1
|
Liu X, Yang S, Sun M, Gao AX, Fan Z, Yang Y, Zheng P, Liu C, Li Y, Bai Z. Enhanced molecular stability of ApxII antigen during secretion in Corynebacterium glutamicum by rational design. J Biotechnol 2024; 394:73-84. [PMID: 39173715 DOI: 10.1016/j.jbiotec.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ApxII is a vaccine antigen used to protect against porcine contagious pleuropneumonia, which is a significant threat to the pig industry. Here, we aimed to improve the proteolytic degradation stability of ApxII during its secretion by establishing a complete screening process of stable variants through bioinformatics and site-directed mutagenesis. We employed a combination of semi-rational and rational design strategies to create 34 single-point variants of ApxII. Among them, R114E and T115D variants exhibited better stability without compromising antigen activity. Furthermore, we constructed a multi-site variant, R114E/T115D, which demonstrated the best stability, activity, and yield. Protein stability and molecular dynamic analysis indicated that the greater solubility and lower structural expansion coefficient might explain the increased stability of R114E/T115D. Additionally, site T115 was identified as a key point of truncated ApxII stability. The R114E/T115D variant, with its proven stability and intact antigenic activity, holds promising prospects for industrial-scale applications in the prevention of porcine contagious pleuropneumonia.
Collapse
Affiliation(s)
- Xiuxia Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Shujie Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Manman Sun
- Key laboratory of high magnetic field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, China
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziming Fan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Pei Zheng
- Tecon Biology CO.Ltd, Urumqi 83000, China
| | - Chunli Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Poethe SS, Junker N, Meyer F, Wendisch VF. Sustainable production of the drug precursor tyramine by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2024; 108:499. [PMID: 39476177 PMCID: PMC11525245 DOI: 10.1007/s00253-024-13319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Tyramine has attracted considerable interest due to recent findings that it is an excellent starting material for the production of high-performance thermoplastics and hydrogels. Furthermore, tyramine is a precursor of a diversity of pharmaceutically relevant compounds, contributing to its growing importance. Given the limitations of chemical synthesis, including lack of selectivity and laborious processes with harsh conditions, the biosynthesis of tyramine by decarboxylation of L-tyrosine represents a promising sustainable alternative. In this study, the de novo production of tyramine from simple nitrogen and sustainable carbon sources was successfully established by metabolic engineering of the L-tyrosine overproducing Corynebacterium glutamicum strain AROM3. A phylogenetic analysis of aromatic-L-amino acid decarboxylases (AADCs) revealed potential candidate enzymes for the decarboxylation of tyramine. The heterologous overexpression of the respective AADC genes resulted in successful tyramine production, with the highest tyramine titer of 1.9 g L-1 obtained for AROM3 overexpressing the tyrosine decarboxylase gene of Levilactobacillus brevis. Further metabolic engineering of this tyramine-producing strain enabled tyramine production from the alternative carbon sources ribose and xylose. Additionally, up-scaling of tyramine production from xylose to a 1.5 L bioreactor batch fermentation was demonstrated to be stable, highlighting the potential for sustainable tyramine production. KEY POINTS: • Phylogenetic analysis revealed candidate l-tyrosine decarboxylases • C. glutamicum was engineered for de novo production of tyramine • Tyramine production from alternative carbon substrates was enabled.
Collapse
Affiliation(s)
- Sara-Sophie Poethe
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Nora Junker
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
3
|
Li T, Liu X, Wang Z, Liu C, Liu Y, Cui N, Meng F, Zhang W, Wang D, Xu Y, Zhu X, Guo C, Wang Y. Characterization and rational engineering of an alkaline-tolerant azoreductase derived from Roseibium sp. H3510 for enhanced decolorization of azo dyes. Int J Biol Macromol 2024; 280:135810. [PMID: 39322137 DOI: 10.1016/j.ijbiomac.2024.135810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
rAzoR2326, an azoreductase derived from Roseibium sp. H3510, functions as an FMN-dependent homodimer utilizing NADH as cofactor. It demonstrated maximum activity at 45 °C and retained moderate activity above 50 °C, exhibiting stability from pH 7-10. Evolution and structure guided rational design of wild-type rAzoR2326 (WT) efficiently yielded 6 single-point mutants with improved thermostability and activity from a 22-variant library. Further combinatorial mutation led to mutant M20 with substantially enhanced thermostability (15-fold longer half-life at 50 °C) and activity (3.24-fold higher kcat/Km). M20 exhibited superior catalytic properties for decolorizing Allura Red compared to WT. Specifically, its decolorization capacity at pH 10.0 was 4.26-fold higher than WT. Additionally, M20 demonstrated remarkable thermostability, retaining 76.83 % decolorization activity for Allura Red after 120 min at 50 °C, whereas WT nearly lost all catalytic activity under the same conditions. Molecular dynamics simulations revealed the structural changes in M20, such as improved hydrogen bonding and a new C-H···π interaction, led to a more compact and rigid enzyme structure. This resulted in a more stable FMN-binding pocket and substrate tunnel, thereby improving the catalytic stability and activity of M20. Given its enhanced dye decolorization ability and alkaline tolerance, M20 shows promise as a biocatalyst for treating azo dye effluents.
Collapse
Affiliation(s)
- Tao Li
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xinqi Liu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Ziwei Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Cong Liu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Ning Cui
- Xinxiang Medical University Sanquan Medical College, Xinxiang 453003, PR China
| | - Fanling Meng
- Academic Affairs Office, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Wenbo Zhang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Dandan Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yongtao Xu
- Henan Engineering Laboratory of Combinatorial Technique for Clinical & Biomedical Big Data, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xueyi Zhu
- Zhengzhou Feier Medical Laboratory Co., LTD, Zhengzhou 450099, PR China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yan Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
4
|
Xu R, Pan Q, Zhu G, Ye Y, Xin M, Wang Z, Wang S, Li W, Wei Y, Guo J, Zheng L. ThermoLink: Bridging disulfide bonds and enzyme thermostability through database construction and machine learning prediction. Protein Sci 2024; 33:e5097. [PMID: 39145402 PMCID: PMC11325166 DOI: 10.1002/pro.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 08/16/2024]
Abstract
Disulfide bonds, covalently formed by sulfur atoms in cysteine residues, play a crucial role in protein folding and structure stability. Considering their significance, artificial disulfide bonds are often introduced to enhance protein thermostability. Although an increasing number of tools can assist with this task, significant amounts of time and resources are often wasted owing to inadequate consideration. To enhance the accuracy and efficiency of designing disulfide bonds for protein thermostability improvement, we initially collected disulfide bond and protein thermostability data from extensive literature sources. Thereafter, we extracted various sequence- and structure-based features and constructed machine-learning models to predict whether disulfide bonds can improve protein thermostability. Among all models, the neighborhood context model based on the Adaboost-DT algorithm performed the best, yielding "area under the receiver operating characteristic curve" and accuracy scores of 0.773 and 0.714, respectively. Furthermore, we also found AlphaFold2 to exhibit high superiority in predicting disulfide bonds, and to some extent, the coevolutionary relationship between residue pairs potentially guided artificial disulfide bond design. Moreover, several mutants of imine reductase 89 (IR89) with artificially designed thermostable disulfide bonds were experimentally proven to be considerably efficient for substrate catalysis. The SS-bond data have been integrated into an online server, namely, ThermoLink, available at guolab.mpu.edu.mo/thermoLink.
