combined with information regarding specificity, a new class of oligonucleotide mimics has emerged as a means to competitively disrupt the regulation of endogenous substrates. These decoys have been used to inhibit RNA-binding proteins in living animals. Decoys will likely provide new insights into the expansive roles of RNA-binding proteins in biology and disease. Here, we describe examples where they have been used and discuss how they could be applied to new targets.
Collapse
Affiliation(s)
- Tarjani N. Shukla
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| | - Jane Song
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| | - Zachary T. Campbell
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| |
Collapse
|
14
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Abstract
In this issue of Molecular Cell, Tebaldi et al. (2018) identify the neuron-specific RNA-binding protein HuD as a regulator of global protein synthesis and translation enhancer of specific mTORC1-responsive transcripts. Importantly, the authors identify that the Y3 small non-coding RNA binds HuD to modulate translation and neurogenesis.
Collapse
Affiliation(s)
- Mary McMahon
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Libard S, Laurell K, Cesarini KG, Alafuzoff I. Progression of Alzheimer's Disease-Related Pathology and Cell Counts in a Patient with Idiopathic Normal Pressure Hydrocephalus. J Alzheimers Dis 2019; 61:1451-1462. [PMID: 29376849 DOI: 10.3233/jad-170446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We had an opportunity to assess the change observed in the brain regarding Alzheimer's disease (AD)-related alterations, cell count, and inflammation that took place during a period of 21 months in a subject with a definite diagnosis of AD and idiopathic Normal Pressure Hydrocephalus (iNPH). Four neuronal markers, i.e., synaptophysin, microtubule associated protein 2, non-phosphorylated neurofilament H (SMI32), and embryonic lethal abnormal visual system proteins 3/4 HuC/HuD (HuC/HuD); three microglial markers CD68, Human Leucocytic Antigen DR, ionized calcium-binding adaptor molecule 1, glial fibrillary acidic protein (GFAP); and AD-related markers, hyperphosphorylated τ (HPτ) and amyloid-β (Aβ, Aβ40, Aβ42) were assessed. Morphometrically assessed immunoreactivity of all neuronal and all microglial markers and Aβ42 decreased parallel with an increase in the HPτ in the frontal cortex. The expression of GFAP was stable with time. The first sample was obtained during the therapeutic shunting procedure for iNPH, and the second sample was obtained postmortem. Negligible reactive changes were observed surrounding the shunt channel. In conclusion, in the late stage of AD with time, a neuronal loss, increase in the HPτ, and decrease in Aβ42 and microglia was observed, whereas the expression of GFAP was rather stable. The observations described here suggest that when a brain biopsy has been obtained from an adult subject with iNPH, the assessment of postmortem brain is of major significance.
Collapse
Affiliation(s)
- Sylwia Libard
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.,Department of Pathology, Uppsala University Hospital, Sweden
| | - Katarina Laurell
- Department of Pharmacology and Clinical Neuroscience, Östersund, Umeå University, Sweden
| | | | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.,Department of Pathology, Uppsala University Hospital, Sweden
| |
Collapse
|
17
|
Replogle MR, Sreevidya VS, Lee VM, Laiosa MD, Svoboda KR, Udvadia AJ. Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation. Dis Model Mech 2018; 11:dmm.035097. [PMID: 30409814 PMCID: PMC6307900 DOI: 10.1242/dmm.035097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. In vitro models of NC development provide a powerful platform for testing the relative contributions of intrinsic and extrinsic factors mediating NC differentiation under normal and pathogenic conditions. Although differentiation is a dynamic process that unfolds over time, currently, there is no well-defined chronology that characterizes the in vitro progression of NC differentiation towards specific cell fates. In this study, we have optimized culture conditions for expansion of primary murine NC cells that give rise to both ectodermal and mesoectodermal derivatives, even after multiple passages. Significantly, we have delineated highly reproducible timelines that include distinct intermediate stages for lineage-specific NC differentiation in vitro. In addition, isolating both cranial and trunk NC cells from the same embryos enabled us to make direct comparisons between the two cell populations over the course of differentiation. Our results define characteristic changes in cell morphology and behavior that track the temporal progression of NC cells as they differentiate along the neuronal, glial and chondrogenic lineages in vitro. These benchmarks constitute a chronological baseline for assessing how genetic or environmental disruptions may facilitate or impede NC differentiation. Introducing a temporal dimension substantially increases the power of this platform for screening drugs or chemicals for developmental toxicity or therapeutic potential.
This article has an associated First Person interview with the first author of the paper. Summary: A novel method for isolating and expanding primary neural crest cells, and establishment of reproducible temporal benchmarks of differentiation, provides a potential screening platform for developmental toxicity or therapeutic capacity.
Collapse
Affiliation(s)
- Maria R Replogle
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Virinchipuram S Sreevidya
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Vivian M Lee
- STEMCELL Technologies, Vancouver, BC V6A 1BC, Canada
| | - Michael D Laiosa
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Kurt R Svoboda
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Ava J Udvadia
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| |
Collapse
|
18
|
Abstract
Viruses alter host-cell gene expression at many biochemical levels, such as transcription, translation, mRNA splicing and mRNA decay in order to create a cellular environment suitable for viral replication. In this review, we discuss mechanisms by which viruses manipulate host-gene expression at the level of mRNA decay in order to enable the virus to evade host antiviral responses to allow viral survival and replication. We discuss different cellular RNA decay pathways, including the deadenylation-dependent mRNA decay pathway, and various strategies that viruses exploit to manipulate these pathways in order to create a virus-friendly cellular environment.
Collapse
Affiliation(s)
- Liang Guo
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Irina Vlasova-St Louis
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul R Bohjanen
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Oliver RJ, Brigman JL, Bolognani F, Allan AM, Neisewander JL, Perrone-Bizzozero NI. Neuronal RNA-binding protein HuD regulates addiction-related gene expression and behavior. GENES BRAIN AND BEHAVIOR 2018; 17:e12454. [PMID: 29283498 DOI: 10.1111/gbb.12454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
The neuronal RNA-binding protein HuD is involved in synaptic plasticity and learning and memory mechanisms. These effects are thought to be due to HuD-mediated stabilization and translation of target mRNAs associated with plasticity. To investigate the potential role of HuD in drug addiction, we first used bioinformatics prediction algorithms together with microarray analyses to search for specific genes and functional networks upregulated within the forebrain of HuD overexpressing mice (HuDOE ). When this set was further limited to genes in the knowledgebase of addiction-related genes database (KARG) that contains predicted HuD-binding sites in their 3' untranslated regions (3'UTRs), we found that HuD regulates networks that have been associated with addiction-like behavior. These genes included Bdnf and Camk2a, 2 previously validated HuD targets. Since addiction is hypothesized to be a disorder stemming from altered gene expression causing aberrant plasticity, we sought to test the role of HuD in cocaine conditioned placed preference (CPP), a model of addiction-related behaviors. HuD mRNA and protein were upregulated by CPP within the nucleus accumbens of wild-type C57BL/6J mice. These changes were associated with increased expression of Bdnf and Camk2a mRNA and protein. To test this further, we trained HuDOE and wild-type mice in CPP and found that HuDOE mice showed increased cocaine CPP compared with controls. This was also associated with elevated expression of HuD target mRNAs and proteins, CaMKIIα and BDNF. These findings suggest HuD involvement in addiction-related behaviors such as cocaine conditioning and seeking, through increased plasticity-related gene expression.
