1
|
Abdu MT. Review of Photoluminescent-Photochromic Nanocomposites Containing Immobilized Inorganic Lanthanide-Doped Strontium Aluminate Nanoparticles. LUMINESCENCE 2025; 40:e70196. [PMID: 40400209 DOI: 10.1002/bio.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/03/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Synthesizing photoluminescent-photochromic nanocomposites is a broad and active research area with many articles published in recent years. Literature lacks a systematic review of nanocomposites that combine both photoluminescence and photochromism at once. This review article focused on synthesizing, properties, and selected applications of photoluminescent-photochromic nanocomposites. These two characteristics were brought about together in the nanocomposites by the immobilization of inorganic lanthanide-doped strontium aluminate nanoparticles (LSANs) in polymeric or ceramic matrices. The paper began by relating nanotechnology to composite materials and proceeded to discuss the concepts of luminescence and photochromism. Eventually, three main applications of such a class of nanocomposites were discussed in detail. The applications considered were smart windows, smart coatings, and anticounterfeiting. In all applications, the addition of the LSANs to the matrix material imparted magnificent enhancement of the photoluminescent and photochromic characteristics. Furthermore, the presence of LSANs in these nanocomposites caused remarkable enhancement in other properties such as mechanical properties, hydrophobicity, and protection against UV radiation.
Collapse
Affiliation(s)
- Mahmoud T Abdu
- Department of Industrial Engineering, College of Engineering, University of Bisha, Bisha, Saudi Arabia
- Metallurgical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Abdelrahman MS, Khattab TA. Recent advances in photoresponsive printing inks for security encoding applications. LUMINESCENCE 2024; 39:e4800. [PMID: 38923447 DOI: 10.1002/bio.4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Counterfeiting of banknotes, important documents, and branded goods continues to be a major worldwide problem for governments, businesses, and consumers. This problem has serious financial, security, and health implications. Due to their stability for printing on various substrates, the photochromic anticounterfeiting inks have received important interest. There have been various photochromic agents, such as polymer nanoparticles, quantum and carbon dots, and organic and inorganic fluorophores and luminophores, which have been broadly used for antiforging applications. In comparison to organic agents, inorganic photochromic materials have better stability under reversible/long-term light illumination. Recently, the remarkable optical characteristics and chemical stability of photoluminescent and photochromic agents have led to their extensive usage anticounterfeiting products. There have been also several strategies to tackle the rising problem of counterfeiting. Both of solvent-based and water-based inks have been developed for security encoding purposes. Additionally, the printing methods, including screen printing, labeling, stamping, inkjet printing, and handwriting, that have been used to apply anticounterfeiting inks onto various surfaces are discussed. The limitations of photoluminescent and photochromic agents and the potential for their future preparation to combat counterfeiting were discussed. This review would benefit academic researchers and industrial developers who are interested in the area of security printing.
Collapse
Affiliation(s)
- Meram S Abdelrahman
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Hameed YAS, Alamrani NA, Sallam S, Ibarhiam SF, Almahri A, Alorabi AQ, El-Metwaly NM. Development of photoluminescent viscose fibers integrated with polymer containing lanthanide-doped phosphor. Microsc Res Tech 2024; 87:591-601. [PMID: 38009361 DOI: 10.1002/jemt.24441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 11/28/2023]
Abstract
Smart clothing refers to textiles that can sense an external stimulus by changing their physical properties such as colorimetric and fluorescent fabrics. The pad-dry-curing coloration approach was used to apply a luminous and hydrophobic composite coating onto cellulose-based materials. This novel method includes incorporating phosphor nanoparticles made from lanthanide-doped strontium aluminum oxide (LSAO) into room temperature vulcanizing silicone rubber (RTV). The LSAO nano-sized particles (3-8 nm) must be mixed evenly throughout RTV without aggregation to allow for the formation of a colorless layer onto viscose surface. Pad-dry-curing the film onto viscose cloth worked well at room temperature. The contact angles of the luminous fibers enhanced from 138.6° to 158.2° as the LSAO ratio increased. The antimicrobial and ultraviolet (UV) protection of the LSAO-finished viscose were investigated. The transparent fluorescent film on viscose surface was excited at 367 nm to display an emission peak at 518 nm. According to CIE Lab coordinates and luminescence analyses, the fluorescent viscose fibers showed various colors, including white under visible light, intense green beneath UV device, and greenish-yellow under darkness. The comfort properties of the LSAO-finished viscose were assessed by measuring their bend length and permeability to air. Transmission electron microscopic analysis of LSAO nanoparticles was explored. Energy dispersive x-ray, x-ray fluorescence, and scanning electron microscopy were utilized to describe the spectroscopic outcomes of the treated textiles. The colorfastness of the LSAO-finished viscose fabrics was examined. The coated fabrics exhibited a non-fatigable reversible luminous photochromism in response to UV illumination. RESEARCH HIGHLIGHTS: Multifunctional LSAO@RTV nanocomposite was pad-dry-cured onto viscose textile. Photochromism to green under UV light and greenish-yellow in the dark was detected. Efficient antimicrobial, UV protective, and superhydrophobic activity were observed. The antimicrobial properties were maintained for 24 washing cycles. Pad-dry-cured viscose showed good comfortability and photostability.
