1
|
Mandal D, Akhtar N, Shafi S, Gupta J. Phytoestrogens and Sirtuin Activation for Renal Protection: A Review of Potential Therapeutic Strategies. PLANTA MEDICA 2025; 91:146-166. [PMID: 39626791 DOI: 10.1055/a-2464-4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Significant health and socio-economic challenges are posed by renal diseases, leading to millions of deaths annually. The costs associated with treating and caring for patients with renal diseases are considerable. Current therapies rely on synthetic drugs that often come with side effects. However, phytoestrogens, natural compounds, are emerging as promising renal protective agents. They offer a relatively safe, effective, and cost-efficient alternative to existing therapies. Phytoestrogens, being structurally similar to 17-β-estradiol, bind to estrogen receptors and produce both beneficial and, in some cases, harmful health effects. The activation of sirtuins has shown promise in mitigating fibrosis and inflammation in renal tissues. Specifically, SIRT1, which is a crucial regulator of metabolic activities, plays a role in protecting against nephrotoxicity, reducing albuminuria, safeguarding podocytes, and lowering reactive oxygen species in diabetic glomerular injury. Numerous studies have highlighted the ability of phytoestrogens to activate sirtuins, strengthen antioxidant defense, and promote mitochondrial biogenesis, playing a vital role in renal protection during kidney injury. These findings support further investigation into the potential role of phytoestrogens in renal protection. This manuscript reviews the potential of phytoestrogens such as resveratrol, genistein, coumestrol, daidzein, and formononetin in regulating sirtuin activity, particularly SIRT1, and thereby providing renal protection. Understanding these mechanisms is crucial for designing effective treatment strategies using naturally occurring phytochemicals against renal diseases.
Collapse
Affiliation(s)
- Debojyoti Mandal
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| | - Sana Shafi
- Molecular Medicine & Pathology (MMP) Matauranga Hauora, Faculty of Medical and Health Sciences Waipapa Taumata Rau, University of Auckland, Aotearoa, New Zealand
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| |
Collapse
|
2
|
Wang H, Bai R, Wang Y, Qu M, Zhou Y, Gao Z, Wang Y. The multifaceted function of FoxO1 in pancreatic β-cell dysfunction and insulin resistance: Therapeutic potential for type 2 diabetes. Life Sci 2025; 364:123384. [PMID: 39798646 DOI: 10.1016/j.lfs.2025.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The forkhead box O1 (FoxO1), the first discovered member of the FoxO family, is a critical transcription factor predominantly found in insulin-secreting and insulin-sensitive tissues. In the pancreas of adults, FoxO1 expression is restricted to islet β cells. We determined that in human islet microarray datasets, FoxO1 expression is higher than other FoxO transcription factors. Our analyses of three human islet datasets revealed that FoxO1 expression tends to shows a negative correlation with type 2 diabetes and no correlation with body mass index (BMI) between individuals with low levels of HbA1C (or ND, non-diabetic) and high levels of HbA1C (or T2D, type 2 diabetes). However, FoxO1 function is multifaceted and mainly regulated by post-translational modifications including phosphorylation and deacetylation that involved in pancreatic β cell function and insulin sensitivity. This study summarized the molecular mechanisms underlying the role of FoxO1 activity in pancreatic β-cell dysfunction and insulin resistance in T2D. In addition, we collected the clinical trials of FoxO1 inhibitor and agonist in diabetes, and discussed the therapeutic potential of FoxO1 activity in diabetes treatment.
Collapse
Affiliation(s)
- Hongyu Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261021, China
| | - Ran Bai
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261021, China
| | - Yubing Wang
- Translational Medical Center, Weifang Second People's Hospital, Weifang 261021, China
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang 261021, China
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Zhiqin Gao
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261021, China
| | - Yi Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261021, China.