Collapse
Affiliation(s)
- R J Oliver
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - J L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - F Bolognani
- Roche Pharma Research and Early Development; Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - A M Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - J L Neisewander
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - N I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
20
|
Mamon LA, Ginanova VR, Kliver SF, Yakimova AO, Atsapkina AA, Golubkova EV. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton. Cytoskeleton (Hoboken) 2017; 74:161-169. [PMID: 28296067 DOI: 10.1002/cm.21362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 02/05/2023]
Abstract
The mutual relationship between mRNA and the cytoskeleton can be seen from two points of view. On the one hand, the cytoskeleton is necessary for mRNA trafficking and anchoring to subcellular domains. On the other hand, cytoskeletal growth and rearrangement require the translation of mRNAs that are connected to the cytoskeleton. β-actin mRNA localization may influence dynamic changes in the actin cytoskeleton. In the cytoplasm, long-lived mRNAs exist in the form of RNP (ribonucleoprotein) complexes, where they interact with RNA-binding proteins, including NXF (Nuclear eXport Factor). Dm NXF1 is an evolutionarily conserved protein in Drosophila melanogaster that has orthologs in different animals. The universal function of nxf1 genes is the nuclear export of different mRNAs in various organisms. In this mini-review, we briefly discuss the evidence demonstrating that Dm NXF1 fulfils not only universal but also specialized cytoplasmic functions. This protein is detected not only in the nucleus but also in the cytoplasm. It is a component of neuronal granules. Dm NXF1 marks nuclear division spindles during early embryogenesis and the dense body on one side of the elongated spermatid nuclei. The characteristic features of sbr mutants (sbr10 and sbr5 ) are impairment of chromosome segregation and spindle formation anomalies during female meiosis. sbr12 mutant sterile males with immobile spermatozoa exhibit disturbances in the axoneme, mitochondrial derivatives and cytokinesis. These data allow us to propose that the Dm NXF1 proteins transport certain mRNAs in neurites and interact with localized mRNAs that are necessary for dynamic changes of the cytoskeleton.
Collapse
Affiliation(s)
- L A Mamon
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - V R Ginanova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - S F Kliver
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - A O Yakimova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - A A Atsapkina
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - E V Golubkova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| |
Collapse
|
21
|
Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiol Dis 2017; 102:11-20. [PMID: 28161391 DOI: 10.1016/j.nbd.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterised by the selective loss of particular groups of motor neurones in the anterior horn of the spinal cord with concomitant muscle weakness. To date, no effective treatment is available, however, there are ongoing clinical trials are in place which promise much for the future. However, there remains an ongoing problem in trying to link a single gene loss to motor neurone degeneration. Fortunately, given successful disease models that have been established and intensive studies on SMN functions in the past ten years, we are fast approaching the stage of identifying the underlying mechanisms of SMA pathogenesis Here we discuss potential disease modifying factors on motor neurone vulnerability, in the belief that these factors give insight into the pathological mechanisms of SMA and therefore possible therapeutic targets.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
22
|
Cooperativity in RNA–protein interactions: the complex is more than the sum of its partners. Curr Opin Neurobiol 2016; 39:146-51. [DOI: 10.1016/j.conb.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
|
23
|
Lee YS, Lee JA, Kaang BK. Regulation of mRNA stability by ARE-binding proteins in synaptic plasticity and memory. Neurobiol Learn Mem 2015; 124:28-33. [PMID: 26291750 DOI: 10.1016/j.nlm.2015.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 11/27/2022]
Abstract
Formation of long-term memories requires coordinated gene expression, which can be regulated at transcriptional, post-transcriptional, and translational levels. Post-transcriptional stabilization and destabilization of mRNAs provides precise temporal and spatial regulation of gene expression, which is critical for consolidation of synaptic plasticity and memory. mRNA stability is regulated by interactions between the cis-acting elements of mRNAs, such as adenine-uridine-rich elements (AREs), and the trans-acting elements, ARE-binding proteins (AUBPs). There are several AUBPs in the nervous system. Among AUBPs, Hu/ELAV-like proteins and AUF1 are the most studied mRNA stabilizing and destabilizing factors, respectively. Here, we summarize compelling evidence for critical roles of these AUBPs in synaptic plasticity, as well as learning and memory, in both vertebrates and invertebrates. Furthermore, we also briefly review the deregulations of AUBPs in neurological disorders.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea.
| | - Jin-A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Daejeon, South Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
24
|
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015; 161:1388-99. [PMID: 26046440 DOI: 10.1016/j.cell.2015.05.014] [Citation(s) in RCA: 2535] [Impact Index Per Article: 253.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/23/2015] [Accepted: 05/06/2015] [Indexed: 01/26/2023]
Abstract
N(6)-methyladenosine (m(6)A) is the most abundant internal modification in mammalian mRNA. This modification is reversible and non-stoichiometric and adds another layer to the dynamic control of mRNA metabolism. The stability of m(6)A-modified mRNA is regulated by an m(6)A reader protein, human YTHDF2, which recognizes m(6)A and reduces the stability of target transcripts. Looking at additional functional roles for the modification, we find that another m(6)A reader protein, human YTHDF1, actively promotes protein synthesis by interacting with translation machinery. In a unified mechanism of m(6)A-based regulation in the cytoplasm, YTHDF2-mediated degradation controls the lifetime of target transcripts, whereas YTHDF1-mediated translation promotion increases translation efficiency, ensuring effective protein production from dynamic transcripts that are marked by m(6)A. Therefore, the m(6)A modification in mRNA endows gene expression with fast responses and controllable protein production through these mechanisms.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Boxuan Simen Zhao
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ian A Roundtree
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhike Lu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Dali Han
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Honghui Ma
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Xiaocheng Weng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Kai Chen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Kim HH, Lee SJ, Gardiner AS, Perrone-Bizzozero NI, Yoo S. Different motif requirements for the localization zipcode element of β-actin mRNA binding by HuD and ZBP1. Nucleic Acids Res 2015; 43:7432-46. [PMID: 26152301 PMCID: PMC4551932 DOI: 10.1093/nar/gkv699] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/29/2015] [Indexed: 11/13/2022] Open
Abstract
Interactions of RNA-binding proteins (RBPs) with their target transcripts are essential for regulating gene expression at the posttranscriptional level including mRNA export/localization, stability, and translation. ZBP1 and HuD are RBPs that play pivotal roles in mRNA transport and local translational control in neuronal processes. While HuD possesses three RNA recognition motifs (RRMs), ZBP1 contains two RRMs and four K homology (KH) domains that either increase target specificity or provide a multi-target binding capability. Here we used isolated cis-element sequences of the target mRNA to examine directly protein-RNA interactions in cell-free systems. We found that both ZBP1 and HuD bind the zipcode element in rat β-actin mRNA's 3' UTR. Differences between HuD and ZBP1 were observed in their binding preference to the element. HuD showed a binding preference for U-rich sequence. In contrast, ZBP1 binding to the zipcode RNA depended more on the structural level, as it required the proper spatial organization of a stem-loop that is mainly determined by the U-rich element juxtaposed to the 3' end of a 5'-ACACCC-3' motif. On the basis of this work, we propose that ZBP1 and HuD bind to overlapping sites in the β-actin zipcode, but they recognize different features of this target sequence.