Collapse
Affiliation(s)
- Ran Xu
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Qican Pan
- Zelixir Biotech Company Ltd, Shanghai, China
| | | | - Yilin Ye
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Minghui Xin
- School of Physics, Shandong University, Jinan, China
| | - Zechen Wang
- School of Physics, Shandong University, Jinan, China
| | - Sheng Wang
- Zelixir Biotech Company Ltd, Shanghai, China
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, China
| | - Yanjie Wei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Liangzhen Zheng
- Zelixir Biotech Company Ltd, Shanghai, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Hao M, Shi C, Gong W, Liu J, Meng X, Liu F, Lu F, Zhang H. Heterologous expression and characterization of an M4 family extracellular metalloprotease for detergent application. J GEN APPL MICROBIOL 2024; 69:309-317. [PMID: 37880082 DOI: 10.2323/jgam.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Proteolytic enzymes stand out as the most widely employed category utilized in manufacturing industry. A new protease was separated from Planococcus sp.11815 strain and named as nprS-15615 in this research. The gene of this protease has not been reported, and its enzymatic properties have been studied for the first time. To enhance enzyme production, the Planococcus sp. protease gene was expressed in Bacillus licheniformis 2709. The expression level of nprS-15615 was observed under the control of regulatory elements PaprE. nprS-15615 protease activity reached 1186.24±32.87 U/mL after 48 hours of cultivation in shake flasks which was nearly four times the output of the original bacteria (291.38±25.73U/mL). The optimum temperature and pH of the recombinant protease were 30 ℃ and 8.0, respectively.The enzyme exhibited the highest capacity for hydrolyzing casein and demonstrated resilience towards a NaCl concentration of 10.0% (wt/v). Furthermore, in the presence of 0.5% surfactants, the recombinant protease activity can maintain above 75%, and with the existence of 0.5% liquid detergents, there was basically no loss of enzyme activity which indicated that nprS-15615 had good compatibility with surfactants and liquid detergents. In addition, npS-15615 performed well in the washing experiment, and the washing effect at 20 ℃ can be significantly improved by adding crude enzyme solution in the washing process.
Collapse
Affiliation(s)
- Man Hao
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Chaoshuo Shi
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Weifeng Gong
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Jia Liu
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Xiangxin Meng
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Fufeng Liu
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Fuping Lu
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Huitu Zhang
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| |
Collapse
|
6
|
Plouhinec L, Neugnot V, Lafond M, Berrin JG. Carbohydrate-active enzymes in animal feed. Biotechnol Adv 2023; 65:108145. [PMID: 37030553 DOI: 10.1016/j.biotechadv.2023.108145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid the competition between human food and animal feed for croplands. Agricultural co-products have become important components of the circular economy with their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet, especially carbohydrate-active enzymes (CAZymes). In this review, we describe the diversity and versatility of microbial CAZymes targeting non-starch polysaccharides to improve the nutritional potential of diets containing cereals and protein meals. We focused our attention on cellulases, hemicellulases, pectinases which were often found to be crucial in vivo. We also highlight the performance and health benefits brought by the exogenous addition of enzymatic cocktails containing CAZymes in the diets of monogastric animals. Taking the example of the well-studied commercial cocktail Rovabio™, we discuss the evolution, constraints and future challenges faced by feed enzymes suppliers. We hope that this review will promote the use and development of enzyme solutions for industries to sustainably feed humans in the future.
Collapse
Affiliation(s)
- Lauriane Plouhinec
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France.
| | - Virginie Neugnot
- ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France
| | - Mickael Lafond
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
7
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
8
|
Martins M, Silva MF, Dinamarco TM, Goldbeck R. Novel bi-functional thermostable chimeric enzyme for feasible xylo-oligosaccharides production from agro-industrial wastes. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol 2022; 214:642-654. [DOI: 10.1016/j.ijbiomac.2022.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
|
10
|
Cheng F, Zhang J, Jiang Z, Wu X, Xue Y, Zheng Y. Development of an NAD(H)‐Driven Biocatalytic System for Asymmetric Synthesis of Chiral Amino Acids. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jia‐Min Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhen‐Tao Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xiao‐Hu Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ya‐Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
11
|
Monica P, Mutturi S, Kapoor M. Truncation of C-terminal amino acids of GH26 endo-mannanase (ManB-1601) affects biochemical properties and stability against anionic surfactants. Enzyme Microb Technol 2022; 157:110031. [DOI: 10.1016/j.enzmictec.2022.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
|
12
|
Ezema BO, Omeje KO, Bill RM, Goddard AD, O Eze SO, Fernandez-Castane A. Bioinformatic characterization of a triacylglycerol lipase produced by Aspergillus flavus isolated from the decaying seed of Cucumeropsis mannii. J Biomol Struct Dyn 2022; 41:2587-2601. [PMID: 35147487 DOI: 10.1080/07391102.2022.2035821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipases are enzymes of industrial importance responsible for the hydrolysis of ester bonds of triglycerides. A lipolytic fungus was isolated and subsequently identified based on the ITS sequence analysis as putative Aspergillus flavus with accession number LC424503. The gene coding for extracellular triacylglycerol lipase was isolated from Aspergillus flavus species, sequenced, and characterised using bioinformatics tools. An open reading frame of 420 amino acid sequence was obtained and designated as Aspergillus flavus lipase (AFL) sequence. Alignment of the amino acid sequence with other lipases revealed the presence GHSLG sequence which is the lipase consensus sequence Gly-X1-Ser-X2-Gly indicating that it a classical lipase. A catalytic active site lid domain composed of TYITDTIIDLS amino acids sequence was also revealed. This lid protects the active site, control the catalytic activity and substrate selectivity in lipases. The 3-Dimensional structural model shared 34.08% sequence identity with a lipase from Yarrowia lipolytica covering 272 amino acid residues of the template model. A search of the lipase engineering database using AFL sequence revealed that it belongs to the class GX-lipase, superfamily abH23 and homologous family abH23.02, molecular weight and isoelectric point values of 46.95 KDa and 5.7, respectively. N-glycosylation sites were predicted at residues 164, 236 and 333, with potentials of 0.7250, 0.7037 and 0.7048, respectively. O-glycosylation sites were predicted at residues 355, 358, 360 and 366. A signal sequence of 37 amino acids was revealed at the N-terminal of the polypeptide. This is a short peptide sequence that marks a protein for transport across the cell membrane and indicates that AFL is an extracellular lipase. The findings on the structural and molecular properties of Aspergillus flavus lipase in this work will be crucial in future studies aiming at engineering the enzyme for biotechnology applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Benjamin O Ezema
- The Biochemistry Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria.,Department of Biochemistry, University of Nigeria, Nsukka, Nigeria.,Aston Institute of Materials Research, Aston University, Birmingham, UK.,Energy and Bioproducts Research Institute, Aston University, Birmingham, UK
| | - Kingsley O Omeje
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | | | | | | | - Alfred Fernandez-Castane
- Aston Institute of Materials Research, Aston University, Birmingham, UK.,Energy and Bioproducts Research Institute, Aston University, Birmingham, UK
| |
Collapse
|
13
|
Yu Z, Yu H, Xu J, Wang Z, Wang Z, Kang T, Chen K, Pu Z, Wu J, Yang LR, Xu G. Enhancing Thermostability of Lipase from Pseudomonas alcaligenes for producing L-menthol by the CREATE Strategy. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00082b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Lipase from Pseudomonas alcaligenes (PaL) catalyzes the hydrolysis of racemic menthol propionate to produce L-menthol, one of the most important flavoring agents in food, cosmetics and pharmaceuticals industries. However,...
