1
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
2
|
Cao J, Wan S, Chen S, Yang L. ANXA6: a key molecular player in cancer progression and drug resistance. Discov Oncol 2023; 14:53. [PMID: 37129645 PMCID: PMC10154440 DOI: 10.1007/s12672-023-00662-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Annexin-A6 (ANXA6), a Ca2+-dependent membrane binding protein, is the largest of all conserved annexin families and highly expressed in the plasma membrane and endosomal compartments. As a multifunctional scaffold protein, ANXA6 can interact with phospholipid membranes and various signaling proteins. These properties enable ANXA6 to participate in signal transduction, cholesterol homeostasis, intracellular/extracellular membrane transport, and repair of membrane domains, etc. Many studies have demonstrated that the expression of ANXA6 is consistently altered during tumor formation and progression. ANXA6 is currently known to mediate different patterns of tumor progression in different cancer types through multiple cancer-type specific mechanisms. ANXA6 is a potentially valuable marker in the diagnosis, progression, and treatment strategy of various cancers. This review mainly summarizes recent findings on the mechanism of tumor formation, development, and drug resistance of ANXA6. The contents reviewed herein may expand researchers' understanding of ANXA6 and contribute to developing ANXA6-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Xu X, Jin T. Ras inhibitors gate chemoattractant concentration range for chemotaxis through controlling GPCR-mediated adaptation and cell sensitivity. Front Immunol 2022; 13:1020117. [PMID: 36341344 PMCID: PMC9630474 DOI: 10.3389/fimmu.2022.1020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotaxis plays an essential role in recruitment of leukocytes to sites of inflammation. Eukaryotic cells sense chemoattractant with G protein-coupled receptors (GPCRs) and chemotax toward gradients with an enormous concentration range through adaptation. Cells in adaptation no longer respond to the present stimulus but remain sensitive to stronger stimuli. Thus, adaptation provides a fundamental strategy for eukaryotic cells to chemotax through a gradient. Ras activation is the first step in the chemosensing GPCR signaling pathways that displays a transient activation behavior in both model organism Dictyostelium discoideum and mammalian neutrophils. Recently, it has been revealed that C2GAP1 and CAPRI control the GPCR-mediated adaptation in D. discoideum and human neutrophils, respectively. More importantly, both Ras inhibitors regulate the sensitivity of the cells. These findings suggest an evolutionarily conserved molecular mechanism by which eukaryotic cells gate concentration range of chemoattractants for chemotaxis.
Collapse
|
4
|
Ras inhibitor CAPRI enables neutrophil-like cells to chemotax through a higher-concentration range of gradients. Proc Natl Acad Sci U S A 2021; 118:2002162118. [PMID: 34675073 DOI: 10.1073/pnas.2002162118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 01/21/2023] Open
Abstract
Neutrophils sense and migrate through an enormous range of chemoattractant gradients through adaptation. Here, we reveal that in human neutrophils, calcium-promoted Ras inactivator (CAPRI) locally controls the GPCR-stimulated Ras adaptation. Human neutrophils lacking CAPRI (caprikd ) exhibit chemoattractant-induced, nonadaptive Ras activation; significantly increased phosphorylation of AKT, GSK-3α/3β, and cofilin; and excessive actin polymerization. caprikd cells display defective chemotaxis in response to high-concentration gradients but exhibit improved chemotaxis in low- or subsensitive-concentration gradients of various chemoattractants, as a result of their enhanced sensitivity. Taken together, our data reveal that CAPRI controls GPCR activation-mediated Ras adaptation and lowers the sensitivity of human neutrophils so that they are able to chemotax through a higher-concentration range of chemoattractant gradients.
Collapse
|
5
|
Hoque M, Elmaghrabi YA, Köse M, Beevi SS, Jose J, Meneses-Salas E, Blanco-Muñoz P, Conway JRW, Swarbrick A, Timpson P, Tebar F, Enrich C, Rentero C, Grewal T. Annexin A6 improves anti-migratory and anti-invasive properties of tyrosine kinase inhibitors in EGFR overexpressing human squamous epithelial cells. FEBS J 2020; 287:2961-2978. [PMID: 31869496 DOI: 10.1111/febs.15186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
Annexin A6 (AnxA6), a member of the calcium (Ca2+ ) and membrane binding annexins, is known to stabilize and establish the formation of multifactorial signaling complexes. At the plasma membrane, AnxA6 is a scaffold for protein kinase Cα (PKCα) and GTPase-activating protein p120GAP to promote downregulation of epidermal growth factor receptor (EGFR) and Ras/mitogen-activated protein kinase (MAPK) signaling. In human squamous A431 epithelial carcinoma cells, which overexpress EGFR, but lack endogenous AnxA6, restoration of AnxA6 expression (A431-A6) promotes PKCα-mediated threonine 654 (T654)-EGFR phosphorylation, which inhibits EGFR tyrosine kinase activity. This is associated with reduced A431-A6 cell growth, but also decreased migration and invasion in wound healing, matrigel, and organotypic matrices. Here, we show that A431-A6 cells display reduced EGFR activity in vivo, with xenograft analysis identifying increased pT654-EGFR levels, but reduced tyrosine EGFR phosphorylation compared to controls. In contrast, PKCα depletion in A431-A6 tumors is associated with strongly reduced pT654 EGFR levels, yet increased EGFR tyrosine phosphorylation and MAPK activity. Moreover, tyrosine kinase inhibitors (TKIs; gefitinib, erlotinib) more effectively inhibit cell viability, clonogenic growth, and wound healing of A431-A6 cells compared to controls. Likewise, the ability of AnxA6 to inhibit A431 motility and invasiveness strongly improves TKI efficacy in matrigel invasion assays. This correlates with a greatly reduced invasion of the surrounding matrix of TKI-treated A431-A6 when cultured in 3D spheroids. Altogether, these findings implicate that elevated AnxA6 scaffold levels contribute to improve TKI-mediated inhibition of growth and migration, but also invasive properties in EGFR overexpressing human squamous epithelial carcinoma.