Collapse
Affiliation(s)
- Hak Hee Kim
- Nemours Biomedical Research, Alfred I. duPont Hosp. for Children, Wilmington, DE 19803, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amy S Gardiner
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Nora I Perrone-Bizzozero
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hosp. for Children, Wilmington, DE 19803, USA
| |
Collapse
|
26
|
Fernández-Ramos D, Martínez-Chantar ML. NEDDylation in liver cancer: The regulation of the RNA binding protein Hu antigen R. Pancreatology 2015; 15:S49-S54. [PMID: 25841271 DOI: 10.1016/j.pan.2015.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer death. The current view of cancer progression and malignancy supports the notion that cancer cells must undergo through a post-translational modification (PTM) regulation and a metabolic switch or reprogramming in order to progress in an unfriendly environment. NEDDylation is a post-translational modification of the proteins involved in several processes such as cell growth, viability and development. A ground-breaking knowledge on a new critical aspect of HCC research has been to identify that NEDDylation plays a role in HCC by regulating the liver oncogenic driver Hu antigen R (HuR). HuR is a RNA-binding protein that stabilizes target mRNAs involved in cell dedifferentiation, proliferation, and survival, all well-established hallmarks of cancer. And importantly, HuR levels were found to be highly representative in liver and colon cancer. These findings open a completely new area of research, exploring the impact that NEDDylation plays in liver diseases and paving the way for novel therapeutical approaches.
Collapse
Affiliation(s)
- David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - María L Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
27
|
Sosanya NM, Cacheaux LP, Workman ER, Niere F, Perrone-Bizzozero NI, Raab-Graham KF. Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin-dependent Protein Kinase II α (CaMKIIα) mRNAs by the RNA-binding Protein HuD. J Biol Chem 2015; 290:16357-71. [PMID: 25944900 DOI: 10.1074/jbc.m114.599399] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 02/05/2023] Open
Abstract
The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the "capture" of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the "tag" is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner.
Collapse
Affiliation(s)
- Natasha M Sosanya
- From the Center for Learning and Memory, Department of Neuroscience, Institute for Cell Biology, and United States Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam, Houston, Texas 78234, and
| | - Luisa P Cacheaux
- From the Center for Learning and Memory, Department of Neuroscience
| | - Emily R Workman
- From the Center for Learning and Memory, Department of Neuroscience, Institute for Neuroscience, University of Texas, Austin, Texas 78712
| | - Farr Niere
- From the Center for Learning and Memory, Department of Neuroscience
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Kimberly F Raab-Graham
- From the Center for Learning and Memory, Department of Neuroscience, Institute for Cell Biology, and Institute for Neuroscience, University of Texas, Austin, Texas 78712,
| |
Collapse
|
28
|
Swaminathan A, Kumar M, Halder Sinha S, Schneider-Anthony A, Boutillier AL, Kundu TK. Modulation of neurogenesis by targeting epigenetic enzymes using small molecules: an overview. ACS Chem Neurosci 2014; 5:1164-77. [PMID: 25250644 DOI: 10.1021/cn500117a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neurogenesis consists of a plethora of complex cellular processes including neural stem cell (NSC) proliferation, migration, maturation or differentiation to neurons, and finally integration into the pre-existing neural circuits in the brain, which are temporally regulated and coordinated sequentially. Mammalian neurogenesis begins during embryonic development and continues in postnatal brain (adult neurogenesis). It is now evident that adult neurogenesis is driven by extracellular and intracellular signaling pathways, where epigenetic modifications like reversible histone acetylation, methylation, as well as DNA methylation play a vital role. Epigenetic regulation of gene expression during neural development is governed mainly by histone acetyltransferases (HATs), histone methyltransferase (HMTs), DNA methyltransferases (DNMTs), and also the enzymes for reversal, like histone deacetylases (HDACs), and many of these have also been shown to be involved in the regulation of adult neurogenesis. The contribution of these epigenetic marks to neurogenesis is increasingly being recognized, through knockout studies and small molecule modulator based studies. These small molecules are directly involved in regeneration and repair of neurons, and not only have applications from a therapeutic point of view, but also provide a tool to study the process of neurogenesis itself. In the present Review, we will focus on small molecules that act predominantly on epigenetic enzymes to enhance neurogenesis and neuroprotection and discuss the mechanism and recent advancements in their synthesis, targeting, and biology.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Manoj Kumar
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Sarmistha Halder Sinha
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Anne Schneider-Anthony
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Tapas K Kundu
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| |
Collapse
|
29
|
Sanna M, Quattrone A, Mello T, Ghelardini C, Galeotti N. The RNA-binding protein HuD promotes spinal GAP43 overexpression in antiretroviral-induced neuropathy. Exp Neurol 2014; 261:343-53. [DOI: 10.1016/j.expneurol.2014.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/10/2014] [Accepted: 05/16/2014] [Indexed: 01/20/2023]
|
30
|
Jamalian A, Sneekes EJ, Wienk H, Dekker LJM, Ruttink PJA, Ursem M, Luider TM, Burgers PC. Identifying Ca2+-binding sites in proteins by liquid chromatography-mass spectrometry using Ca2+-directed dissociations. Mol Cell Proteomics 2014; 13:3177-83. [PMID: 25023127 PMCID: PMC4223500 DOI: 10.1074/mcp.m114.038182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/07/2014] [Indexed: 11/06/2022] Open
Abstract
Here we describe a new method to identify calcium-binding sites in proteins using high-resolution liquid chromatography-mass spectrometry in concert with calcium-directed collision-induced dissociations. Our method does not require any modifications to the liquid chromatography-mass spectrometry apparatus, uses standard digestion protocols, and can be applied to existing high-resolution MS data files. In contrast to NMR, our method is applicable to very small amounts of complex protein mixtures (femtomole level). Calcium-bound peptides can be identified using three criteria: (1) the calculated exact mass of the calcium containing peptide; (2) specific dissociations of the calcium-containing peptide from threonine and serine residues; and (3) the very similar retention times of the calcium-containing peptide and the free peptide.
