1
|
Hinne IA, Ciccotti HR, Wudarski J, Pham MN, Sharma A, McVicar MM, Faustino B, Nuss AB, Sharma PP, Gulia-Nuss M. Early embryonic development in the tick Ixodes scapularis suggests syncytial organization and cellularization before blastoderm formation. EvoDevo 2025; 16:4. [PMID: 40281623 PMCID: PMC12032745 DOI: 10.1186/s13227-025-00240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Ixodes ticks are the most important vectors of arthropod-borne diseases in the United States, Canada, and Europe. Ixodes scapularis is the major vector that transmits the causative agent of Lyme disease in the eastern United States and can transmit up to six additional pathogens. In recent years, many advances have been made in building the toolkit for I. scapularis research, including genomic resources, transcriptomes, and forward and reverse genetics techniques. However, an understanding of the early embryonic development of this species is still lacking. In this study, we attempted to fill this knowledge gap and to further the efforts of functional genomics tools development. We developed a staging system consisting of 16 (0-15) stages describing unique morphologies and used wheat germ agglutinin staining and fluorescent dye injections to confirm cell membrane formation. These results provide an opportunity to identify an ideal time window for tick transgenics and deepen our understanding of the events during embryo development.
Collapse
Affiliation(s)
- Isaac A Hinne
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Hailee R Ciccotti
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Jakub Wudarski
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Michael N Pham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Arvind Sharma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Molly M McVicar
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Benjamin Faustino
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
| | - Andrew B Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA
- Department of Agriculture, Veterinary, and Rangeland Science, University of Nevada, Reno, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin, Madison, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA.
| |
Collapse
|
2
|
Santiago-Rivera E, Scheibel T. Spider Eye Development Editing and Silk Fiber Engineering Using CRISPR-Cas. Angew Chem Int Ed Engl 2025:e202502068. [PMID: 40223236 DOI: 10.1002/anie.202502068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
CRISPR-Cas9 gene editing represents an effective and precise technology to induce mutations in the genome, and it has been applied to a wide range of organisms for diverse purposes. However, CRISPR-based gene editing in spiders has not been reported to date. In this study, we demonstrate CRISPR-mediated microinjection in parental spiders leading to both knock-out (KO) and knock-in (KI) mutations within the spider's offspring. The KO of the gene sine oculis causes total eye loss, confirming the role of the gene in the development of all spider eyes. The KI of a monomeric red fluorescent protein (mRFP-KI) within a spider silk gene encoding one compound of the major ampullate silk of the spider Parasteatoda tepidariorum yields red fluorescent silk fibers. This finding demonstrates the feasibility of functionalizing silk proteins in spiders using CRISPR-based gene editing without influencing silk assembly. Our study expands the application of CRISPR to spiders and provides insights in the fields of developmental genetics as well as material sciences.
Collapse
Affiliation(s)
- Edgardo Santiago-Rivera
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Borman Strasse 1, 95448, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Borman Strasse 1, 95448, Bayreuth, Germany
- Bayreuth Zentrum für Kolloide und Grenzflächen, Universität Bayreuth, 95440, Bayreuth, Germany
- Bayreuth Zentrum für Molekulare Biowissenshaften, Universität Bayreuth, 95440, Bayreuth, Germany
- Bayreuther Materialzentrum, Universität Bayreuth, 95440, Bayreuth, Germany
- Bayerisches Polymerinstitut, University of Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
3
|
Garcia CF, Laino A, Cunningham M. Vitellogenesis and Embryogenesis in Spiders: A Biochemical Perspective. INSECTS 2025; 16:398. [PMID: 40332900 PMCID: PMC12028198 DOI: 10.3390/insects16040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025]
Abstract
This review compiles information on the biochemistry of spider reproduction, from vitellogenesis to postembryonic development. Despite the diversity of spiders, biochemical studies on their reproduction remain scarce. The structures, functions, and relationships of vitellogenins and lipovitellins across different groups are compared. Information on two vitellogenin-associated proteins (30 and 47 kDa) is presented and discussed. By analyzing females at different reproductive stages-previtellogenesis, early vitellogenesis, vitellogenesis, and postvitellogenesis-as well as males, we examined lipid and fatty acid synthesis, mobilization, and accumulation in the yolk. Lipid dynamics across vitellogenic organs, such as the intestinal diverticula, hemolymph, and ovaries, were established. Structural lipids, mainly phosphatidylcholine and phosphatidylethanolamine, were the predominant yolk components, followed by triacylglycerols. The gonadosomatic and hepatosomatic indices are described for the first time in spiders, providing a new tool for studying vitellogenesis. Hemocyanin was detected in early spider eggs, suggesting a role in organogenesis, with its concentration increasing in later embryonic stages. In contrast, lipovitellin consumption was observed throughout embryonic development until juvenile emergence. The data compiled in this review provide valuable insights into the molecular interactions underlying a key process for oviparous animals.
Collapse
Affiliation(s)
- Carlos Fernando Garcia
- Instituto de Investigac iones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner” (CONICET-UNLP), La Plata, Buenos Aires 1900, Argentina; (A.L.); (M.C.)
| | | | | |
Collapse
|
4
|
Liu H, Jang J, French AS, Torkkeli PH. Sequence analysis, homology modeling, tissue expression, and potential functions of seven putative acetylcholinesterases in the spider Cupiennius salei. Eur J Neurosci 2024; 60:5785-5811. [PMID: 39230060 DOI: 10.1111/ejn.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Acetylcholine esterases (AChEs) are essential enzymes in cholinergic synapses, terminating neurotransmission by hydrolysing acetylcholine. While membrane bound AChEs at synaptic clefts efficiently perform this task, soluble AChEs are less stable and effective, but function over broader areas. In vertebrates, a single gene produces alternatively spliced forms of AChE, whereas invertebrates often have multiple genes, producing both enzyme types. Despite their significance as pesticide targets, the physiological roles of invertebrate AChEs remain unclear. Here, we characterized seven putative AChEs in the wandering spider, Cupiennius salei, a model species for neurophysiological studies. Sequence analyses and homology modeling predicted CsAChE7 as the sole stable, membrane-bound enzyme functioning at synaptic clefts, while the others are likely soluble enzymes. In situ hybridization of sections from the spider's nervous system revealed CsAChE7 transcripts co-localizing with choline acetyltransferase in cells that also exhibited AChE activity. CsAChE7 transcripts were also found in rapidly adapting mechanosensory neurons, suggesting a role in precise and transient activation of postsynaptic cells, contrasting with slowly adapting, also cholinergic, neurons expressing only soluble AChEs, which allow prolonged activation of postsynaptic cells. These findings suggest that cholinergic transmission is influenced not only by postsynaptic receptors but also by the enzymatic properties regulating acetylcholine clearance. We also show that acetylcholine is a crucial neurotransmitter in the spider's visual system and sensory and motor pathways, but absent in excitatory motor neurons at neuromuscular junctions, consistent with other arthropods. Our findings on sequence structures may have implications for the development of neurological drugs and pesticides.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Jinwon Jang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Padilla-Villavicencio M, Corzo G, Guillén-Navarro K, Ibarra-Núñez G, Arenas I, Zamudio F, Diego-García E. Cupiennius spiders (Trechaleidae) from southern Mexico: DNA barcoding, venomics, and biological effect. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230098. [PMID: 39161647 PMCID: PMC11333084 DOI: 10.1590/1678-9199-jvatitd-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
Background Members of the genus Cupiennius Simon, 1891 are categorized as wandering spiders and are part of the family Trechaleidae. The genomics and proteomics of Cupiennius spiders from North America remain uncharacterized. The present study explores for the first time molecular data from the endemic species Cupiennius chiapanensis Medina, 2006, and also presents new data for Cupiennius salei (Keyserling, 1878), both collected in southern Mexico. Methods In total, 88 Cupiennius specimens were collected from southern Mexico and morphologically identified. DNA was extracted and the mitochondrial COI fragment was amplified. COI sequences were analyzed, and a phylogenetic tree was inferred for species from the Americas. Genetic diversity was analyzed using haplotype networks and gene distances. Venom was obtained from C. chiapanensis and C. salei by electrostimulation. The venom was separated by HPLC, visualized using SDS-PAGE, and quantified for use in toxicity bioassays in mice and insects. Results Analysis of COI sequences from C. chiapanensis showed 94% identity with C. salei, while C. salei exhibited 94-97% identity with sequences from Central and South American conspecifics. The venom from C. chiapanensis exhibited toxic activity against crickets. Venoms from C. chiapanensis and C. salei caused death in Anastrepha obliqua flies. Analysis of venom fractions from C. salei and C. chiapanensis revealed molecular masses of a similar size as some previously reported toxins and neurotoxic components. We determined the amino acid sequences of ChiaTx1 and ChiaTx2, toxins that are reported here for the first time and which showed toxicity against mice and insects. Conclusion Our work is the first to report COI-based DNA barcoding sequences from southern Mexican Cupiennius spiders. Compounds with toxic activity were identified in venom from both species.