Collapse
|
14
|
Abstract
Enzymes are widely used in the food industry. Their use as a supplement to the raw material for animal feed is a current research topic. Although there are several studies on the application of enzyme additives in the animal feed industry, it is necessary to search for new enzymes, as well as to utilize bioinformatics tools for the design of specific enzymes that work in certain environmental conditions and substrates. This will allow the improvement of the productive parameters in animals, reducing costs and making the processes more efficient. Technological needs have considered these catalysts as essential in many industrial sectors and research is constantly being carried out to optimize their use in those processes. This review describes the enzymes used in animal nutrition, their mode of action, their production and new sources of production as well as studies on different animal models to evaluate their effect on the productive performance intended for the production of animal feed.
Collapse
|
15
|
Wang M, Yu W, Shen L, Zheng H, Guo X, Zhong J, Hu T. Conjugation of haloalkane dehalogenase DhaA with arabinogalactan to increase its stability. J Biotechnol 2021; 335:47-54. [PMID: 34118331 DOI: 10.1016/j.jbiotec.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 01/21/2023]
Abstract
Haloalkane dehalogenase DhaA can catalyze the hydrolytic cleavage of carbonhalogen bonds, along with production of the corresponding alcohol, a proton and a halide. However, DhaA suffers from poor environmental tolerance, such as sensitivity to high temperature, low pH and hypersaline. Arabinogalactan (AG) is a hydrophilic polysaccharide with highly branched long chains. DhaA was conjugated with AG to improve the environmental stability of DhaA in the present study. Each DhaA was averagely conjugated with 4∼5 AG molecules. Conjugation of AG essentially maintained the enzymatic activity of DhaA (91.4 %) without apparent structural alteration. The hydration layer formed by AG could reduce the solvent accessible area of DhaA and slow the protonation process, thereby improving the pH and high salt stability of DhaA. In particular, the remaining activities of the conjugate (AG-DhaA) were 35.3 % after treatment at pH4.0 for 1 h, and 80.8 % in 1 M NaCl after treatment for 16 h. As compared with DhaA, AG-DhaA showed slightly different kinetic parameters (K M of 1.90 μmol/L and k cat of 2.60 s -1).
Collapse
Affiliation(s)
- Meiqi Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - He Zheng
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing, 102205, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing, 102205, China.
| | - Jinyi Zhong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing, 102205, China.
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
16
|
Nikulin M, Švedas V. Prospects of Using Biocatalysis for the Synthesis and Modification of Polymers. Molecules 2021; 26:2750. [PMID: 34067052 PMCID: PMC8124709 DOI: 10.3390/molecules26092750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Trends in the dynamically developing application of biocatalysis for the synthesis and modification of polymers over the past 5 years are considered, with an emphasis on the production of biodegradable, biocompatible and functional polymeric materials oriented to medical applications. The possibilities of using enzymes not only as catalysts for polymerization but also for the preparation of monomers for polymerization or oligomers for block copolymerization are considered. Special attention is paid to the prospects and existing limitations of biocatalytic production of new synthetic biopolymers based on natural compounds and monomers from biomass, which can lead to a huge variety of functional biomaterials. The existing experience and perspectives for the integration of bio- and chemocatalysis in this area are discussed.
Collapse
Affiliation(s)
- Maksim Nikulin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Lenin Hills 1, bldg. 40, 119991 Moscow, Russia;
| | - Vytas Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Lenin Hills 1, bldg. 73, 119991 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Lenin Hills 1, bldg. 4, 119991 Moscow, Russia
| |
Collapse
|
17
|
Suplatov D, Sharapova Y, Švedas V. Mustguseal and Sister Web-Methods: A Practical Guide to Bioinformatic Analysis of Protein Superfamilies. Methods Mol Biol 2021; 2231:179-200. [PMID: 33289894 DOI: 10.1007/978-1-0716-1036-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Bioinformatic analysis of functionally diverse superfamilies can help to study the structure-function relationship in proteins, but represents a methodological challenge. The Mustguseal web-server can build large structure-guided sequence alignments of thousands of homologs that cover all currently available sequence variants within a common structural fold. The input to the method is a PDB code of the query protein, which represents the protein superfamily of interest. The collection and subsequent alignment of protein sequences and structures is fully automated and driven by the particular choice of parameters. Four integrated sister web-methods-the Zebra, pocketZebra, visualCMAT, and Yosshi-are available to further analyze the resulting superimposition and identify conserved, subfamily-specific, and co-evolving residues, as well as to classify and study disulfide bonds in protein superfamilies. The integration of these web-based bioinformatic tools provides an out-of-the-box easy-to-use solution, first of its kind, to study protein function and regulation and design improved enzyme variants for practical applications and selective ligands to modulate their functional properties. In this chapter, we provide a step-by-step protocol for a comprehensive bioinformatic analysis of a protein superfamily using a web-browser as the main tool and notes on selecting the appropriate values for the key algorithm parameters depending on your research objective. The web-servers are freely available to all users at https://biokinet.belozersky.msu.ru/m-platform with no login requirement.
Collapse
Affiliation(s)
- Dmitry Suplatov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Yana Sharapova
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vytas Švedas
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Liu R, Wang J, Xiong P, Chen Q, Liu H. De novo sequence redesign of a functional Ras-binding domain globally inverted the surface charge distribution and led to extreme thermostability. Biotechnol Bioeng 2021; 118:2031-2042. [PMID: 33590881 DOI: 10.1002/bit.27716] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 11/05/2022]
Abstract
To acquire extremely thermostable proteins of given functions is challenging for conventional protein engineering. Here we applied ABACUS, a statistical energy function we developed for de novo amino acid sequence design, to globally redesign a Ras-binding domain (RBD), and obtained an extremely thermostable RBD that unfolds reversibly at above 110°C, the redesigned RBD experimentally confirmed to have expected structure and Ras-binding interface. Directed evolution of the redesigned RBD improved its Ras-binding affinity to the native protein level without excessive loss of thermostability. The designed amino acid substitutions were mostly at the protein surface. For many substitutions, strong epistasis or significantly differentiated effects on thermostability in the native sequence context relative to the redesigned sequence context were observed, suggesting the globally redesigned sequence to be unreachable through combining beneficial mutations of the native sequence. Further analyses revealed that by replacing 38 of a total of 48 non-interfacial surface residues at once, ABACUS redesign was able to globally "invert" the protein's charge distribution pattern in an optimized way. Our study demonstrates that computational protein design provides powerful new tools to solve challenging protein engineering problems.
Collapse
Affiliation(s)
- Ruicun Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jichao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Xiong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Haiyan Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.,School of Data Science, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
19
|
Timonina D, Sharapova Y, Švedas V, Suplatov D. Bioinformatic analysis of subfamily-specific regions in 3D-structures of homologs to study functional diversity and conformational plasticity in protein superfamilies. Comput Struct Biotechnol J 2021; 19:1302-1311. [PMID: 33738079 PMCID: PMC7933735 DOI: 10.1016/j.csbj.2021.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Local 3D-structural differences in homologous proteins contribute to functional diversity observed in a superfamily, but so far received little attention as bioinformatic analysis was usually carried out at the level of amino acid sequences. We have developed Zebra3D - the first-of-its-kind bioinformatic software for systematic analysis of 3D-alignments of protein families using machine learning. The new tool identifies subfamily-specific regions (SSRs) - patterns of local 3D-structure (i.e. single residues, loops, or secondary structure fragments) that are spatially equivalent within families/subfamilies, but are different among them, and thus can be associated with functional diversity and function-related conformational plasticity. Bioinformatic analysis of protein superfamilies by Zebra3D can be used to study 3D-determinants of catalytic activity and specific accommodation of ligands, help to prepare focused libraries for directed evolution or assist development of chimeric enzymes with novel properties by exchange of equivalent regions between homologs, and to characterize plasticity in binding sites. A companion Mustguseal web-server is available to automatically construct a 3D-alignment of functionally diverse proteins, thus reducing the minimal input required to operate Zebra3D to a single PDB code. The Zebra3D + Mustguseal combined approach provides the opportunity to systematically explore the value of SSRs in superfamilies and to use this information for protein design and drug discovery. The software is available open-access at https://biokinet.belozersky.msu.ru/Zebra3D.