| |
Collapse
|
3
|
Rahmani S, Roohbakhsh A, Pourbarkhordar V, Karimi G. The Cardiovascular Protective Function of Natural Compounds Through AMPK/SIRT1/PGC-1α Signaling Pathway. Food Sci Nutr 2024; 12:9998-10009. [PMID: 39723061 PMCID: PMC11666815 DOI: 10.1002/fsn3.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 12/28/2024] Open
Abstract
Cardiovascular disease (CVD) poses a major risk to human health and exert a heavy burden on individuals, society, and healthcare systems. Therefore, it is critical to identify CVD's underlying mechanism(s) and target them using effective agents. Natural compounds have shown promise as antioxidants with cardioprotective functions against CVD injuries due to their antioxidative solid capacity and high safety profile. Several CVDs, such as heart failure, ischemia/reperfusion, atherosclerosis, and cardiomyopathies, are closely linked to mitochondrial dysfunction. It is well established that activating the AMPK/SIRT1/PGC-1α pathway during CVD promotes mitochondrial function. Therefore, targeting the AMPK/SIRT1/PGC-1α pathway provides a foundation for novel therapeutic strategies to combat CVD. A key goal of our search was to find natural compounds that target this biological pathway and have beneficial effects on CVD.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| | - Vahid Pourbarkhordar
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
5
|
Kuang B, Geng N, Yi M, Zeng Q, Fan M, Xian M, Deng L, Chen C, Pan Y, Kuang L, Luo F, Xie Y, Liu C, Deng Z, Nie M, Du Y, Guo F. Panaxatriol exerts anti-senescence effects and alleviates osteoarthritis and cartilage repair fibrosis by targeting UFL1. J Adv Res 2024:S2090-1232(24)00470-3. [PMID: 39442872 DOI: 10.1016/j.jare.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/01/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA), the most common degenerative joint disease, can eventually lead to disability. However, no safe or effective intervention is currently available. Therefore, there is an urgent need to develop effective drugs that reduce cartilage damage and treat OA. OBJECTIVES This study aimed to ascertain the potential of panaxatriol, a natural small molecule, as a therapeutic drug for alleviating the progression of OA. METHODS An in vitro culture of human cartilage explants and C28/I2 human chondrocytes and an in vivo surgically induced OA mouse model were used to evaluate the chondroprotective effect of panaxatriol. The Drug Affinity Responsive Target Stability assay, CRISPR-Cas9 assay, Whole-transcriptome RNA sequencing analysis and agonist or antagonist assays were used to identify the target and potential signaling pathways of panaxatriol. Poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) was used to construct the sustained-release system of panaxatriol. RESULTS Panaxatriol protected against OA by regulating chondrocyte metabolism. Ubiquitin-fold modifier 1-specific E3 ligase 1 (UFL1) was identified as a novel target of panaxatriol. Whole transcriptome RNA sequencing showed that UFL1 was closely related to cell senescence. Panaxatriol inhibited chondrocyte senescence through UFL1/forkhead box O1 (FOXO1)/P21 and UFL1/NF-κB/SASPs signaling pathways. It also could inhibit fibrocartilage formation during cartilage repair via the UFL1/FOXO1/Collagen 1 signaling pathway. Finally, we constructed a sustained-release system for panaxatriol based on PLGA-PEG, which reduced the number of intra-articular injections, thereby alleviating joint swelling and injury. CONCLUSIONS Panaxatriol exerts anti-senescence effects and has the potential to delay OA progression and reduce cartilage repair fibrosis by targeting UFL1.
Collapse
Affiliation(s)
- Biao Kuang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Miao Yi
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Qiqi Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mao Nie
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Salis Torres A, Lee JE, Caporali A, Semple RK, Horrocks MH, MacRae VE. Mitochondrial Dysfunction as a Potential Mechanism Mediating Cardiac Comorbidities in Parkinson's Disease. Int J Mol Sci 2024; 25:10973. [PMID: 39456761 PMCID: PMC11507255 DOI: 10.3390/ijms252010973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Individuals diagnosed with Parkinson's disease (PD) often exhibit heightened susceptibility to cardiac dysfunction, reflecting a complex interaction between these conditions. The involvement of mitochondrial dysfunction in the development and progression of cardiac dysfunction and PD suggests a plausible commonality in some aspects of their molecular pathogenesis, potentially contributing to the prevalence of cardiac issues in PD. Mitochondria, crucial organelles responsible for energy production and cellular regulation, play important roles in tissues with high energetic demands, such as neurons and cardiac cells. Mitochondrial dysfunction can occur in different and non-mutually exclusive ways; however, some mechanisms include alterations in mitochondrial dynamics, compromised bioenergetics, biogenesis deficits, oxidative stress, impaired mitophagy, and disrupted calcium balance. It is plausible that these factors contribute to the increased prevalence of cardiac dysfunction in PD, suggesting mitochondrial health as a potential target for therapeutic intervention. This review provides an overview of the physiological mechanisms underlying mitochondrial quality control systems. It summarises the diverse roles of mitochondria in brain and heart function, highlighting shared pathways potentially exhibiting dysfunction and driving cardiac comorbidities in PD. By highlighting strategies to mitigate dysfunction associated with mitochondrial impairment in cardiac and neural tissues, our review aims to provide new perspectives on therapeutic approaches.
Collapse
Affiliation(s)
- Agustina Salis Torres
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Ji-Eun Lee
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Vicky E. MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
| |
Collapse
|
7
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
8
|
Di Lorenzo R, Chimienti G, Picca A, Trisolini L, Latronico T, Liuzzi GM, Pesce V, Leeuwenburgh C, Lezza AMS. Resveratrol impinges on retrograde communication without inducing mitochondrial biogenesis in aged rat soleus muscle. Exp Gerontol 2024; 194:112485. [PMID: 38876448 DOI: 10.1016/j.exger.2024.112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The natural polyphenol resveratrol (RSV) might counteract the skeletal muscle age-related loss of muscle mass and strength/function partly acting on mitochondria. This work analysed the effects of a six-week administration of RSV (50 mg/kg/day) in the oxidative Soleus (Sol) skeletal muscle of old rats (27 months old). RSV effects on key mitochondrial biogenesis proteins led to un unchanged amount of SIRT1 protein and a marked decrease (60 %) in PGC-1α protein. In addition, Peroxyredoxin 3 (PRXIII) protein decreased by 50 %, which on overall suggested the absence of induction of mitochondrial biogenesis by RSV in old Sol. A novel direct correlation between PGC-1α and PRXIII proteins was demonstrated by correlation analysis in RSV and ad-libitum (AL) rats, supporting the reciprocally coordinated expression of the proteins. RSV supplementation led to an unexpected 50 % increase in the frequency of the oxidized base OH8dG in mtDNA. Furthermore, RSV supplementation induced a 50 % increase in the DRP1 protein of mitochondrial dynamics. In both rat groups an inverse correlation between PGC-1α and the frequency of OH8dG as well as an inverse correlation between PRXIII and the frequency of OH8dG were also found, suggestive of a relationship between oxidative damage to mtDNA and mitochondrial biogenesis activity. Such results may indicate that the antioxidant activity of RSV in aged Sol impinged on the oxidative fiber-specific, ROS-mediated, retrograde communication, thereby affecting the expression of SIRT1, PGC-1α and PRXIII, reducing the compensatory responses to the age-related mitochondrial oxidative stress and decline.