Collapse
Affiliation(s)
- Yasmeen A S Hameed
- Department of Chemistry, Faculty of Science, Northern Border University, Arar, Saudi Arabia
| | - Nasser A Alamrani
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Sahar Sallam
- Department of Chemistry, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Saham F Ibarhiam
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Albandary Almahri
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ali Q Alorabi
- Department of Chemistry, Faculty of Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Li M, Liu G, Liu S, Xiao X, Bai Y, Li Y, Li X, Li Y. Transparent regenerated cellulose film containing azobenzene group with reversible stimulus discoloration property. Carbohydr Polym 2024; 324:121569. [PMID: 37985122 DOI: 10.1016/j.carbpol.2023.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
The cellulose film, exhibiting color alterations in response to external stimuli, presents itself as a promising functional material. In this study, a universal dissolution-regeneration technique was employed to manufacture a transparent, regenerated cellulose film, characterized by its reversible multi-stimulus discoloration property. This functional cellulose film, endowed with both photochromic and acid-chromic attributes, was synthesized through the introduction of a cellulose-grafted azobenzene derivative into the cellulose solution. The hue of a cellulose film irradiated with ultraviolet light could be inverted upon exposure to visible light or heat. Furthermore, when subject to heating, irradiation, or immersion in an acidic medium, this functional film demonstrated pronounced transparency. The acid-chromic behavior of the film was readily discernible when exposed to highly concentrated acidic aqueous solutions. Both the photochromic and acid-chromic phenomena were discernable to the unaided eye. After ten cycles, no fading of the reversible discoloration properties of the material occurred. This transparent regenerated cellulose film stands as a viable candidate for applications in optical data storage, intelligent switches, and sensors, owing to its capacity for reversible stimulus-triggered discoloration.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China.
| | - Gongwen Liu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| | - Shuang Liu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| | - Xialian Xiao
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| | - Yun Bai
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| | - Yali Li
- College of Physical Education, Gannan Normal University, Ganzhou 341000, China
| | - Xingxing Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| | - Yibao Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; Jiangxi Engineering Research for Bamboo Advanced Materials and Conversion, Ganzhou 341000, China
| |
Collapse
|
5
|
Al Nami SY, Hossan A. Facile preparation of smart nanocomposite adhesive with superhydrophobicity and photoluminescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123236. [PMID: 37562211 DOI: 10.1016/j.saa.2023.123236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Smart photoluminescent nanocomposite adhesive was developed toward simple commercial manufacturing of long-persistent luminescent and hydrophobic applications. The prepared photoluminescent glue was able to continue emitting light after turning the illumination source off even after being in the dark for up to 1.5 h. Lanthanide-doped strontium aluminum oxide (LSAO) nanoparticles (NPs) dispersed in liquid silicone rubber (SR) was prepared to function as nanocomposite glue for various surfaces. Using nano-scaled particles, LSAO was uniformly disseminated without agglomeration in the silicone rubber matrix, enabling the produced nanocomposite glue to transmit light. For the applied glues, there is an excitation peak determined at 365 nm, and an emission peak determined at 518 nm. Depending on the LSAO ratio, the photoluminescence spectra displayed either afterglow phosphorescence or fluorescence. Photochromism was monitored from transparent to greenish under UV irradiation and greenish-yellow in darkness. The glued samples benefit from enhanced superhydrophobicity and scratch resistance due to LSAO NPs embedded in the silicone rubber matrix. The glueed LSAO@SR nanocomposite showed high durability and resistance to light damages. This research established the feasibility of mass-producing smart glue for various uses such as building safety directed signs and smart windows.
Collapse
Affiliation(s)
- Samar Y Al Nami
- Department of Chemistry, Faculty of science, King Khalid University, Abha, Saudi Arabia
| | - Aisha Hossan
- Department of Chemistry, Faculty of science, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
6
|
Abdu MT, Khattab TA, Abdelrahman MS. Development of Photoluminescent and Photochromic Polyester Nanocomposite Reinforced with Electrospun Glass Nanofibers. Polymers (Basel) 2023; 15:polym15030761. [PMID: 36772063 PMCID: PMC9922016 DOI: 10.3390/polym15030761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
A polyester resin was strengthened with electrospun glass nanofibers to create long-lasting photochromic and photoluminescent products, such as smart windows and concrete, as well as anti-counterfeiting patterns. A transparent glass@polyester (GLS@PET) sheet was created by physically immobilizing lanthanide-doped aluminate (LA) nanoparticles (NPs). The spectral analysis using the CIE Lab and luminescence revealed that the transparent GLS@PET samples turned green under ultraviolet light and greenish-yellow in the dark. The detected photochromism can be quickly reversed in the photoluminescent GLS@PET hybrids at low concentrations of LANPs. Conversely, the GLS@PET substrates with the highest phosphor concentrations exhibited sustained luminosity with slow reversibility. Transmission electron microscopic analysis (TEM) and scanning electron microscopy (SEM) were utilized to examine the morphological features of lanthanide-doped aluminate nanoparticles (LANPs) and glass nanofibers to display diameters of 7-15 nm and 90-140 nm, respectively. SEM, energy-dispersive X-ray spectroscopy (EDXA), and X-ray fluorescence (XRF) were used to analyze the luminous GLS@PET substrates for their morphology and elemental composition. The glass nanofibers were reinforced into the polyester resin as a roughening agent to improve its mechanical properties. Scratch resistance was found to be significantly increased in the created photoluminescent GLS@PET substrates when compared with the LANPs-free substrate. When excited at 368 nm, the observed photoluminescence spectra showed an emission peak at 518 nm. The results demonstrated improved hydrophobicity and UV blocking properties in the luminescent colorless GLS@PET hybrids.