Collapse
Affiliation(s)
| | - Gerardo Corzo
- Departamento de Medicina Molecular, Instituto de Biotecnología,
Universidad Nacional Autónoma de México (Unam), Cuernavaca, Morelos, Mexico
| | - Karina Guillén-Navarro
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de
Biotecnología Ambiental, Tapachula, Chiapas, Mexico
| | - Guillermo Ibarra-Núñez
- El Colegio de la Frontera Sur (ECOSUR), Colección de Arácnidos del
Sureste de México, Grupo Académico de Biología y Ecología de Artrópodos Benéficos,
Tapachula, Chiapas, Mexico
| | - Iván Arenas
- Departamento de Medicina Molecular, Instituto de Biotecnología,
Universidad Nacional Autónoma de México (Unam), Cuernavaca, Morelos, Mexico
| | - Fernando Zamudio
- Departamento de Medicina Molecular, Instituto de Biotecnología,
Universidad Nacional Autónoma de México (Unam), Cuernavaca, Morelos, Mexico
| | - Elia Diego-García
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de
Biotecnología Ambiental, Tapachula, Chiapas, Mexico
- Programa Investigadoras e Investigadores por México del CONAHCyT -
El Colegio de la Frontera, Mexico City, Mexico
| |
Collapse
|
6
|
Opell BD, Kelly SD, Morris SA, Correa-Garhwal SM. Changes in the material properties of spider glue droplet proteins accompanied shifts in prey capture biomechanics as cobweb spiders diverged from their orb weaving ancestors. Acta Biomater 2024; 183:191-200. [PMID: 38838907 DOI: 10.1016/j.actbio.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Although descended from orb weavers, spiders in the family Theridiidae spin cobwebs whose sticky prey capture gumfoot lines extend from a silk tangle to a surface below. When a crawling insect contacts glue droplets at the bottom of a gumfoot line, the line's weak pyriform anchor releases, causing the taut line to contract, pulling the insect from the surface and making its struggles to escape ineffective. To determine if this change in prey capture biomechanics was accompanied by a change in the material properties of theridiid glue, we characterized the elastic modulus and toughness of the glue droplet proteins of four theridiid species at 20-90 % relative humidity and compared their properties with those of 13 orb weaving species in the families Tetragnathidae and Araneidae. Compared to orb weavers, theridiid glue proteins had low extensions per protein volume and low elastic modulus and toughness values. These differences are likely explained by the loss of tension on a gumfoot line when its anchor fails, which may prioritize glue droplet adhesion rather than extension. Similarities in theridiid glue droplet properties did not reflect these species' evolutionary relationships. Instead, they appear associated with differences in web architecture. Two species that had stiffer gumfoot support lines and longer and more closely spaced gumfoot lines also had stiffer glue proteins. These lines may store more energy, and, when their anchors release, require stiffer glue to resist the more forceful upward thrust of a prey. STATEMENT OF SIGNIFICANCE: When a crawling insect contacts glue droplets on a theridiid cobweb's gumfoot line, this taut line's anchor fails and the insect is hoisted upward, rendering its struggles to escape ineffective. This strategy contrasts with that of orb weaving ancestors, which rely on more closely spaced prey capture threads to intercept and retain flying insects. A comparison of the elastic modulus and toughness of gumfoot and orb web glue proteins shows that this change in prey capture biomechanics is associated with reductions in the stiffness and toughness of cobweb glue. Unlike orb web capture threads, whose droplets extend in a coordinated fashion to sum adhesive forces, gumfoot lines become untethered, which prioritizes glue droplet adhesive contact over glue droplet extension.
Collapse
Affiliation(s)
- Brent D Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Sean D Kelly
- Department of Evolutionary Biology, San Diego State University, CA, USA
| | - Sarah A Morris
- Department of Biological Sciences, The George Washington University, Washington, D.C., USA
| | - Sandra M Correa-Garhwal
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
7
|
Hassan A, Blakeley G, McGregor AP, Zancolli G. Venom gland organogenesis in the common house spider. Sci Rep 2024; 14:15379. [PMID: 38965282 PMCID: PMC11224297 DOI: 10.1038/s41598-024-65336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
Venom is a remarkable innovation found across the animal kingdom, yet the evolutionary origins of venom systems in various groups, including spiders, remain enigmatic. Here, we investigated the organogenesis of the venom apparatus in the common house spider, Parasteatoda tepidariorum. The venom apparatus consists of a pair of secretory glands, each connected to an opening at the fang tip by a duct that runs through the chelicerae. We performed bulk RNA-seq to identify venom gland-specific markers and assayed their expression using RNA in situ hybridisation experiments on whole-mount time-series. These revealed that the gland primordium emerges during embryonic stage 13 at the chelicera tip, progresses proximally by the end of embryonic development and extends into the prosoma post-eclosion. The initiation of expression of an important toxin component in late postembryos marks the activation of venom-secreting cells. Our selected markers also exhibited distinct expression patterns in adult venom glands: sage and the toxin marker were expressed in the secretory epithelium, forkhead and sum-1 in the surrounding muscle layer, while Distal-less was predominantly expressed at the gland extremities. Our study provides the first comprehensive analysis of venom gland morphogenesis in spiders, offering key insights into their evolution and development.
Collapse
Affiliation(s)
- Afrah Hassan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
| |
Collapse
|
8
|
Leite DJ, Schönauer A, Blakeley G, Harper A, Garcia-Castro H, Baudouin-Gonzalez L, Wang R, Sarkis N, Nikola AG, Koka VSP, Kenny NJ, Turetzek N, Pechmann M, Solana J, McGregor AP. An atlas of spider development at single-cell resolution provides new insights into arthropod embryogenesis. EvoDevo 2024; 15:5. [PMID: 38730509 PMCID: PMC11083766 DOI: 10.1186/s13227-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Amber Harper
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Helena Garcia-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | - Ruixun Wang
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Naïra Sarkis
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Alexander Günther Nikola
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Venkata Sai Poojitha Koka
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Department of Biochemistry Te Tari Matū Koiora, University of Otago, Dunedin, New Zealand
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
9
|
Janssen R, Pechmann M. Expression of posterior Hox genes and opisthosomal appendage development in a mygalomorph spider. Dev Genes Evol 2023; 233:107-121. [PMID: 37495828 PMCID: PMC10746769 DOI: 10.1007/s00427-023-00707-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Spiders represent an evolutionary successful group of chelicerate arthropods. The body of spiders is subdivided into two regions (tagmata). The anterior tagma, the prosoma, bears the head appendages and four pairs of walking legs. The segments of the posterior tagma, the opisthosoma, either lost their appendages during the course of evolution or their appendages were substantially modified to fulfill new tasks such as reproduction, gas exchange, and silk production. Previous work has shown that the homeotic Hox genes are involved in shaping the posterior appendages of spiders. In this paper, we investigate the expression of the posterior Hox genes in a tarantula that possesses some key differences of posterior appendages compared to true spiders, such as the lack of the anterior pair of spinnerets and a second set of book lungs instead of trachea. Based on the observed differences in posterior Hox gene expression in true spiders and tarantulas, we argue that subtle changes in the Hox gene expression of the Hox genes abdA and AbdB are possibly responsible for at least some of the morphological differences seen in true spiders versus tarantulas.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
10
|
Prpic NM, Pechmann M. Extraembryonic tissue in chelicerates: a review and outlook. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210269. [PMID: 36252223 PMCID: PMC9574639 DOI: 10.1098/rstb.2021.0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/16/2022] [Indexed: 01/03/2023] Open
Abstract
The formation of extraembryonic membranes (EEMs) contributes to the proper development of many animals. In arthropods, the formation and function of EEMs have been studied best in insects. Regarding the development of extraembryonic tissue in chelicerates (spiders and relatives), most information is available for spiders (Araneae). Especially two populations of cells have been considered to represent EEMs in spiders. The first of these potential EEMs develops shortly after egg deposition, opposite to a radially symmetrical germ disc that forms in one hemisphere of the egg and encloses the yolk. The second tissue, which has been described as being extraembryonic is the so-called dorsal field, which is required to cover the dorsal part of the developing spider germ rudiment before proper dorsal closure. In this review, we summarize the current knowledge regarding the formation of potential extraembryonic structures in the Chelicerata. We describe the early embryogenesis of spiders and other chelicerates, with a special focus on the formation of the potential extraembryonic tissues. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Heinrich-Buff-Ring 38, 35392 Giessen, Germany
| | - Matthias Pechmann
- Institute for Zoology, University of Cologne, Biocenter, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
11
|
Friedrich M. Coming into clear sight at last: Ancestral and derived events during chelicerate visual system development. Bioessays 2022; 44:e2200163. [DOI: 10.1002/bies.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences Wayne State University Detroit Michigan USA
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
12
|
Vargas‐Parra EE, Hopkins MJ. Modularity in the trilobite head consistent with the hypothesized segmental origin of the eyes. Evol Dev 2022; 24:177-188. [PMID: 36111749 PMCID: PMC9786538 DOI: 10.1111/ede.12418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 12/30/2022]
Abstract
The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, Calyptaulax annulata (Phacopida) and Cloacaspis senilis (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for C. annulata shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for C. senilis are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.