Collapse
Affiliation(s)
- Monira Hoque
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Yasmin A Elmaghrabi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Meryem Köse
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Syed S Beevi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, IDIBAPS, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, IDIBAPS, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - James R W Conway
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Alexander Swarbrick
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Paul Timpson
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, NSW, Australia
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, IDIBAPS, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, IDIBAPS, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, IDIBAPS, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| |
Collapse
|
6
|
Gou R, Zhu L, Zheng M, Guo Q, Hu Y, Li X, Liu J, Lin B. Annexin A8 can serve as potential prognostic biomarker and therapeutic target for ovarian cancer: based on the comprehensive analysis of Annexins. J Transl Med 2019; 17:275. [PMID: 31474227 PMCID: PMC6717992 DOI: 10.1186/s12967-019-2023-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Annexins are involved in vesicle trafficking, cell proliferation and apoptosis, but their functional mechanisms in ovarian cancer remain unclear. In this study, we analyzed Annexins in ovarian cancer using different databases and selected Annexin A8 (ANXA8), which showed the greatest prognostic value, for subsequent validation in immunohistochemical (IHC) assays. METHODS The mRNA expression levels, genetic variations, prognostic values and gene-gene interaction network of Annexins in ovarian cancer were analyzed using the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, Kaplan-Meier plotter and GeneMANIA database. ANXA8 was selected for analyzing the biological functions and pathways of its co-expressed genes, and its correlation with immune system responses via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and the TISIDB database, respectively. We validated the expression of ANXA8 in ovarian cancer via IHC assays and analyzed its correlation with clinicopathological parameters and prognosis. RESULTS ANXA2/3/8/11 mRNA expression levels were significantly upregulated in ovarian cancer, and ANXA5/6/7 mRNA expression levels were significantly downregulated. Prognostic analysis suggested that significant correlations occurred between ANXA2/4/8/9 mRNA upregulation and poor overall survival, and between ANXA8/9/11 mRNA upregulation and poor progression-free survival in patients with ovarian serous tumors. Taken together, results suggested that ANXA8 was most closely associated with ovarian cancer tumorigenesis and progression. Further analyses indicated that ANXA8 may be involved in cell migration, cell adhesion, and vasculature development, as well as in the regulation of PI3K-Akt, focal adhesion, and proteoglycans. Additionally, ANXA8 expression was significantly correlated with lymphocytes and immunomodulators. The IHC results showed that ANXA8 expression was higher in the malignant tumor group than in the borderline and benign tumor groups and normal ovary group, and high ANXA8 expression was an independent risk factor for survival and prognosis of ovarian cancer patients (P = 0.013). CONCLUSIONS Members of the Annexin family display varying degrees of abnormal expressions in ovarian cancer. ANXA8 was significantly highly expressed in ovarian cancer, and high ANXA8 expression was significantly correlated with poor prognosis. Therefore, ANXA8 is a high candidate as a novel biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, Liaoning, China. .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
7
|
Scheffzek K, Shivalingaiah G. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031500. [PMID: 30104198 DOI: 10.1101/cshperspect.a031500] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras-specific GTPase-activating proteins (RasGAPs) down-regulate the biological activity of Ras proteins by accelerating their intrinsic rate of GTP hydrolysis, basically by a transition state stabilizing mechanism. Oncogenic Ras is commonly not sensitive to RasGAPs caused by interference of mutants with the electronic or steric requirements of the transition state, resulting in up-regulation of activated Ras in respective cells. RasGAPs are modular proteins containing a helical catalytic RasGAP module surrounded by smaller domains that are frequently involved in the subcellular localization or contributing to regulatory features of their host proteins. In this review, we summarize current knowledge about RasGAP structure, mechanism, regulation, and dual-substrate specificity and discuss in some detail neurofibromin, one of the most important negative Ras regulators in cellular growth control and neuronal function.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Giridhar Shivalingaiah
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
8
|
Rentero C, Blanco-Muñoz P, Meneses-Salas E, Grewal T, Enrich C. Annexins-Coordinators of Cholesterol Homeostasis in Endocytic Pathways. Int J Mol Sci 2018; 19:E1444. [PMID: 29757220 PMCID: PMC5983649 DOI: 10.3390/ijms19051444] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
The spatiotemporal regulation of calcium (Ca2+) storage in late endosomes (LE) and lysosomes (Lys) is increasingly recognized to influence a variety of membrane trafficking events, including endocytosis, exocytosis, and autophagy. Alterations in Ca2+ homeostasis within the LE/Lys compartment are implicated in human diseases, ranging from lysosomal storage diseases (LSDs) to neurodegeneration and cancer, and they correlate with changes in the membrane binding behaviour of Ca2+-binding proteins. This also includes Annexins (AnxA), which is a family of Ca2+-binding proteins participating in membrane traffic and tethering, microdomain organization, cytoskeleton interactions, Ca2+ signalling, and LE/Lys positioning. Although our knowledge regarding the way Annexins contribute to LE/Lys functions is still incomplete, recruitment of Annexins to LE/Lys is greatly influenced by the availability of Annexin bindings sites, including acidic phospholipids, such as phosphatidylserine (PS) and phosphatidic acid (PA), cholesterol, and phosphatidylinositol (4,5)-bisphosphate (PIP2). Moreover, the cytosolic portion of LE/Lys membrane proteins may also, directly or indirectly, determine the recruitment of Annexins to LE. Strikingly, within LE/Lys, AnxA1, A2, A6, and A8 differentially contribute to cholesterol transport along the endocytic route, in particular, cholesterol transfer between LE and other compartments, positioning Annexins at the centre of major pathways mediating cellular cholesterol homeostasis. Underlying mechanisms include the formation of membrane contact sites (MCS) and intraluminal vesicles (ILV), as well as the modulation of LE-cholesterol transporter activity. In this review, we will summarize the current understanding how Annexins contribute to influence LE/Lys membrane transport and associated functions.
Collapse
Affiliation(s)
- Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
9
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
10
|
Functional Association between Regulatory RNAs and the Annexins. Int J Mol Sci 2018; 19:ijms19020591. [PMID: 29462943 PMCID: PMC5855813 DOI: 10.3390/ijms19020591] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
Cells respond to pathophysiological states by activation of stress-induced signalling. Regulatory non-coding microRNAs (miRNAs) often form stable feed-forward loops which ensure prolongation of the signal, contributing to sustained activation. Members of the annexin protein family act as sensors for Ca2+, pH, and lipid second messengers, and regulate various signalling pathways. Recently, annexins were reported to participate in feedback loops, suppressing miRNA synthesis and attenuating stress-induced dysregulation of gene expression. They can directly or indirectly associate with RNAs, and are transferred between the cells in exosomes and shed microvesicles. The ability of annexins to recruit other proteins and miRNAs into exosomes implicates them in control of cell–cell interactions, affecting the adaptive responses and remodelling processes during disease. The studies summarized in this Review point to an emerging role of annexins in influencing the synthesis, localisation, and transfer of regulatory RNAs.
Collapse
|
11
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
12
|
The spatiotemporal regulation of RAS signalling. Biochem Soc Trans 2017; 44:1517-1522. [PMID: 27911734 DOI: 10.1042/bst20160127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Nearly 30% of human tumours harbour mutations in RAS family members. Post-translational modifications and the localisation of RAS within subcellular compartments affect RAS interactions with regulator, effector and scaffolding proteins. New insights into the control of spatiotemporal RAS signalling reveal that activation kinetics and subcellular compartmentalisation are tightly coupled to the generation of specific biological outcomes. Computational modelling can help utilising these insights for the identification of new targets and design of new therapeutic approaches.
Collapse
|
13
|
Analysis of the spleen proteome of chickens infected with reticuloendotheliosis virus. Arch Virol 2017; 162:1187-1199. [PMID: 28097424 PMCID: PMC5387025 DOI: 10.1007/s00705-016-3180-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/19/2016] [Indexed: 10/30/2022]
Abstract
Infection with reticuloendotheliosis virus (REV), a gammaretrovirus in the family Retroviridae, can result in immunosuppression and subsequent increased susceptibility to secondary infections. In the present study, we identified differentially expressed proteins in the spleens of chickens infected with the REV-A HLJ07I strain, using two-dimensional gel electrophoresis on samples from time points coinciding with different phases of the REV life cycle. Differentially expressed proteins were identified using one-dimensional liquid chromatography electrospray ionization tandem mass spectrometry (1D LC ESI MS/MS). Comparative analysis of multiple gels revealed that the majority of changes occurred at early stages of infection. In total, 60 protein spots representing 28 host proteins were detected as either quantitatively (false discovery rate [FDR] ≤0.05 and fold change ≥2) or qualitatively differentially expressed at least once during different sampling points. The differentially expressed proteins identified in this study included antioxidants, molecular chaperones, cellular metabolism, formation of the cytoskeleton, signal transduction, cell proliferation and cellar aging. The present findings provide a basis for further studies to elucidate the role of these proteins in REV-host interactions. This could lead to a better understanding of REV infection mechanisms that cause immune suppression.
Collapse
|
14
|
Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, Timpson P, Enrich C, Rentero C. Annexin A6-A multifunctional scaffold in cell motility. Cell Adh Migr 2017; 11:288-304. [PMID: 28060548 DOI: 10.1080/19336918.2016.1268318] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Annexin A6 (AnxA6) belongs to a highly conserved protein family characterized by their calcium (Ca2+)-dependent binding to phospholipids. Over the years, immunohistochemistry, subcellular fractionations, and live cell microscopy established that AnxA6 is predominantly found at the plasma membrane and endosomal compartments. In these locations, AnxA6 acts as a multifunctional scaffold protein, recruiting signaling proteins, modulating cholesterol and membrane transport and influencing actin dynamics. These activities enable AnxA6 to contribute to the formation of multifactorial protein complexes and membrane domains relevant in signal transduction, cholesterol homeostasis and endo-/exocytic membrane transport. Hence, AnxA6 has been implicated in many biological processes, including cell proliferation, survival, differentiation, inflammation, but also membrane repair and viral infection. More recently, we and others identified roles for AnxA6 in cancer cell migration and invasion. This review will discuss how the multiple scaffold functions may enable AnxA6 to modulate migratory cell behavior in health and disease.