Collapse
Affiliation(s)
- Mahmoud T. Abdu
- Metallurgical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
- Mechanical Engineering Department, College of Engineering, University of Bisha, P.O. Box 421, Bisha 61922, Saudi Arabia
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: or
| | - Maiada S. Abdelrahman
- Metallurgical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| |
Collapse
|
7
|
Amela-Cortes M, Dumait N, Artzner F, Cordier S, Molard Y. Flexible and Transparent Luminescent Cellulose-Transition Metal Cluster Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:580. [PMID: 36770542 PMCID: PMC9920715 DOI: 10.3390/nano13030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Red-NIR luminescent polymers are principally obtained from petroleum-based derivatives in which emitters, usually a critical raw material such as rare-earth or platinum group metal ions, are embedded. Considering the strong ecological impact of their synthesis and the major risk of fossil fuel energy shortage, there is an urgent need to find alternatives. We describe a luminescent nanocomposite based on red-NIR phosphorescent molybdenum nanoclusters, namely Cs2Mo6I8(OCOC2F5)6, embedded in an eco-friendly cellulose biopolymer matrix that is obtained by a simple solvent casting technique. While homogeneity is kept up to 20 wt% of cluster complex doping, annealing hybrids leads to a large increase of their emission efficiency, as demonstrated by quantum yield measurements.
Collapse
|
8
|
Elsawy H, Sedky A, Abou Taleb MF, El-Newehy MH. Color-switchable and photoluminescent poly (vinyl chloride) for multifunctional smart applications. LUMINESCENCE 2022; 37:1504-1513. [PMID: 35801362 DOI: 10.1002/bio.4324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/09/2022]
Abstract
Recycled poly (vinyl chloride) (PVC) waste was used to prepare transparent material with long-lasting phosphorescence, photochromic activity, hydrophobicity, strong optical transmission, ultraviolet (UV) protection, and stiffness. Lanthanide-activated aluminate (LaA) microparticles were prepared via the high temperature solid state procedure, which were subjected to the top-down grinding technology to afford LaA nanoparticles (LaAN). Laminated poly (vinyl chloride) bottles were shredded into a transparent plastic matrix, which was combined with LaAN and drop-casted to produce smart materials for a variety of applications. Smart window and photochromic film for smart packaging can be made from recycled poly (vinyl chloride) waste by immobilizing it with various ratios of LaAN. Long-lasting phosphorescent translucent poly (vinyl chloride) smart window and films need LaAN to be evenly dispersed in PVC without clumping. Different analytical methods were employed to assess the materials' morphological structure and chemical composition. Photoluminescence and decay spectra were all employed to investigate the luminescence characteristics. In addition, the mechanical performance was studied. According to CIE Lab (Commission Internationale de L'éclairage) color measurements, this transparent PVC smart material becomes a bright green under UV rays and turns a greenish-yellow in the dark. The PVC luminescence was observed to exhibit an apparent emission bands at 429 and 513 nm when excited at 367 nm. Improvements have been monitored in the UV shielding and hydrophobicity with increasing the phosphor concentration. LaAN-immobilized PVC exhibited reversible photochromism. The present approach can be applied for a variety of applications, such as anticounterfeiting films for smart packaging, smart window, and warning lightening marks.
Collapse
Affiliation(s)
- Hany Elsawy
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia.,Department of Polymer Chemistry, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Mohamed H El-Newehy
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.,Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Hameed A, Snari RM, Alaysuy O, Alluhaybi AA, Alhasani M, Abumelha HM, El-Metwaly NM. Development of photoluminescent artificial nacre-like nanocomposite from polyester resin and graphene oxide. Microsc Res Tech 2022; 85:3104-3114. [PMID: 35621710 DOI: 10.1002/jemt.24169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/07/2022]
Abstract
Long-lasting phosphorescent nacre-like material was simply prepared from a nanocomposite of inorganic and organic materials. Low molecular weight unsaturated polyester (PET), graphene oxide (GO), and nanoparticles of rare-earth activated aluminate pigment were used in the preparation process of an organic/inorganic hybrid nanocomposite. Using methylethylketone peroxide (MEKP) as a hardener, we were able to develop a fluid solution that hardens within minutes at room temperature. Covalent and hydrogen bonds were introduced between the polyester resin and graphene oxide nanosheets. The interface interactions of those bonds resulted in toughness, excellent tensile strength, and high durability. The produced nacre substrates demonstrated long-persistent and reversible luminescence. The excitation of the produced nacre substrates at 365 nm resulted in a 524 nm emission. After being exposed to UV light, the photoluminescent nacre substrates became green. The increased superhydrophobic activity of the produced nacre substrates was achieved without affecting their physico-mechanical properties.