Collapse
Affiliation(s)
- Azadeh Jamalian
- From the ‡Department of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands; §Thermo Fisher Scientific/Dionex, Abberdaan 114, 1046 AA, Amsterdam, The Netherlands
| | - Evert-Jan Sneekes
- From the ‡Department of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands; §Thermo Fisher Scientific/Dionex, Abberdaan 114, 1046 AA, Amsterdam, The Netherlands
| | - Hans Wienk
- ¶NMR Spectroscopy, Bijvoet Center for Biomolecular Research, P.O. Box 80.075, 3508 TB, Utrecht University, Utrecht, The Netherlands
| | - Lennard J M Dekker
- From the ‡Department of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Paul J A Ruttink
- ‖Theoretical Chemistry Group, University of Utrecht, 3508 TC, Utrecht, The Netherlands
| | - Mario Ursem
- §Thermo Fisher Scientific/Dionex, Abberdaan 114, 1046 AA, Amsterdam, The Netherlands
| | - Theo M Luider
- From the ‡Department of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Peter C Burgers
- From the ‡Department of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands;
| |
Collapse
|
31
|
Doxakis E. RNA binding proteins: a common denominator of neuronal function and dysfunction. Neurosci Bull 2014; 30:610-26. [PMID: 24962082 DOI: 10.1007/s12264-014-1443-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 12/13/2022] Open
Abstract
In eukaryotic cells, gene activity is not directly reflected by protein levels because mRNA processing, transport, stability, and translation are co- and post-transcriptionally regulated. These processes, collectively known as the ribonome, are tightly controlled and carried out by a plethora of trans-acting RNA-binding proteins (RBPs) that bind to specific cis elements throughout the RNA sequence. Within the nervous system, the role of RBPs in brain function turns out to be essential due to the architectural complexity of neurons exemplified by a relatively small somal size and an extensive network of projections and connections. Thus far, RBPs have been shown to be indispensable for several aspects of neurogenesis, neurite outgrowth, synapse formation, and plasticity. Consequently, perturbation of their function is central in the etiology of an ever-growing spectrum of neurological diseases, including fragile X syndrome and the neurodegenerative disorders frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Laboratory of Molecular and Cellular Neuroscience, Center of Basic Neuroscience, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens, 11527, Greece,
| |
Collapse
|
32
|
HuD regulates coding and noncoding RNA to induce APP→Aβ processing. Cell Rep 2014; 7:1401-1409. [PMID: 24857657 DOI: 10.1016/j.celrep.2014.04.050] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 03/26/2014] [Accepted: 04/23/2014] [Indexed: 11/21/2022] Open
Abstract
The primarily neuronal RNA-binding protein HuD is implicated in learning and memory. Here, we report the identification of several HuD target transcripts linked to Alzheimer's disease (AD) pathogenesis. HuD interacted with the 3' UTRs of APP mRNA (encoding amyloid precursor protein) and BACE1 mRNA (encoding β-site APP-cleaving enzyme 1) and increased the half-lives of these mRNAs. HuD also associated with and stabilized the long noncoding (lnc)RNA BACE1AS, which partly complements BACE1 mRNA and enhances BACE1 expression. Consistent with HuD promoting production of APP and APP-cleaving enzyme, the levels of APP, BACE1, BACE1AS, and Aβ were higher in the brain of HuD-overexpressing mice. Importantly, cortex (superior temporal gyrus) from patients with AD displayed significantly higher levels of HuD and, accordingly, elevated APP, BACE1, BACE1AS, and Aβ than did cortical tissue from healthy age-matched individuals. We propose that HuD jointly promotes the production of APP and the cleavage of its amyloidogenic fragment, Aβ.
Collapse
|
33
|
Watanabe T, Aonuma H. Tissue-specific promoter usage and diverse splicing variants of found in neurons, an ancestral Hu/ELAV-like RNA-binding protein gene of insects, in the direct-developing insect Gryllus bimaculatus. INSECT MOLECULAR BIOLOGY 2014; 23:26-41. [PMID: 24382152 DOI: 10.1111/imb.12057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hu/ELAV-like RNA-binding proteins (RBPs) are involved in the post-transcriptional regulation of RNA metabolism including splicing, transport, translational control and turnover. The Hu/ELAV-like RBP genes are predominantly expressed in neurons, and are therefore used as common neuronal markers in many animals. Although the expression patterns and functions of the Hu/ELAV-like RBP genes have been extensively studied in the model insect Drosophila melanogaster, little is known in basal direct-developing insects. In the present study, we performed an identification and expression analysis of the found in neurons (fne) gene, an ancestral insect Hu/ELAV-like RBP gene, in the cricket Gryllus bimaculatus. Contrary to expectation that the Gryllus fne transcript would be predominantly expressed in the nervous system, expression analysis revealed that the Gryllus fne gene is expressed broadly. In addition, we discovered that alternative promoter usage directs tissue-specific and embryonic stage-dependent regulation of fne expression, and that alternative splicing contributes to the generation of diverse sets of fne transcripts. Our data provide novel insights into the evolutionary diversification of the Hu/ELAV-like RBP gene family in insects.
Collapse
Affiliation(s)
- T Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
34
|
Re A, Joshi T, Kulberkyte E, Morris Q, Workman CT. RNA-protein interactions: an overview. Methods Mol Biol 2014; 1097:491-521. [PMID: 24639174 DOI: 10.1007/978-1-62703-709-9_23] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RNA binding proteins (RBPs) are key players in the regulation of gene expression. In this chapter we discuss the main protein-RNA recognition modes used by RBPs in order to regulate multiple steps of RNA processing. We discuss traditional and state-of-the-art technologies that can be used to study RNAs bound by individual RBPs, or vice versa, for both in vitro and in vivo methodologies. To help highlight the biological significance of RBP mediated regulation, online resources on experimentally verified protein-RNA interactions are briefly presented. Finally, we present the major tools to computationally infer RNA binding sites according to the modeling features and to the unsupervised or supervised frameworks that are adopted. Since some RNA binding site search algorithms are derived from DNA binding site search algorithms, we discuss the commonalities and novelties introduced to handle both sequence and structural features uniquely characterizing protein-RNA interactions.