Collapse
Affiliation(s)
- Daria Timonina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Lenin Hills 1-73, Moscow 119234, Russia
| | - Yana Sharapova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Lenin Hills 1-73, Moscow 119234, Russia
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin Hills 1-73, Moscow 119234, Russia
| | - Vytas Švedas
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Lenin Hills 1-73, Moscow 119234, Russia
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin Hills 1-73, Moscow 119234, Russia
| | - Dmitry Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin Hills 1-73, Moscow 119234, Russia
- Corresponding author.
| |
Collapse
|
20
|
Zhao Y, Li D, Bai X, Luo M, Feng Y, Zhao Y, Ma F, Yang GY. Improved thermostability of proteinase K and recognizing the synergistic effect of Rosetta and FoldX approaches. Protein Eng Des Sel 2021; 34:6404066. [PMID: 34671809 DOI: 10.1093/protein/gzab024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Proteinase K (PRK) is a proteolytic enzyme that has been widely used in industrial applications. However, poor stability has severely limited the uses of PRK. In this work, we used two structure-guided rational design methods, Rosetta and FoldX, to modify PRK thermostability. Fifty-two single amino acid conversion mutants were constructed based on software predictions of residues that could affect protein stability. Experimental characterization revealed that 46% (21 mutants) exhibited enhanced thermostability. The top four variants, D260V, T4Y, S216Q, and S219Q, showed improved half-lives at 69°C by 12.4-, 2.6-, 2.3-, and 2.2-fold that of the parent enzyme, respectively. We also found that selecting mutations predicted by both methods could increase the predictive accuracy over that of either method alone, with 73% of the shared predicted mutations resulting in higher thermostability. In addition to providing promising new variants of PRK in industrial applications, our findings also show that combining these programs may synergistically improve their predictive accuracy.
Collapse
Affiliation(s)
- Yang Zhao
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, People's Republic of China
| | - Daixi Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, People's Republic of China
| | - Xue Bai
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, People's Republic of China
| | - Manjie Luo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, People's Republic of China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, People's Republic of China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, People's Republic of China
| | - Fuqiang Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Rd., Suzhou 215163, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, People's Republic of China
| |
Collapse
|
21
|
Winkler C, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:55-71. [PMID: 33532569 PMCID: PMC7844857 DOI: 10.1021/acscentsci.0c01496] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.
Collapse
Affiliation(s)
- Christoph
K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Joerg H. Schrittwieser
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
- Field
of Excellence BioHealth − University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
22
|
Suplatov D, Sharapova Y, Geraseva E, Švedas V. Zebra2: advanced and easy-to-use web-server for bioinformatic analysis of subfamily-specific and conserved positions in diverse protein superfamilies. Nucleic Acids Res 2020; 48:W65-W71. [PMID: 32313959 PMCID: PMC7319439 DOI: 10.1093/nar/gkaa276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Zebra2 is a highly automated web-tool to search for subfamily-specific and conserved positions (i.e. the determinants of functional diversity as well as the key catalytic and structural residues) in protein superfamilies. The bioinformatic analysis is facilitated by Mustguseal—a companion web-server to automatically collect and superimpose a large representative set of functionally diverse homologs with high structure similarity but low sequence identity to the selected query protein. The results are automatically prioritized and provided at four information levels to facilitate the knowledge-driven expert selection of the most promising positions on-line: as a sequence similarity network; interfaces to sequence-based and 3D-structure-based analysis of conservation and variability; and accompanied by the detailed annotation of proteins accumulated from the integrated databases with links to the external resources. The integration of Zebra2 and Mustguseal web-tools provides the first of its kind out-of-the-box open-access solution to conduct a systematic analysis of evolutionarily related proteins implementing different functions within a shared 3D-structure of the superfamily, determine common and specific patterns of function-associated local structural elements, assist to select hot-spots for rational design and to prepare focused libraries for directed evolution. The web-servers are free and open to all users at https://biokinet.belozersky.msu.ru/zebra2, no login required.
Collapse
Affiliation(s)
- Dmitry Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Lenin Hills 1-73, Moscow 119234, Russia
| | - Yana Sharapova
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Lenin Hills 1-73, Moscow 119234, Russia
| | - Elizaveta Geraseva
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Lenin Hills 1-73, Moscow 119234, Russia
| | - Vytas Švedas
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Lenin Hills 1-73, Moscow 119234, Russia
| |
Collapse
|
23
|
Roda S, Santiago G, Guallar V. Mapping enzyme-substrate interactions: its potential to study the mechanism of enzymes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:1-31. [PMID: 32951809 DOI: 10.1016/bs.apcsb.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the increase of the need to use more sustainable processes for the industry in our society, the modeling of enzymes has become crucial to fully comprehend their mechanism of action and use this knowledge to enhance and design their properties. A lot of methods to study enzymes computationally exist and they have been classified on sequence-based, structure-based, and the more new artificial intelligence-based ones. Albeit the abundance of methods to help predict the function of an enzyme, molecular modeling is crucial when trying to understand the enzyme mechanism, as they aim to correlate atomistic information with experimental data. Among them, methods that simulate the system dynamics at a molecular mechanics level of theory (classical force fields) have shown to offer a comprehensive study. In this book chapter, we will analyze these techniques, emphasizing the importance of precise modeling of enzyme-substrate interactions. In the end, a brief explanation of the transference of the information from research studies to the industry is given accompanied with two examples of family enzymes where their modeling has helped their exploitation.
Collapse
Affiliation(s)
- Sergi Roda
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
24
|
Suplatov D, Sharapova Y, Švedas V. EasyAmber: A comprehensive toolbox to automate the molecular dynamics simulation of proteins. J Bioinform Comput Biol 2020; 18:2040011. [PMID: 32833550 DOI: 10.1142/s0219720020400119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conformational plasticity of the functionally important regions and binding sites in protein/enzyme structures is one of the key factors affecting their function and interaction with substrates/ligands. Molecular dynamics (MD) can address the challenge of accounting for protein flexibility by predicting the time-dependent behavior of a molecular system. It has a potential of becoming a particularly important tool in protein engineering and drug discovery, but requires specialized training and skills, what impedes practical use by many investigators. We have developed the easyAmber - a comprehensive set of programs to automate the molecular dynamics routines implemented in the Amber package. The toolbox can address a wide set of tasks in computational biology struggling to account for protein flexibility. The automated workflow includes a complete set of steps from the initial "static" molecular model to the MD "production run": the full-atom model building, optimization/equilibration of the molecular system, classical/conventional and accelerated molecular dynamics simulations. The easyAmber implements advanced MD protocols, but is highly automated and easy-to-operate to attract a broad audience. The toolbox can be used on a personal desktop station equipped with a compatible gaming GPU-accelerator, as well as help to manage huge workloads on a powerful supercomputer. The software provides an opportunity to operate multiple simulations of different proteins at the same time, thus significantly increasing work efficiency. The easyAmber takes the molecular dynamics to the next level in terms of usability for complex processing of large volumes of data, thus supporting the recent trend away from inefficient "static" approaches in biology toward a deeper understanding of the dynamics in protein structures. The software is freely available for download at https://biokinet.belozersky.msu.ru/easyAmber, no login required.
