1
|
Reyes SJ, Lemire L, Durocher Y, Voyer R, Henry O, Pham PL. Investigating the metabolic load of monoclonal antibody production conveyed to an inducible CHO cell line using a transfer-rate online monitoring system. J Biotechnol 2025; 399:47-62. [PMID: 39828082 DOI: 10.1016/j.jbiotec.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Shake flasks are a foundational tool in early process development by allowing high throughput exploration of the design space. However, lack of online data at this scale can hamper rapid decision making. Oxygen transfer rate (OTR) monitoring has been readily applied as an online process characterization tool at the benchtop bioreactor scale. Recent advances in modern sensing technology have allowed OTR monitoring to be available at the shake flask level. It is now possible to multiplex time-of-action (e.g., Induction, temperature shift, pH shift, feeding initiation, point of harvest) characterization studies by relying on careful analysis of OTR profile kinetics. As a result, there is potential to save time and capital expenditures while exploring process intensification studies though accurate and physiologically relevant online data. In this article, we detail the application of OTR monitoring to characterize the impact that recombinant protein production has on an inducible CHO cell line expressing Palivizumab. We then test out time-of-action studies to intensify protein production outcomes. We observe that recombinant protein expression causes a metabolic load that diminishes potential biomass growth. As a result, when compared to a control standard process, delaying induction and temperature shift has the potential to improve viable cell densities (VCD) by 2-fold thus increasing recombinant protein yield by over 30 %. The study also demonstrates that OTR can serve as a useful tool to detect cessation of exponential growth. Consequently, time-of-action points that are characteristic of inducible systems can be formulated accurately and reliably to maximize production performance.
Collapse
Affiliation(s)
- Sebastian-Juan Reyes
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada; Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Lucas Lemire
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada; Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | - Robert Voyer
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada.
| | - Phuong Lan Pham
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada.
| |
Collapse
|
2
|
Torres M, Hawke E, Hoare R, Scholey R, Pybus LP, Young A, Hayes A, Dickson AJ. Deciphering molecular drivers of lactate metabolic shift in mammalian cell cultures. Metab Eng 2025; 88:25-39. [PMID: 39643154 DOI: 10.1016/j.ymben.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Lactate metabolism plays a critical role in mammalian cell bioprocessing, influencing cellular performance and productivity. The transition from lactate production to consumption, known as lactate metabolic shift, is highly beneficial and has been shown to extend culture lifespan and enhance productivity, yet its molecular drivers remain poorly understood. Here, we have explored the mechanisms that underpin this metabolic shift through two case studies, illustrating environmental- and genetic-driven factors. We characterised these study cases at process, metabolic and transcriptomic levels. Our findings indicate that glutamine depletion coincided with the timing of the lactate metabolic shift, significantly affecting cell growth, productivity and overall metabolism. Transcriptome analysis revealed dynamic regulation the ATF4 pathway, involved in the amino acid (starvation) response, where glutamine depletion activates ATF4 gene and its targets. Manipulating ATF4 expression through overexpression and knockdown experiments showed significant changes in metabolism of glutamine and lactate, impacting cellular performance. Overexpression of ATF4 increased cell growth and glutamine consumption, promoting a lactate metabolic shift. In contrast, ATF4 downregulation decreased cell proliferation and glutamine uptake, leading to production of lactate without any signs of lactate shift. These findings underscore a critical role for ATF4 in regulation of glutamine and lactate metabolism, related to phasic patterns of growth during CHO cell culture. This study offers unique insight into metabolic reprogramming during the lactate metabolic shift and the molecular drivers that determine cell status during culture.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, University of Manchester, Manchester, UK.