Collapse
Affiliation(s)
- Angela Re
- University of Trento, Mattarello, Italy
| | | | | | | | | |
Collapse
|
35
|
Melamed D, Young DL, Gamble CE, Miller CR, Fields S. Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein. RNA (NEW YORK, N.Y.) 2013; 19:1537-51. [PMID: 24064791 PMCID: PMC3851721 DOI: 10.1261/rna.040709.113] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The RNA recognition motif (RRM) is the most common RNA-binding domain in eukaryotes. Differences in RRM sequences dictate, in part, both RNA and protein-binding specificities and affinities. We used a deep mutational scanning approach to study the sequence-function relationship of the RRM2 domain of the Saccharomyces cerevisiae poly(A)-binding protein (Pab1). By scoring the activity of more than 100,000 unique Pab1 variants, including 1246 with single amino acid substitutions, we delineated the mutational constraints on each residue. Clustering of residues with similar mutational patterns reveals three major classes, composed principally of RNA-binding residues, of hydrophobic core residues, and of the remaining residues. The first class also includes a highly conserved residue not involved in RNA binding, G150, which can be mutated to destabilize Pab1. A comparison of the mutational sensitivity of yeast Pab1 residues to their evolutionary conservation reveals that most residues tolerate more substitutions than are present in the natural sequences, although other residues that tolerate fewer substitutions may point to specialized functions in yeast. An analysis of ∼40,000 double mutants indicates a preference for a short distance between two mutations that display an epistatic interaction. As examples of interactions, the mutations N139T, N139S, and I157L suppress other mutations that interfere with RNA binding and protein stability. Overall, this study demonstrates that living cells can be subjected to a single assay to analyze hundreds of thousands of protein variants in parallel.
Collapse
Affiliation(s)
- Daniel Melamed
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - David L. Young
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Caitlin E. Gamble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Christina R. Miller
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Stanley Fields
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
- Corresponding authorE-mail
| |
Collapse
|
36
|
Sorteni C, Clavenzani P, De Giorgio R, Portnoy O, Sirri R, Mordenti O, Di Biase A, Parmeggiani A, Menconi V, Chiocchetti R. Enteric neuroplasticity in seawater-adapted European eel (Anguilla anguilla). J Anat 2013; 224:180-91. [PMID: 24433383 DOI: 10.1111/joa.12131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 12/01/2022] Open
Abstract
European eels live most of their lives in freshwater until spawning migration to the Sargasso Sea. During seawater adaptation, eels modify their physiology, and their digestive system adapts to the new environment, drinking salt water to compensate for the continuous water loss. In that period, eels stop feeding until spawning. Thus, the eel represents a unique model to understand the adaptive changes of the enteric nervous system (ENS) to modified salinity and starvation. To this purpose, we assessed and compared the enteric neuronal density in the cranial portion of the intestine of freshwater eels (control), lagoon eels captured in brackish water before their migration to the Sargasso Sea (T0), and starved seawater eels hormonally induced to sexual maturity (T18; 18 weeks of starvation and treatment with standardized carp pituitary extract). Furthermore, we analyzed the modification of intestinal neuronal density of hormonally untreated eels during prolonged starvation (10 weeks) in seawater and freshwater. The density of myenteric (MP) and submucosal plexus (SMP) HuC/D-immunoreactive (Hu-IR) neurons was assessed in wholemount preparations and cryosections. The number of MP and SMP HuC/D-IR neurons progressively increased from the freshwater to the salty water habitat (control > T0 > T18; P < 0.05). Compared with freshwater eels, the number of MP and SMP HuC/D-IR neurons significantly increased (P < 0.05) in the intestine of starved untreated salt water eels. In conclusion, high salinity evokes enteric neuroplasticity as indicated by the increasing number of HuC/D-IR MP and SMP neurons, a mechanism likely contributing to maintaining the body homeostasis of this fish in extreme conditions.
Collapse
Affiliation(s)
- C Sorteni
- Department of Veterinary Medical Science (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy; Centro interdipartimentale di ricerca sull'alimentazione umana, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bombardi C, Grandis A, Gardini A, Sorteni C, Clavenzani P, Chiocchetti R. Expression of β2 adrenoceptors within enteric neurons of the horse ileum. Res Vet Sci 2013; 95:837-45. [PMID: 23941962 DOI: 10.1016/j.rvsc.2013.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/10/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
Abstract
The activity of the gastrointestinal tract is regulated through the activation of adrenergic receptors (ARs). Since data concerning the distribution of ARs in the horse intestine is virtually absent, we investigated the distribution of β2-AR in the horse ileum using double-immunofluorescence. The β2-AR-immunoreactivity (IR) was observed in most (95%) neurons located in submucosal plexus (SMP) and in few (8%) neurons of the myenteric plexus (MP). Tyrosine hydroxylase (TH)-IR fibers were observed close to neurons expressing β2-AR-IR. Since β2-AR is virtually expressed in most neurons located in the horse SMP and in a lower percentage of neurons in the MP, it is reasonable to retain that this adrenergic receptor could regulate the activity of both secretomotor neurons and motor neurons innervating muscle layers and blood vessels. The high density of TH-IR fibers near β2-AR-IR enteric neurons indicates that the excitability of these cells could be directly modulated by the sympathetic system.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Science, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Bronicki LM, Jasmin BJ. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. RNA (NEW YORK, N.Y.) 2013; 19:1019-1037. [PMID: 23861535 PMCID: PMC3708524 DOI: 10.1261/rna.039164.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Precise control of messenger RNA (mRNA) processing and abundance are increasingly being recognized as critical for proper spatiotemporal gene expression, particularly in neurons. These regulatory events are governed by a large number of trans-acting factors found in neurons, most notably RNA-binding proteins (RBPs) and micro-RNAs (miRs), which bind to specific cis-acting elements or structures within mRNAs. Through this binding mechanism, trans-acting factors, particularly RBPs, control all aspects of mRNA metabolism, ranging from altering the transcription rate to mediating mRNA degradation. In this context the best-characterized neuronal RBP, the Hu/ELAVl family member HuD, is emerging as a key component in multiple regulatory processes--including pre-mRNA processing, mRNA stability, and translation--governing the fate of a substantial amount of neuronal mRNAs. Through its ability to regulate mRNA metabolism of diverse groups of functionally similar genes, HuD plays important roles in neuronal development and function. Furthermore, compelling evidence indicates supplementary roles for HuD in neuronal plasticity, in particular, recovery from axonal injury, learning and memory, and multiple neurological diseases. The purpose of this review is to provide a detailed overview of the current knowledge surrounding the expression and roles of HuD in the nervous system. Additionally, we outline the present understanding of the molecular mechanisms presiding over the localization, abundance, and function of HuD in neurons.