Collapse
Affiliation(s)
- Rosa Di Lorenzo
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Guglielmina Chimienti
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Anna Picca
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Roma, Italy.
| | - Lucia Trisolini
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Tiziana Latronico
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Grazia Maria Liuzzi
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32611, USA.
| | - Angela Maria Serena Lezza
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
9
|
Shen Y, Yuan Y, Dong W. The Mechanism of Hyperoxia-Induced Neonatal Renal Injury and the Possible Protective Effect of Resveratrol. Am J Perinatol 2024; 41:1126-1133. [PMID: 35381611 DOI: 10.1055/a-1817-5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
With recent advances in neonatal intensive care, preterm infants are surviving into adulthood. Nonetheless, epidemiological data on the health status of these preterm infants have begun to reveal a worrying theme; prematurity and the supplemental oxygen therapy these infants receive after birth appear to be risk factors for kidney disease in adulthood, affecting their quality of life. As the incidence of chronic kidney disease and the survival time of preterm infants both increase, the management of the hyperoxia-induced renal disease is becoming increasingly relevant to neonatologists. The mechanism of this increased risk is currently unknown, but prematurity itself and hyperoxia exposure after birth may predispose to disease by altering the normal trajectory of kidney maturation. This article reviews altered renal reactivity due to hyperoxia, the possible mechanisms of renal injury due to hyperoxia, and the role of resveratrol in renal injury. KEY POINTS: · Premature infants commonly receive supplementary oxygen.. · Hyperoxia can cause kidney damage via signal pathways.. · We should reduce the occurrence of late sequelae..
Collapse
Affiliation(s)
- Yunchuan Shen
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yuan
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. SIRT1 and thrombosis. Front Mol Biosci 2024; 10:1325002. [PMID: 38304233 PMCID: PMC10833004 DOI: 10.3389/fmolb.2023.1325002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
Thrombosis is a major cause of morbidity and mortality worldwide, with a complex and multifactorial pathogenesis. Recent studies have shown that SIRT1, a member of the sirtuin family of NAD + -dependent deacetylases, plays a crucial role in regulating thrombosis, modulating key pathways including endothelial activation, platelet aggregation, and coagulation. Furthermore, SIRT1 displays anti-inflammatory activity both in vitro, in vivo and in clinical studies, particularly via the reduction of oxidative stress. On these bases, several studies have investigated the therapeutic potential of targeting SIRT1 for the prevention of thrombosis. This review provides a comprehensive and critical overview of the main preclinical and clinical studies and of the current understanding of the role of SIRT1 in thrombosis.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Silvia Galora
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| |
Collapse
|
11
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
12
|
Chen JC, Wang R, Wei CC. Anti-aging effects of dietary phytochemicals: From Caenorhabditis elegans, Drosophila melanogaster, rodents to clinical studies. Crit Rev Food Sci Nutr 2023; 64:5958-5983. [PMID: 36597655 DOI: 10.1080/10408398.2022.2160961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Anti-aging research has become critical since the elderly population is increasing dramatically in this era. With the establishment of frailty phenotype and frailty index, the importance of anti-frailty research is concurrently enlightened. The application of natural phytochemicals against aging or frailty is always intriguing, and abundant related studies have been published. Various models are designed for biological research, and each model has its strength and weakness in deciphering the complex aging mechanisms. In this article, we attempt to show the potential of Caenorhabditis elegans in the study of phytochemicals' effects on anti-aging by comparing it to other animal models. In this review, the lifespan extension and anti-aging effects are demonstrated by various physical, cellular, or molecular biomarkers of dietary phytochemicals, including resveratrol, curcumin, urolithin A, sesamin, fisetin, quercetin, epigallocatechin-3-gallate, epicatechin, spermidine, sulforaphane, along with extracts of broccoli, cocoa, and blueberry. Meanwhile, the frequency of phytochemicals and models studied or presented in publications since 2010 were analyzed, and the most commonly mentioned animal models were rats, mice, and the nematode C. elegans. This up-to-date summary of the anti-aging effect of certain phytochemicals has demonstrated powerful potential for anti-aging or anti-frailty in the human population.