Collapse
Affiliation(s)
| | - Melanie J. Hopkins
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| |
Collapse
|
13
|
Janssen R, Eriksson BJ. Embryonic expression patterns of Wnt genes in the RTA-clade spider Cupiennius salei. Gene Expr Patterns 2022; 44:119247. [PMID: 35472494 DOI: 10.1016/j.gep.2022.119247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/27/2022] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
Abstract
Spiders represent widely used model organisms for chelicerate and even arthropod development and evolution. Wnt genes are important and evolutionary conserved factors that control and regulate numerous developmental processes. Recent studies comprehensively investigated the complement and expression of spider Wnt genes revealing conserved as well as diverged aspects of their expression and thus (likely) function among different groups of spiders representing Mygalomorphae (tarantulas), and both main groups of Araneae (true spiders) (Haplogynae/Synspermiata and Entelegynae). The allegedly most modern/derived group of entelegyne spiders is represented by the RTA-clade of which no comprehensive data on Wnt expression were available prior to this study. Here, we investigated the embryonic expression of all Wnt genes of the RTA-clade spider Cupiennius salei. We found that most of the Wnt expression patterns are conserved between Cupiennius and other spiders, especially more basally branching species. Surprisingly, most differences in Wnt gene expression are seen in the common model spider Parasteatoda tepidariorum (a non-RTA clade entelegyne species). These results show that data and conclusions drawn from research on one member of a group of animals (or any other organism) cannot necessarily be extrapolated to the group as a whole, and instead highlight the need for comprehensive taxon sampling.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236, Uppsala, Sweden.
| | - Bo Joakim Eriksson
- Department für Neurowissenschaften und Entwicklungsbiologie, Universität Wien, Djerassiplatz 1, A-1030, Vienna, Austria
| |
Collapse
|
14
|
Cerca J, Armstrong EE, Vizueta J, Fernández R, Dimitrov D, Petersen B, Prost S, Rozas J, Petrov D, Gillespie RG. The Tetragnatha kauaiensis Genome Sheds Light on the Origins of Genomic Novelty in Spiders. Genome Biol Evol 2021; 13:evab262. [PMID: 34849853 PMCID: PMC8693713 DOI: 10.1093/gbe/evab262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Spiders (Araneae) have a diverse spectrum of morphologies, behaviors, and physiologies. Attempts to understand the genomic-basis of this diversity are often hindered by their large, heterozygous, and AT-rich genomes with high repeat content resulting in highly fragmented, poor-quality assemblies. As a result, the key attributes of spider genomes, including gene family evolution, repeat content, and gene function, remain poorly understood. Here, we used Illumina and Dovetail Chicago technologies to sequence the genome of the long-jawed spider Tetragnatha kauaiensis, producing an assembly distributed along 3,925 scaffolds with an N50 of ∼2 Mb. Using comparative genomics tools, we explore genome evolution across available spider assemblies. Our findings suggest that the previously reported and vast genome size variation in spiders is linked to the different representation and number of transposable elements. Using statistical tools to uncover gene-family level evolution, we find expansions associated with the sensory perception of taste, immunity, and metabolism. In addition, we report strikingly different histories of chemosensory, venom, and silk gene families, with the first two evolving much earlier, affected by the ancestral whole genome duplication in Arachnopulmonata (∼450 Ma) and exhibiting higher numbers. Together, our findings reveal that spider genomes are highly variable and that genomic novelty may have been driven by the burst of an ancient whole genome duplication, followed by gene family and transposable element expansion.
Collapse
Affiliation(s)
- José Cerca
- Berkeley Evolab, Department of Environmental Science, Policy, and Management, UC Berkeley, California, USA
- Frontiers in Evolutionary Zoology, Natural History Museum, University of Oslo, Norway
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ellie E Armstrong
- Berkeley Evolab, Department of Environmental Science, Policy, and Management, UC Berkeley, California, USA
- Department of Biology, Stanford University, California, USA
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark
| | - Rosa Fernández
- Institute of Evolutionary Biology (CSIC—Universitat Pompeu Fabra), Barcelona, Spain
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Norway
| | - Bent Petersen
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Stefan Prost
- Central Research Laboratories, Natural History Museum Vienna, Vienna, Austria
- University of Veterinary Medicine, Konrad Lorenz Institute of Ethology, Vienna, Austria
- South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Dmitri Petrov
- Department of Biology, Stanford University, California, USA
| | - Rosemary G Gillespie
- Berkeley Evolab, Department of Environmental Science, Policy, and Management, UC Berkeley, California, USA
| |
Collapse
|
15
|
Janssen R, Pechmann M, Turetzek N. A chelicerate Wnt gene expression atlas: novel insights into the complexity of arthropod Wnt-patterning. EvoDevo 2021; 12:12. [PMID: 34753512 PMCID: PMC8579682 DOI: 10.1186/s13227-021-00182-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
The Wnt genes represent a large family of secreted glycoprotein ligands that date back to early animal evolution. Multiple duplication events generated a set of 13 Wnt families of which 12 are preserved in protostomes. Embryonic Wnt expression patterns (Wnt-patterning) are complex, representing the plentitude of functions these genes play during development. Here, we comprehensively investigated the embryonic expression patterns of Wnt genes from three species of spiders covering both main groups of true spiders, Haplogynae and Entelegynae, a mygalomorph species (tarantula), as well as a distantly related chelicerate outgroup species, the harvestman Phalangium opilio. All spiders possess the same ten classes of Wnt genes, but retained partially different sets of duplicated Wnt genes after whole genome duplication, some of which representing impressive examples of sub- and neo-functionalization. The harvestman, however, possesses a more complete set of 11 Wnt genes but with no duplicates. Our comprehensive data-analysis suggests a high degree of complexity and evolutionary flexibility of Wnt-patterning likely providing a firm network of mutational protection. We discuss the new data on Wnt gene expression in terms of their potential function in segmentation, posterior elongation, and appendage development and critically review previous research on these topics. We conclude that earlier research may have suffered from the absence of comprehensive gene expression data leading to partial misconceptions about the roles of Wnt genes in development and evolution.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Matthias Pechmann
- Department of Developmental Biology, Biocenter, Institute for Zoology, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of Biology, Ludwig-Maximilians Universität München, Grosshaderner Strasse 2, 82152, Biozentrum, Germany
| |
Collapse
|
16
|
Barth FG. A spider in motion: facets of sensory guidance. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:239-255. [PMID: 33135112 PMCID: PMC8046691 DOI: 10.1007/s00359-020-01449-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Spiders show a broad range of motions in addition to walking and running with their eight coordinated legs taking them towards their resources and away from danger. The usefulness of all these motions depends on the ability to control and adjust them to changing environmental conditions. A remarkable wealth of sensory receptors guarantees the necessary guidance. Many facets of such guidance have emerged from neuroethological research on the wandering spider Cupiennius salei and its allies, although sensori-motor control was not the main focus of this work. The present review may serve as a springboard for future studies aiming towards a more complete understanding of the spider's control of its different types of motion. Among the topics shortly addressed are the involvement of lyriform slit sensilla in path integration, muscle reflexes in the walking legs, the monitoring of joint movement, the neuromuscular control of body raising, the generation of vibratory courtship signals, the sensory guidance of the jump to flying prey and the triggering of spiderling dispersal behavior. Finally, the interaction of sensors on different legs in oriented turning behavior and that of the sensory systems for substrate vibration and medium flow are addressed.
Collapse
Affiliation(s)
- Friedrich G Barth
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Townley MA, Harms D. Temperature fluctuations during embryonic development implicated in a naturally occurring instance of abnormal spinnerets in the spider Australomimetus maculosus (Araneae, Mimetidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 57:100945. [PMID: 32361425 DOI: 10.1016/j.asd.2020.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
We record developmental abnormalities of the spinnerets in a field-collected adult male specimen of Australomimetus maculosus. These include (1) a supernumerary right posterior lateral spinneret (PLS), (2) ectopic piriform silk gland spigots and tartipores on the left PLS that are normally restricted to anterior lateral spinnerets (ALSs), and (3) what appear to be ectopic ALS sensilla on the left posterior median spinneret (PMS). Published results of teratological experiments and climate data for the collection site indicate that fluctuating sub- and supra-optimal temperatures during embryogenesis may have been responsible for these anomalies. This specimen thus supports the view that spinneret abnormalities, among other aberrations, may be induced when embryos of entelegyne spiders are exposed to fluctuations between high and low temperatures, whether in the laboratory or, as here, in nature. To our knowledge, the ectopic structures seen on the left PLS and left PMS have not been observed previously. Their locations are consistent with a hypothesis by which only the lateral portion of the araneomorph ALS is serially homologous to the PLS, while the remainder of the ALS, along with the colulus/cribellum, is homologous to the PMS.
Collapse
Affiliation(s)
- Mark A Townley
- University Instrumentation Center, University of New Hampshire, 23 Academic Way, Durham, NH, 03824, USA.
| | - Danilo Harms
- Zoological Museum, Center of Natural History, Universität Hamburg, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany.
| |
Collapse
|
18
|
Pechmann M. Embryonic development and secondary axis induction in the Brazilian white knee tarantula Acanthoscurria geniculata, C. L. Koch, 1841 (Araneae; Mygalomorphae; Theraphosidae). Dev Genes Evol 2020; 230:75-94. [PMID: 32076811 PMCID: PMC7128004 DOI: 10.1007/s00427-020-00653-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Tarantulas represent some of the heaviest and most famous spiders. However, there is little information about the embryonic development of these spiders or their relatives (infraorder Mygalomorphae) and time-lapse recording of the embryonic development is entirely missing. I here describe the complete development of the Brazilian white knee tarantula, Acanthoscurria geniculata, in fixed and live embryos. The establishment of the blastoderm, the formation, migration and signalling of the cumulus and the shape changes that occur in the segment addition zone are analysed in detail. In addition, I show that there might be differences in the contraction process of early embryos of different theraphosid spider species. A new embryonic reference transcriptome was generated for this study and was used to clone and analyse the expression of several important developmental genes. Finally, I show that embryos of A. geniculata are amenable to tissue transplantation and bead insertion experiments. Using these functional approaches, I induced axis duplication in embryos via cumulus transplantation and ectopic activation of BMP signalling. Overall, the mygalomorph spider A. geniculata is a useful laboratory system to analyse evolutionary developmental questions, and the availability of such a system will help understanding conserved and divergent aspects of spider/chelicerate development.