Collapse
Affiliation(s)
- Ahmed Hameed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Omaymah Alaysuy
- Depertment of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad A Alluhaybi
- Department of Chemistry, Rabigh College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mona Alhasani
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hana M Abumelha
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Alfi AA, Al-Qahtani SD, Alatawi NM, Attar RMS, Abu Al-Ola K, Habeebullah TM, El-Metwaly NM. Simple preparation of novel photochromic polyvinyl alcohol/carboxymethyl cellulose security barcode incorporated with lanthanide-doped aluminate for anticounterfeiting applications. LUMINESCENCE 2022; 37:1152-1161. [PMID: 35484850 DOI: 10.1002/bio.4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/07/2022]
Abstract
Forgery and low-quality products pose a danger to the society. Therefore, there are increasing demands for the production of easy to recognize and difficult to copy anti-counterfeiting materials. Products with smart photochromic and fluorescent properties can change color and emission spectra responding to a light source. In this context, we devised a straightforward preparation of luminescent polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) nanocomposite to function as a transparent labeling film. The lanthanide-doped aluminate (LdA) was prepared in the nanoparticle form to indicate diameters of 35-115 nm. Different ratios of the lanthanide-doped aluminate (LdA) were physically dispersed in the PVA/CMC nanocomposite label film to provide photochromic, ultraviolet protection, antimicrobial activity and hydrophobic properties. Fluorescence peaks were detected at 365 and 519 nm to indicate a color change to green. As a result of increasing the phosphor ratio, improved superhydrophobic activity was achieved as the contact angle increased from 126.1° to 146.0° without affecting the film original physical and mechanical properties. Both UV protection and antibacterial activity were also investigated. The films showed quick and reversible photochromic response without fatigue. The current strategy reported the development of photochromic smart label that is transparent, cost-effective and flexible. As a result, numerous anticounterfeiting products can benefit from the current label for a better market. LdA-loaded PVA/CMC films demonstrated antibacterial activity between poor, good, very good and outstanding as the percentage of LdA in the film matrix increased. The current film can be applied as a transparent photochromic security barcode for anticounterfeiting applications and smart packaging.
Collapse
Affiliation(s)
- Alia Abdulaziz Alfi
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Nada M Alatawi
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Roba M S Attar
- Department of Microbiology, Faculty of Science, University of Jeddah, P.O. Box 2360S, Saudi Arabia
| | - Khulood Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, Saudi Arabia
| | - Turki M Habeebullah
- Department of Environment and Health Research, Custodian of two holy mosques Institute for Hajj and Umrah Research, Umm Al Qura University, Makkah
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Egypt
| |
Collapse
|
11
|
Al‐Qahtani SD, Snari RM, Alkhamis K, Alhasani M, Ibarhiam SF, Habeebullah TM, El‐Metwaly NM. Authentication of documents using polypropylene immobilized with rare‐earth doped aluminate nanoparticles. Microsc Res Tech 2022; 85:2607-2617. [DOI: 10.1002/jemt.24116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Salhah D. Al‐Qahtani
- Department of Chemistry, College of Science Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Razan M. Snari
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science University of Tabuk Tabuk Saudi Arabia
| | - Mona Alhasani
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Saham F. Ibarhiam
- Department of Chemistry, College of Science University of Tabuk Tabuk Saudi Arabia
| | - Turki M. Habeebullah
- Department of Environment and Health Research Custodian of Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al Qura University Makkah Saudi Arabia
| | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
12
|
Preparation of epoxy resin/rare earth doped aluminate nanocomposite toward photoluminescent and superhydrophobic transparent woods. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Abualnaja MM, Hossan A, Bayazeed A, Al-Qahtani SD, Al-Ahmed ZA, Abdel-Hafez SH, El-Metwaly NM. Synthesis and self-assembly of new fluorescent cholesteryloxy-substituted fluorinated terphenyls with gel formation and mesogenic phases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Abou-Melha K. Preparation of photoluminescent nanocomposite ink toward dual-mode secure anti-counterfeiting stamps. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Alhasani M, Al‐Qahtani SD, Hameed A, Snari RM, Shah R, Alfi AA, El‐Metwaly NM. Preparation of transparent photoluminescence smart window by integration of rare‐earth aluminate nanoparticles into recycled polyethylene waste. LUMINESCENCE 2022; 37:622-632. [DOI: 10.1002/bio.4202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Mona Alhasani
- Department of Chemistry, Faculty of Applied Science, Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Salhah D. Al‐Qahtani
- Department of Chemistry College of Science, Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Ahmed Hameed
- Department of Chemistry, Faculty of Applied Science, Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Razan M. Snari
- Department of Chemistry, Faculty of Applied Science, Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Reem Shah
- Department of Chemistry, Faculty of Applied Science, Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Alia Abdulaziz Alfi
- Department of Chemistry, Faculty of Applied Science, Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm‐Al‐Qura University Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University El‐Gomhoria Street Egypt
| |
Collapse
|
16
|
El-Newehy M, El-Hamshary H, Meera Moydeen A, Tawfeek AM. Immobilization of lanthanide doped aluminate phosphor onto recycled polyester toward the development of long-persistent photoluminescence smart window. LUMINESCENCE 2022; 37:610-621. [PMID: 35092144 DOI: 10.1002/bio.4201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Smart window can be defined as switchable material whose light transmission is altered upon exposure to light, voltage, or heat. However, smart windows usually produced from expensive and breakable glass materials. Herein, transparent smart window with long-persistent phosphorescence, high optical transmittance, ultraviolet protection, rigid, high photostability and durability, and superhydrophobicity was developed from recycled polyester (PET). Recycled polyester waste (RBW) was simply immobilized with different ratios of lanthanide-doped aluminate nanoparticles (LdAN) to provide a long-persistent phosphorescent polyester smart window (LdAN@PET) with an ability to persist emitting light for extended time periods. The solid-state high temperature technique was used to prepare LdA micro-scale powder. Then, the top-down technique was applied to afford the corresponding LdA nanoparticles. Recycled shredded recycled polyester bottles were charged into a hot bath to provide a clear plastic shred bulk, which was then well-mixed with LdAN and drop-casted to provide long-persistent luminescent smart window. In order to improve the phosphor dispersion in the PET bulk, LdAN was synthesized in the nanoparticle form which was characterized utilizing transmission electron microscope (TEM). For better preparation of translucent smart window of long-persistent phosphorescent polyester, LdAN must be homogeneously dispersed in the PET matrix without agglomeration. The morphology and chemical composition were studied by infrared spectra (FT-IR), X-ray fluorescent (XRF) analysis, scanning electron microscopy (SEM), and energy-dispersion X-ray analyzer (EDS). In addition, spectral profiles of excitation and emission, and decay and lifetime were used to better understand the photoluminescence properties. The hardness properties were also investigated. The developed phosphorescent transparent polyester smart window demonstrated a color switch to intense green underneath UV irradiation and greenish-yellow under darkness as verified by CIE Lab color parameters. The afterglow polyester smart window showed an absorption wavelength at 365 nm and two phosphorescence intensities at 442 and 512 nm. An enhanced UV protection, photostability and hydrophobic activity were detected. The luminescent polyester substrates with lower LdAN ratios demonstrated rapid and reversible fluorescent photochromic activity beneath the UV light. The luminescent polyester substrates with higher LdAN contents displayed long-persistent phosphorescence afterglow. The current strategy can be simply applied for the production of smart windows, low thickness anticounterfeiting films and warning signs.