Collapse
Affiliation(s)
- Ju-Chi Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
DiNicolantonio JJ, McCarty MF, O'Keefe JH. Nutraceutical activation of Sirt1: a review. Open Heart 2022; 9:openhrt-2022-002171. [PMID: 36522127 PMCID: PMC9756291 DOI: 10.1136/openhrt-2022-002171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The deacetylase sirtuin 1 (Sirt1), activated by calorie restriction and fasting, exerts several complementary effects on cellular function that are favourable to healthspan; it is often thought of as an 'anti-aging' enzyme. Practical measures which might boost Sirt1 activity are therefore of considerable interest. A number of nutraceuticals have potential in this regard. Nutraceuticals reported to enhance Sirt1 synthesis or protein expression include ferulic acid, tetrahydrocurcumin, urolithin A, melatonin, astaxanthin, carnosic acid and neochlorogenic acid. The half-life of Sirt1 protein can be enhanced with the natural nicotinamide catabolite N1-methylnicotinamide. The availability of Sirt1's obligate substrate NAD+ can be increased in several ways: nicotinamide riboside and nicotinamide mononucleotide can function as substrates for NAD+ synthesis; activators of AMP-activated kinase-such as berberine-can increase expression of nicotinamide phosphoribosyltransferase, which is rate limiting for NAD+ synthesis; and nutraceutical quinones such as thymoquinone and pyrroloquinoline quinone can boost NAD+ by promoting oxidation of NADH. Induced ketosis-as via ingestion of medium-chain triglycerides-can increase NAD+ in the brain by lessening the reduction of NAD+ mediated by glycolysis. Post-translational modifications of Sirt1 by O-GlcNAcylation or sulfonation can increase its activity, suggesting that administration of glucosamine or of agents promoting hydrogen sulfide synthesis may aid Sirt1 activity. Although resveratrol has poor pharmacokinetics, it can bind to Sirt1 and activate it allosterically-as can so-called sirtuin-activating compound drugs. Since oxidative stress can reduce Sirt1 activity in multiple ways, effective antioxidant supplementation that blunts such stress may also help preserve Sirt1 activity in some circumstances. Combination nutraceutical regimens providing physiologically meaningful doses of several of these agents, capable of activating Sirt1 in complementary ways, may have considerable potential for health promotion. Such measures may also amplify the benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors in non-diabetic disorders, as these benefits appear to reflect upregulation of Sirt1 and AMP-activated protein kinase activities.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | - Mark F McCarty
- Catalytic Longevity Foundation, Encinitas, California, USA
| | - James H O'Keefe
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
14
|
Marchelek-Mysliwiec M, Nalewajska M, Turoń-Skrzypińska A, Kotrych K, Dziedziejko V, Sulikowski T, Pawlik A. The Role of Forkhead Box O in Pathogenesis and Therapy of Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms231911611. [PMID: 36232910 PMCID: PMC9569915 DOI: 10.3390/ijms231911611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes is a disease that causes numerous complications disrupting the functioning of the entire body. Therefore, new treatments for the disease are being sought. Studies in recent years have shown that forkhead box O (FOXO) proteins may be a promising target for diabetes therapy. FOXO proteins are transcription factors involved in numerous physiological processes and in various pathological conditions, including cardiovascular diseases and diabetes. Their roles include regulating the cell cycle, DNA repair, influencing apoptosis, glucose metabolism, autophagy processes and ageing. FOXO1 is an important regulator of pancreatic beta-cell function affecting pancreatic beta cells under conditions of insulin resistance. FOXO1 also protects beta cells from damage resulting from oxidative stress associated with glucose and lipid overload. FOXO has been shown to affect a number of processes involved in the development of diabetes and its complications. FOXO regulates pancreatic β-cell function during metabolic stress and also plays an important role in regulating wound healing. Therefore, the pharmacological regulation of FOXO proteins is a promising approach to developing treatments for many diseases, including diabetes mellitus. In this review, we describe the role of FOXO proteins in the pathogenesis of diabetes and the role of the modulation of FOXO function in the therapy of this disease.
Collapse
Affiliation(s)
| | - Magdalena Nalewajska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Agnieszka Turoń-Skrzypińska
- Department of Medical Rehabilitation and Clinical Rehabilitation, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Katarzyna Kotrych
- Department of Radiology, West Pomeranian Center of Oncology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Tadeusz Sulikowski
- Department of General, Minimally Invasive, and Gastroenterological Surgery, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland
- Correspondence:
| |
Collapse
|
15
|
Fan S, Hu Y, You Y, Xue W, Chai R, Zhang X, Shou X, Shi J. Role of resveratrol in inhibiting pathological cardiac remodeling. Front Pharmacol 2022; 13:924473. [PMID: 36120366 PMCID: PMC9475218 DOI: 10.3389/fphar.2022.924473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiovascular disease is a group of diseases with high mortality in clinic, including hypertension, coronary heart disease, cardiomyopathy, heart valve disease, heart failure, to name a few. In the development of cardiovascular diseases, pathological cardiac remodeling is the most common cardiac pathological change, which often becomes a domino to accelerate the deterioration of the disease. Therefore, inhibiting pathological cardiac remodeling may delay the occurrence and development of cardiovascular diseases and provide patients with greater long-term benefits. Resveratrol is a non-flavonoid polyphenol compound. It mainly exists in grapes, berries, peanuts and red wine, and has cardiovascular protective effects, such as anti-oxidation, inhibiting inflammatory reaction, antithrombotic, dilating blood vessels, inhibiting apoptosis and delaying atherosclerosis. At present, the research of resveratrol has made rich progress. This review aims to summarize the possible mechanism of resveratrol against pathological cardiac remodeling, in order to provide some help for the in-depth exploration of the mechanism of inhibiting pathological cardiac remodeling and the development and research of drug targets.