Collapse
|
39
|
Serum markers in small cell lung cancer: opportunities for improvement. Biochim Biophys Acta Rev Cancer 2013; 1836:255-72. [PMID: 23796706 DOI: 10.1016/j.bbcan.2013.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022]
Abstract
Lung cancer is one of the leading causes of death from malignancy worldwide. In particular small cell lung cancers, which comprise about 15-20% of all lung cancers, are extremely aggressive and cure rates are extremely low. Therefore, new treatment modalities are needed and detection at an early stage of disease, as well as adequate monitoring of treatment response is essential in order to improve outcome. In this respect, the use of non-invasive tools for screening and monitoring has gained increasing interest and the clinical applicability of reliable, tumor-related substances that can be detected as tumor markers in easily accessible body fluids is subject of intense investigation. Some of these indicators, such as high LDH levels in serum as a reflection of the disease, have been in use for a long time as a general tumor marker. To allow for improved monitoring of the efficacy of new therapeutic modalities and for accurate subtyping, there is a strong need for specific and sensitive markers that are more directly related to the biology and behavior of small cell lung cancer. In this review the current status of these potential markers, like CEA, NSE, ProGRP, CK-BB, SCC, CgA, NCAM and several cytokeratins will be critically analyzed with respect to their performance in blood based assays. Based on known cleavage sites for cytoplasmic and extracellular proteases, a prediction of stable fragments can be obtained and used for optimal test design. Furthermore, insight into the synthesis of specific splice variants and neo-epitopes resulting from protein modification and cleavage, offers further opportunities for improvement of tumor assays. Finally, we discuss the possibility that detection of SCLC related autoantibodies in paraneoplastic disease can be used as a very early indicator of SCLC.
Collapse
|
40
|
Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience 2013; 248:499-528. [PMID: 23727006 DOI: 10.1016/j.neuroscience.2013.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022]
Abstract
The mature neocortex is a unique six-layered mammalian brain region. It is composed of morphologically and functionally distinct subpopulations of primary projection neurons that form complex circuits across the central nervous system. The precisely-timed generation of projection neurons from neural stem cells governs their differentiation, postmitotic specification, and signaling, and is critical for cognitive and sensorimotor ability. Developmental perturbations to the birthdate, location, and connectivity of neocortical neurons are observed in neurological and psychiatric disorders. These facts are highlighting the importance of the precise spatiotemporal development of the neocortex regulated by intricate transcriptional, but also complex post-transcriptional events. Indeed, mRNA transcripts undergo many post-transcriptional regulatory steps before the production of functional proteins, which specify neocortical neural stem cells and subpopulations of neocortical neurons. Therefore, particular attention is paid to the differential post-transcriptional regulation of key transcripts by RNA-binding proteins, including splicing, localization, stability, and translation. We also present a transcriptome screen of candidate molecules associated with post-transcriptional mRNA processing that are differentially expressed at key developmental time points across neocortical prenatal neurogenesis.
Collapse
|
41
|
Yoo S, Kim HH, Kim P, Donnelly CJ, Kalinski AL, Vuppalanchi D, Park M, Lee SJ, Merianda TT, Perrone-Bizzozero NI, Twiss JL. A HuD-ZBP1 ribonucleoprotein complex localizes GAP-43 mRNA into axons through its 3' untranslated region AU-rich regulatory element. J Neurochem 2013; 126:792-804. [PMID: 23586486 DOI: 10.1111/jnc.12266] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 11/29/2022]
Abstract
Localized translation of axonal mRNAs contributes to developmental and regenerative axon growth. Although untranslated regions (UTRs) of many different axonal mRNAs appear to drive their localization, there has been no consensus RNA structure responsible for this localization. We recently showed that limited expression of ZBP1 protein restricts axonal localization of both β-actin and GAP-43 mRNAs. β-actin 3'UTR has a defined element for interaction with ZBP1, but GAP-43 mRNA shows no homology to this RNA sequence. Here, we show that an AU-rich regulatory element (ARE) in GAP-43's 3'UTR is necessary and sufficient for its axonal localization. Axonal GAP-43 mRNA levels increase after in vivo injury, and GAP-43 mRNA shows an increased half-life in regenerating axons. GAP-43 mRNA interacts with both HuD and ZBP1, and HuD and ZBP1 co-immunoprecipitate in an RNA-dependent fashion. Reporter mRNA with the GAP-43 ARE competes with endogenous β-actin mRNA for axonal localization and decreases axon length and branching similar to the β-actin 3'UTR competing with endogenous GAP-43 mRNA. Conversely, over-expressing GAP-43 coding sequence with its 3'UTR ARE increases axonal elongation and this effect is lost when just the ARE is deleted from GAP-43's 3'UTR. We have recently found that over-expression of GAP-43 using an axonally targeted construct with the 3'UTRs of GAP-43 promoted elongating growth of axons, while restricting the mRNA to the cell body with the 3'UTR of γ-actin had minimal effect on axon length. In this study, we show that the ARE in GAP-43's 3'UTR is responsible for localization of GAP-43 mRNA into axons and is sufficient for GAP-43 protein's role in elongating axonal growth.
Collapse
Affiliation(s)
- Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hosp. for Children, Wilmington, Delaware, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hinman MN, Zhou HL, Sharma A, Lou H. All three RNA recognition motifs and the hinge region of HuC play distinct roles in the regulation of alternative splicing. Nucleic Acids Res 2013; 41:5049-61. [PMID: 23525460 PMCID: PMC3643579 DOI: 10.1093/nar/gkt166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The four Hu [embryonic lethal abnormal vision-like (ELAVL)] protein family members regulate alternative splicing by binding to U-rich sequences surrounding target exons and affecting the interaction of the splicing machinery and/or local chromatin modifications. Each of the Hu proteins contains a divergent N-terminus, three highly conserved RNA recognition motifs (RRM1, RRM2 and RRM3) and a hinge region separating RRM2 and RRM3. The roles of each domain in splicing regulation are not well understood. Here, we investigate how HuC, a relatively poorly characterized family member, regulates three target pre-mRNAs: neurofibromatosis type I, Fas and HuD. We find that the HuC N-terminus is dispensable for splicing regulation, and the three RRMs are required for splicing regulation of each target, whereas the hinge region contributes to regulation of only some targets. Interestingly, the regions of the hinge and RRM3 required for regulating different targets only partially overlap, implying substrate-specific mechanisms of HuC-mediated splicing regulation. We show that RRM1 and RRM2 are required for binding to target pre-mRNAs, whereas the hinge and RRM3 are required for HuC–HuC self-interaction. Finally, we find that the portions of RRM3 required for HuC–HuC interaction overlap with those required for splicing regulation of all three targets, suggesting a role of HuC–HuC interaction in splicing regulation.