Collapse
Affiliation(s)
- Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A Meera Moydeen
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Tawfeek
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Al-Qahtani SD, Snari RM, Alkhamis K, Alatawi NM, Alhasani M, Al-Nami SY, El-Metwaly NM. Development of silica-coated rare-earth doped strontium aluminate toward superhydrophobic, anti-corrosive and long-persistent photoluminescent epoxy coating. LUMINESCENCE 2022; 37:479-489. [PMID: 35043557 DOI: 10.1002/bio.4198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/05/2022]
Abstract
Long-persistent phosphorescent smart paints have the ability to continue glowing in the dark for a prolonged time period to function as energy-saving products. Herein, new epoxy/silica nanocomposite paints were prepared with different concentrations of lanthanide-doped aluminate nanoparticles (LAN; SrAl2 O4 : Eu2+ , Dy3+ ). The LAN pigment was firstly coated with SiO2 utilizing the heterogeneous precipitation technique to provide LAN-encapsulated between SiO2 nanoparticles (LAN@SiO2 ). The epoxy/silica/lanthanide-doped aluminate nanoparticles (ESLAN) nanocomposite paints were coated on steel. The prepared ESLAN paints were studied by transmission electron microscope (TEM), infrared spectra (FTIR), scanning electron microscope (SEM), X-ray fluorescence analysis (XRF), and energy-dispersive X-ray spectra (EDS). The transparency and coloration properties of the nanocomposite coated films were explored by CIE Lab parameters and photoluminescence spectra. The ultraviolet-induced luminescence properties of the transparent coated films demonstrated greenish phosphorescence at 518 nm upon excitation at 368 nm. Both hardness and hydrophobic activities were investigated. The anticorrosion activity of the nanocomposite films coated onto mild steel substrates immersed in NaCl(aq) (3.5%) was studied by the electrochemical impedance spectral (EIS) analysis. The silica-containing coatings were monitored to exhibit anticorrosion properties. Additionally, the nanocomposite films with LAN@SiO2 (25%) exhibited the optimized long-lasting luminescence properties in the dark for 90 minutes. The nanocomposite films showed highly reversible and durable long-lived phosphorescence.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Nada M Alatawi
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mona Alhasani
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Samar Y Al-Nami
- Department of Chemistry, Faculty of Science, King Khalid University, Saudi Arabia, Abha
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Egypt
| |
Collapse
|
18
|
Synthesis, characterization and self-assembly of new cholesteryl-substitued sym-tetrazine: Fluorescence, gelation and mesogenic properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
El-Newehy MH, Kim HY, Khattab TA, El-Naggar ME. Production of photoluminescent transparent poly(methyl methacrylate) for smart windows. LUMINESCENCE 2021; 37:97-107. [PMID: 34713553 DOI: 10.1002/bio.4150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023]
Abstract
Photochromic and long-lasting photoluminescent transparent, rigid, ultraviolet (UV) protective and superhydrophobic poly(methyl methacrylate) (PMMA) plastic able to switch colour beneath UV irradiation was developed. Photoluminescent transparent PMMA plastic was prepared by the simple polymerization process of methyl methacrylate immobilized with alkaline earth aluminate (AEA) nanoparticles. These colourless PMMA plastic substrates showed a colour switch to greenish underneath UV light as proved using CIELAB screening. The morphology of AEA was evaluated using transmission electron microscopy. Conversely, transparent PMMA samples were evaluated using energy-dispersive X-ray spectra, scanning electron microscope, X-ray fluorescence spectroscopy and for hardness properties. Additionally, the photoluminescence properties were explored by studying excitation and emission spectra. The produced luminescence colourless PMMA plastic substrates displayed excitation band at 370 nm, and three emission peaks at 433, 494 and 513 nm. Photoluminescent PMMA with lower contents of AEA showed fast and reversible photochromism under UV light, while PMMA samples with higher contents of AEA showed long-lasting luminescence such as a flashlight with the ability to replace electric power. The findings showed that the produced photoluminescence colourless PMMA plastic substrates exhibited enhanced UV shielding and superhydrophobicity.