Collapse
Affiliation(s)
- Shaowei Fan
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- *Correspondence: Yuanhui Hu,
| | - Yaping You
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenjing Xue
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Ruoning Chai
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xuesong Zhang
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xintian Shou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
16
|
Wang R, Yuan W, Li L, Lu F, Zhang L, Gong H, Huang X. Resveratrol ameliorates muscle atrophy in chronic kidney disease via the axis of SIRT1/FoxO1. Phytother Res 2022; 36:3265-3275. [PMID: 35606908 DOI: 10.1002/ptr.7499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022]
Abstract
Chronic kidney disease (CKD) is often associated with muscle atrophy. However, the underlying molecular mechanisms are still not well understood. Here, we treated 5/6-nephrectomized (5/6Nx) rats with resveratrol and found that this treatment greatly improves renal function as evidenced by reduced proteinuria and cystatin C. Moreover, resveratrol ameliorates renal fibrosis by reducing transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF). Meanwhile, muscle atrophy in these 5/6Nx rats was largely attenuated by resveratrol. Immunoprecipitation revealed that SIRT1 physically interacts with FoxO1 in muscle, and this interaction was weakened in 5/6Nx rats. As a consequence, acetylated FoxO1 was increased in muscle of 5/6Nx rats. The application of resveratrol markedly reverses this trend. These data point out that SIRT1 is a key factor for linking renal disease and muscle atrophy. Indeed, both renal dysfunction and muscle atrophy were further aggravated by 5/6Nx in Sirt1+/- mice. Taken together, our data indicate that SIRT1 plays a pivotal role in muscle atrophy in CKD, and FoxO1 might be a substrate of SIRT1 in this process. Furthermore, resveratrol, together with other agonists of SIRT1, may hold great therapeutic potentials for treating CKD and its related muscle atrophy.
Collapse
Affiliation(s)
- Ruiting Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Weidong Yuan
- Department of Nephrology, People's Hospital of Haimen District, Nantong, China
| | - Lu Li
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Lu
- Department of Nephrology, People's Hospital of Haimen District, Nantong, China
| | - Lingling Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Haifeng Gong
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
17
|
Guerreiro Í, Ferreira-Pêgo C, Carregosa D, Santos CN, Menezes R, Fernandes AS, Costa JG. Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods 2022; 11:foods11071060. [PMID: 35407148 PMCID: PMC8997953 DOI: 10.3390/foods11071060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases constitute a worldwide public health problem, contributing to morbidity and mortality. The present study aimed to provide an overview of the published data regarding the potential beneficial effects of polyphenols on major kidney diseases, namely acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cancer, and drug-induced nephrotoxicity. This study consists of a bibliographical review including in vitro and in vivo studies dealing with the effects of individual compounds. An analysis of the polyphenol metabolome in human urine was also conducted to estimate those compounds that are most likely to be responsible for the kidney protective effects of polyphenols. The biological effects of polyphenols can be highly attributed to the modulation of specific signaling cascades including those involved in oxidative stress responses, anti-inflammation processes, and apoptosis. There is increasing evidence that polyphenols afford great potential in renal disease protection. However, this evidence (especially when in vitro studies are involved) should be considered with caution before its clinical translation, particularly due to the unfavorable pharmacokinetics and extensive metabolization that polyphenols undergo in the human body. Future research should consider polyphenols and their metabolites that indeed reach kidney tissues.