| | - Ellie Hawke
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - Robyn Hoare
- FUJIFILM Diosynth Biotechnologies, Billingham, TS23 1LH, UK
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, UK
| | - Leon P Pybus
- FUJIFILM Diosynth Biotechnologies, Billingham, TS23 1LH, UK
| | - Alison Young
- FUJIFILM Diosynth Biotechnologies, Billingham, TS23 1LH, UK
| | - Andrew Hayes
- Genomic Technologies Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Shi J, Ho A, Snyder CE, Chaney EJ, Sorrells JE, Alex A, Talaban R, Spillman DR, Marjanovic M, Doan M, Finka G, Hood SR, Boppart SA. Accelerating biopharmaceutical cell line selection with label-free multimodal nonlinear optical microscopy and machine learning. Commun Biol 2025; 8:157. [PMID: 39900674 PMCID: PMC11790971 DOI: 10.1038/s42003-025-07596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The selection of high-performing cell lines is crucial for biopharmaceutical production but is often time-consuming and labor-intensive. We investigated label-free multimodal nonlinear optical microscopy for non-perturbative profiling of biopharmaceutical cell lines based on their intrinsic molecular contrast. Employing simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy with fluorescence lifetime imaging microscopy (FLIM), we characterized Chinese hamster ovary (CHO) cell lines at early passages (0-2). A machine learning (ML)-assisted analysis pipeline leveraged high-dimensional information to classify single cells into their respective lines. Remarkably, the monoclonal cell line classifiers achieved balanced accuracies exceeding 96.8% as early as passage 2. Correlation features and FLIM modality played pivotal roles in early classification. This integrated optical bioimaging and machine learning approach presents a promising solution to expedite cell line selection process while ensuring identification of high-performing biopharmaceutical cell lines. The techniques have potential for broader single-cell characterization applications in stem cell research, immunology, cancer biology and beyond.
Collapse
Affiliation(s)
- Jindou Shi
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alexander Ho
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Corey E Snyder
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Janet E Sorrells
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Pre-Clinical Sciences, Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Remben Talaban
- Biopharm Process Research, GlaxoSmithKline, Stevenage, UK
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Minh Doan
- Pre-Clinical Sciences, Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Gary Finka
- Biopharm Process Research, GlaxoSmithKline, Stevenage, UK
| | - Steve R Hood
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Pre-Clinical Sciences, Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Reyes S, Pham PL, Durocher Y, Henry O. CHO stable pool fed-batch process development of SARS-CoV-2 spike protein production: Impact of aeration conditions and feeding strategies. Biotechnol Prog 2025; 41:e3507. [PMID: 39329353 PMCID: PMC11831418 DOI: 10.1002/btpr.3507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Technology scale-up and transfer are a fundamental and critical part of process development in biomanufacturing. Important bioreactor hydrodynamic characteristics such as working volume, overhead gas flow rate, volumetric power input (P/V), impeller type, agitation regimen, sparging aeration strategy, sparger type, and kLa must be selected based on key performance indicators (KPI) to ensure a smooth and seamless process scale-up and transfer. Finding suitable operational setpoints and developing an efficient feeding regimen to ensure process efficacy and consistency are instrumental. In this investigation, process development of a cumate inducible Chinese hamster ovary (CHO) stable pool expressing trimeric SARS-CoV-2 spike protein in 1.8 L benchtop stirred-tank bioreactors is detailed. Various dissolved oxygen levels and aeration air caps were studied to determine their impact on cell growth and metabolism, culture longevity, and endpoint product titers. Once hydrodynamic conditions were tuned to an optimal zone, various feeding strategies were explored to increase culture performance. Dynamic feedings such as feeding based on current culture volume, viable cell density (VCD), oxygen uptake rate (OUR), and bio-capacitance signals were tested and compared to standard bolus addition. Increases in integral of viable cell concentration (IVCC) (1.25-fold) and protein yield (2.52-fold), as well as greater culture longevity (extension of 5 days) were observed in dynamic feeding strategies when compared to periodic bolus feeding. Our study emphasizes the benefits of designing feeding strategies around metabolically relevant signals such as OUR and bio-capacitance signals.