Collapse
Affiliation(s)
- Melissa N Hinman
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
43
|
Wang H, Zeng F, Liu Q, Liu H, Liu Z, Niu L, Teng M, Li X. The structure of the ARE-binding domains of Hu antigen R (HuR) undergoes conformational changes during RNA binding. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:373-80. [PMID: 23519412 DOI: 10.1107/s0907444912047828] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/21/2012] [Indexed: 11/11/2022]
Abstract
Human RNA-binding protein (HuR), a ubiquitously expressed member of the Hu protein family, plays an important role in mRNA degradation and has been implicated as a key post-transcriptional regulator. HuR contains three RNA-recognition motif (RRM) domains. The two N-terminal tandem RRM domains can selectively bind AU-rich elements (AREs), while the third RRM domain (RRM3) contributes to interactions with the poly-A tail of target mRNA and other ligands. Here, the X-ray structure of two methylated tandem RRM domains (RRM1/2) of HuR in their RNA-free form was solved at 2.9 Å resolution. The crystal structure of RRM1/2 complexed with target mRNA was also solved at 2.0 Å resolution; comparisons of the two structures show that HuR RRM1/2 undergoes conformational changes upon RNA binding. Fluorescence polarization assays (FPA) were used to study the protein-RNA interactions. Both the structure and the FPA analysis indicated that RRM1 is the primary ARE-binding domain in HuR and that the conformational changes induce subsequent contacts of the RNA substrate with the inter-domain linker and RRM2 which greatly improve the RNA-binding affinity of HuR.
Collapse
Affiliation(s)
- Hong Wang
- School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Huse JT, Edgar M, Halliday J, Mikolaenko I, Lavi E, Rosenblum MK. Multinodular and vacuolating neuronal tumors of the cerebrum: 10 cases of a distinctive seizure-associated lesion. Brain Pathol 2013; 23:515-24. [PMID: 23324039 DOI: 10.1111/bpa.12035] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/10/2013] [Indexed: 12/12/2022] Open
Abstract
We report 10 cases of a non-neurocytic, purely neuronal tumor affecting adults. Situated in the cerebral hemispheres, with 7 of 10 confined to the temporal lobes, most presented with seizures as their principal clinical manifestations. On magnetic resosnance imaging (MRI), the tumors generally appeared solid and non-contrast enhancing with minimal diffuse infiltration, edema, or mass effect. Six examples demonstrated internal nodularity. Microscopically, the tumor cells were largely distributed into discrete and coalescent nodules exhibiting varying degrees of matrix vacuolization, principally within the deep cortical ribbon and superficial subcortical white matter. Populating elements ranged from morphologically ambiguous to recognizably neuronal, with only two cases manifesting overt ganglion cell cytology. In all cases, tumor cells exhibited widespread nuclear immunolabeling for the HuC/HuD neuronal antigens, although expression of other neuronal markers, including synaptophysin, neurofilament and chromogranin was variable to absent. Tumor cells also failed to express GFAP, p53, IDH1 R132H, or CD34, although CD34-labeling ramified neural elements were present in the adjoining cortex of seven cases. Molecular analysis in a subset of cases failed to reveal DNA copy number abnormalities or BRAF V600E mutation. Follow-up data indicate that this unusual neuronal lesion behaves in benign, World Health Organization (WHO) grade I fashion and is amenable to surgical control.
Collapse
Affiliation(s)
- Jason T Huse
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Allen M, Bird C, Feng W, Liu G, Li W, Perrone-Bizzozero NI, Feng Y. HuD promotes BDNF expression in brain neurons via selective stabilization of the BDNF long 3'UTR mRNA. PLoS One 2013; 8:e55718. [PMID: 23383270 PMCID: PMC3561324 DOI: 10.1371/journal.pone.0055718] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/29/2012] [Indexed: 01/08/2023] Open
Abstract
Complex regulation of brain-derived neurotrophic factor (BDNF) governs its intricate functions in brain development and neuronal plasticity. Besides tight transcriptional control from multiple distinct promoters, alternative 3′end processing of the BDNF transcripts generates either a long or a short 3′untranslated region (3′UTR). Previous reports indicate that distinct RNA sequence in the BDNF 3′UTRs differentially regulates BDNF production in the brain to accommodate neuronal activity changes, conceivably through differential interactions with undefined trans-acting factors that regulate stability and translation of these BDNF mRNA isoforms. In this study, we report that the neuronal RNA-binding protein (RBP) HuD interacts with a highly conserved AU-rich element (ARE) specifically located in the BDNF long 3′UTR. Such interaction is necessary and sufficient for selective stabilization of mRNAs that contain the BDNF long 3′UTR in vitro and in vivo. Moreover, in a HuD transgenic mouse model, the BDNF long 3′UTR mRNA is increased in the hippocampal dentate granule cells (DGCs), leading to elevated expression of BDNF protein that is transported and stored in the mossy fiber (MF) terminals. Our results identify HuD as the first trans-acting factor that enhances BDNF expression specifically through the long 3′UTR and a novel mechanism that regulates BDNF protein production in selected neuronal populations by HuD abundance.
Collapse
Affiliation(s)
- Megan Allen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Clark Bird
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Wei Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Guanglu Liu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Wenqi Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail: (NIPB); (YF)
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (NIPB); (YF)
| |
Collapse
|
46
|
Characterization of multiple exon 1 variants in mammalian HuD mRNA and neuron-specific transcriptional control via neurogenin 2. J Neurosci 2012; 32:11164-75. [PMID: 22895702 DOI: 10.1523/jneurosci.2247-12.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The RBP (RNA-binding protein) and Hu/ELAV family member HuD regulates mRNA metabolism of genes directly or indirectly involved in neuronal differentiation, learning and memory, and several neurological diseases. Given the important functions of HuD in a variety of processes, we set out to determine the mechanisms that promote HuD mRNA expression in neurons using a mouse model. Through several complementary approaches, we determined that the abundance of HuD mRNA is predominantly under transcriptional control in developing neurons. Bioinformatic and 5'RACE (rapid amplification of cDNA ends) analyses of the 5' genomic flanking region identified eight conserved HuD leader exons (E1s), two of which are novel. Expression of all E1 variants was determined in mouse embryonic (E14.5) and adult brains. Sequential deletion of the 5' regulatory region upstream of the predominantly expressed E1c variant revealed a well conserved 400 bp DNA region that contains five E-boxes and is capable of directing HuD expression specifically in neurons. Using EMSA (electrophoretic mobility shift assay), ChIP (chromatin immunoprecipitation), and 5' regulatory region deletion and mutation analysis, we found that two of these E-boxes are targets of Neurogenin 2 (Ngn2) and that this mechanism is important for HuD mRNA induction. Together, our findings reveal that transcriptional regulation of HuD involves the use of alternate leader exons and Ngn2 mediates neuron-specific mRNA expression. To our knowledge, this is the first study to identify molecular events that positively regulate HuD mRNA expression.