Collapse
Affiliation(s)
- Thomas Grewal
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Monira Hoque
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - James R W Conway
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Meritxell Reverter
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Mohamed Wahba
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Syed S Beevi
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Paul Timpson
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Carlos Enrich
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Carles Rentero
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
15
|
Enrich C, Rentero C, Meneses-Salas E, Tebar F, Grewal T. Annexins: Ca 2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:351-385. [PMID: 29594868 DOI: 10.1007/978-3-319-55858-5_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite the discovery of annexins 40 years ago, we are just beginning to understand some of the functions of these still enigmatic proteins. Defined and characterized by their ability to bind anionic membrane lipids in a Ca2+-dependent manner, each annexin has to be considered a multifunctional protein, with a multitude of cellular locations and diverse activities. Underlying causes for this considerable functional diversity include their capability to associate with multiple cytosolic and membrane proteins. In recent years, the increasingly recognized establishment of membrane contact sites between subcellular compartments opens a new scenario for annexins as instrumental players to link Ca2+ signalling with the integration of membrane trafficking in many facets of cell physiology. In this chapter, we review and discuss current knowledge on the contribution of annexins in the biogenesis and functioning of the late endocytic compartment, affecting endo- and exocytic pathways in a variety of physiological consequences ranging from membrane repair, lysosomal exocytosis, to cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Tan Y, Wang Q, Zhao B, She Y, Bi X. GNB2 is a mediator of lidocaine-induced apoptosis in rat pheochromocytoma PC12 cells. Neurotoxicology 2016; 54:53-64. [PMID: 27018092 DOI: 10.1016/j.neuro.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
Lidocaine has been recognized to induce neurotoxicity. However, the molecular mechanism underlying this effect, especially the critical molecules in cells that mediated the lidocaine-induced apoptosis were unclear. In the present study, PC12 cells were administrated with lidocaine for 48h. Using MTT assay and flow cytometry, we found lidocaine significantly decreased the cell proliferation and S phases in PC12 cells with treatment concentrations, and significantly enhanced cell apoptosis with treatment concentrations. Two-dimensional gel electrophoresis (2-DE) analysis and LC-MS/MS were used to identification of protein biomarkers. Six proteins were identified. Among them, three were up-expressed including ANXA6, GNB2 and STMN1, other three were down-expressed including ubiquitin-linke protein 7 (UBL7), DDAH2 and BLVRB. Using qRT-PCR, we confirmed that lidocaine up-regulated the mRNA expression of STMN1, GNB2, ANXA6 and DDAH2, and found that the GNB2 had the largest change (about increased by 6.4 folds). The up-regulation of GNB2 by lidocaine was also validated by western blot. After transfected with 100μM GNB2-Rat-453 siRNA, the expression of GNB2 in PC12 cells was almost completely inhibited; and the cell proliferation and cells in S phases were significantly enhanced, cell apoptosis including both early apoptosis and later apoptosis were significantly reduced in the presence of 0.5mM lidocaine for 48h. Therefore, neuronal apoptosis was induced by lidocaine and this effect was mediated by GNB2. Further research is needed to assess the clinical relevance and exact mechanism of neuronal apoptosis caused by lidocaine.
Collapse
Affiliation(s)
- Yonghong Tan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, Guangdong, China.
| | - Qiong Wang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, Guangdong, China.
| | - Baisong Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, Guangdong, China.
| | - Yingjun She
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, Guangdong, China.
| | - Xiaobao Bi
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
17
|
García-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M, Conway JRW, Johnsen CH, Alvarez-Guaita A, Morales-Paytuvi F, Elmaghrabi YA, Pol A, Tebar F, Murray RZ, Timpson P, Enrich C, Grewal T, Rentero C. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration. J Biol Chem 2015; 291:1320-35. [PMID: 26578516 DOI: 10.1074/jbc.m115.683557] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.
Collapse
Affiliation(s)
- Ana García-Melero
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Meritxell Reverter
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Monira Hoque
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elsa Meneses-Salas
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Meryem Koese
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - James R W Conway
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Camilla H Johnsen
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Alvarez-Guaita
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Frederic Morales-Paytuvi
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Yasmin A Elmaghrabi
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Albert Pol
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Francesc Tebar
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Rachael Z Murray
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4095, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Carlos Enrich
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia,
| | - Carles Rentero
- From the Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, and
| |
Collapse
|
18
|
Hoque M, Rentero C, Cairns R, Tebar F, Enrich C, Grewal T. Annexins — Scaffolds modulating PKC localization and signaling. Cell Signal 2014; 26:1213-25. [DOI: 10.1016/j.cellsig.2014.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
|
19
|
Burns TA, Dours-Zimmermann MT, Zimmermann DR, Krug EL, Comte-Walters S, Reyes L, Davis MA, Schey KL, Schwacke JH, Kern CB, Mjaatvedt CH. Imbalanced expression of Vcan mRNA splice form proteins alters heart morphology and cellular protein profiles. PLoS One 2014; 9:e89133. [PMID: 24586547 PMCID: PMC3930639 DOI: 10.1371/journal.pone.0089133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/20/2014] [Indexed: 01/09/2023] Open
Abstract
The fundamental importance of the proteoglycan versican to early heart formation was clearly demonstrated by the Vcan null mouse called heart defect (hdf). Total absence of the Vcan gene halts heart development at a stage prior to the heart’s pulmonary/aortic outlet segment growth. This creates a problem for determining the significance of versican’s expression in the forming valve precursors and vascular wall of the pulmonary and aortic roots. This study presents data from a mouse model, Vcan(tm1Zim), of heart defects that results from deletion of exon 7 in the Vcan gene. Loss of exon 7 prevents expression of two of the four alternative splice forms of the Vcan gene. Mice homozygous for the exon 7 deletion survive into adulthood, however, the inability to express the V2 or V0 forms of versican results in ventricular septal defects, smaller cushions/valve leaflets with diminished myocardialization and altered pulmonary and aortic outflow tracts. We correlate these phenotypic findings with a large-scale differential protein expression profiling to identify compensatory alterations in cardiac protein expression at E13.5 post coitus that result from the absence of Vcan exon 7. The Vcan(tm1Zim) hearts show significant changes in the relative abundance of several cytoskeletal and muscle contraction proteins including some previously associated with heart disease. These alterations define a protein fingerprint that provides insight to the observed deficiencies in pre-valvular/septal cushion mesenchyme and the stability of the myocardial phenotype required for alignment of the outflow tract with the heart ventricles.
Collapse
Affiliation(s)
- Tara A. Burns
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | | - Dieter R. Zimmermann
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Edward L. Krug
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Susana Comte-Walters
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Leticia Reyes
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Monica A. Davis
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - John H. Schwacke
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Christine B. Kern
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Corey H. Mjaatvedt
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Tebar F, Gelabert-Baldrich M, Hoque M, Cairns R, Rentero C, Pol A, Grewal T, Enrich C. Annexins and Endosomal Signaling. Methods Enzymol 2014; 535:55-74. [DOI: 10.1016/b978-0-12-397925-4.00004-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Abstract
Influenza is caused by influenza A virus (IAV), an enveloped, negative-stranded RNA virus that derives its envelope lipids from the host cell plasma membrane. Here, we examined the functional role of cellular cholesterol in the IAV infection cycle. We show that shifting of cellular cholesterol pools via the Ca2+-regulated membrane-binding protein annexin A6 (AnxA6) affects the infectivity of progeny virus particles. Elevated levels of cellular AnxA6, which decrease plasma membrane and increase late endosomal cholesterol levels, impaired IAV replication and propagation, whereas RNA interference-mediated AnxA6 ablation increased viral progeny titers. Pharmacological accumulation of late endosomal cholesterol also diminished IAV virus propagation. Decreased IAV replication caused by upregulated AnxA6 expression could be restored either by exogenous replenishment of host cell cholesterol or by ectopic expression of the late endosomal cholesterol transporter Niemann-Pick C1 (NPC1). Virus released from AnxA6-overexpressing cells displayed significantly reduced cholesterol levels. Our results show that IAV replication depends on maintenance of the cellular cholesterol balance and identify AnxA6 as a critical factor in linking IAV to cellular cholesterol homeostasis. Influenza A virus (IAV) is a major public health concern, and yet, major host-pathogen interactions regulating IAV replication still remain poorly understood. It is known that host cell cholesterol is a critical factor in the influenza virus life cycle. The viral envelope is derived from the host cell membrane during the process of budding and, hence, equips the virus with a special lipid-protein mixture which is high in cholesterol. However, the influence of host cell cholesterol homeostasis on IAV infection is largely unknown. We show that IAV infection success critically depends on host cell cholesterol distribution. Cholesterol sequestration in the endosomal compartment impairs progeny titer and infectivity and is associated with reduced cholesterol content in the viral envelope.