Collapse
Affiliation(s)
- Matthias Pechmann
- Institute for Zoology, Department for Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
19
|
Distribution and development of the external sense organ pattern on the appendages of postembryonic and adult stages of the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:121-136. [PMID: 32036445 PMCID: PMC7128012 DOI: 10.1007/s00427-020-00655-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022]
Abstract
Spiders are equipped with a large number of innervated cuticular specializations, which respond to various sensory stimuli. The physiological function of mechanosensory organs has been analysed in great detail in some model spider species (e.g. Cupiennius salei); however, much less is known about the distribution and function of chemosensory organs. Furthermore, our knowledge on how the sense organ pattern develops on the spider appendages is limited. Here we analyse the development of the pattern and distribution of six different external mechano- and chemosensory organs in all postembryonic stages and in adult male and female spiders of the species Parasteatoda tepidariorum. We show that except for small mechanosensory setae, external sense organs appear in fixed positions on the pedipalps and first walking legs, arranged in longitudinal rows along the proximal-distal axis or in invariable positions relative to morphological landmarks (joints, distal tarsal tip). A comparison to other Entelegynae spiders shows that these features are conserved. We hope that this study lays the foundation for future molecular analysis to address the question how this conserved pattern is generated.
Collapse
|
20
|
Constantinou SJ, Duan N, Nagy LM, Chipman AD, Williams TA. Elongation during segmentation shows axial variability, low mitotic rates, and synchronized cell cycle domains in the crustacean, Thamnocephalus platyurus. EvoDevo 2020; 11:1. [PMID: 31988708 PMCID: PMC6969478 DOI: 10.1186/s13227-020-0147-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background Segmentation in arthropods typically occurs by sequential addition of segments from a posterior growth zone. However, the amount of tissue required for growth and the cell behaviors producing posterior elongation are sparsely documented. Results Using precisely staged larvae of the crustacean, Thamnocephalus platyurus, we systematically examine cell division patterns and morphometric changes associated with posterior elongation during segmentation. We show that cell division occurs during normal elongation but that cells in the growth zone need only divide ~ 1.5 times to meet growth estimates; correspondingly, direct measures of cell division in the growth zone are low. Morphometric measurements of the growth zone and of newly formed segments suggest tagma-specific features of segment generation. Using methods for detecting two different phases in the cell cycle, we show distinct domains of synchronized cells in the posterior trunk. Borders of cell cycle domains correlate with domains of segmental gene expression, suggesting an intimate link between segment generation and cell cycle regulation. Conclusions Emerging measures of cellular dynamics underlying posterior elongation already show a number of intriguing characteristics that may be widespread among sequentially segmenting arthropods and are likely a source of evolutionary variability. These characteristics include: the low rates of posterior mitosis, the apparently tight regulation of cell cycle at the growth zone/new segment border, and a correlation between changes in elongation and tagma boundaries.
Collapse
Affiliation(s)
- Savvas J Constantinou
- 1Biology Department, Trinity College, Hartford, CT USA.,4Present Address: Department of Integrative Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Nicole Duan
- 1Biology Department, Trinity College, Hartford, CT USA.,5Present Address: Bioinformatics and Quantitative Biosciences, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332 USA
| | - Lisa M Nagy
- 2Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Ariel D Chipman
- 3The Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | | |
Collapse
|
21
|
Chipman AD, Edgecombe GD. Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proc Biol Sci 2019; 286:20191881. [PMID: 31575373 DOI: 10.1098/rspb.2019.1881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
Collapse
Affiliation(s)
- Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Silberman Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
22
|
Tyagi K, Kumar V, Kundu S, Pakrashi A, Prasad P, Caleb JTD, Chandra K. Identification of Indian Spiders through DNA barcoding: Cryptic species and species complex. Sci Rep 2019; 9:14033. [PMID: 31575965 PMCID: PMC6773733 DOI: 10.1038/s41598-019-50510-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023] Open
Abstract
Spiders are mega diverse arthropods and play an important role in the ecosystem. Identification of this group is challenging due to their cryptic behavior, sexual dimorphism, and unavailability of taxonomic keys for juveniles. To overcome these obstacles, DNA barcoding plays a pivotal role in spider identification throughout the globe. This study is the first large scale attempt on DNA barcoding of spiders from India with 101 morphospecies of 72 genera under 21 families, including five endemic species and holotypes of three species. A total of 489 barcodes was generated and analyzed, among them 85 novel barcodes of 22 morphospecies were contributed to the global database. The estimated delimitation threshold of the Indian spiders was 2.6% to 3.7% K2P corrected pairwise distance. The multiple species delimitation methods (BIN, ABGD, GMYC and PTP) revealed a total of 107 molecular operational taxonomic units (MOTUs) for 101 morphospecies. We detected more than one MOTU in 11 morphospecies with discrepancies in genetic distances and tree topologies. Cryptic diversity was detected in Pardosa pusiola, Cyclosa spirifera, and Heteropoda venatoria. The intraspecies distances which were as large as our proposed delimitation threshold were observed in Pardosa sumatrana, Thiania bhamoensis, and Cheiracanthium triviale. Further, shallow genetic distances were detected in Cyrtophora cicatrosa, Hersilia savignyi, Argiope versicolor, Phintella vittata, and Oxyopes birmanicus. Two morphologically distinguished species (Plexippus paykulli and Plexippus petersi) showed intra-individual variation within their DNA barcode data. Additionally, we reinstate the original combination for Linyphia sikkimensis based on both morphology and DNA barcoding. These data show that DNA barcoding is a valuable tool for specimen identification and species discovery of Indian spiders.
Collapse
Affiliation(s)
- Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India.
| | - Shantanu Kundu
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Avas Pakrashi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Priya Prasad
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - John T D Caleb
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| |
Collapse
|
23
|
Hogvall M, Budd GE, Janssen R. Gene expression analysis of potential morphogen signalling modifying factors in Panarthropoda. EvoDevo 2018; 9:20. [PMID: 30288252 PMCID: PMC6162966 DOI: 10.1186/s13227-018-0109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
Abstract
Background Morphogen signalling represents a key mechanism of developmental processes during animal development. Previously, several evolutionary conserved morphogen signalling pathways have been identified, and their players such as the morphogen receptors, morphogen modulating factors (MMFs) and the morphogens themselves have been studied. MMFs are factors that regulate morphogen distribution and activity. The interactions of MMFs with different morphogen signalling pathways such as Wnt signalling, Hedgehog (Hh) signalling and Decapentaplegic (Dpp) signalling are complex because some of the MMFs have been shown to interact with more than one signalling pathway, and depending on genetic context, to have different, biphasic or even opposing function. This complicates the interpretation of expression data and functional data of MMFs and may be one reason why data on MMFs in other arthropods than Drosophila are scarce or totally lacking. Results As a first step to a better understanding of the potential roles of MMFs in arthropod development, we investigate here the embryonic expression patterns of division abnormally delayed (dally), dally-like protein (dlp), shifted (shf) and secreted frizzled-related protein 125 (sFRP125) and sFRP34 in the beetle Tribolium castaneum, the spider Parasteatoda tepidariorum, the millipede Glomeris marginata and the onychophoran Euperipatoides kanangrensis. This pioneer study represents the first comprehensive comparative data set of these genes in panarthropods. Conclusions Expression profiles reveal a high degree of diversity, suggesting that MMFs may represent highly evolvable nodes in otherwise conserved gene regulatory networks. Conserved aspects of MMF expression, however, appear to concern function in segmentation and limb development, two of the key topics of evolutionary developmental research. Electronic supplementary material The online version of this article (10.1186/s13227-018-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
24
|
Paese CLB, Schoenauer A, Leite DJ, Russell S, McGregor AP. A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider. eLife 2018; 7:e37567. [PMID: 30126532 PMCID: PMC6167052 DOI: 10.7554/elife.37567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Sox genes encode a set of highly conserved transcription factors that regulate many developmental processes. In insects, the SoxB gene Dichaete is the only Sox gene known to be involved in segmentation. To determine if similar mechanisms are used in other arthropods, we investigated the role of Sox genes during segmentation in the spider Parasteatoda tepidariorum. While Dichaete does not appear to be involved in spider segmentation, we found that the closely related Sox21b-1 gene acts as a gap gene during formation of anterior segments and is also part of the segmentation clock for development of the segment addition zone and sequential addition of opisthosomal segments. Thus, we have found that two different mechanisms of segmentation in a non-mandibulate arthropod are regulated by a SoxB gene. Our work provides new insights into the function of an important and conserved gene family, and the evolution of the regulation of segmentation in arthropods.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Anna Schoenauer
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Daniel J Leite
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Steven Russell
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Alistair P McGregor
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| |
Collapse
|
25
|
Farley RD. Book lung development in juveniles and adults of the cobweb spider, Parasteatoda tepidariorum C. L. Koch, 1841 (Araneomorphae, Theridiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:180-198. [PMID: 29341927 DOI: 10.1016/j.asd.2018.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Light and transmission electron microscopy were used to study the development of new book lung lamellae in juvenile and adult spiders (Parasteatoda tepidariorum). As hypothesized earlier in a study of embryos, mesenchyme cells dispersed throughout the opisthosoma (EMT) are a likely source of precursor epithelial cells (MET) for the new lamellae. The precursor cells in juveniles and adults continue many of the complex activities observed in embryos, e.g., migration, alignment, lumen formation, thinning, elongation, and secretion of the cuticle of air channel walls and trabeculae. The apicobasal polarity of precursor cells for new channels is apparently induced by the polarity pattern of precursor cells of channels produced earlier. Thus, new air and hemolymph channels extend and continue the alternating pattern of older channels. At sites more distant from the spiracle and atrium, new channels are usually produced by the mode II process (intracellular alignment and merging of vesicles). These air channels have bridging trabeculae and are quite stable in size throughout their length. At sites closer to the spiracle and atrium, new channels may be produced by mode I (coalescence of merocrine vesicle secretion). This raises the hypothesis that structural and functional differences in mode I and II channels and differing oxygen and fluid conditions with distance from the spiracle and atrium determine the mode of formation of new channels. Observations herein support an earlier hypothesis that there is some intercellular apical/apical and basal/basal affinity among the opposed surfaces of aligned precursor cells. This results in the alternating pattern of air channels at the apical and hemolymph channels at the basal cell surfaces.