Collapse
Affiliation(s)
- Dmitry Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physico-chemical Biology and Faculty of Bioengineering and Bioinformatics, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Yana Sharapova
- Lomonosov Moscow State University, Belozersky Institute of Physico-chemical Biology and Faculty of Bioengineering and Bioinformatics, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Vytas Švedas
- Lomonosov Moscow State University, Belozersky Institute of Physico-chemical Biology and Faculty of Bioengineering and Bioinformatics, Leninskiye Gory 1-73, Moscow 119991, Russia
| |
Collapse
|
25
|
Grahame DSA, Dupuis JH, Bryksa BC, Tanaka T, Yada RY. Comparative bioinformatic and structural analyses of pepsin and renin. Enzyme Microb Technol 2020; 141:109632. [PMID: 33051007 DOI: 10.1016/j.enzmictec.2020.109632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022]
Abstract
Pepsin, the archetypal pepsin-like aspartic protease, is irreversibly denatured when exposed to neutral pH conditions whereas renin, a structural homologue of pepsin, is fully stable and optimally active in the same conditions despite sharing highly similar enzyme architecture. To gain insight into the structural determinants of differential aspartic protease pH stability, the present study used comparative bioinformatic and structural analyses. In pepsin, an abundance of polar and aspartic acid residues were identified, a common trait with other acid-stable enzymes. Conversely, renin was shown to have increased levels of basic amino acids. In both pepsin and renin, the solvent exposure of these charged groups was high. Having similar overall acidic residue content, the solvent-exposed basic residues may allow for extensive salt bridge formation in renin, whereas in pepsin, these residues are protonated and serve to form stabilizing hydrogen bonds at low pH. Relative differences in structure and sequence in the turn and joint regions of the β-barrel and ψ-loop in both the N- and C-terminal lobes were identified as regions of interest in defining divergent pH stability. Compared to the structural rigidity of renin, pepsin has more instability associated with the N-terminus, specifically the B/C connector. By contrast, renin exhibits greater C-terminal instability in turn and connector regions. Overall, flexibility differences in connector regions, and amino acid composition, particularly in turn and joint regions of the β-barrel and ψ-loops, likely play defining roles in determining pH stability for renin and pepsin.
Collapse
Affiliation(s)
- Douglas S A Grahame
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - John H Dupuis
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Brian C Bryksa
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Takuji Tanaka
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8 Canada
| | - Rickey Y Yada
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON, N1G 2W1, Canada; Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada.
| |
Collapse
|
26
|
Suplatov D, Timonina D, Sharapova Y, Švedas V. Yosshi: a web-server for disulfide engineering by bioinformatic analysis of diverse protein families. Nucleic Acids Res 2020; 47:W308-W314. [PMID: 31106356 PMCID: PMC6602428 DOI: 10.1093/nar/gkz385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/24/2023] Open
Abstract
Disulfide bonds play a significant role in protein stability, function or regulation but are poorly conserved among evolutionarily related proteins. The Yosshi can help to understand the role of S–S bonds by comparing sequences and structures of homologs with diverse properties and different disulfide connectivity patterns within a common structural fold of a superfamily, and assist to select the most promising hot-spots to improve stability of proteins/enzymes or modulate their functions by introducing naturally occurring crosslinks. The bioinformatic analysis is supported by the integrated Mustguseal web-server to construct large structure-guided sequence alignments of functionally diverse protein families that can include thousands of proteins based on all available information in public databases. The Yosshi+Mustguseal is a new integrated web-tool for a systematic homology-driven analysis and engineering of S–S bonds that facilitates a broader interpretation of disulfides not just as a factor of structural stability, but rather as a mechanism to implement functional diversity within a superfamily. The results can be downloaded as a content-rich PyMol session file or further studied online using the HTML5-based interactive analysis tools. Both web-servers are free and open to all users at https://biokinet.belozersky.msu.ru/yosshi and there is no login requirement.
Collapse
Affiliation(s)
- Dmitry Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Vorobjev hills 1-73, Moscow 119991, Russia
| | - Daria Timonina
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Vorobjev hills 1-73, Moscow 119991, Russia
| | - Yana Sharapova
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Vorobjev hills 1-73, Moscow 119991, Russia
| | - Vytas Švedas
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Vorobjev hills 1-73, Moscow 119991, Russia
| |
Collapse
|
27
|
Jana K, Mehra R, Dehury B, Blundell TL, Kepp KP. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics. Proteins 2020; 88:1233-1250. [PMID: 32368818 DOI: 10.1002/prot.25897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Protein thermostability is important to evolution, diseases, and industrial applications. Proteins use diverse molecular strategies to achieve stability at high temperature, yet reducing the entropy of unfolding seems required. We investigated five small α-proteins and five β-proteins with known, distinct structures and thermostability (Tm ) using multi-seed molecular dynamics simulations at 300, 350, and 400 K. The proteins displayed diverse changes in hydrogen bonding, solvent exposure, and secondary structure with no simple relationship to Tm . Our dynamics were in good agreement with experimental B-factors at 300 K and insensitive to force-field choice. Despite the very distinct structures, the native-state (300 + 350 K) free-energy landscapes (FELs) were significantly broader for the two most thermostable proteins and smallest for the three least stable proteins in both the α- and β-group and with both force fields studied independently (tailed t-test, 95% confidence level). Our results suggest that entropic ensembles stabilize proteins at high temperature due to reduced entropy of unfolding, viz., ΔG = ΔH - TΔS. Supporting this mechanism, the most thermostable proteins were also the least kinetically stable, consistent with broader FELs, typified by villin headpiece and confirmed by specific comparison to a mesophilic ortholog of Thermus thermophilus apo-pyrophosphate phosphohydrolase. We propose that molecular strategies of protein thermostabilization, although diverse, tend to converge toward highest possible entropy in the native state consistent with the functional requirements. We speculate that this tendency may explain why many proteins are not optimally structured and why molten-globule states resemble native proteins so much.
Collapse
Affiliation(s)
| | | | - Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
28
|
Thomas A, Cutlan R, Finnigan W, van der Giezen M, Harmer N. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Commun Biol 2019; 2:429. [PMID: 31799431 PMCID: PMC6874671 DOI: 10.1038/s42003-019-0677-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
Carboxylic acid reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) - a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis.