Collapse
Affiliation(s)
- Íris Guerreiro
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Cíntia Ferreira-Pêgo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Diogo Carregosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Regina Menezes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana S. Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - João G. Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- Correspondence:
| |
Collapse
|
18
|
Soppert J, Frisch J, Wirth J, Hemmers C, Boor P, Kramann R, Vondenhoff S, Moellmann J, Lehrke M, Hohl M, van der Vorst EPC, Werner C, Speer T, Maack C, Marx N, Jankowski J, Roma LP, Noels H. A systematic review and meta-analysis of murine models of uremic cardiomyopathy. Kidney Int 2021; 101:256-273. [PMID: 34774555 DOI: 10.1016/j.kint.2021.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) triggers the risk of developing uremic cardiomyopathy as characterized by cardiac hypertrophy, fibrosis and functional impairment. Traditionally, animal studies are used to reveal the underlying pathological mechanism, although variable CKD models, mouse strains and readouts may reveal diverse results. Here, we systematically reviewed 88 studies and performed meta-analyses of 52 to support finding suitable animal models for future experimental studies on pathological kidney-heart crosstalk during uremic cardiomyopathy. We compared different mouse strains and the direct effect of CKD on cardiac hypertrophy, fibrosis and cardiac function in "single hit" strategies as well as cardiac effects of kidney injury combined with additional cardiovascular risk factors in "multifactorial hit" strategies. In C57BL/6 mice, CKD was associated with a mild increase in cardiac hypertrophy and fibrosis and marginal systolic dysfunction. Studies revealed high variability in results, especially regarding hypertrophy and systolic function. Cardiac hypertrophy in CKD was more consistently observed in 129/Sv mice, which express two instead of one renin gene and more consistently develop increased blood pressure upon CKD induction. Overall, "multifactorial hit" models more consistently induced cardiac hypertrophy and fibrosis compared to "single hit" kidney injury models. Thus, genetic factors and additional cardiovascular risk factors can "prime" for susceptibility to organ damage, with increased blood pressure, cardiac hypertrophy and early cardiac fibrosis more consistently observed in 129/Sv compared to C57BL/6 strains.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Janina Frisch
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Julia Wirth
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Hemmers
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Mathias Hohl
- Department of Internal Medicine III, Cardiology/Angiology, University of Homburg, Homburg/Saar, Germany
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands; Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Werner
- Department of Internal Medicine III, Cardiology/Angiology, University of Homburg, Homburg/Saar, Germany
| | - Thimoteus Speer
- Translational Cardio-Renal Medicine, Saarland University, Homburg/Saar, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Prospective Pharmacological Potential of Resveratrol in Delaying Kidney Aging. Int J Mol Sci 2021; 22:ijms22158258. [PMID: 34361023 PMCID: PMC8348580 DOI: 10.3390/ijms22158258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.
Collapse
|
20
|
|
21
|
Soltan F, Esmaili Dahej M, Yadegari M, Moradi A, Hafizi Barjin Z, Safari F. Resveratrol Confers Protection Against Ischemia/Reperfusion Injury by Increase of Angiotensin (1-7) Expression in a Rat Model of Myocardial Hypertrophy. J Cardiovasc Pharmacol 2021; 78:e55-e64. [PMID: 34232225 DOI: 10.1097/fjc.0000000000001035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Left ventricular hypertrophy (LVH) makes the heart vulnerable to ischemia/reperfusion (IR) injury. Angiotensin (Ang) (1-7) is recognized as a cardioprotective peptide. We investigated the effect of polyphenol resveratrol on myocardial IR injury after hypertrophy and examined cardiac content of Ang (1-7) and transcription of its receptor (MasR). Rats were divided into sham-operated, LVH, IR, LVH + IR, and resveratrol + LVH + IR groups. Myocardial hypertrophy and IR models were created by abdominal aortic banding and left coronary artery occlusion, respectively. To evaluate the electrocardiogram parameters and incidence of arrhythmias, electrocardiogram was recorded by subcutaneous leads (lead II). Blood pressure was measured through the left carotid artery. Infarct size was determined by the triphenyl tetrazolium chloride staining. The Ang (1-7) level was evaluated by immunohistochemistry. The Mas receptor mRNA level was assessed by the real-time real time reverse transcription polymerase chain reaction technique. QT-interval duration, infarct size, and incidence of ischemia-induced arrhythmia were significantly higher in the LVH + IR group. However, in the resveratrol-treated group, these parameters were decreased significantly. The cardiac level of Ang (1-7) was decreased in untreated hypertrophied hearts (LVH and LVH + IR groups). Pretreatment with resveratrol normalized the cardiac level of Ang (1-7). The mRNA level of Mas receptor was increased in all of hypertrophied hearts in the presence or absence of resveratrol. Resveratrol can decrease IR injury in rats with LVH. The anti-ischemic effect of resveratrol may be related to the enhancement of Ang (1-7)/MasR axis.