Collapse
|
22
|
Hannibal L, DiBello PM, Jacobsen DW. Proteomics of vitamin B12 processing. Clin Chem Lab Med 2013; 51:477-88. [PMID: 23241609 DOI: 10.1515/cclm-2012-0568] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/23/2012] [Indexed: 12/18/2022]
Abstract
The causes of cobalamin (B12, Cbl) deficiency are multifactorial. Whether nutritional due to poor dietary intake, or functional due to impairments in absorption or intracellular processing and trafficking events, the major symptoms of Cbl deficiency include megaloblastic anemia, neurological deterioration and in extreme cases, failure to thrive and death. The common biomarkers of Cbl deficiency (hyperhomocysteinemia and methylmalonic acidemia) are extremely valuable diagnostic indicators of the condition, but little is known about the changes that occur at the protein level. A mechanistic explanation bridging the physiological changes associated with functional B12 deficiency with its intracellular processers and carriers is lacking. In this article, we will cover the effects of B12 deficiency in a cblC-disrupted background (also referred to as MMACHC) as a model of functional Cbl deficiency. As will be shown, major protein changes involve the cytoskeleton, the neurological system as well as signaling and detoxification pathways. Supplementation of cultured MMACHC-mutant cells with hydroxocobalamin (HOCbl) failed to restore these variants to the normal phenotype, suggesting that a defective Cbl processing pathway produces irreversible changes at the protein level.
Collapse
Affiliation(s)
- Luciana Hannibal
- Department of Pathobiology (NC2 – 104), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
23
|
Chlystun M, Campanella M, Law AL, Duchen MR, Fatimathas L, Levine TP, Gerke V, Moss SE. Regulation of mitochondrial morphogenesis by annexin A6. PLoS One 2013; 8:e53774. [PMID: 23341998 PMCID: PMC3544845 DOI: 10.1371/journal.pone.0053774] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial homeostasis is critical in meeting cellular energy demands, shaping calcium signals and determining susceptibility to apoptosis. Here we report a role for anxA6 in the regulation of mitochondrial morphogenesis, and show that in cells lacking anxA6 mitochondria are fragmented, respiration is impaired and mitochondrial membrane potential is reduced. In fibroblasts from AnxA6−/− mice, mitochondrial Ca2+ uptake is reduced and cytosolic Ca2+ transients are elevated. These observations led us to investigate possible interactions between anxA6 and proteins with roles in mitochondrial fusion and fission. We found that anxA6 associates with Drp1 and that mitochondrial fragmentation in AnxA6−/− fibroblasts was prevented by the Drp1 inhibitor mdivi-1. In normal cells elevation of intracellular Ca2+ disrupted the interaction between anxA6 and Drp1, displacing anxA6 to the plasma membrane and promoting mitochondrial fission. Our results suggest that anxA6 inhibits Drp1 activity, and that Ca2+-binding to anxA6 relieves this inhibition to permit Drp1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Marcin Chlystun
- Department of Cell Biology, University College London (UCL) Institute of Ophthalmology, London, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
- Consortium for Mitochondrial Research (CfMR), University College London, London, United Kingdom
| | - Ah-Lai Law
- Department of Cell Biology, University College London (UCL) Institute of Ophthalmology, London, United Kingdom
| | - Michael R. Duchen
- Department of Cell and Developmental Biology, Mitochondrial Biology Group, University College London, London, United Kingdom
- Consortium for Mitochondrial Research (CfMR), University College London, London, United Kingdom
| | - Lux Fatimathas
- Department of Cell Biology, University College London (UCL) Institute of Ophthalmology, London, United Kingdom
| | - Tim P. Levine
- Department of Cell Biology, University College London (UCL) Institute of Ophthalmology, London, United Kingdom
| | - Volker Gerke
- University of Muenster, Institute of Medical Biochemistry, Muenster, Germany
| | - Stephen E. Moss
- Department of Cell Biology, University College London (UCL) Institute of Ophthalmology, London, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Wu CY, Taneyhill LA. Annexin a6 modulates chick cranial neural crest cell emigration. PLoS One 2012; 7:e44903. [PMID: 22984583 PMCID: PMC3439457 DOI: 10.1371/journal.pone.0044903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022] Open
Abstract
The vertebrate neural crest is a population of migratory cells that originates in the dorsal aspect of the embryonic neural tube. These cells undergo an epithelial-to-mesencyhmal transition (EMT), delaminate from the neural tube and migrate extensively to generate an array of differentiated cell types. Elucidating the gene regulatory networks involved in neural crest cell induction, migration and differentiation are thus crucial to understanding vertebrate development. To this end, we have identified Annexin A6 as an important regulator of chick midbrain neural crest cell emigration. Annexin proteins comprise a family of calcium-dependent, membrane-binding molecules that mediate a variety of cellular and physiological processes including cell adhesion, migration and invasion. Our data indicate that Annexin A6 is expressed in the proper spatio-temporal pattern in the chick midbrain to play a potential role in neural crest cell ontogeny. To investigate Annexin A6 function, we have depleted or overexpressed Annexin A6 in the developing midbrain neural crest cell population. Our results show that knock-down or overexpression of Annexin A6 reduces or expands the migratory neural crest cell domain, respectively. Importantly, this phenotype is not due to any change in cell proliferation or cell death but can be correlated with changes in the size of the premigratory neural crest cell population and with markers associated with EMT. Taken together, our data indicate that Annexin A6 plays a pivotal role in modulating the formation of cranial migratory neural crest cells during vertebrate development.
Collapse
Affiliation(s)
- Chyong-Yi Wu
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Lisa A. Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Qiao F, Su X, Qiu X, Qian D, Peng X, Chen H, Zhao Z, Fan H. Enforced expression of RASAL1 suppresses cell proliferation and the transformation ability of gastric cancer cells. Oncol Rep 2012; 28:1475-81. [PMID: 22825043 DOI: 10.3892/or.2012.1920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/19/2012] [Indexed: 11/06/2022] Open
Abstract
RAS protein activator like 1 (RASAL1) is a member of the RAS GTPase-activating protein (GAP) family, and it is an important molecule in the regulation of RAS activation. In the present study, we investigated the role of RASAL1 in gastric carcinogenesis. Decreased expression pattern of RASAL1 in gastric cancer tissues and cell lines was found in protein and RNA levels, although there was no statistically significant relationship between RASAL1 and clinicopathological features. Restored expression of RASAL1 induced by DNA methylation inhibitor 5-aza-2'-deoxycytidine (5'-AZA) and HDAC inhibitor trichostatin A (TSA) implied that RASAL1 expression is regulated by epigenetic mechanisms. The biological role of RASAL1 in gastric carcinogenesis was determined by in vitro tumorigenicity assays. Overexpression of RASAL1 showed suppression of cell proliferation due to cell apoptosis. Subsequently, enforced expression of RASAL1 repressed significantly the gastric cancer cell transformation ability. These findings demonstrated that decreased RASAL1 expression is a characteristic of gastric cancer and regulated by epigenetic mechanisms. RASAL1 may be a functional tumor suppressor involved in gastric cancer. This study provides novel insights into the biological role of RASAL1 in gastric carcinogenesis.