Collapse
|
47
|
Abstract
The nervous system equips us with capability to adapt to many conditions and circumstances. We rely on an armamentarium of intricately formed neural circuits for many of our adaptive strategies. However, this capability also depends on a well-conserved toolkit of different molecular mechanisms that offer not only compensatory responses to a changing world, but also provide plasticity to achieve changes in cellular state that underlie a broad range of processes from early developmental transitions to life-long memory. Among the molecular tools that mediate changes in cellular state, our understanding of posttranscriptional regulation of gene expression is expanding rapidly. Part of the "epigenetic landscape" that shapes the deployment and robust regulation of gene networks during the construction and the remodeling of the brain is the microRNA system controlling both levels and translation of messenger RNA. Here we consider recent advances in the study of microRNA-mediated regulation of synaptic form and function.
Collapse
Affiliation(s)
- Elizabeth McNeill
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Darnell JC, Richter JD. Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harb Perspect Biol 2012; 4:a012344. [PMID: 22723494 DOI: 10.1101/cshperspect.a012344] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The formation and maintenance of neural circuits in the mammal central nervous system (CNS) require the coordinated expression of genes not just at the transcriptional level, but at the translational level as well. Recent evidence shows that regulated messenger RNA (mRNA) translation is necessary for certain forms of synaptic plasticity, the cellular basis of learning and memory. In addition, regulated translation helps guide axonal growth cones to their targets on other neurons or at the neuromuscular junction. Several neurologic syndromes have been correlated with and indeed may be caused by aberrant translation; one important example is the fragile X mental retardation syndrome. Although translation in the CNS is regulated by multiple mechanisms and factors, we focus this review on regulatory mRNA-binding proteins with particular emphasis on fragile X mental retardation protein (FMRP) and cytoplasmic polyadenylation element binding (CPEB) because they have been shown to be at the nexus of translational control and brain function in health and disease.
Collapse
Affiliation(s)
- Jennifer C Darnell
- Department of Molecular Neuro-Oncology, Rockefeller University, New York, New York 10065, USA.
| | | |
Collapse
|
49
|
Increased expression of axogenesis-related genes and mossy fibre length in dentate granule cells from adult HuD overexpressor mice. ASN Neuro 2012; 3:259-70. [PMID: 22004431 PMCID: PMC3234101 DOI: 10.1042/an20110015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The neuronal RNA-binding protein HuD plays a critical role in the post-transcriptional regulation of short-lived mRNAs during the initial establishment and remodelling of neural connections. We have generated transgenic mice overexpressing this protein (HuD-Tg) in adult DGCs (dentate granule cells) and shown that their mossy fibres contain high levels of GAP-43 (growth-associated protein 43) and exhibit distinct morphological and electrophysiological properties. To investigate the basis for these changes and identify other molecular targets of HuD, DGCs from HuD-Tg and control mice were collected by LCM (laser capture microscopy) and RNAs analysed using DNA microarrays. Results show that 216 known mRNAs transcripts and 63 ESTs (expressed sequence tags) are significantly up-regulated in DGCs from these transgenic mice. Analyses of the 3'-UTRs (3'-untranslated regions) of these transcripts revealed an increased number of HuD-binding sites and the presence of several known instability-conferring sequences. Among these, the mRNA for TTR (transthyretin) shows the highest level of up-regulation, as confirmed by qRT-PCR (quantitative reverse transcription-PCR) and ISH (in situ hybridization). GO (gene ontology) analyses of up-regulated transcripts revealed a large over-representation of genes associated with neural development and axogenesis. In correlation with these gene expression changes, we found an increased length of the infrapyramidal mossy fibre bundle in HuD-Tg mice. These results support the notion that HuD stabilizes a number of developmentally regulated mRNAs in DGCs, resulting in increased axonal elongation.
Collapse
|
50
|
Regulation of gene expression during early neuronal differentiation: evidence for patterns conserved across neuron populations and vertebrate classes. Cell Tissue Res 2012; 348:1-27. [PMID: 22437873 DOI: 10.1007/s00441-012-1367-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/08/2012] [Indexed: 12/19/2022]
Abstract
Analysis of transcription factor function during neurogenesis has provided a huge amount of data on the generation and specification of diverse neuron populations in the central and peripheral nervous systems of vertebrates. However, an understanding of the induction of key neuron functions including electrical information processing and synaptic transmission lags seriously behind. Whereas pan-neuronal markers such as neurofilaments, neuron-specific tubulin and RNA-binding proteins have often been included in developmental analysis, the molecular players underlying electrical activity and transmitter release have been neglected in studies addressing gene expression during neuronal induction. Here, I summarize the evidence for a distinct accumulation pattern of mRNAs for synaptic proteins, a pattern that is delayed compared with pan-neuronal gene expression during neurogenesis. The conservation of this pattern across diverse avian and mammalian neuron populations suggests a common mechanism for the regulation of various sets of neuronal genes during initial neuronal differentiation. The co-regulation of genes coding for synaptic proteins from embryonic to postnatal development indicates that the expression of the players required for synaptic transmission shares common regulatory features. For the ion channels involved in neuronal electrical activity, such as voltage-gated sodium channels, the situation is less clear because of the lack of comparative studies early during neurogenesis. Transcription factors have been characterized that regulate the expression of synaptic proteins in vitro and in vivo. They currently do not explain the co-regulation of these genes across different neuron populations. The neuron-restrictive silencing factor NRSF/REST targets a large gene set, but not all of the genes coding for pan-neuronal, synaptic and ion channel proteins. The discrepancy between NRSF/REST loss-of-function and silencer-to-activator-switch studies leaves the full functional implications of this factor open. Together with microRNAs, splicing regulators, chromatin remodellers and an increasing list of transcriptional regulators, the factor is embedded in feedback circuits with the potential to orchestrate neuronal differentiation. The precise regulation of the coordinated expression of proteins underlying key neuronal functions by these circuits during neuronal induction is a major emerging topic.
Collapse
|