Collapse
Affiliation(s)
| | | | | | - Ali Moradi
- Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ; and
| | | | - Fatemeh Safari
- Departments of Physiology
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
22
|
Chou YT, Liu TT, Yang UC, Huang CC, Liu CW, Huang SF, Li TH, Liu HM, Lin MW, Yang YY, Lee TY, Huang YH, Hou MC, Lin HC. Intestinal SIRT1 Deficiency-Related Intestinal Inflammation and Dysbiosis Aggravate TNFα-Mediated Renal Dysfunction in Cirrhotic Ascitic Mice. Int J Mol Sci 2021; 22:ijms22031233. [PMID: 33513830 PMCID: PMC7865325 DOI: 10.3390/ijms22031233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
In advanced cirrhosis, the TNFα-mediated intestinal inflammation and bacteria dysbiosis are involved in the development of inflammation and vasoconstriction-related renal dysfunction. In colitis and acute kidney injury models, activation of SIRT1 attenuates the TNFα-mediated intestinal and renal abnormalities. This study explores the impacts of intestinal SIRT1 deficiency and TNFα-mediated intestinal abnormalities on the development of cirrhosis-related renal dysfunction. Systemic and renal hemodynamics, intestinal dysbiosis [cirrhosis dysbiosis ratio (CDR) as marker of dysbiosis], and direct renal vasoconstrictive response (renal vascular resistance (RVR) and glomerular filtration rate (GFR)) to cumulative doses of TNFα were measured in bile duct ligated (BDL)-cirrhotic ascitic mice. In SIRT1IEC-KO-BDL-ascitic mice, the worsening of intestinal dysbiosis exacerbates intestinal inflammation/barrier dysfunction, the upregulation of the expressions of intestinal/renal TNFα-related pathogenic signals, higher TNFα-induced increase in RVR, and decrease in GFR in perfused kidney. In intestinal SIRT1 knockout groups, the positive correlations were identified between intestinal SIRT1 activity and CDR. Particularly, the negative correlations were identified between CDR and RVR, with the positive correlation between CDR and GFR. In mice with advanced cirrhosis, the expression of intestinal SIRT1 is involved in the linkage between intestinal dysbiosis and vasoconstriction/hypoperfusion-related renal dysfunction through the crosstalk between intestinal/renal TNFα-related pathogenic inflammatory signals.
Collapse
Affiliation(s)
- Yu-Te Chou
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan; (Y.-T.C.); (C.-W.L.); (Y.-H.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
| | - Tze-Tze Liu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
- Genomic Research Center, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan
| | - Ueng-Cheng Yang
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
- Institute of Biomedical Informatics, Taipei 11267, Taiwan
| | - Chia-Chang Huang
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
- Division of Clinical Skills Training Center, Department of Medical Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11267, Taiwan
| | - Chih-Wei Liu
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan; (Y.-T.C.); (C.-W.L.); (Y.-H.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11267, Taiwan
| | - Shiang-Fen Huang
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
- Division of Infection, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Tzu-Hao Li
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11267, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11267, Taiwan
| | - Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, Chang Guang Memorial Hospital, Linkou 33371, Taiwan; (H.-M.L.); (T.-Y.L.)
| | - Ming-Wei Lin
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
- Institute of Public Health, National Yang-Ming University, Taipei 11267, Taiwan
| | - Ying-Ying Yang
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
- Division of Clinical Skills Training Center, Department of Medical Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11267, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei 11267, Taiwan
- Correspondence: (Y.-Y.Y.); (H.-C.L.); Tel.: +886-2-2875-7725 (Y.-Y.Y.); +886-2-2875-2249 (H.-C.L.); Fax: +886-2-2875-7726 (Y.-Y.Y.); +886-2-2875-7809 (H.-C.L.)
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Chang Guang Memorial Hospital, Linkou 33371, Taiwan; (H.-M.L.); (T.-Y.L.)
| | - Yi-Hsiang Huang
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan; (Y.-T.C.); (C.-W.L.); (Y.-H.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
- Institute of Public Health, National Yang-Ming University, Taipei 11267, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Ming-Chih Hou
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan; (Y.-T.C.); (C.-W.L.); (Y.-H.H.); (M.-C.H.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
| | - Han-Chieh Lin
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11267, Taiwan; (T.-T.L.); (U.-C.Y.); (C.-C.H.); (S.-F.H.); (T.-H.L.); (M.-W.L.)
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei 11267, Taiwan
- Correspondence: (Y.-Y.Y.); (H.-C.L.); Tel.: +886-2-2875-7725 (Y.-Y.Y.); +886-2-2875-2249 (H.-C.L.); Fax: +886-2-2875-7726 (Y.-Y.Y.); +886-2-2875-7809 (H.-C.L.)
| |
Collapse
|
23
|
Zhang Y, Zhu X, Wang G, Chen L, Yang H, He F, Lin J. Melatonin Rescues the Ti Particle-Impaired Osteogenic Potential of Bone Marrow Mesenchymal Stem Cells via the SIRT1/SOD2 Signaling Pathway. Calcif Tissue Int 2020; 107:474-488. [PMID: 32767062 DOI: 10.1007/s00223-020-00741-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Wear particles released by joint implants are a major cause of osteolysis around the prosthesis by negatively affecting bone reconstruction. Bone marrow mesenchymal stem cells (BMMSCs) stimulated by wear particles showed an impaired osteogenic potential. Melatonin has been shown beneficial effects on intracellular antioxidant functions and bone formation; however, whether it could restore the osteogenic potential of BMMSCs inhibited by wear particles was unknown. This study aimed to evaluate the protective effect of melatonin on the osteogenic capacity of BMMSCs exposed to titanium (Ti) wear particles and to investigated the underlying mechanisms involving intracellular antioxidant properties. When BMMSCs were exposed to Ti particles in vitro, melatonin treatment successfully improved the matrix mineralization and expression of osteogenic markers in BMMSCs, while decreasing the levels of intracellular reactive oxygen species (ROS) and mitochondrial superoxide. The protective effect of melatonin on osteolysis was validated in a Ti particle-exposed murine calvarial model. Meanwhile, silent information regulator type 1 (SIRT1) and intracellular antioxidant enzymes were significantly up-regulated, particularly superoxide dismutase 2 (SOD2), in melatonin-treated BMMSCs. Furthermore, inhibition of SIRT1 by EX527 completely counteracted the protective effect of melatonin on Ti particle-treated BMMSCs, evidenced by the reduced expression of SOD2, increased ROS and superoxide, and decreased osteogenic differentiation. These results demonstrated that melatonin restored the osteogenic potential and improved the antioxidant properties of BMMSCs through the SIRT1 signaling pathway. Our findings suggest that melatonin is a promising candidate for treating osteolysis induced by wear particles.