Collapse
Affiliation(s)
- Fengchang Qiao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Institute of Life Science, and Department of Genetics and Developmental Biology, Medical School of Southeast University, Nanjing 210009, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Domon M, Nasir MN, Matar G, Pikula S, Besson F, Bandorowicz-Pikula J. Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Cell Mol Life Sci 2012; 69:1773-85. [PMID: 22159585 PMCID: PMC11114673 DOI: 10.1007/s00018-011-0894-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/22/2023]
Abstract
Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.
Collapse
Affiliation(s)
- Magdalena Domon
- Laboratory of Lipid Biochemistry, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
27
|
Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, Wood P, Monastyrskaya K, Pol A, Tebar F, Blasi J, Grewal T, Enrich C. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Mol Biol Cell 2012; 22:4108-23. [PMID: 22039070 PMCID: PMC3204072 DOI: 10.1091/mbc.e11-04-0332] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study shows that impaired cholesterol egress from late endosomes in cells with high annexin A6 levels is associated with altered soluble N-ethylmaleimide–sensitive fusion protein 23 (SNAP23) and syntaxin-4 cellular distribution and assembly and accumulation in Golgi membranes. This correlates with reduced secretion of cargo along the constitutive and SNAP23/syntaxin-4–dependent secretory pathway. Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2 (cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2 inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4–dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Collapse
Affiliation(s)
- Meritxell Reverter
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Annexin A2 is involved in the formation of hepatitis C virus replication complex on the lipid raft. J Virol 2012; 86:4139-50. [PMID: 22301157 DOI: 10.1128/jvi.06327-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hepatitis C virus (HCV) RNA replicates in hepatic cells by forming a replication complex on the lipid raft (detergent-resistant membrane [DRM]). Replication complex formation requires various viral nonstructural (NS) proteins as well as host cellular proteins. In our previous study (C. K. Lai, K. S. Jeng, K. Machida, and M. M. Lai, J. Virol. 82:8838-8848, 2008), we found that a cellular protein, annexin A2 (Anxa2), interacts with NS3/NS4A. Since NS3/NS4A is a membranous protein and Anxa2 is known as a lipid raft-associated scaffold protein, we postulate that Anxa2 helps in the formation of the HCV replication complex on the lipid raft. Further studies showed that Anxa2 was localized at the HCV-induced membranous web and interacted with NS4B, NS5A, and NS5B and colocalized with them in the perinuclear region. The silencing of Anxa2 decreased the formation of membranous web-like structures and viral RNA replication. Subcellular fractionation and bimolecular fluorescence complementation analysis revealed that Anxa2 was partially associated with HCV at the lipid raft enriched with phosphatidylinositol-4-phosphate (PI4P) and caveolin-2. Further, the overexpression of Anxa2 in HCV-nonsusceptible HEK293 cells caused the enrichment of HCV NS proteins in the DRM fraction and increased the colony-forming ability of the HCV replicon. Since Anxa2 is known to induce the formation of the lipid raft microdomain, we propose that Anxa2 recruits HCV NS proteins and enriches them on the lipid raft to form the HCV replication complex.
Collapse
|
29
|
Abstract
Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.
Collapse
Affiliation(s)
- Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
30
|
Arozarena I, Calvo F, Crespo P. Ras, an actor on many stages: posttranslational modifications, localization, and site-specified events. Genes Cancer 2011; 2:182-94. [PMID: 21779492 DOI: 10.1177/1947601911409213] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the wealth of information that we have gathered about Ras in the past decade, the introduction of the concept of space in the field has constituted a major revolution that has enabled many pieces of the Ras puzzle to fall into place. In the early days, it was believed that Ras functioned exclusively at the plasma membrane. Today, we know that within the plasma membrane, the 3 Ras isoforms-H-Ras, K-Ras, and N-Ras-occupy different microdomains and that these isoforms are also present and active in endomembranes. We have also discovered that Ras proteins are not statically associated with these localizations; instead, they traffic dynamically between compartments. And we have learned that at these localizations, Ras is under site-specific regulatory mechanisms, distinctively engaging effector pathways and switching on diverse genetic programs to generate different biological responses. All of these processes are possible in great part due to the posttranslational modifications whereby Ras proteins bind to membranes and to regulatory events such as phosphorylation and ubiquitination that Ras is subject to. As such, space and these control mechanisms act in conjunction to endow Ras signals with an enormous signal variability that makes possible its multiple biological roles. These data have established the concept that the Ras signal, instead of being one single, homogeneous entity, results from the integration of multiple, site-specified subsignals, and Ras has become a paradigm of how space can differentially shape signaling.
Collapse
Affiliation(s)
- Imanol Arozarena
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-IDICAN-Universidad de Cantabria, Departamento de Biología Molecular, Facultad de Medicina, Cantabria, Spain
| | | | | |
Collapse
|
31
|
Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, Wood P, Monastyrskaya K, Pol A, Tebar F, Blasi J, Grewal T, Enrich C. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Mol Biol Cell 2011. [DOI: 10.1091/mbc.e11-04-0332r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2(cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4–dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Collapse
Affiliation(s)
- Meritxell Reverter
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sandra Vilà de Muga
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Alvarez-Guaita
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Vishwaroop Mulay
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Cairns
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Peta Wood
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Katia Monastyrskaya
- Urology Research Laboratory, Department of Clinical Research, University of Bern, 3000 Bern 9, Switzerland
| | - Albert Pol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Joan Blasi
- Department of Pathology and Experimental Therapeutics, IDIBELL–University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
32
|
Cornely R, Rentero C, Enrich C, Grewal T, Gaus K. Annexin A6 is an organizer of membrane microdomains to regulate receptor localization and signalling. IUBMB Life 2011; 63:1009-17. [PMID: 21990038 DOI: 10.1002/iub.540] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/16/2011] [Indexed: 12/13/2022]
Abstract
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.
Collapse
Affiliation(s)
- Rhea Cornely
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
33
|
Hannibal L, DiBello PM, Yu M, Miller A, Wang S, Willard B, Rosenblatt DS, Jacobsen DW. The MMACHC proteome: hallmarks of functional cobalamin deficiency in humans. Mol Genet Metab 2011; 103:226-39. [PMID: 21497120 PMCID: PMC3110603 DOI: 10.1016/j.ymgme.2011.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/08/2011] [Accepted: 03/08/2011] [Indexed: 12/13/2022]
Abstract
Cobalamin (Cbl, B(12)) is an essential micronutrient required to fulfill the enzymatic reactions of cytosolic methylcobalamin-dependent methionine synthase and mitochondrial adenosylcobalamin-dependent methylmalonyl-CoA mutase. Mutations in the MMACHC gene (cblC complementation group) disrupt processing of the upper-axial ligand of newly internalized cobalamins, leading to functional deficiency of the vitamin. Patients with cblC disease present with both hyperhomocysteinemia and methylmalonic acidemia, cognitive dysfunction, and megaloblastic anemia. In the present study we show that cultured skin fibroblasts from cblC patients export increased levels of both homocysteine and methylmalonic acid compared to control skin fibroblasts, and that they also have decreased levels of total intracellular folates. This is consistent with the clinical phenotype of functional cobalamin deficiency in vivo. The protein changes that accompany human functional Cbl deficiency are unknown. The proteome of control and cblC fibroblasts was quantitatively examined by two dimensional difference in-gel electrophoresis (2D-DIGE) and liquid chromatography-electrospray ionization-mass spectrometry (LC/ESI/MS). Major changes were observed in the expression levels of proteins involved in cytoskeleton organization and assembly, the neurological system and cell signaling. Pathway analysis of the differentially expressed proteins demonstrated strong associations with neurological disorders, muscular and skeletal disorders, and cardiovascular diseases in the cblC mutant cell lines. Supplementation of the cell cultures with hydroxocobalamin did not restore the cblC proteome to the patterns of expression observed in control cells. These results concur with the observed phenotype of patients with the cblC disorder and their sometimes poor response to treatment with hydroxocobalamin. Our findings could be valuable for designing alternative therapies to alleviate the clinical manifestation of the cblC disorder, as some of the protein changes detected in our study are common hallmarks of known pathologies such as Alzheimer's and Parkinson's diseases as well as muscular dystrophies.