Collapse
Affiliation(s)
- Roger D Farley
- Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
26
|
Pechmann M, Benton MA, Kenny NJ, Posnien N, Roth S. A novel role for Ets4 in axis specification and cell migration in the spider Parasteatoda tepidariorum. eLife 2017; 6. [PMID: 28849761 PMCID: PMC5574703 DOI: 10.7554/elife.27590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
Organizers play important roles during the embryonic development of many animals. The most famous example is the Spemann organizer that sets up embryonic axes in amphibian embryos. In spiders, a group of BMP secreting mesenchymal cells (the cumulus) functions as an organizer of the dorsoventral axis. Similar to experiments performed with the Spemann organizer, transplantation of the cumulus is able to induce a secondary axis in spiders. Despite the importance of this structure, it is unknown which factors are needed to activate cumulus specific gene expression. To address this question, we performed a transcriptomic analysis of early embryonic development in the spider Parasteatoda tepidariorum. Through this work, we found that the transcription factor Pt-Ets4 is needed for cumulus integrity, dorsoventral patterning and for the activation of Pt-hunchback and Pt-twist expression. Furthermore, ectopic expression of Pt-Ets4 is sufficient to induce cell delamination and migration by inducing a mesoderm-like cell fate.
Collapse
Affiliation(s)
- Matthias Pechmann
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Matthew A Benton
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Nathan J Kenny
- Life Sciences Department, The Natural History Museum, London, United Kingdom
| | - Nico Posnien
- Department of Developmental Biology, University of Goettingen, Goettingen, Germany
| | - Siegfried Roth
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T, Buffry AD, Chao H, Dinh H, Doddapaneni H, Dugan S, Eibner C, Extavour CG, Funch P, Garb J, Gonzalez LB, Gonzalez VL, Griffiths-Jones S, Han Y, Hayashi C, Hilbrant M, Hughes DST, Janssen R, Lee SL, Maeso I, Murali SC, Muzny DM, Nunes da Fonseca R, Paese CLB, Qu J, Ronshaugen M, Schomburg C, Schönauer A, Stollewerk A, Torres-Oliva M, Turetzek N, Vanthournout B, Werren JH, Wolff C, Worley KC, Bucher G, Gibbs RA, Coddington J, Oda H, Stanke M, Ayoub NA, Prpic NM, Flot JF, Posnien N, Richards S, McGregor AP. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol 2017. [PMID: 28756775 DOI: 10.1186/s12915-017-0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Thomas Clarke
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Torsten Wierschin
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany
| | - Matthias Pechmann
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Osaka Medical College, Takatsuki, Osaka, Japan
| | - Lauren Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jesper Bechsgaard
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Alexandra D Buffry
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Peter Funch
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Jessica Garb
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Luis B Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Vanessa L Gonzalez
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA
| | - Sam Griffiths-Jones
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cheryl Hayashi
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rodrigo Nunes da Fonseca
- Nucleo em Ecologia e Desenvolvimento SocioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 27941-222, Brazil
| | - Christian L B Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Matthew Ronshaugen
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christoph Schomburg
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Montserrat Torres-Oliva
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Natascha Turetzek
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Bram Vanthournout
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
- Evolution and Optics of Nanostructure group (EON), Biology Department, Ghent University, Gent, Belgium
| | - John H Werren
- Biology Department, University of Rochester, Rochester, NY, 14627, USA
| | - Carsten Wolff
- Humboldt-Universität of Berlin, Institut für Biologie, Philippstr.13, 10115, Berlin, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach-Institute, GZMB, Georg-August-University, Göttingen Campus, Justus von Liebig Weg 11, 37077, Göttingen, Germany.
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Jonathan Coddington
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA.
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Mario Stanke
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.
| | - Nikola-Michael Prpic
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, C.P. 160/12, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium.
| | - Nico Posnien
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
28
|
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T, Buffry AD, Chao H, Dinh H, Doddapaneni H, Dugan S, Eibner C, Extavour CG, Funch P, Garb J, Gonzalez LB, Gonzalez VL, Griffiths-Jones S, Han Y, Hayashi C, Hilbrant M, Hughes DST, Janssen R, Lee SL, Maeso I, Murali SC, Muzny DM, Nunes da Fonseca R, Paese CLB, Qu J, Ronshaugen M, Schomburg C, Schönauer A, Stollewerk A, Torres-Oliva M, Turetzek N, Vanthournout B, Werren JH, Wolff C, Worley KC, Bucher G, Gibbs RA, Coddington J, Oda H, Stanke M, Ayoub NA, Prpic NM, Flot JF, Posnien N, Richards S, McGregor AP. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol 2017; 15:62. [PMID: 28756775 PMCID: PMC5535294 DOI: 10.1186/s12915-017-0399-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. Results We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Conclusions Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0399-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.,Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Thomas Clarke
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.,Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA.,J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Torsten Wierschin
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany
| | - Matthias Pechmann
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.,Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.,Osaka Medical College, Takatsuki, Osaka, Japan
| | - Lauren Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jesper Bechsgaard
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Alexandra D Buffry
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Peter Funch
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark
| | - Jessica Garb
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA, 01854, USA
| | - Luis B Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Vanessa L Gonzalez
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA
| | - Sam Griffiths-Jones
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yi Han
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cheryl Hayashi
- Department of Biology, University of California, Riverside, Riverside, CA, 92521, USA.,Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.,Department of Developmental Biology, University of Cologne, Cologne Biocenter, Institute of Zoology, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rodrigo Nunes da Fonseca
- Nucleo em Ecologia e Desenvolvimento SocioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 27941-222, Brazil
| | - Christian L B Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Matthew Ronshaugen
- Faculty of Biology Medicine and Health, University of Manchester, D.1416 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christoph Schomburg
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Montserrat Torres-Oliva
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Natascha Turetzek
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Bram Vanthournout
- Department of Bioscience, Aarhus University, Ny Munkegade 116, building 1540, 8000, Aarhus C, Denmark.,Evolution and Optics of Nanostructure group (EON), Biology Department, Ghent University, Gent, Belgium
| | - John H Werren
- Biology Department, University of Rochester, Rochester, NY, 14627, USA
| | - Carsten Wolff
- Humboldt-Universität of Berlin, Institut für Biologie, Philippstr.13, 10115, Berlin, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach-Institute, GZMB, Georg-August-University, Göttingen Campus, Justus von Liebig Weg 11, 37077, Göttingen, Germany.
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Jonathan Coddington
- Smithsonian National Museum of Natural History, MRC-163, P.O. Box 37012, Washington, DC, 20013-7012, USA.
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Mario Stanke
- Ernst Moritz Arndt University Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17487, Greifswald, Germany.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA.
| | - Nikola-Michael Prpic
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, C.P. 160/12, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium.