Collapse
Affiliation(s)
- Sebastian‐Juan Reyes
- Department of Chemical EngineeringPolytechnique MontrealQuebecCanada
- Human Health Therapeutics Research CentreNational Research Council CanadaMontréal, QuebecCanada
| | - Phuong Lan Pham
- Human Health Therapeutics Research CentreNational Research Council CanadaMontréal, QuebecCanada
| | - Yves Durocher
- Human Health Therapeutics Research CentreNational Research Council CanadaMontréal, QuebecCanada
| | - Olivier Henry
- Department of Chemical EngineeringPolytechnique MontrealQuebecCanada
| |
Collapse
|
5
|
Wu T, Norouzi M, Park K. Dialysis rolled scaffold bioreactor allows extended production of monoclonal antibody with reduced media use. Biotechnol J 2024; 19:e2400249. [PMID: 39212207 DOI: 10.1002/biot.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Rapidly expanding biopharmaceutical market demands more cost-effective platforms to produce protein therapeutics. To this end, novel approaches, such as perfusion culture or concentrated fed-batch, have been explored for higher yields and lower manufacturing costs. Although these new approaches produced promising results, but their wide-spread use in the industry is still limited. In this study, a dialysis rolled scaffold bioreactor was presented for long-term production of monoclonal antibodies with reduced media consumption. Media dialysis can selectively remove cellular bio-wastes without losing cells or produced recombinant proteins. The dialysis process was streamlined to significantly improve its efficiency. Then, extended culture of recombinant CHO cells for 41 days was successfully demonstrated with consistent production rate and minimal media consumption. The unique configuration of the developed bioreactor allows efficient dialysis for media management, as well as rapid media exchange to harvest produced recombinant proteins before they degrade. Taken together, it was envisioned that the developed bioreactor will enable cost-effective and long-term large-scale culture of various cells for biopharmaceutical production.
Collapse
Affiliation(s)
- Tongyao Wu
- Division of Electrical Computer Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Mohsen Norouzi
- Division of Electrical Computer Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kidong Park
- Division of Electrical Computer Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
6
|
Singh R, Fatima E, Thakur L, Singh S, Ratan C, Kumar N. Advancements in CHO metabolomics: techniques, current state and evolving methodologies. Front Bioeng Biotechnol 2024; 12:1347138. [PMID: 38600943 PMCID: PMC11004234 DOI: 10.3389/fbioe.2024.1347138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
Background: Investigating the metabolic behaviour of different cellular phenotypes, i.e., good/bad grower and/or producer, in production culture is important to identify the key metabolite(s)/pathway(s) that regulate cell growth and/or recombinant protein production to improve the overall yield. Currently, LC-MS, GC-MS and NMR are the most used and advanced technologies for investigating the metabolome. Although contributed significantly in the domain, each technique has its own biasness towards specific metabolites or class of metabolites due to various reasons including variability in the concept of working, sample preparation, metabolite-extraction methods, metabolite identification tools, and databases. As a result, the application of appropriate analytical technique(s) is very critical. Purpose and scope: This review provides a state-of-the-art technological insights and overview of metabolic mechanisms involved in regulation of cell growth and/or recombinant protein production for improving yield from CHO cultures. Summary and conclusion: In this review, the advancements in CHO metabolomics over the last 10 years are traced based on a bibliometric analysis of previous publications and discussed. With the technical advancement in the domain of LC-MS, GC-MS and NMR, metabolites of glycolytic and nucleotide biosynthesis pathway (glucose, fructose, pyruvate and phenylalanine, threonine, tryptophan, arginine, valine, asparagine, and serine, etc.) were observed to be upregulated in exponential-phase thereby potentially associated with cell growth regulation, whereas metabolites/intermediates of TCA, oxidative phosphorylation (aspartate, glutamate, succinate, malate, fumarate and citrate), intracellular NAD+/NADH ratio, and glutathione metabolic pathways were observed to be upregulated in stationary-phase and hence potentially associated with increased cell-specific productivity in CHO bioprocess. Moreover, each of technique has its own bias towards metabolite identification, indicating their complementarity, along with a number of critical gaps in the CHO metabolomics pipeline and hence first time discussed here to identify their potential remedies. This knowledge may help in future study designs to improve the metabolomic coverage facilitating identification of the metabolites/pathways which might get missed otherwise and explore the full potential of metabolomics for improving the CHO bioprocess performances.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Eram Fatima
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Chandra Ratan
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
7
|
Shi Y, Wan Y, Sun Y, Yang J, Lu Y, Xie X, Pan J, Wang H, Qu H. Exploring metabolic responses and pathway changes in CHO-K1 cells under varied aeration conditions and copper supplementations using 1 H NMR-based metabolomics. Biotechnol J 2024; 19:e2300495. [PMID: 38403407 DOI: 10.1002/biot.202300495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
The optimization of bioprocess for CHO cell culture involves careful consideration of factors such as nutrient consumption, metabolic byproduct accumulation, cell growth, and monoclonal antibody (mAb) production. Valuable insights can be obtained by understanding cellular physiology to ensure robust and efficient bioprocess. This study aims to improve our understanding of the CHO-K1 cell metabolism using 1 H NMR-based metabolomics. Initially, the variations in culture performance and metabolic profiles under varied aeration conditions and copper supplementations were thoroughly examined. Furthermore, a comprehensive metabolic pathway analysis was performed to assess the impact of these conditions on the implicated pathways. The results revealed substantial alterations in the pyruvate metabolism, histidine metabolism, as well as phenylalanine, tyrosine and tryptophan biosynthesis, which were especially evident in cultures subjected to copper deficiency conditions. Conclusively, significant metabolites governing cell growth and mAb titer were identified through orthogonal partial least square-discriminant analysis (OPLS-DA). Metabolites, including glycerol, alanine, formate, glutamate, phenylalanine, and valine, exhibited strong associations with distinct cell growth phases. Additionally, glycerol, acetate, lactate, formate, glycine, histidine, and aspartate emerged as metabolites influencing cell productivity. This study demonstrates the potential of employing 1 H NMR-based metabolomics technology in bioprocess research. It provides valuable guidance for feed medium development, feeding strategy design, bioprocess parameter adjustments, and ultimately the enhancement of cell proliferation and mAb yield.