Collapse
Affiliation(s)
- Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hak Yong Kim
- Nano Convergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| | - Tawfik A Khattab
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Cairo, Egypt
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Cairo, Egypt
| |
Collapse
|
20
|
El-Newehy MH, Kim HY, Khattab TA, Moydeen A M, El-Naggar ME. Synthesis of lanthanide-doped strontium aluminate nanoparticles encapsulated in polyacrylonitrile nanofibres: photoluminescence properties for anticounterfeiting applications. LUMINESCENCE 2021; 37:40-50. [PMID: 34551199 DOI: 10.1002/bio.4144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022]
Abstract
Photochromism has been applied as an interesting technique in order to improve the anticounterfeiting of commercial commodities. To build up a mechanically reliable anticounterfeiting nanocomposite, it has been vital to enhance the engineering process of the anticounterfeiting material. In the current study, we developed mechanically reliable and highly photoluminescent lanthanide-doped strontium aluminate nanoparticles (LSAN)/polyacrylonitrile (PAN) hybrid nanofibres successfully fabricated using an electrospinning technique for anticounterfeiting applications. The produced nanocomposite films exhibited ultraviolet-induced photochromic anticounterfeiting properties. To guarantee the transparency of the LSAN-PAN film, LSAN must be immobilized onto the nanoparticle size to allow better dispersion without aggregation in the polyacrylonitrile matrix. The LSAN-PAN nanofibrous film demonstrated absorbance intensity that exhibited at 354 nm and associated with an emission intensity at 424 nm. The produced LSAN-PAN films demonstrated an enhanced hydrophobicity when increasing the ratio of LSAN, without adversely influencing their native appearance and mechanical performance. Upon excitation with ultraviolet light, the translucent nanofibrous substrates exhibited fast and reversible photochromic activity to greenish-yellow without exhaustion. The nanofibrous films exhibited stretchability, transparency, flexibility, and ultraviolet light-induced photochromism at low cost. The current strategy can be considered as an efficient technique towards the development of various anticounterfeiting materials for a better market with economic and social values.
Collapse
Affiliation(s)
- Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Hak Yong Kim
- Nano Convergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| | - Tawfik A Khattab
- Textile Research Division, National Research Center, (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Meera Moydeen A
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Center, (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| |
Collapse
|
21
|
Hassabo AG, Mohamed AL, Khattab TA. Preparation of cellulose-based electrospun fluorescent nanofibres doped with perylene encapsulated in silica nanoparticles for potential flexible electronics. LUMINESCENCE 2021; 37:21-27. [PMID: 34528376 DOI: 10.1002/bio.4142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/18/2022]
Abstract
Novel fluorescent nanofibres were developed via the electrospinning of chromophore-doped cellulose. Two different perylene-doped cellulose fluorescent fibres were fabricated using cellulose as a host material and perylene dye derivatives as active dopants. Fluorescent cellulose nanofibres were prepared via the electrospinning technique using two different perylene dyes, including perylene diimide and perylene mono-imide sodium/potassium salts. The generated fluorescent silica nanoparticles exhibited diameters varying in the range 80-180 nm. The generated electrospun fluorescent nanofibrous structures displayed smooth surfaces with average diameters of 200-300 nm for cellulose comprising perylene diimide and sodium/potassium salts of perylene mono-imide dyes, respectively, dispersed uniformly in the cellulose matrix. The generated fluorescent nanoparticles and nanofibres were characterized by different standard methods, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), fluorescent optical microscope (FOM) and Fourier-transform infrared spectra (FT-IR). The fluorescence properties of the fabricated cellulose nanofibres were explored. Those fluorescent nanofibres pave the way for the development of promising textile fluorescence materials, such as flexible displays, photonics, and optical devices.