| | - Nico Posnien
- Department for Developmental Biology, University Goettingen, Johann-Friedrich-Blumenbach-Institut for Zoology and Anthropology, GZMB Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
29
|
Ortega-Hernández J, Janssen R, Budd GE. Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:354-379. [PMID: 27989966 DOI: 10.1016/j.asd.2016.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 05/14/2023]
Abstract
The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| |
Collapse
|
30
|
Sawadro M, Bednarek A, Babczyńska A. The current state of knowledge on the neuroactive compounds that affect the development, mating and reproduction of spiders (Araneae) compared to insects. INVERTEBRATE NEUROSCIENCE 2017; 17:4. [DOI: 10.1007/s10158-017-0197-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
31
|
Liu H, French AS, Torkkeli PH. Expression of Cys-loop receptor subunits and acetylcholine binding protein in the mechanosensory neurons, glial cells, and muscle tissue of the spider Cupiennius salei. J Comp Neurol 2016; 525:1139-1154. [PMID: 27650259 DOI: 10.1002/cne.24122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/30/2016] [Accepted: 09/10/2016] [Indexed: 12/23/2022]
Abstract
The central and peripheral nervous system transcriptomes of the spider Cupiennius salei have 15 Cys-loop receptor subunits and an acetylcholine-binding protein (AChBP). Twelve subunits are predicted to form anion channels gated by γ-aminobutyric acid (GABA), glutamate, histamine, or changes in pH, and three are putative ACh-gated cation channels. Spiders have a variety of mechanosensilla and proprioceptive organs that are innervated by efferents in their peripherally located parts, and efferents also innervate muscle fibers. We investigated Cys-loop gene expression in muscle tissue by qPCR and localized this expression in mechanosensilla via in situ hybridization. The cuticular mechanosensory neurons had only CsGABArdl and CspHCl2 subunits, whereas the muscle tissue expressed a wider variety of subunits, especially CsGABAgrd, CsGABAA β, CsGluCl1 and CspHCl, but very low levels of the CsGABArdl or CsnACh subunits. An nACh non-α subunit was expressed in a group of unidentified cells in the hypodermis and at low level in the muscle tissue, but the physiological function of this subunit is unknown. The CsnAChα subunit was not expressed in sensory neurons and was expressed at extremely low level in the muscle tissue. None of the probes gave signals in proprioceptive joint receptors, suggesting that efferent innervation to this sense organ employs other receptor types. CsAChBP and a glia-specific homeodomain CsREPO were both expressed in glial cells that surround sensory neurons and also in muscle tissue, probably around the nerve endings of the neuromuscular junction. These locations have large numbers of synapses, suggesting that AChBP may have a function in modulating synaptic transmission. J. Comp. Neurol. 525:1139-1154, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
32
|
Turetzek N, Prpic NM. Observations on germ band development in the cellar spider Pholcus phalangioides. Dev Genes Evol 2016; 226:413-422. [PMID: 27581033 DOI: 10.1007/s00427-016-0562-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022]
Abstract
Most recent studies of spider embryonic development have focused on representatives of the species-rich group of entelegyne spiders (over 80 % of all extant species). Embryogenesis in the smaller spider groups, however, is less well studied. Here, we describe the development of the germ band in the spider species Pholcus phalangioides, a representative of the haplogyne spiders that are phylogenetically the sister group of the entelegyne spiders. We show that the transition from radially symmetric embryonic anlage to the bilaterally symmetric germ band involves the accumulation of cells in the centre of the embryonic anlage (primary thickening). These cells then disperse all across the embryonic anlage. A secondary thickening of cells then appears in the centre of the embryonic anlage, and this thickening expands and forms the segment addition zone. We also confirm that the major part of the opisthosoma initially develops as a tube shaped structure, and its segments are then sequentially folded down on the yolk during inversion. This special mode of opisthosoma formation has not been reported for entelegyne spiders, but a more comprehensive sampling of this diverse group is necessary to decide whether this peculiarity is indeed lacking in the entelegyne spiders.
Collapse
Affiliation(s)
- Natascha Turetzek
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Abteilung für Entwicklungsbiologie, 37077, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Nikola-Michael Prpic
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Abteilung für Entwicklungsbiologie, 37077, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
33
|
Whittle CA, Extavour CG. Expression-Linked Patterns of Codon Usage, Amino Acid Frequency, and Protein Length in the Basally Branching Arthropod Parasteatoda tepidariorum. Genome Biol Evol 2016; 8:2722-36. [PMID: 27017527 PMCID: PMC5630913 DOI: 10.1093/gbe/evw068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Spiders belong to the Chelicerata, the most basally branching arthropod subphylum. The common house spider, Parasteatoda tepidariorum, is an emerging model and provides a valuable system to address key questions in molecular evolution in an arthropod system that is distinct from traditionally studied insects. Here, we provide evidence suggesting that codon usage, amino acid frequency, and protein lengths are each influenced by expression-mediated selection in P. tepidariorum. First, highly expressed genes exhibited preferential usage of T3 codons in this spider, suggestive of selection. Second, genes with elevated transcription favored amino acids with low or intermediate size/complexity (S/C) scores (glycine and alanine) and disfavored those with large S/C scores (such as cysteine), consistent with the minimization of biosynthesis costs of abundant proteins. Third, we observed a negative correlation between expression level and coding sequence length. Together, we conclude that protein-coding genes exhibit signals of expression-related selection in this emerging, noninsect, arthropod model.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University Department of Molecular and Cellular Biology, Harvard University
| |
Collapse
|
34
|
Pechmann M. Formation of the germ-disc in spider embryos by a condensation-like mechanism. Front Zool 2016; 13:35. [PMID: 27525029 PMCID: PMC4982120 DOI: 10.1186/s12983-016-0166-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background Determination of the embryonic body axes is a crucial developmental process in all animals. The establishment of the embryonic axes of spiders has been best studied in the common-house-spider Parasteatoda tepidariorum. Here, anteroposterior (AP) polarity arises during germ disc formation; the centre of the germ-disc marks the future posterior pole, and the rim of the disc the future anterior pole of the spider embryo. The centre of the germ disc is also needed for the formation of the cumulus, a group of migratory cells needed to establish dorsoventral (DV) polarity. Thus, both body axes depend on proper germ disc formation and patterning. However, these processes have not been fully analysed at the cellular and molecular level. Results Here I present new techniques to stain the cell membranes/outlines in live and fixed spider embryos. I show that the germ-disc is formed from a regular and contiguous blastoderm and that co-ordinated cell shape changes, rather than migration of single cells, are required to drive germ-disc formation in P. tepidariorum embryos. Furthermore, I show that the rate of cell divisions within the embryonic and extra-embryonic region is not involved in the rapid establishment of the germ-disc. Finally, I show that the process of germ-disc formation is dependent on the initiation of zygotic transcription. Conclusions The presented data provide new insights in to the formation of the germ-disc in spider embryos. The establishment of the germ-disc in Parasteatoda embryos is a highly dynamic process that involves wide scale cell-shape changes. While most of the blastodermal cells become cuboidal to form the dense germ-disc, the remaining blastodermal cells stay squamous and develop into huge extra-embryonic, yolk rich cells. In addition, this study shows that the onset of zygotic transcription is needed to establish the germ-disc itself, and that the mid-blastula transition of Parasteatoda tepidariorum embryos is prior to any overt axis establishment. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0166-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Pechmann
- University of Cologne, Cologne Biocenter, Zülpicher Str. 47B, 50674 Cologne, Germany
| |
Collapse
|
35
|
Leite DJ, Ninova M, Hilbrant M, Arif S, Griffiths-Jones S, Ronshaugen M, McGregor AP. Pervasive microRNA Duplication in Chelicerates: Insights from the Embryonic microRNA Repertoire of the Spider Parasteatoda tepidariorum. Genome Biol Evol 2016; 8:2133-44. [PMID: 27324919 PMCID: PMC4987109 DOI: 10.1093/gbe/evw143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small (∼22 nt) noncoding RNAs that repress translation and therefore regulate the production of proteins from specific target mRNAs. microRNAs have been found to function in diverse aspects of gene regulation within animal development and many other processes. Among invertebrates, both conserved and novel, lineage specific, microRNAs have been extensively studied predominantly in holometabolous insects such as Drosophila melanogaster However little is known about microRNA repertoires in other arthropod lineages such as the chelicerates. To understand the evolution of microRNAs in this poorly sampled subphylum, we characterized the microRNA repertoire expressed during embryogenesis of the common house spider Parasteatoda tepidariorum We identified a total of 148 microRNAs in P. tepidariorum representing 66 families. Approximately half of these microRNA families are conserved in other metazoans, while the remainder are specific to this spider. Of the 35 conserved microRNAs families 15 had at least two copies in the P. tepidariorum genome. A BLAST-based approach revealed a similar pattern of duplication in other spiders and a scorpion, but not among other chelicerates and arthropods, with the exception of a horseshoe crab. Among the duplicated microRNAs we found examples of lineage-specific tandem duplications, and the duplication of entire microRNA clusters in three spiders, a scorpion, and in a horseshoe crab. Furthermore, we found that paralogs of many P. tepidariorum microRNA families exhibit arm switching, which suggests that duplication was often followed by sub- or neofunctionalization. Our work shows that understanding the evolution of microRNAs in the chelicerates has great potential to provide insights into the process of microRNA duplication and divergence and the evolution of animal development.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Maria Ninova
- Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | | | | | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| |
Collapse
|
36
|
Hartmann K, Laumann M, Bergmann P, Heethoff M, Schmelzle S. Development of the synganglion and morphology of the adult nervous system in the miteArchegozetes longisetosusAoki (Chelicerata, Actinotrichida, Oribatida). J Morphol 2016; 277:537-48. [DOI: 10.1002/jmor.20517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Konstantin Hartmann
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin; Philippstraße 13 Haus 6 Berlin 10115 Germany
| | - Michael Laumann
- Electron Microscopy Center, University of Konstanz, Universitaetsstrasse 10; Konstanz 78457 Germany
| | - Paavo Bergmann
- Evolutionary Biology of Invertebrates, University of Tuebingen, Auf Der Morgenstelle 28E; Tuebingen 72076 Germany
| | - Michael Heethoff
- Ecological Networks, Technical University Darmstadt, Schnittspahnstraße 3; Darmstadt 64287 Germany
| | - Sebastian Schmelzle
- Ecological Networks, Technical University Darmstadt, Schnittspahnstraße 3; Darmstadt 64287 Germany
| |
Collapse
|
37
|
Akiyama-Oda Y, Oda H. Multi-color FISH facilitates analysis of cell-type diversification and developmental gene regulation in theParasteatodaspider embryo. Dev Growth Differ 2016; 58:215-24. [DOI: 10.1111/dgd.12263] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/09/2015] [Accepted: 12/17/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Yasuko Akiyama-Oda
- JT Biohistory Research Hall; 1-1 Murasaki-cho 569-1125 Takatsuki Osaka 569-1125 Japan
- Microbiology and Infection Control; Osaka Medical College; 2-7 Daigaku-machi 569-8686 Takatsuki, Osaka Japan
| | - Hiroki Oda
- JT Biohistory Research Hall; 1-1 Murasaki-cho 569-1125 Takatsuki Osaka 569-1125 Japan
| |
Collapse
|
38
|
Schönauer A, Paese CLB, Hilbrant M, Leite DJ, Schwager EE, Feitosa NM, Eibner C, Damen WGM, McGregor AP. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum. Development 2016; 143:2455-63. [DOI: 10.1242/dev.131656] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/19/2016] [Indexed: 12/16/2022]
Abstract
In short germ arthropods, posterior segments are added sequentially from a growth zone or segment addition zone (SAZ) during embryogenesis. Studies in spiders such as the common house spider, Parasteatoda tepidariorum, have provided insights into the gene regulatory network (GRN) that underlies the development of the SAZ, and revealed the involvement of two important signalling pathways. It was shown that Wnt8 maintains a pool of undifferentiated cells in the SAZ, but this ligand is also required for dynamic Delta (Dl) expression associated with the formation of new segments. However, it remains unclear how these pathways interact during SAZ formation and subsequently regulate segment addition. Here we show that Delta-Notch signalling is required for Wnt8 expression in posterior SAZ cells, but represses the expression of this Wnt gene in anterior SAZ cells. We also found that these two signalling pathways are required for the expression of the spider orthologues of the segmentation genes even-skipped (eve) and runt-1 (run-1), at least in part via the transcription factor encoded by caudal (cad). Moreover, it appears that dynamic expression of eve in this spider does not require a feedback loop with run-1, as is found in the pair-rule circuit of the beetle Tribolium. Taken together, our results suggest that the development of posterior segments in Parasteatoda is directed by dynamic interactions between Wnt8 and Delta-Notch signalling that are read out by cad, which is necessary but not sufficient to regulate the expression of the pair-rule genes eve and run-1. Our study therefore provides new insights towards better understanding the evolution and developmental regulation of segmentation in other arthropods including insects.