Collapse
Affiliation(s)
- Luciana Hannibal
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Address correspondence to: Luciana Hannibal, Ph.D., Department of Pathobiology, NC2-104, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, Tel: 216-445-9761, Fax: 216-636-0104, , or Donald W. Jacobsen, Ph.D., Department of Cell Biology, NC-10, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, Tel: 216-444-8340, Fax: 216-444-9404,
| | - Patricia M. DiBello
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195
| | - Michelle Yu
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195
| | - Abby Miller
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195
| | - Sihe Wang
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195
| | - Belinda Willard
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195
| | | | - Donald W. Jacobsen
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Cleveland, OH 44195
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Address correspondence to: Luciana Hannibal, Ph.D., Department of Pathobiology, NC2-104, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, Tel: 216-445-9761, Fax: 216-636-0104, , or Donald W. Jacobsen, Ph.D., Department of Cell Biology, NC-10, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, Tel: 216-444-8340, Fax: 216-444-9404,
| |
Collapse
|
34
|
Enrich C, Rentero C, de Muga SV, Reverter M, Mulay V, Wood P, Koese M, Grewal T. Annexin A6-Linking Ca(2+) signaling with cholesterol transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:935-47. [PMID: 20888375 DOI: 10.1016/j.bbamcr.2010.09.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 11/17/2022]
Abstract
Annexin A6 (AnxA6) belongs to a conserved family of Ca(2+)-dependent membrane-binding proteins. Like other annexins, the function of AnxA6 is linked to its ability to bind phospholipids in cellular membranes in a dynamic and reversible fashion, in particular during the regulation of endocytic and exocytic pathways. High amounts of AnxA6 sequester cholesterol in late endosomes, thereby lowering the levels of cholesterol in the Golgi and the plasma membrane. These AnxA6-dependent redistributions of cellular cholesterol pools give rise to reduced cytoplasmic phospholipase A2 (cPLA(2)) activity, retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. In addition to regulating cholesterol and caveolin distribution, AnxA6 acts as a scaffold/targeting protein for several signaling proteins, the best characterized being the Ca(2+)-dependent membrane targeting of p120GAP to downregulate Ras activity. AnxA6 also stimulates the Ca(2+)-inducible involvement of PKC in the regulation of HRas and possibly EGFR signal transduction pathways. The ability of AnxA6 to recruit regulators of the EGFR/Ras pathway is likely potentiated by AnxA6-induced actin remodeling. Accordingly, AnxA6 may function as an organizer of membrane domains (i) to modulate intracellular cholesterol homeostasis, (ii) to create a scaffold for the formation of multifactorial signaling complexes, and (iii) to regulate transient membrane-actin interactions during endocytic and exocytic transport. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Calvo F, Agudo-Ibáñez L, Crespo P. The Ras-ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies. Bioessays 2010; 32:412-21. [PMID: 20414899 DOI: 10.1002/bies.200900155] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent discoveries have suggested the concept that intracellular signals are the sum of multiple, site-specified subsignals, rather than single, homogeneous entities. In the context of cancer, searching for compounds that selectively block subsignals essential for tumor progression, but not those regulating "house-keeping" functions, could help in producing drugs with reduced side effects compared to compounds that block signaling completely. The Ras-ERK pathway has become a paradigm of how space can differentially shape signaling. Today, we know that Ras proteins are found in different plasma membrane microdomains and endomembranes. At these localizations, Ras is subject to site-specific regulatory mechanisms, distinctively engaging effector pathways and switching-on diverse genetic programs to generate different biological responses. The Ras effector pathway leading to ERKs activation is also under strict, space-related regulatory processes. These findings may open a gate for aiming at the Ras-ERK pathway in a spatially restricted fashion, in our quest for new anti-tumor therapies.
Collapse
Affiliation(s)
- Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), IDICAN, Universidad de Cantabria, Cantabria, Spain
| | | | | |
Collapse
|
36
|
Asnaghi L, Vass WC, Quadri R, Day PM, Qian X, Braverman R, Papageorge AG, Lowy DR. E-cadherin negatively regulates neoplastic growth in non-small cell lung cancer: role of Rho GTPases. Oncogene 2010; 29:2760-71. [PMID: 20228844 PMCID: PMC3365679 DOI: 10.1038/onc.2010.39] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 11/16/2009] [Accepted: 11/19/2009] [Indexed: 12/20/2022]
Abstract
Non-small cell lung cancers (NSCLC) that express the cell surface adhesion protein E-cadherin may carry a better prognosis than E-cadherin-negative tumors. Here, we found substantial inhibition of anchorage-independent growth in soft agar and cell migration in each of four NSCLC lines stably transfected with E-cadherin. The inhibitory effects were independent of the EGFR and beta-catenin/Wnt-signaling pathways. However, E-cadherin expression was associated with an adhesion-dependent reduction in the activity of Rho family proteins, RhoA in two lines and Cdc42 in the other two. The reduction of RhoA activity was dependent on DLC-1 Rho-GAP and p190 Rho-GAP and associated with an increase in a membrane-associated p190 Rho-GAP/p120 Ras-GAP complex. In parental cells with high levels of RhoA-GTP, siRNA-mediated knock-down of RhoA reduced cell migration and agar growth in a manner analogous to E-cadherin. In parental cells with high levels of Cdc42-GTP, transfection of a Cdc42 dominant-negative mutant reduced cell growth and migration similarly to cells expressing E-cadherin. Thus, E-cadherin can negatively regulate cell proliferation and migration in NSCLC by reducing the level of the predominant active form of Rho family protein, RhoA or Cdc42. These proteins can be considered downstream effectors of E-cadherin and might represent therapeutic targets in some NSCLC.
Collapse
Affiliation(s)
- L Asnaghi
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wong DM, Webb JP, Malinowski PM, Macri J, Adeli K. Proteomic profiling of the prechylomicron transport vesicle involved in the assembly and secretion of apoB-48-containing chylomicrons in the intestinal enterocytes. Proteomics 2009; 9:3698-711. [PMID: 19639588 DOI: 10.1002/pmic.200800914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intracellular assembly of chylomicrons (CM) occurs in intestinal enterocytes through a series of complex vesicular interactions. CM are transported from the ER to the Golgi using a specialized vesicular compartment called the prechylomicron transport vesicle (PCTV). In this study, PCTVs were isolated from the enteric ER of the Syrian Golden hamster, and characterized using 2-DE and MS. Proteomic profiles of PCTV-associated proteins were developed with the intention of identifying proteins involved in the formation, transport, lipidation, and assembly of CM particles. Positively identified proteins included those involved in lipoprotein assembly, namely microsomal triglyceride transfer protein and apolipoprotein B-48, as well as proteins involved in vesicular transport, such as Sar1 and vesicle-associated membrane protein 7. Other groups of proteins found were chaperones, intracellular vesicular trafficking proteins, fatty acid-binding proteins, and lipid-related proteins. These findings have increased our understanding of the transport vesicle involved in the intracellular assembly and transport of CM and can provide insight into potential cellular factors responsible for dysregulation of intestinal CM production.