Collapse
Affiliation(s)
- Yingting Shi
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuxiang Wan
- Hisun BioPharmaceutical Co., Ltd., Hangzhou, China
| | - Yan Sun
- Hisun BioPharmaceutical Co., Ltd., Hangzhou, China
| | - Jiayu Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuting Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xinyuan Xie
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibin Wang
- Hisun BioPharmaceutical Co., Ltd., Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Ladiwala P, Dhara VG, Jenkins J, Kuang B, Hoang D, Yoon S, Betenbaugh MJ. Addressing amino acid-derived inhibitory metabolites and enhancing CHO cell culture performance through DOE-guided media modifications. Biotechnol Bioeng 2023; 120:2542-2558. [PMID: 37096798 DOI: 10.1002/bit.28403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Previously, we identified six inhibitory metabolites (IMs) accumulating in Chinese hamster ovary (CHO) cultures using AMBIC 1.0 community reference medium that negatively impacted culture performance. The goal of the current study was to modify the medium to control IM accumulation through design of experiments (DOE). Initial over-supplementation of precursor amino acids (AAs) by 100% to 200% in the culture medium revealed positive correlations between initial AA concentrations and IM levels. A screening design identified 5 AA targets, Lys, Ile, Trp, Leu, Arg, as key contributors to IMs. Response surface design analysis was used to reduce initial AA levels between 13% and 33%, and these were then evaluated in batch and fed-batch cultures. Lowering AAs in basal and feed medium and reducing feed rate from 10% to 5% reduced inhibitory metabolites HICA and NAP by up to 50%, MSA by 30%, and CMP by 15%. These reductions were accompanied by a 13% to 40% improvement in peak viable cell densities and 7% to 50% enhancement in IgG production in batch and fed-batch processes, respectively. This study demonstrates the value of tuning specific AA levels in reference basal and feed media using statistical design methodologies to lower problematic IMs.
Collapse
Affiliation(s)
- Pranay Ladiwala
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Venkata Gayatri Dhara
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jackson Jenkins
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bingyu Kuang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Duc Hoang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Torres M, Betts Z, Scholey R, Elvin M, Place S, Hayes A, Dickson AJ. Long term culture promotes changes to growth, gene expression, and metabolism in CHO cells that are independent of production stability. Biotechnol Bioeng 2023; 120:2389-2402. [PMID: 37060548 DOI: 10.1002/bit.28399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Phenotypic stability of Chinese hamster ovary (CHO) cells over long term culture (LTC) presents one of the most pressing challenges in the development of therapeutic protein manufacturing processess. However, our current understanding of the consequences of LTC on recombinant (r-) CHO cell lines is still limited, particularly as clonally-derived cell lines present distinct production stability phenotypes. This study evaluated changes of culture performance, global gene expression, and cell metabolism of two clonally-derived CHO cell lines with a stable or unstable phenotype during the LTC (early [EP] vs. late [LP] culture passages). Our findings indicated that LTC altered the behavior of CHO cells in culture, in terms of growth, overall gene expression, and cell metabolism. Regardless whether cells were categorized as stable or unstable in terms of r-protein production, CHO cells at LP presented an earlier decline in cell viability and loss of any observable stationary phase. These changes were parallelled by the upregulation of genes involved in cell proliferation and survival pathways (i.e., MAPK/ERK, PI3K-Akt). Stable and unstable CHO cell lines both showed increased consumption of glucose and amino acids at LP, with a parallel accumulation of greater amounts of lactate and TCA cycle intermediates. In terms of production stability, we found that decreased r-protein production in the unstable cell line directly correlated to the loss in r-gene copy number and r-mRNA expression. Our data revealed that LTC produced ubiquitious effects on CHO cell phenotypes, changes that were rooted in alterations in cell transcriptome and metabolome. Overall, we found that CHO cells adapted their cellular function to proliferation and survival during the LTC, some of these changes may well have limited effects on overall yield or specific productivity of the desired r-product, but they may be critical toward the capacity of cells to handle r-proteins with specific molecular features.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Zeynep Betts