Collapse
Affiliation(s)
- Ahmed G Hassabo
- Pre-treatment and Finishing of Cellulose-based Textiles Department, Textile Industries Research Division, National Research Centre, Cairo, Egypt
| | - Amina L Mohamed
- Pre-treatment and Finishing of Cellulose-based Textiles Department, Textile Industries Research Division, National Research Centre, Cairo, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
22
|
El-Naggar ME, Aldalbahi A, Khattab TA, Hossain M. Facile production of smart superhydrophobic nanocomposite for wood coating towards long-lasting glow-in-the-dark photoluminescence. LUMINESCENCE 2021; 36:2004-2013. [PMID: 34453772 DOI: 10.1002/bio.4137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/23/2023]
Abstract
A smart photoluminescent nanocomposite surface coating was prepared for simple industrial production of long-persisting phosphorescence and superhydrophobic wood. The photoluminescent nanocomposite coatings were capable of continuing to emit light in the dark for prolonged time periods that could reach 1.5 h. Lanthanide-doped aluminium strontium oxide (LASO) nanoparticles at different ratios were immobilized in polystyrene (PS) and developed as a nanocomposite coating for wood substrates. To produce transparency in the prepared nanocomposite coating, LASO was efficiently dispersed in the form of nanoscaled particles to ensure homogeneous dispersion without agglomeration in the PS matrix. The coated wood showed an absorption band at 374 nm and two emission bands at 434 nm and 518 nm. The luminescence spectra showed both long-persisting phosphorescence as well as photochromic fluorescence relying on the LASO ratio. The improved superhydrophobicity and resistance to scratching of the coated wood could be attributed to the LASO NPs incorporated in the polystyrene matrix. Compared with the uncoated wood substrate, the coated LASO-PS nanocomposite film also displayed photostability and high durability. The current study demonstrated the potential high-scale manufacturing of smart wood for some applications such as safety directional signs in buildings, household products, and smart windows.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tawfik A Khattab
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, UK
| |
Collapse
|
23
|
A bioinspired approach to fabricate fluorescent nanotubes with strong water adhesion by soft template electropolymerization and post-grafting. J Colloid Interface Sci 2021; 606:236-247. [PMID: 34390991 DOI: 10.1016/j.jcis.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS In this original work, we aim to control both the surface wetting and fluorescence properties of extremely ordered and porous conducting polymer nanotubes prepared by soft template electropolymerization and post-grafting. For reaching this aim, various substituents of different hydrophobicity and fluorescence were post-grafted and the post-grafting yields were evaluated by surface analyses. We show that the used polymer is already fluorescent before post-grafting while the post-grafting yield and as a consequence the surface hydrophobicity highly depend on the substituent. EXPERIMENTS Here, we have chosen to chemically grafting various fluorinated and aromatic substituents using a post-grafting in order to keep the same surface topography. Flat conducting polymer surfaces with similar properties have been also prepared for determining the surface energy with the Owens-Wendt equation and estimating the post-grafting yield by X-ray Photoemission Spectroscopy (XPS) and Time of Flight Secondary Emission Spectrometry (ToF-SIMS). For example, using fluorinated chains of various length (C4F9, C6F13 and C8F17), it is demonstrated that the surface hydrophobicity and oleophobicity do not increase with the fluorinated chain length due to the different post-grafting yields and because of the presence of nanoroughness after post-grafting. FINDINGS These surfaces have high apparent water contact angle up to 130.5° but also strong water adhesion, comparable to rose petal effect even if there are no nanotubes on petal surface. XPS and ToF-SIMS analyses provided a detailed characterisation of the surface chemistry with a qualitative classification of the grafted surfaces (F6 > F4 > F8). SEM analysis shows that grafting does not alter the surface morphology. Finally, fluorescence analyses show that the polymer surfaces before post-treatment are already nicely fluorescent. Although the main goal of this paper was and is to understand the role of surface chemistry in tailoring the wetting properties of these surfaces rather than provide specific application examples, we believe that the obtained results can help the development of specific nanostructured materials for potential applications in liquid transport, or in stimuli responsive antimicrobial surfaces.
Collapse
|
24
|
Aldalbahi A, El-Naggar ME, Khattab TA, Hossain M. Preparation of flame-retardant, hydrophobic, ultraviolet protective, and luminescent transparent wood. LUMINESCENCE 2021; 36:1922-1932. [PMID: 34323352 DOI: 10.1002/bio.4126] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023]
Abstract
Transparent wood with multifunctional properties has recently attracted more attention as an efficient building product. Here, we describe the development of transparent wood with long-persistent phosphorescence, tough surface, high durability, photostability, and reversibility without fatigue, and with ultraviolet shielding, superhydrophobicity, and flame-retardant activity. This long-persistent phosphorescent, or glow-in-the-dark, smart wood exhibited an ability to continue emitting light for prolonged periods of time. The photoluminescent translucent wooden substrate was prepared by immobilizing lignin-modulated wooden bulk with an admixture of methylmethacrylate (MMA), ammonium polyphosphate (APP), and lanthanide-doped strontium aluminate (LSA; SrAl2 O4 :Eu2+ ,Dy3+ ) phosphor nanoparticles. The photoluminescent transparent wood displayed a colour switch from colourless to bright white beneath ultraviolet (UV) light and greenish-yellow in the dark as reported by Commission Internationale de l'Éclairage laboratory colorimetric space coordinates. The generated phosphorescent wooden substrates demonstrated an absorbance band at 365 nm and an emission band at 516 nm. The phosphorescent transparent wood was improved flame-retardant properties, ultraviolet shielding, and superhydrophobic properties, as well as a reversible long-persistent phosphorescent responsiveness to UV light without fatigue. The current approach demonstrated a potential large-scale production strategy for multifunctional transparent wooden substrates for a range of applications such as smart windows, gentle indoor and outdoor lighting, and safety directional signs in buildings.
Collapse
Affiliation(s)
- Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Tawfik A Khattab
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, UK
| |
Collapse
|
25
|
Mokhtar OM, Attia YA, Wassel AR, Khattab TA. Production of photochromic nanocomposite film via spray-coating of rare-earth strontium aluminate for anti-counterfeit applications. LUMINESCENCE 2021; 36:1933-1944. [PMID: 34323370 DOI: 10.1002/bio.4127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
New photochromic film was developed toward the preparation of anti-counterfeiting documents utilizing inorganic/organic nanocomposite enclosing a photoluminescent inorganic pigment and a polyacrylic binder polymer. To generate a translucent film from pigment/polyacrylic nanocomposite, the phosphorescent strontium aluminum oxide pigment should be well-dispersed in the solution of the polyacrylic-based binder without agglomeration. The photochromic nanocomposite was applied efficiently onto commercial cellulose paper documents utilizing the effective and economical spray-coating technology followed with thermofixation. A homogeneous photochromic film was immobilized onto cellulose paper surface to introduce a transparent film changing to greenish-yellow upon exposure to ultraviolet light as depicted by CIE coloration measurements. The photochromic effect was monitored at lowest pigment concentration (0.25 wt%). The spray-coated paper documents exhibit two absorbance bands at 256 and 358 nm, and two fluorescence peaks at 433 and 511 nm. The morphologies of the spray-coated documents were explored. The spray-coated paper sheets showed a reversible photochromic effect without fatigue under ultraviolet irradiation. The rheology of the produced photochromic composites as well as the mechanical properties and photostability of the spray-coated documents were studied.