Collapse
Affiliation(s)
- Diana M Wong
- Molecular Structure and Function, Division of Clinical Biochemistry, Department of Pediatric Laboratory Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
38
|
Inactivation of Ras by p120GAP via focal adhesion kinase dephosphorylation mediates RGMa-induced growth cone collapse. J Neurosci 2009; 29:6649-62. [PMID: 19458235 DOI: 10.1523/jneurosci.0927-09.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The repulsive guidance molecule RGMa performs several functions in the developing and adult CNSs. RGMa, through its receptor neogenin, induces growth cone collapse and neurite outgrowth inhibition. Here, we demonstrate that RGMa binding to neogenin leads to the inactivation of Ras, which is required for the RGMa-mediated repulsive function in cortical neurons. This signal transduction is mediated by the Ras-specific GTPase-activating protein (GAP) p120GAP. The SH2 domain of p120GAP interacts with focal adhesion kinase (FAK), which is phosphorylated at Tyr-397. When the cells are stimulated with RGMa, FAK undergoes dephosphorylation at Tyr-397 and is dissociated from p120GAP, and this dissociation is followed by an increase in the interaction between p120GAP and GTP-Ras. In addition, the knockdown of p120GAP prevents RGMa-induced growth cone collapse and neurite outgrowth inhibition. Furthermore, RGMa stimulation induces Akt inactivation through p120GAP, and the expression of the constitutively active Akt prevents RGMa-induced growth cone collapse. Thus, RGMa binding to neogenin regulates p120GAP activity through FAK Tyr-397 dephosphorylation, leading to the inactivation of Ras and its downstream effector Akt, and this signal transduction plays a role in the RGMa-mediated repulsive function.
Collapse
|
39
|
Abstract
At the cell surface, activation of the epidermal growth factor (EGF) receptor triggers a complex network of signalling events that regulate a variety of cellular processes. For signal termination, the activated EGF receptor is internalised and targeted to lysosomes for degradation. Microdomain localization at the plasma membrane and endocytic transport of the EGFR is important for the formation of compartment-specific signalling complexes and is regulated by scaffolding and targeting proteins. This includes Ca2+-effector proteins, such as calmodulin and annexins (Anx), in particular AnxA1, AnxA2, AnxA6 and as shown recently,AnxA8. Given that these annexins show differences in their expression patterns, subcellular localization and mode of action, they are likely to differentially contribute and cooperate in the fine-tuning of EGFR activity. In support of this hypothesis, current literature suggests these annexins to be involved in different steps that control the endocytic transport and signalling of the EGF receptor. This review summarizes how the coordinated activity of AnxA1, AnxA2, AnxA6 and AnxA8 can contribute to regulate EGF receptor localization and activity.
Collapse
Affiliation(s)
- Thomas Grewal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
40
|
Monastyrskaya K, Babiychuk EB, Hostettler A, Wood P, Grewal T, Draeger A. Plasma membrane-associated annexin A6 reduces Ca2+ entry by stabilizing the cortical actin cytoskeleton. J Biol Chem 2009; 284:17227-17242. [PMID: 19386597 DOI: 10.1074/jbc.m109.004457] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The annexins are a family of Ca(2+)- and phospholipid-binding proteins, which interact with membranes upon increase of [Ca(2+)](i) or during cytoplasmic acidification. The transient nature of the membrane binding of annexins complicates the study of their influence on intracellular processes. To address the function of annexins at the plasma membrane (PM), we fused fluorescent protein-tagged annexins A6, A1, and A2 with H- and K-Ras membrane anchors. Stable PM localization of membrane-anchored annexin A6 significantly decreased the store-operated Ca(2+) entry (SOCE), but did not influence the rates of Ca(2+) extrusion. This attenuation was specific for annexin A6 because PM-anchored annexins A1 and A2 did not alter SOCE. Membrane association of annexin A6 was necessary for a measurable decrease of SOCE, because cytoplasmic annexin A6 had no effect on Ca(2+) entry as long as [Ca(2+)](i) was below the threshold of annexin A6-membrane translocation. However, when [Ca(2+)](i) reached the levels necessary for the Ca(2+)-dependent PM association of ectopically expressed wild-type annexin A6, SOCE was also inhibited. Conversely, knockdown of the endogenous annexin A6 in HEK293 cells resulted in an elevated Ca(2+) entry. Constitutive PM localization of annexin A6 caused a rearrangement and accumulation of F-actin at the PM, indicating a stabilized cortical cytoskeleton. Consistent with these findings, disruption of the actin cytoskeleton using latrunculin A abolished the inhibitory effect of PM-anchored annexin A6 on SOCE. In agreement with the inhibitory effect of annexin A6 on SOCE, constitutive PM localization of annexin A6 inhibited cell proliferation. Taken together, our results implicate annexin A6 in the actin-dependent regulation of Ca(2+) entry, with consequences for the rates of cell proliferation.
Collapse
Affiliation(s)
- Katia Monastyrskaya
- From the Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland.
| | - Eduard B Babiychuk
- From the Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| | - Andrea Hostettler
- From the Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| | - Peta Wood
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Annette Draeger
- From the Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| |
Collapse
|
41
|
Callahan JW, Bagshaw RD, Mahuran DJ. The integral membrane of lysosomes: its proteins and their roles in disease. J Proteomics 2008; 72:23-33. [PMID: 19068244 DOI: 10.1016/j.jprot.2008.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/30/2008] [Accepted: 11/11/2008] [Indexed: 12/18/2022]
Abstract
The protein composition of the integral lysosomal membrane and the membrane-associated compartment have been defined in part by proteomics approaches. While the role of its constituent hydrolases in a large array of human disorders has been well-documented, the manner in which membrane proteins are integrated into the organelle, the multiprotein complexes that form at the organelle's cytosolic surface and their roles in the biogenesis and functional control of the organelle are now emerging. Defining cytosolic targeting complexes that affect the function of the lysosomal/endosomal compartment may help to identify the lysosome's role in a variety of human pathologies.
Collapse
Affiliation(s)
- John W Callahan
- Research Institute, The Hospital for Sick Children, Toronto, Canada.
| | | | | |
Collapse
|
42
|
Pamonsinlapatham P, Hadj-Slimane R, Lepelletier Y, Allain B, Toccafondi M, Garbay C, Raynaud F. p120-Ras GTPase activating protein (RasGAP): a multi-interacting protein in downstream signaling. Biochimie 2008; 91:320-8. [PMID: 19022332 DOI: 10.1016/j.biochi.2008.10.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/16/2008] [Indexed: 11/29/2022]
Abstract
p120-RasGAP (Ras GTPase activating protein) plays a key role in the regulation of Ras-GTP bound by promoting GTP hydrolysis via its C-terminal catalytic domain. The p120-RasGAP N-terminal part contains two SH2, SH3, PH (pleckstrin homology) and CaLB/C2 (calcium-dependent phospholipid-binding domain) domains. These protein domains allow various functions, such as anti-/pro-apoptosis, proliferation and also cell migration depending of their distinct partners. The p120-RasGAP domain participates in protein-protein interactions with Akt, Aurora or RhoGAP to regulate functions described bellow. Here, we summarize, in angiogenesis and cancer, the various functional roles played by p120-RasGAP domains and their effector partners in downstream signaling.
Collapse
Affiliation(s)
- Perayot Pamonsinlapatham
- Université Paris Descartes, UFR Biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The annexins are a super-family of closely related calcium and membrane-binding proteins. They have a diverse range of cellular functions that include vesicle trafficking, cell division, apoptosis, calcium signalling and growth regulation. Many studies have shown the annexins to be among the genes whose expression are consistently differentially altered in neoplasia. Some annexins show increased expression in specific types of tumours, while others show loss of expression. Mechanistic studies relating the changes in annexin expression to tumour cell function, particularly tumour invasion and metastasis, angiogenesis and drug resistance, are now also emerging. Changes in the expression of individual annexins are associated with particular types of tumour and hence the annexins may also be useful biomarkers in the clinic.