Collapse
Affiliation(s)
- Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Christian L. B. Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Present address: Institute for Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Daniel J. Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Evelyn E. Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Present address: Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside St., Lowell, MA 01854, USA
| | - Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Universidade Federal do Rio de Janeiro- UFRJ/NUPEM-Campus Macaé
| | - Cornelius Eibner
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Wim G. M. Damen
- Department of Genetics, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
39
|
Napiórkowska T, Napiórkowski P, Templin J. Teratological deformities of pedipalps in the Tegenaria atrica spider, induced by low and high temperatures applied alternately. J Therm Biol 2015; 56:50-4. [PMID: 26857976 DOI: 10.1016/j.jtherbio.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
The study was aimed at demonstrating the relationship between temperature (as a factor which disturbs morphogenesis) and deformities in the front part of the prosoma in Tegenaria atrica. By exposing spider embryos to alternating temperatures of 14 and 32°C for the first 10 days of embryonic development, i.e. until the first metameres of the prosoma appeared on the germ band, we obtained individuals with a range of anomalies including those which affected the prosomal morphology. We selected five spiders with deformities of pedipalps or of pedipalps and walking legs for comprehensive analysis. The results indicate a relationship between temperature applied as a teratogenic factor and anomalies in the front part of the prosoma.
Collapse
Affiliation(s)
- Teresa Napiórkowska
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń 87-100, Poland.
| | - Paweł Napiórkowski
- Department of Hydrobiolgy, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń 87-100, Poland
| | - Julita Templin
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń 87-100, Poland
| |
Collapse
|
40
|
Edgar A, Bates C, Larkin K, Black S. Gastrulation occurs in multiple phases at two distinct sites in Latrodectus and Cheiracanthium spiders. EvoDevo 2015; 6:33. [PMID: 26500757 PMCID: PMC4618530 DOI: 10.1186/s13227-015-0029-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The longstanding canonical model of spider gastrulation posits that cell internalization occurs only at a unitary central blastopore; and that the cumulus (dorsal organizer) arises from within the early deep layer by cell-cell interaction. Recent work has begun to challenge the canonical model by demonstrating cell internalization at extra-blastoporal sites in two species (Parasteatoda tepidariorum and Zygiella x-notata); and showing in Zygiella that the prospective cumulus internalizes first, before other cells are present in the deep layer. The cell behaviors making up spider gastrulation thus appear to show considerable variation, and a wider sampling of taxa is indicated. RESULTS We evaluated the model in three species from two families by direct observation of living embryos. Movements of individual cells were traced from timelapse recordings and the origin and fate of the cumulus determined by CM-DiI labeling. We show that there are two distinct regions of internalization: most cells enter the deep layer via the central blastopore but many additional cells ingress via an extra-blastoporal ring, either at the periphery of the germ disc (Latrodectus spp.) or nearer the central field (Cheiracanthium mildei). In all species, the cumulus cells internalize first; this is shown by tracing cells in timelapse, histology, and by CM-DiI injection into the deep layer. Injection very early in gastrulation labels only cumulus mesenchyme cells whereas injections at later stages label non-cumulus mesoderm and endoderm. CONCLUSIONS We propose a revised model to accommodate the new data. Our working model has the prospective cumulus cells internalizing first, at the central blastopore. The cumulus cells begin migration before other cells enter the deep layer. This is consistent with early specification of the cumulus and suggests that cell-cell interaction with other deep layer cells is not required for its function. As the cumulus migrates, additional mesendoderm internalizes at two distinct locations: through the central blastopore and at an extra-blastoporal ring. Our work thus demonstrates early, cell-autonomous behavior of the cumulus and variation in subsequent location and timing of cell internalization during gastrulation in spiders.
Collapse
Affiliation(s)
- Allison Edgar
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
- />Department of Biology, Duke University, Durham, NC 27708 USA
| | - Christine Bates
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
- />Department of Internal Medicine, Duke University, Durham, NC 27708 USA
| | - Kay Larkin
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
| | - Steven Black
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
| |
Collapse
|
41
|
Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein. PLoS One 2015; 10:e0138068. [PMID: 26368804 PMCID: PMC4569296 DOI: 10.1371/journal.pone.0138068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022] Open
Abstract
Invertebrates possess a diverse collection of pentameric Cys-loop ligand gated ion channel (LGIC) receptors whose molecular structures, evolution and relationships to mammalian counterparts have been intensely investigated in several clinically and agriculturally important species. These receptors are targets for a variety of control agents that may also harm beneficial species. However, little is known about Cys-loop receptors in spiders, which are important natural predators of insects. We assembled de novo transcriptomes from the central and peripheral nervous systems of the Central American wandering spider Cupiennius salei, a model species for neurophysiological, behavioral and developmental studies. We found 15 Cys-loop receptor subunits that are expected to form anion or cation permeable channels, plus a putative acetylcholine binding protein (AChBP) that has only previously been reported in molluscs and one annelid. We used phylogenetic and sequence analysis to compare the spider subunits to homologous receptors in other species and predicted the 3D structures of each protein using the I-Tasser server. The quality of homology models improved with increasing sequence identity to the available high-resolution templates. We found that C. salei has orthologous γ-aminobutyric acid (GABA), GluCl, pHCl, HisCl and nAChα LGIC subunits to other arthropods, but some subgroups are specific to arachnids, or only to spiders. C. salei sequences were phylogenetically closest to gene fragments from the social spider, Stegodyphus mimosarum, indicating high conservation within the Araneomorphae suborder of spiders. C. salei sequences had similar ligand binding and transmembrane regions to other invertebrate and vertebrate LGICs. They also had motifs associated with high sensitivity to insecticides and antiparasitic agents such as fipronil, dieldrin and ivermectin. Development of truly selective control agents for pest species will require information about the molecular structure and pharmacology of Cys-loop receptors in beneficial species.
Collapse
|
42
|
Kunz K, Witthuhn M, Uhl G. Paired and complex copulatory organs: do they really impede flexible use? J Zool (1987) 2015. [DOI: 10.1111/jzo.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- K. Kunz
- Zoological Institute and Museum Department of General and Systematic Zoology University of Greifswald Greifswald Germany
| | - M. Witthuhn
- Zoological Institute and Museum Department of General and Systematic Zoology University of Greifswald Greifswald Germany
| | - G. Uhl
- Zoological Institute and Museum Department of General and Systematic Zoology University of Greifswald Greifswald Germany
| |
Collapse
|
43
|
Farley RD. Book lung development in the embryo, postembryo and first instar of the cobweb spider, Parasteatoda tepidariorum C. L Koch, 1841 (Araneomorphae, Theridiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:355-377. [PMID: 25936921 DOI: 10.1016/j.asd.2015.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/27/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Light and electron microscopy were used to compare spider book lung development with earlier studies of the development of horseshoe crab book gills and scorpion book lungs. Histological studies at the beginning of the 20th century provided evidence that spider and scorpion book lungs begin with outgrowth of a few primary lamellae (respiratory furrows, saccules) from the posterior surface of opisthosomal limb buds, reminiscent of the formation of book gills in the horseshoe crab. In spider embryos, light micrographs herein also show small primary lamellae formed at the posterior surface of opisthosomal limb buds. Later, more prominent primary lamellae extend into each book lung sinus from the inner wall of the book lung operculum formed from the limb bud. It appears most primary lamellae continue developing and become part of later book lungs, but there is variation in the rate and sequence of development. Electron micrographs show the process of air channel formation from parallel rows of precursor cells: mode I (cord hollowing), release of secretory vesicles into the extracellular space and mode II (cell hollowing), alignment and fusion of intracellular vesicles. Cell death (cavitation) is much less common but occurs in some places. Results herein support the early 20th century hypotheses that 1) book lungs are derived from book gills and 2) book lungs are an early step in the evolution of spider tracheae.