Collapse
Affiliation(s)
- Omnia M Mokhtar
- Department of Laser in Meteorology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Yasser A Attia
- Department of Laser in Meteorology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Ahmed R Wassel
- Electron Microscope and Thin Film Department, Physics Research Division National Research Centre, Giza, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
26
|
Sougandhi PR, Ramanaiah S, Shobha Rani T. Preparation and characterization of bio-nanocomposite films incorporating copper nanoparticles. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1946697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- P. R. Sougandhi
- Department of Chemistry, Dravidian University, Kuppam, Andhra Pradesh, India
| | - S. Ramanaiah
- Department of Chemistry, Rayalaseema University, Kurnool, Andhra Pradesh, India
| | - T. Shobha Rani
- Department of Chemistry, Dravidian University, Kuppam, Andhra Pradesh, India
| |
Collapse
|
27
|
Khattab TA, Tolba E, Gaffer H, Kamel S. Development of Electrospun Nanofibrous-Walled Tubes for Potential Production of Photoluminescent Endoscopes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01519] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| | - Emad Tolba
- Polymers and Pigments Department, National Research Centre, Cairo 12622, Egypt
| | - Hatem Gaffer
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| | - Samir Kamel
- Cellulose and Papers Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
28
|
Phuinthiang P, Trinh DTT, Channei D, Ratananikom K, Sirilak S, Khanitchaidecha W, Nakaruk A. Novel Strategy for the Development of Antibacterial TiO 2 Thin Film onto Polymer Substrate at Room Temperature. NANOMATERIALS 2021; 11:nano11061493. [PMID: 34200072 PMCID: PMC8229201 DOI: 10.3390/nano11061493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
This work demonstrates a novel method to deposit an antibacterial TiO2 thin film on a polymer substrate at room temperature. A combination of sol–gel and photon assistance was used in the experiment in order to avoid any thermal processes of thin film crystallization. The morphological photograph of samples indicated that the TiO2 thin film was perfectly coated on the PVC substrate without any cracks or pinholes. Chemical analysis by EDS and XPS reported that the thin film consisted of titanium (Ti), oxygen (O), and carbon (C). The Raman spectrum proved that the thin film was the anatase phase of TiO2 and, furthermore, that it was contaminated with carbon remaining from the photon assistance process. In addition, the optical band gap of the thin film was 3.35 eV, suggesting that the photocatalytic activity of TiO2 should occur under UV-A radiation. The bacteria viability assay was examined using E. coli and S. typhimurium as indicator strains under UV-A irradiation (365 nm) at different times. The data from OD and CFU count revealed that >97% of bacteria were killed after 60 min of irradiation, and the bacteria were completely killed at 120 min for E. coli and 180 min for S. typhimurium.
Collapse
Affiliation(s)
- Patcharaporn Phuinthiang
- Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; (P.P.); (W.K.)
- Centre of Excellence for Innovation and Technology for Water Treatment, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand;
| | - Dang Trung Tri Trinh
- Centre of Excellence for Innovation and Technology for Water Treatment, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand;
| | - Duangdao Channei
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Khakhanang Ratananikom
- Department of Science and Mathematics, Faculty of Science and Health Technology, Kalasin University, Kalasin 46230, Thailand;
| | - Sirikasem Sirilak
- Department of Community Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: (S.S.); (A.N.)
| | - Wilawan Khanitchaidecha
- Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; (P.P.); (W.K.)
- Centre of Excellence for Innovation and Technology for Water Treatment, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand;
| | - Auppatham Nakaruk
- Centre of Excellence for Innovation and Technology for Water Treatment, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand;
- Department of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: (S.S.); (A.N.)
| |
Collapse
|
29
|
Al-Qahtani S, Aljuhani E, Felaly R, Alkhamis K, Alkabli J, Munshi A, El-Metwaly N. Development of Photoluminescent Translucent Wood toward Photochromic Smart Window Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01603] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Salhah Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Enas Aljuhani
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah 24230, Saudi Arabia
| | - Rasha Felaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah 24230, Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science, University of Tabuk, Tabuk 47711, Saudi Arabia
| | - Jafar Alkabli
- Department of Chemistry, College of Science and Arts-Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Alaa Munshi
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah 24230, Saudi Arabia
| | - Nashwa El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah 24230, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| |
Collapse
|
30
|
Atta AM. Immobilization of silver and strontium oxide aluminate nanoparticles integrated into plasma‐activated cotton fabric: luminescence, superhydrophobicity, and antimicrobial activity. LUMINESCENCE 2021; 36:1078-1088. [DOI: 10.1002/bio.4033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ayman M. Atta
- Chemistry Department, College of Science King Saud University Riyadh Saudi Arabia
| |
Collapse
|