Collapse
Affiliation(s)
- Yazhong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China
- Medical College, Orthopaedic Institute, Soochow University, No. 708 Renmin Road, 215007, Suzhou, Jiangsu, China
| | - Xu Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China
- Medical College, Orthopaedic Institute, Soochow University, No. 708 Renmin Road, 215007, Suzhou, Jiangsu, China
| | - Genlin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China
| | - Liang Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China
- Medical College, Orthopaedic Institute, Soochow University, No. 708 Renmin Road, 215007, Suzhou, Jiangsu, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China.
- Medical College, Orthopaedic Institute, Soochow University, No. 708 Renmin Road, 215007, Suzhou, Jiangsu, China.
| | - Jun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, 215006, Suzhou, Jiangsu, China.
| |
Collapse
|
24
|
Li C, Tan Y, Wu J, Ma Q, Bai S, Xia Z, Wan X, Liang J. Resveratrol Improves Bnip3-Related Mitophagy and Attenuates High-Fat-Induced Endothelial Dysfunction. Front Cell Dev Biol 2020; 8:796. [PMID: 32923443 PMCID: PMC7457020 DOI: 10.3389/fcell.2020.00796] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Statin treatment reduces cardiovascular risk. However, individuals with well-controlled low-density lipoprotein (LDL) levels may remain at increased risk owing to persistent high triglycerides and low high-density lipoprotein cholesterol. Because resveratrol promotes glucose metabolism and mitigates cardiovascular disorders, we explored its mechanism of protective action on high-fat-induced endothelial dysfunction. Human umbilical venous endothelial cells were treated with oxidized LDL (ox-LDL) in vitro. Endothelial function, cell survival, proliferation, migration, and oxidative stress were analyzed through western blots, quantitative polymerase chain reaction, ELISA, and immunofluorescence. ox-LDL induced endothelial cell apoptosis, proliferation arrest, and mobilization inhibition, all of which resveratrol reduced. ox-LDL suppressed the activities of mitochondrial respiration complex I and III and reduced levels of intracellular antioxidative enzymes, resulting in reactive oxygen species overproduction and mitochondrial dysfunction. Resveratrol treatment upregulated Bnip3-related mitophagy and prevented ox-LDL-mediated mitochondrial respiration complexes inactivation, sustaining mitochondrial membrane potential and favoring endothelial cell survival. We found that resveratrol enhanced Bnip3 transcription through hypoxia-inducible factor 1 (HIF1) and 5' AMP-activated protein kinase (AMPK). Inhibition of AMPK and HIF1 abolished resveratrol-mediated protection of mitochondrial redox balance and endothelial viability. Together, these data demonstrate resveratrol reduces hyperlipemia-related endothelial damage by preserving mitochondrial homeostasis.
Collapse
Affiliation(s)
- Chen Li
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiandi Wu
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Qinghui Ma
- Department of Oncology Hematology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Shuchang Bai
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Zhangqing Xia
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Xiaoliang Wan
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Jianqiu Liang
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| |
Collapse
|
25
|
Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front Pharmacol 2020; 11:1225. [PMID: 32848804 PMCID: PMC7426493 DOI: 10.3389/fphar.2020.01225] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Sirtuins are class III histone deacetylases, whose enzymatic activity is dependent on NAD+ as a cofactor. Sirtuins are reported to modulate numerous activities by controlling gene expression, DNA repair, metabolism, oxidative stress response, mitochondrial function, and biogenesis. Deregulation of their expression and/or action may lead to tissue-specific degenerative events involved in the development of several human pathologies, including cancer, neurodegeneration, and cardiovascular disease. The most studied member of this class of enzymes is sirtuin 1 (SIRT1), whose expression is associated with increasing insulin sensitivity. SIRT1 has been implicated in both tumorigenic and anticancer processes, and is reported to regulate essential metabolic pathways, suggesting that its activation might be beneficial against disorders of the metabolism. Via regulation of p53 deacetylation and modulation of autophagy, SIRT1 is implicated in cellular response to caloric restriction and lifespan extension. In recent years, scientific interest focusing on the identification of SIRT1 modulators has led to the discovery of novel small molecules targeting SIRT1 activity. This review will examine compounds of natural origin recently found to upregulate SIRT1 activity, such as polyphenolic products in fruits, vegetables, and plants including resveratrol, fisetin, quercetin, and curcumin. We will also discuss the potential therapeutic effects of these natural compounds in the prevention and treatment of human disorders, with particular emphasis on their metabolic impact.
Collapse
Affiliation(s)
- Concetta Iside
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marika Scafuro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|