Collapse
Affiliation(s)
- Roger D Farley
- Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
44
|
Hilbrant M, Damen WGM. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei. ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:280-288. [PMID: 25882741 DOI: 10.1016/j.asd.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development.
Collapse
Affiliation(s)
- Maarten Hilbrant
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany; Institute for Developmental Biology, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany.
| | - Wim G M Damen
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany; Department of Genetics, Friedrich Schiller University, Jena, Philosophenweg 12, 07743 Jena, Germany.
| |
Collapse
|
45
|
Samadi L, Schmid A, Eriksson BJ. Differential expression of retinal determination genes in the principal and secondary eyes of Cupiennius salei Keyserling (1877). EvoDevo 2015; 6:16. [PMID: 26034575 PMCID: PMC4450993 DOI: 10.1186/s13227-015-0010-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factors that determine retinal development seem to be conserved in different phyla throughout the animal kingdom. In most representatives, however, only a few of the involved transcription factors have been sampled and many animal groups remain understudied. In order to fill in the gaps for the chelicerate group of arthropods, we tested the expression pattern of the candidate genes involved in the eye development in the embryo of the wandering spider Cupiennius salei. One main objective was to profile the molecular development of the eyes and to search for possible variation among eye subtype differentiation. A second aim was to form a basis for comparative studies in order to elucidate evolutionary pathways in eye development. RESULTS We screened the spider embryonic transcriptome for retina determination gene candidates and discovered that all except one of the retinal determination genes have been duplicated. Gene expression analysis shows that the two orthologs of all the genes have different expression patterns. The genes are mainly expressed in the developing optic neuropiles of the eyes (lateral furrow, mushroom body, arcuate body) in earlier stages of development (160 to 220 h after egg laying). Later in development (180 to 280 h after egg laying), there is differential expression of the genes in disparate eye vesicles; for example, Cs-otxa is expressed only in posterior-lateral eye vesicles, Cs-otxb, Cs-six1a, and Cs-six3b in all three secondary eye vesicles, Cs-pax6a only in principal eye vesicles, Cs-six1b in posterior-median, and posterior-lateral eye vesicles, and Cs-six3a in lateral and principal eye vesicles. CONCLUSIONS Principle eye development shows pax6a (ey) expression, suggesting pax6 dependence, although secondary eyes develop independently of pax6 genes and show differential expression of several retinal determination genes. Comparing this with the other arthropods suggests that pax6-dependent median eye development is a ground pattern of eye development in this group and that the ocelli of insects, the median eyes of chelicerates, and nauplius eyes can be homologised. The expression pattern of the investigated genes makes it possible to distinguish between secondary eyes and principal eyes. Differences of gene expression among the different lateral eyes indicate disparate function combined with genetic drift.
Collapse
Affiliation(s)
- Leyli Samadi
- Department of Neurobiology, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Axel Schmid
- Department of Neurobiology, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Bo Joakim Eriksson
- Department of Neurobiology, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
46
|
Changing cell behaviours during beetle embryogenesis correlates with slowing of segmentation. Nat Commun 2015; 6:6635. [PMID: 25858515 DOI: 10.1038/ncomms7635] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/10/2015] [Indexed: 02/06/2023] Open
Abstract
Segmented animals are found in major clades as phylogenetically distant as vertebrates and arthropods. Typically, segments form sequentially in what has been thought to be a regular process, relying on a segmentation clock to pattern budding segments and posterior mitosis to generate axial elongation. Here we show that segmentation in Tribolium has phases of variable periodicity during which segments are added at different rates. Furthermore, elongation during a period of rapid posterior segment addition is driven by high rates of cell rearrangement, demonstrated by differential fates of marked anterior and posterior blastoderm cells. A computational model of this period successfully reproduces elongation through cell rearrangement in the absence of cell division. Unlike current models of steady-state sequential segmentation and elongation from a proliferative growth zone, our results indicate that cell behaviours are dynamic and variable, corresponding to differences in segmentation rate and giving rise to morphologically distinct regions of the embryo.
Collapse
|
47
|
Posnien N, Zeng V, Schwager EE, Pechmann M, Hilbrant M, Keefe JD, Damen WGM, Prpic NM, McGregor AP, Extavour CG. A comprehensive reference transcriptome resource for the common house spider Parasteatoda tepidariorum. PLoS One 2014; 9:e104885. [PMID: 25118601 PMCID: PMC4132015 DOI: 10.1371/journal.pone.0104885] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022] Open
Abstract
Parasteatoda tepidariorum is an increasingly popular model for the study of spider development and the evolution of development more broadly. However, fully understanding the regulation and evolution of P. tepidariorum development in comparison to other animals requires a genomic perspective. Although research on P. tepidariorum has provided major new insights, gene analysis to date has been limited to candidate gene approaches. Furthermore, the few available EST collections are based on embryonic transcripts, which have not been systematically annotated and are unlikely to contain transcripts specific to post-embryonic stages of development. We therefore generated cDNA from pooled embryos representing all described embryonic stages, as well as post-embryonic stages including nymphs, larvae and adults, and using Illumina HiSeq technology obtained a total of 625,076,514 100-bp paired end reads. We combined these data with 24,360 ESTs available in GenBank, and 1,040,006 reads newly generated from 454 pyrosequencing of a mixed-stage embryo cDNA library. The combined sequence data were assembled using a custom de novo assembly strategy designed to optimize assembly product length, number of predicted transcripts, and proportion of raw reads incorporated into the assembly. The de novo assembly generated 446,427 contigs with an N50 of 1,875 bp. These sequences obtained 62,799 unique BLAST hits against the NCBI non-redundant protein data base, including putative orthologs to 8,917 Drosophila melanogaster genes based on best reciprocal BLAST hit identity compared with the D. melanogaster proteome. Finally, we explored the utility of the transcriptome for RNA-Seq studies, and showed that this resource can be used as a mapping scaffold to detect differential gene expression in different cDNA libraries. This resource will therefore provide a platform for future genomic, gene expression and functional approaches using P. tepidariorum.
Collapse
Affiliation(s)
- Nico Posnien
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Göttingen, GZMB Ernst-Caspari-Haus, Göttingen, Germany
- * E-mail: (NP); (CGE)
| | - Victor Zeng
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Matthias Pechmann
- Cologne Biocenter, Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Joseph D. Keefe
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Wim G. M. Damen
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Nikola-Michael Prpic
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Göttingen, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (NP); (CGE)
| |
Collapse
|
48
|
French AS, Li AW, Meisner S, Torkkeli PH. Upstream open reading frames and Kozak regions of assembled transcriptome sequences from the spider Cupiennius salei. Selection or chance? Gene 2014; 539:203-8. [PMID: 24530309 DOI: 10.1016/j.gene.2014.01.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 11/28/2022]
Abstract
We assembled a new set of mRNA sequences from the leg hypodermis transcriptome of the wandering spider, Cupiennius salei. Each sequence was assembled to exhaustion in the 5' direction to detect all upstream open reading frames (uORFs) both in-frame and out-of-frame with the main open reading frame (mORF). We also counted nucleotide probabilities before and after the START codon of the mORF to establish the optimum Kozak consensus sequence. More than 80% of 5' sequences had uORFs before the mORF with a range of 1-16 uORFs. Kozak consensus strengths of uORFs were significantly weaker than mORFs. Random scrambling of 5' nucleotide positions did not give significantly different numbers, sizes, or Kozak consensus strengths of uORFs. Random simulations of 5' sequences using either equal or experimental distributions of nucleotides gave similar numbers of uORFs, with similar sizes and Kozak consensus strengths to experimental data. Abundance of mRNA for each gene was estimated by counting matching Illumina reads to assembled genes. Abundance was negatively correlated with numbers of uORFs, but not with 5' length. Our data are compatible with a random model of 5' mRNA sequence structure.
Collapse
Affiliation(s)
- Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Audrey W Li
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon Meisner
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
49
|
Expression of the decapentaplegic ortholog in embryos of the onychophoran Euperipatoides rowelli. Gene Expr Patterns 2013; 13:384-94. [DOI: 10.1016/j.gep.2013.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022]
|
50
|
Santos VT, Ribeiro L, Fraga A, de Barros CM, Campos E, Moraes J, Fontenele MR, Araújo HM, Feitosa NM, Logullo C, da Fonseca RN. The embryogenesis of the TickRhipicephalus (Boophilus) microplus: The establishment of a new chelicerate model system. Genesis 2013; 51:803-18. [DOI: 10.1002/dvg.22717] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/03/2013] [Accepted: 09/26/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Vitória Tobias Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
| | - Lupis Ribeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
| | - Amanda Fraga
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
| | - Cíntia Monteiro de Barros
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Laboratório Integrado de Morfologia; Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), UFRJ Macaé, Rio de Janeiro Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Marcio Ribeiro Fontenele
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular do Desenvolvimento; Instituto de Ciências Biomédicas; UFRJ, Rio de Janeiro Brazil
| | - Helena Marcolla Araújo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular do Desenvolvimento; Instituto de Ciências Biomédicas; UFRJ, Rio de Janeiro Brazil
| | - Natalia Martins Feitosa
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
| | - Carlos Logullo
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Laboratório de Química e Função de Proteínas e Peptídeos; Universidade Estadual Norte Fluminense; Campos dos Goytacazes RJ, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), 1 - Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé NUPEM; Universidade Federal do Rio de Janeiro (UFRJ-Campus Macaé); Brazil
- Programa de Pós-Graduação em Produtos Bioativos e Biociências (PPGPRODBIO); UFRJ Macaé, Rio de Janeiro Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|