Collapse
Affiliation(s)
- S Mussunoor
- Department of Pathology, University of Aberdeen, UK
| | | |
Collapse
|
44
|
Vilá de Muga S, Timpson P, Cubells L, Evans R, Hayes TE, Rentero C, Hegemann A, Reverter M, Leschner J, Pol A, Tebar F, Daly RJ, Enrich C, Grewal T. Annexin A6 inhibits Ras signalling in breast cancer cells. Oncogene 2008; 28:363-77. [PMID: 18850003 DOI: 10.1038/onc.2008.386] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) is associated with enhanced activation of wild-type (hyperactive) Ras in breast cancer. Little is known about the regulation of Ras inactivation and GTPase-activating proteins (GAPs), such as p120GAP, in cells with hyperactive Ras. Recently, we showed that in EGFR-overexpressing A431 cells, which lack endogenous Annexin A6 (AnxA6), ectopic expression of AnxA6 stimulates membrane recruitment of p120GAP to modulate Ras signalling. We now demonstrate that, AnxA6 is downregulated in a number of EGFR-overexpressing and estrogen receptor (ER)-negative breast cancer cells. In these cells, AnxA6 overexpression promotes Ca(2+)- and EGF-inducible membrane targeting of p120GAP. In ER-negative MDA-MB-436 cells, overexpression of p120GAP, but not CAPRI or a p120GAP mutant lacking the AnxA6-binding domain inhibits Ras/MAPK activity. AnxA6 knockdown in MDA-MB-436 increases Ras activity and cell proliferation in anchorage-independent growth assays. Furthermore, AnxA6 co-immunoprecipitates with H-Ras in a Ca(2+)- and EGF-inducible manner and fluorescence resonance energy transfer (FRET) microscopy confirmed that AnxA6 is in close proximity of active (G12V), but not inactive (S17N) H-Ras. Thus, association of AnxA6 with H-Ras-containing protein complexes may contribute to regulate p120GAP/Ras assembly in EGFR-overexpressing and ER-negative breast cancer cells.
Collapse
Affiliation(s)
- S Vilá de Muga
- Departament de Biologia Cellular, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Locate S, Colyer J, Gawler DJ, Walker JH. Annexin A6 at the cardiac myocyte sarcolemma--evidence for self-association and binding to actin. Cell Biol Int 2008; 32:1388-96. [PMID: 18782625 DOI: 10.1016/j.cellbi.2008.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/25/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
The plasma membrane of the heart muscle cell and its underlying cytoskeleton are vitally important to the function of the heart. Annexin A6 is a major cellular calcium and phospholipid binding protein. Here we show that annexin A6 copurifies with sarcolemma isolated from pig heart. Two pools of annexin A6 are present in the sarcolemma fraction, one dependent on calcium and one that resists extraction by the calcium chelator EGTA. Potential annexin A6 binding proteins in the sarcolemma fraction were identified using Far Western blotting. Two major annexin A6 binding proteins were identified as actin and annexin A6 itself. Annexin A6 bound to itself both in the presence and in the absence of calcium ions. Sites for self association were mapped by performing Western blots on proteolytic fragments of recombinant annexin A6. Annexin A6 bound preferentially not only to the N terminal fragment (domains I-IV, residues 1-352) but also to C-terminal fragments corresponding to domains V+VI and domains VII+VIII. Actin binding to annexin A6 was calcium-dependent and exclusively to the N-terminal fragment of annexin A6. A calcium-dependent complex of annexin A6 and actin may stabilize the cardiomyocyte sarcolemma during cell stimulation.
Collapse
Affiliation(s)
- Salma Locate
- Faculty of Biological Sciences, School of Biochemistry and Microbiology, University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
46
|
Cubells L, de Muga SV, Tebar F, Bonventre JV, Balsinde J, Pol A, Grewal T, Enrich C. Annexin A6-induced Inhibition of Cytoplasmic Phospholipase A2 Is Linked to Caveolin-1 Export from the Golgi. J Biol Chem 2008; 283:10174-83. [DOI: 10.1074/jbc.m706618200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
47
|
Iwashita S, Song SY. RasGAPs: a crucial regulator of extracellular stimuli for homeostasis of cellular functions. MOLECULAR BIOSYSTEMS 2008; 4:213-22. [PMID: 18437264 DOI: 10.1039/b716357f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ras and its GTPase activating proteins (GAPs) are among the crucial regulators of extracelluar ligands. Information about these regulators has been elucidated during the course of studies in signal transduction over the last two decades. RasGAPs such as p120GAP and neurofibromin have been studied extensively for their roles as either "negative" regulators or effectors of Ras. Accumulating evidence suggests that these molecules are crucial regulators of extracellular stimuli that serve to maintain the homeostasis of cellular functions. This compendium highlights cellular functions of RasGAPs and their signaling characteristics from the viewpoint of homeostasis, including our recent finding of the phenotype of R-RasGAP mutant mice whose GAP activity is down-regulated.
Collapse
Affiliation(s)
- Shintaro Iwashita
- Faculty of Pharmacy, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan.
| | | |
Collapse
|
48
|
Cubells L, Vilà de Muga S, Tebar F, Wood P, Evans R, Ingelmo-Torres M, Calvo M, Gaus K, Pol A, Grewal T, Enrich C. Annexin A6-induced alterations in cholesterol transport and caveolin export from the Golgi complex. Traffic 2007; 8:1568-89. [PMID: 17822395 PMCID: PMC3003291 DOI: 10.1111/j.1600-0854.2007.00640.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Annexin A6 (AnxA6) belongs to a family of Ca(2+)-dependent membrane-binding proteins and is involved in the regulation of endocytic and exocytic pathways. We previously demonstrated that AnxA6 regulates receptor-mediated endocytosis and lysosomal targeting of low-density lipoproteins and translocates to cholesterol-enriched late endosomes (LE). As cholesterol modulates the membrane binding and the cellular location of AnxA6, but also affects the intracellular distribution of caveolin, we investigated the localization and trafficking of caveolin in AnxA6-expressing cells. Here, we show that cells expressing high levels of AnxA6 are characterized by an accumulation of caveolin-1 (cav-1) in the Golgi complex. This is associated with a sequestration of cholesterol in the LE and lower levels of cholesterol in the Golgi and the plasma membrane, both likely contributing to retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. Further strengthening these findings, knock down of AnxA6 and the ectopic expression of the Niemann-Pick C1 protein in AnxA6-overexpressing cells restore the cellular distribution of cav-1 and cholesterol, respectively. In summary, this study demonstrates that elevated expression levels of AnxA6 perturb the intracellular distribution of cholesterol, which indirectly inhibits the exit of caveolin from the Golgi complex.
Collapse
Affiliation(s)
- Laia Cubells
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Sandra Vilà de Muga
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Peta Wood
- Centre for Immunology, St. Vincent’s Hospital, University of New South WalesSydney, NSW 2010, Australia
| | - Rachael Evans
- Centre for Immunology, St. Vincent’s Hospital, University of New South WalesSydney, NSW 2010, Australia
| | - Mercedes Ingelmo-Torres
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
| | - Maria Calvo
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
- Unitat de Microscòpia Confocal, Serveis Cientificotècnics, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
| | - Katharina Gaus
- Centre of Vascular Research, School of Medical Sciences, University of New South WalesSydney, NSW 2052, Australia
| | - Albert Pol
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
| | - Thomas Grewal
- Centre for Immunology, St. Vincent’s Hospital, University of New South WalesSydney, NSW 2010, Australia
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Facultat de Medicina, Universitat de BarcelonaCasanova 143, 08036-Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
49
|
Abstract
Annexins are calcium- and phospholipid-binding proteins that have been proposed to have multiple roles in membrane traffic. Historically, this has been based on the in vitro properties of annexins and their localization to specific membrane compartments. However, recent functional evidence supports a role for annexins in specific membrane traffic steps, although the requirement for annexins may be highly dependent on the cellular context. Here we review the roles of annexins in traffic within the endocytic pathway, focusing on clathrin-dependent internalization from the plasma membrane, multivesicular endosome/body (MVB) biogenesis and MVB-lysosome fusion.
Collapse
Affiliation(s)
- Clare E Futter
- Institute of Ophthalmology, University College, London, 11-43 Bath Street, London EC1V 9EL, UK.
| | | |
Collapse
|