Collapse
Affiliation(s)
- Adam Thomas
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Rhys Cutlan
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - William Finnigan
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Mark van der Giezen
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
- Centre for Organelle Research, University of Stavanger, Richard Johnsens gate 4, Stavanger, 4021 Norway
| | - Nicholas Harmer
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
29
|
Chen Q, Xiao Y, Zhang W, Mu W. Current methods and applications in computational protein design for food industry. Crit Rev Food Sci Nutr 2019; 60:3259-3270. [DOI: 10.1080/10408398.2019.1682513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaqin Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
30
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
31
|
Suplatov DA, Kopylov KE, Popova NN, Voevodin VV, Švedas VK. Mustguseal: a server for multiple structure-guided sequence alignment of protein families. Bioinformatics 2019; 34:1583-1585. [PMID: 29309510 DOI: 10.1093/bioinformatics/btx831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/21/2017] [Indexed: 01/23/2023] Open
Abstract
Motivation Comparative analysis of homologous proteins in a functionally diverse superfamily is a valuable tool at studying structure-function relationship, but represents a methodological challenge. Results The Mustguseal web-server can automatically build large structure-guided sequence alignments of functionally diverse protein families that include thousands of proteins basing on all available information about their structures and sequences in public databases. Superimposition of protein structures is implemented to compare evolutionarily distant relatives, whereas alignment of sequences is used to compare close homologues. The final alignment can be downloaded for a local use or operated on-line with the built-in interactive tools and further submitted to the integrated sister web-servers of Mustguseal to analyze conserved, subfamily-specific and co-evolving residues at studying a protein function and regulation, designing improved enzyme variants for practical applications and selective ligands to modulate functional properties of proteins. Availability and implementation Freely available on the web at https://biokinet.belozersky.msu.ru/mustguseal. Contact vytas@belozersky.msu.ru. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Nina N Popova
- Faculty of Computational Mathematics and Cybernetics
| | - Vladimir V Voevodin
- Faculty of Computational Mathematics and Cybernetics.,Research Computing Center of the Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vytas K Švedas
- Belozersky Institute of Physicochemical Biology.,Faculty of Bioengineering and Bioinformatics
| |
Collapse
|
32
|
Gao X, Yin Y, Yan J, Zhang J, Ma H, Zhou C. Separation, biochemical characterization and salt-tolerant mechanisms of alkaline protease from Aspergillus oryzae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3359-3366. [PMID: 30584796 DOI: 10.1002/jsfa.9553] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The salt tolerance of proteases secreted by Aspergillus oryzae 3.042 closely relates to the utilization of raw materials and the quality of soy sauce. However, little is known about the salt-tolerant proteases and their salt-tolerant mechanisms. RESULTS In this study, we isolated and identified a salt-tolerant alkaline protease (AP, approximately 29 kDa) produced by A. oryzae 3.042. It was considered as a metal-ion-independent serine protease. The optimum and stable pH values were both pH 9.0 and the optimum temperature was 40 °C. Over 20% relative activity of AP remained in the presence of 3.0 mol L-1 NaCl after 7 days, but its Km and Vmax were only mildly influenced by the presence of 3.0 mol L-1 NaCl, indicating its outstanding salt tolerance. Furthermore, AP was more stable than non-salt-tolerant protease at high salinity. The salt-tolerant mechanisms of AP could be due to more salt bridges, higher proportion of ordered secondary structures and stronger hydrophobic amino acid residues in the interior. CONCLUSIONS The above results are vital for maintaining, activating and/or modulating the activity of AP in high-salt environments. They would also provide theoretical guidance for the modification of AP and the engineering of A. oryzae 3.042 so as to secrete more AP. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yiyun Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jingkun Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junke Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Coupled molecular dynamics mediate long- and short-range epistasis between mutations that affect stability and aggregation kinetics. Proc Natl Acad Sci U S A 2018; 115:E11043-E11052. [PMID: 30404916 PMCID: PMC6255212 DOI: 10.1073/pnas.1810324115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple mutations are typically required to significantly improve protein stability or aggregation kinetics. However, when several substitutions are made in a single protein, the mutations can potentially interact in a nonadditive manner, resulting in epistatic effects, which can hamper protein-engineering strategies to improve thermostability or aggregation kinetics. Here, we have examined the role of protein dynamics in mediating epistasis between pairs of mutations. With Escherichia coli transketolase (TK) as a model, we explored the epistatic interactions between two single variants H192P and A282P, and also between the double-mutant H192P/A282P and two single variants, I365L or G506A. Epistasis was determined for several measures of protein stability, including the following: the free-energy barrier to kinetic inactivation, ∆∆G ‡; thermal transition midpoint temperatures, T m; and aggregation onset temperatures, T agg Nonadditive epistasis was observed between neighboring mutations as expected, but also for distant mutations located in the surface and core regions of different domains. Surprisingly, the epistatic behaviors for each measure of stability were often different for any given pairwise recombination, highlighting that kinetic and thermodynamic stabilities do not always depend on the same structural features. Molecular-dynamics simulations and a pairwise cross-correlation analysis revealed that mutations influence the dynamics of their local environment, but also in some cases the dynamics of regions distant in the structure. This effect was found to mediate epistatic interactions between distant mutations and could therefore be exploited in future protein-engineering strategies.
Collapse
|
34
|
Fesko K, Suplatov D, Švedas V. Bioinformatic analysis of the fold type I PLP-dependent enzymes reveals determinants of reaction specificity in l-threonine aldolase from Aeromonas jandaei. FEBS Open Bio 2018; 8:1013-1028. [PMID: 29928580 PMCID: PMC5986058 DOI: 10.1002/2211-5463.12441] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/27/2018] [Indexed: 01/19/2023] Open
Abstract
Understanding the role of specific amino acid residues in the molecular mechanism of a protein's function is one of the most challenging problems in modern biology. A systematic bioinformatic analysis of protein families and superfamilies can help in the study of structure–function relationships and in the design of improved variants of enzymes/proteins, but represents a methodological challenge. The pyridoxal‐5′‐phosphate (PLP)‐dependent enzymes are catalytically diverse and include the aspartate aminotransferase superfamily which implements a common structural framework known as type fold I. In this work, the recently developed bioinformatic online methods Mustguseal and Zebra were used to collect and study a large representative set of the aspartate aminotransferase superfamily with high structural, but low sequence similarity to l‐threonine aldolase from Aeromonas jandaei (LTAaj), in order to identify conserved positions that provide general properties in the superfamily, and to reveal family‐specific positions (FSPs) responsible for functional diversity. The roles of the identified residues in the catalytic mechanism and reaction specificity of LTAaj were then studied by experimental site‐directed mutagenesis and molecular modelling. It was shown that FSPs determine reaction specificity by coordinating the PLP cofactor in the enzyme's active centre, thus influencing its activation and the tautomeric equilibrium of the intermediates, which can be used as hotspots to modulate the protein's functional properties. Mutagenesis at the selected FSPs in LTAaj led to a reduction in a native catalytic activity and increased the rate of promiscuous reactions. The results provide insight into the structural basis of catalytic promiscuity of the PLP‐dependent enzymes and demonstrate the potential of bioinformatic analysis in studying structure–function relationship in protein superfamilies.
Collapse
Affiliation(s)
- Kateryna Fesko
- Institute of Organic Chemistry Graz University of Technology Austria
| | - Dmitry Suplatov
- Belozersky Institute of Physicochemical Biology Lomonosov Moscow State University Russia
| | - Vytas Švedas
- Belozersky Institute of Physicochemical Biology Lomonosov Moscow State University Russia
| |
Collapse
|
35
|
Karasev DA, Veselovsky AV, Lagunin AA, Filimonov DA, Sobolev BN. Determination of Amino Acid Residues Responsible for Specific Interaction of Protein Kinases with Small Molecule Inhibitors. Mol Biol 2018. [DOI: 10.1134/s002689331802005x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Gao X, Yin Y, Zhou C. Purification, characterisation and salt-tolerance molecular mechanisms of aspartyl aminopeptidase from Aspergillus oryzae 3.042. Food Chem 2018; 240:377-385. [DOI: 10.1016/j.foodchem.2017.07.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/03/2017] [Accepted: 07/17/2017] [Indexed: 11/15/2022]
|
37
|
Gamboa-Melendez H, Larroude M, Park YK, Trebul P, Nicaud JM, Ledesma-Amaro R. Synthetic Biology to Improve the Production of Lipases and Esterases (Review). Methods Mol Biol 2018; 1835:229-242. [PMID: 30109656 DOI: 10.1007/978-1-4939-8672-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synthetic biology is an emergent field of research whose aim is to make biology an engineering discipline, thus permitting to design, control, and standardize biological processes. Synthetic biology is therefore expected to boost the development of biotechnological processes such as protein production and enzyme engineering, which can be significantly relevant for lipases and esterases.
Collapse
Affiliation(s)
- Heber Gamboa-Melendez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Macarena Larroude
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Young Kyoung Park
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pauline Trebul
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Sythetic Biology, Imperial College London, London, UK.
| |
Collapse
|
38
|
Suplatov D, Sharapova Y, Timonina D, Kopylov K, Švedas V. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families. J Bioinform Comput Biol 2017; 16:1840005. [PMID: 29361894 DOI: 10.1142/s021972001840005x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The visualCMAT web-server was designed to assist experimental research in the fields of protein/enzyme biochemistry, protein engineering, and drug discovery by providing an intuitive and easy-to-use interface to the analysis of correlated mutations/co-evolving residues. Sequence and structural information describing homologous proteins are used to predict correlated substitutions by the Mutual information-based CMAT approach, classify them into spatially close co-evolving pairs, which either form a direct physical contact or interact with the same ligand (e.g. a substrate or a crystallographic water molecule), and long-range correlations, annotate and rank binding sites on the protein surface by the presence of statistically significant co-evolving positions. The results of the visualCMAT are organized for a convenient visual analysis and can be downloaded to a local computer as a content-rich all-in-one PyMol session file with multiple layers of annotation corresponding to bioinformatic, statistical and structural analyses of the predicted co-evolution, or further studied online using the built-in interactive analysis tools. The online interactivity is implemented in HTML5 and therefore neither plugins nor Java are required. The visualCMAT web-server is integrated with the Mustguseal web-server capable of constructing large structure-guided sequence alignments of protein families and superfamilies using all available information about their structures and sequences in public databases. The visualCMAT web-server can be used to understand the relationship between structure and function in proteins, implemented at selecting hotspots and compensatory mutations for rational design and directed evolution experiments to produce novel enzymes with improved properties, and employed at studying the mechanism of selective ligand's binding and allosteric communication between topologically independent sites in protein structures. The web-server is freely available at https://biokinet.belozersky.msu.ru/visualcmat and there are no login requirements.
Collapse
Affiliation(s)
- Dmitry Suplatov
- 1 Belozersky Institute of Physicochemical Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Yana Sharapova
- 1 Belozersky Institute of Physicochemical Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Daria Timonina
- 1 Belozersky Institute of Physicochemical Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Kirill Kopylov
- 1 Belozersky Institute of Physicochemical Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Vytas Švedas
- 1 Belozersky Institute of Physicochemical Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| |
Collapse
|
39
|
Abstract
This article defines protein stability, emphasizes its importance and surveys the field of protein stabilization, with summary reference to a selection of 2009-2015 publications. One can enhance stability by, in particular, protein engineering strategies and by chemical modification (including conjugation) in solution. General protocols are set out on how to measure a given protein's (1) kinetic thermal stability, and (2) oxidative stability, and (3) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
40
|
Gihaz S, Weiser D, Dror A, Sátorhelyi P, Jerabek-Willemsen M, Poppe L, Fishman A. Creating an Efficient Methanol-Stable Biocatalyst by Protein and Immobilization Engineering Steps towards Efficient Biosynthesis of Biodiesel. CHEMSUSCHEM 2016; 9:3161-3170. [PMID: 27778473 DOI: 10.1002/cssc.201601158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Two ternary sol-gel matrices, an octyltriethoxysilane-based aliphatic matrix and a phenyltriethoxysilane (PTEOS)-based aromatic matrix, were used to immobilize a methanol-stable variant of lipase from Geobacillus stearothermophilus T6 for the synthesis of biodiesel from waste oil. Superior thermal stability of the mutant versus the wildtype in methanol was confirmed by intrinsic protein fluorescence measurements. The influence of skim milk and soluble E. coli lysate proteins as bulking and stabilizing agents in conjunction with sol-gel entrapment were investigated. E. coli lysate proteins were better stabilizing agents of the purified lipase mutant than skim milk, as evidenced by reverse engineering of the aromatic-based system. This was also shown for commercial Candida antarctica lipase B (CaLB) and Thermomyces lanuginosus lipase (TLL). Uniform, dense, and nonaggregated particles imaged by scanning electron microscopy and a small particle size of 13 μm pertaining to the system comprising PTEOS and E. coli lysate proteins correlated well with high esterification activity. Combining protein and immobilization engineering resulted in a durable biocatalyst with efficient recycling ability and high biodiesel conversion rates.
Collapse
Affiliation(s)
- Shalev Gihaz
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Diána Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
- Fermentia Microbiological Ltd., Berlini út 47-49, Budapest, H-1045, Hungary
- SynBiocat Ltd, Lövöház u 19/1, H-1023, Budapest, Hungary
| | - Adi Dror
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Péter Sátorhelyi
- Fermentia Microbiological Ltd., Berlini út 47-49, Budapest, H-1045, Hungary
| | | | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
- SynBiocat Ltd, Lövöház u 19/1, H-1023, Budapest, Hungary
- Biocatalysis and Biotransformation Research Group, Babes-Bolyai University of Cluj-Napoca, Arany János str. 11, RO-400028, Cluj-Napoca, Romania
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
41
|
Ma F, Xie Y, Luo M, Wang S, Hu Y, Liu Y, Feng Y, Yang GY. Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum. Synth Syst Biotechnol 2016; 1:195-206. [PMID: 29062943 PMCID: PMC5640797 DOI: 10.1016/j.synbio.2016.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 10/29/2022] Open
Abstract
Cell-free synthetic biology system organizes multiple enzymes (parts) from different sources to implement unnatural catalytic functions. Highly adaption between the catalytic parts is crucial for building up efficient artificial biosynthetic systems. Protein engineering is a powerful technology to tailor various enzymatic properties including catalytic efficiency, substrate specificity, temperature adaptation and even achieve new catalytic functions. However, altering enzymatic pH optimum still remains a challenging task. In this study, we proposed a novel sequence homolog-based protein engineering strategy for shifting the enzymatic pH optimum based on statistical analyses of sequence-function relationship data of enzyme family. By two statistical procedures, artificial neural networks (ANNs) and least absolute shrinkage and selection operator (Lasso), five amino acids in GH11 xylanase family were identified to be related to the evolution of enzymatic pH optimum. Site-directed mutagenesis of a thermophilic xylanase from Caldicellulosiruptor bescii revealed that four out of five mutations could alter the enzymatic pH optima toward acidic condition without compromising the catalytic activity and thermostability. Combination of the positive mutants resulted in the best mutant M31 that decreased its pH optimum for 1.5 units and showed increased catalytic activity at pH < 5.0 compared to the wild-type enzyme. Structure analysis revealed that all the mutations are distant from the active center, which may be difficult to be identified by conventional rational design strategy. Interestingly, the four mutation sites are clustered at a certain region of the enzyme, suggesting a potential "hot zone" for regulating the pH optima of xylanases. This study provides an efficient method of modulating enzymatic pH optima based on statistical sequence analyses, which can facilitate the design and optimization of suitable catalytic parts for the construction of complicated cell-free synthetic biology systems.
Collapse
Affiliation(s)
- Fuqiang Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Manjie Luo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - You Hu
- School of Statistics, East China Normal University, Shanghai 200241, China
| | - Yukun Liu
- School of Statistics, East China Normal University, Shanghai 200241, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
42
|
Li G, Zhang H, Sun Z, Liu X, Reetz MT. Multiparameter Optimization in Directed Evolution: Engineering Thermostability, Enantioselectivity, and Activity of an Epoxide Hydrolase. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich
Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Hui Zhang
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071 Tianjin, People’s Republic of China
| | - Zhoutong Sun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich
Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Xinqi Liu
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071 Tianjin, People’s Republic of China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich
Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
43
|
Suplatov D, Popova N, Zhumatiy S, Voevodin V, Švedas V. Parallel workflow manager for non-parallel bioinformatic applications to solve large-scale biological problems on a supercomputer. J Bioinform Comput Biol 2016; 14:1641008. [DOI: 10.1142/s0219720016410080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rapid expansion of online resources providing access to genomic, structural, and functional information associated with biological macromolecules opens an opportunity to gain a deeper understanding of the mechanisms of biological processes due to systematic analysis of large datasets. This, however, requires novel strategies to optimally utilize computer processing power. Some methods in bioinformatics and molecular modeling require extensive computational resources. Other algorithms have fast implementations which take at most several hours to analyze a common input on a modern desktop station, however, due to multiple invocations for a large number of subtasks the full task requires a significant computing power. Therefore, an efficient computational solution to large-scale biological problems requires both a wise parallel implementation of resource-hungry methods as well as a smart workflow to manage multiple invocations of relatively fast algorithms. In this work, a new computer software mpiWrapper has been developed to accommodate non-parallel implementations of scientific algorithms within the parallel supercomputing environment. The Message Passing Interface has been implemented to exchange information between nodes. Two specialized threads — one for task management and communication, and another for subtask execution — are invoked on each processing unit to avoid deadlock while using blocking calls to MPI. The mpiWrapper can be used to launch all conventional Linux applications without the need to modify their original source codes and supports resubmission of subtasks on node failure. We show that this approach can be used to process huge amounts of biological data efficiently by running non-parallel programs in parallel mode on a supercomputer. The C++ source code and documentation are available from http://biokinet.belozersky.msu.ru/mpiWrapper .
Collapse
Affiliation(s)
- Dmitry Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Nina Popova
- Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Leninskiye Gory 1-52, Moscow 119991, Russia
| | - Sergey Zhumatiy
- Lomonosov Moscow State University, Research Computing Center, Leninskiye Gory 1-4, Moscow 119991, Russia
| | - Vladimir Voevodin
- Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Leninskiye Gory 1-52, Moscow 119991, Russia
- Lomonosov Moscow State University, Research Computing Center, Leninskiye Gory 1-4, Moscow 119991, Russia
| | - Vytas Švedas
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology and Faculty of Bioengineering and Bioinformatics, Leninskiye Gory 1-73, Moscow 119991, Russia
| |
Collapse
|
44
|
Modern Technologies for Synthesizing Drug Substances: Toward Highly Efficient Drug Production. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1366-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Liu H, Gao YS, Chen XJ, Chen Z, Zhou HM, Yan YB, Gong H. A single residue substitution accounts for the significant difference in thermostability between two isoforms of human cytosolic creatine kinase. Sci Rep 2016; 6:21191. [PMID: 26879258 PMCID: PMC4754747 DOI: 10.1038/srep21191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/19/2016] [Indexed: 11/14/2022] Open
Abstract
Creatine kinase (CK) helps maintain homeostasis of intracellular ATP level by catalyzing the reversible phosphotransfer between ATP and phosphocreatine. In humans, there are two cytosolic CK isoforms, the muscle-type (M) and the brain-type (B), which frequently function as homodimers (hMMCK and hBBCK). Interestingly, these isoenzymes exhibit significantly different thermostabilities, despite high similarity in amino acid sequences and tertiary structures. In order to investigate the mechanism of this phenomenon, in this work, we first used domain swapping and site-directed mutagenesis to search for the key residues responsible for the isoenzyme-specific thermostability. Strikingly, the difference in thermostability was found to principally arise from one single residue substitution at position 36 (Pro in hBBCK vs. Leu in hMMCK). We then engaged the molecular dynamics simulations to study the molecular mechanism. The calculations imply that the P36L substitution introduces additional local interactions around residue 36 and thus further stabilizes the dimer interface through a complex interaction network, which rationalizes the observation that hMMCK is more resistant to thermal inactivation than hBBCK. We finally confirmed this molecular explanation through thermal inactivation assays on Asp36 mutants that were proposed to devastate the local interactions and thus the dimer associations in both isoenzymes.
Collapse
Affiliation(s)
- Huihui Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan-Song Gao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Xiang-Jun Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhe Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Karasev DA, Veselovsky AV, Oparina NY, Filimonov DA, Sobolev BN. Prediction of amino acid positions specific for functional groups in a protein family based on local sequence similarity. J Mol Recognit 2015; 29:159-69. [DOI: 10.1002/jmr.2515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Dmitry A. Karasev
- Russian National Research Medical University; Moscow Russia
- Laboratory of Structure-Function Based Drug Design; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| | - Alexander V. Veselovsky
- Laboratory of Structure Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| | - Nina Yu. Oparina
- Department of Medical Biochemistry and Microbiology; Uppsala University; Uppsala Sweden
- Engelhardt Institute of Molecular Biology; Moscow Russia
| | - Dmitry A. Filimonov
- Laboratory of Structure Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| | - Boris N. Sobolev
- Laboratory of Structure-Function Based Drug Design; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| |
Collapse
|
47
|
Panigrahi P, Chand D, Mukherji R, Ramasamy S, Suresh CG. Sequence and structure-based comparative analysis to assess, identify and improve the thermostability of penicillin G acylases. ACTA ACUST UNITED AC 2015; 42:1493-506. [DOI: 10.1007/s10295-015-1690-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/14/2015] [Indexed: 11/28/2022]
Abstract
Abstract
Penicillin acylases are enzymes employed by the pharmaceutical industry for the manufacture of semi-synthetic penicillins. There is a continuous demand for thermostable and alkalophilic enzymes in such applications. We have carried out a computational analysis of known penicillin G acylases (PGAs) in terms of their thermostable nature using various protein-stabilizing factors. While the presence of disulfide bridges was considered initially to screen putative thermostable PGAs from the database, various other factors such as high arginine to lysine ratio, less content of thermolabile amino acids, presence of proline in β-turns, more number of ion-pair and other non-bonded interactions were also considered for comparison. A modified consensus approach designed could further identify stabilizing residue positions by site-specific comparison between mesostable and thermostable PGAs. A most likely thermostable enzyme identified from the analysis was PGA from Paracoccus denitrificans (PdPGA). This was cloned, expressed and tested for its thermostable nature using biochemical and biophysical experiments. The consensus site-specific sequence-based approach predicted PdPGA to be more thermostable than Escherichia coli PGA, but not as thermostable as the PGA from Achromobacter xylosoxidans. Experimental data showed that PdPGA was comparatively less thermostable than Achromobacter xylosoxidans PGA, although thermostability factors favored a much higher stability. Despite being mesostable, PdPGA being active and stable at alkaline pH is an advantage. Finally, several residue positions could be identified in PdPGA, which upon mutation selectively could improve the thermostability of the enzyme.
Collapse
Affiliation(s)
- Priyabrata Panigrahi
- grid.417643.3 0000000449057788 Division of Biochemical Sciences CSIR-National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| | - Deepak Chand
- grid.417643.3 0000000449057788 Division of Biochemical Sciences CSIR-National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| | - Ruchira Mukherji
- grid.417643.3 0000000449057788 Division of Biochemical Sciences CSIR-National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| | - Sureshkumar Ramasamy
- grid.417643.3 0000000449057788 Division of Biochemical Sciences CSIR-National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| | - C G Suresh
- grid.417643.3 0000000449057788 Division of Biochemical Sciences CSIR-National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| |
Collapse
|
48
|
Lotti M, Secundo F. Editorial: Protein stabilization - crossroad for protein-based processes and products. Biotechnol J 2015; 10:341-2. [DOI: 10.1002/biot.201500064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|