- Department of Biology, Kocaeli University, İzmit, Turkey
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, UK
| | - Mark Elvin
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Svetlana Place
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Andrew Hayes
- Genomic Technologies Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Department of Chemical Engineering, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Saldanha M, Shelar A, Patil V, Warke VG, Dandekar P, Jain R. A case study: Correlation of the nutrient composition in Chinese Hamster Ovary cultures with cell growth, antibody titre and quality attributes using multivariate analyses for guiding medium and feed optimization in early upstream process development. Cytotechnology 2023; 75:77-91. [PMID: 36713064 PMCID: PMC9880107 DOI: 10.1007/s10616-022-00561-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022] Open
Abstract
In this case-study, we demonstrate an approach for identifying correlations between nutrients/metabolites in the spent medium of CHO cell cultures and cell growth, mAb titre and critical quality attributes, using multivariate analyses, which can aid in selection of targets for medium and feed optimization. An extensive LC-MS-based method was used to analyse the spent medium composition. Partial least squares (PLS) model was used to identify correlations between nutrient composition and cell growth and mAb titre and orthogonal projections to latent structures (OPLS) model was used to determine the effect of the changing nutrient composition during the culture on critical quality attributes. The PLS model revealed that the initial concentrations of several amino acids as well as pyruvic acid and pyridoxine, governed the early cell growth, while the concentrations of TCA cycle intermediates and several vitamins highly influenced the stationary phase, in which mAb production was maximum. For the first time, with the help of the OPLS model, we were able to draw correlations between nutrients/metabolites during the culture and critical quality attributes, for example, optimizing the supply of certain amino acids and vitamins could reduce impurities while simultaneously increasing desirable glycoforms. The unique correlations obtained from such an exploratory analysis, utilizing conditions that are commonly adopted in early process development, present opportunities for optimizing the compositions of the growth media and the feed media for enhancing cell growth, mAb production and quality, thereby proving to be a useful preliminary step in bioprocess optimization. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00561-z.
Collapse
Affiliation(s)
- Marianne Saldanha
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Ashutosh Shelar
- Shimadzu Analytical (India) Private Limited, Rushabh Chambers, Marol, Andheri East, Mumbai, 400059 India
| | - Vaibhav Patil
- Sartorius Stedim India Private Limited, No. 69/2 & 69/3, Jakkasandra, Nelamangala, Bangalore, 562123 India
| | - Vishal G. Warke
- Himedia Laboratories Private Limited, Plot No. C40, MIDC, Wagle Industrial Area, Thane, 400604 India
| | - Prajakta Dandekar
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| |
Collapse
|
11
|
Xu WJ, Lin Y, Mi CL, Pang JY, Wang TY. Progress in fed-batch culture for recombinant protein production in CHO cells. Appl Microbiol Biotechnol 2023; 107:1063-1075. [PMID: 36648523 PMCID: PMC9843118 DOI: 10.1007/s00253-022-12342-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023]
Abstract
Nearly 80% of the approved human therapeutic antibodies are produced by Chinese Hamster Ovary (CHO) cells. To achieve better cell growth and high-yield recombinant protein, fed-batch culture is typically used for recombinant protein production in CHO cells. According to the demand of nutrients consumption, feed medium containing multiple components in cell culture can affect the characteristics of cell growth and improve the yield and quality of recombinant protein. Fed-batch optimization should have a connection with comprehensive factors such as culture environmental parameters, feed composition, and feeding strategy. At present, process intensification (PI) is explored to maintain production flexible and meet forthcoming demands of biotherapeutics process. Here, CHO cell culture, feed composition in fed-batch culture, fed-batch culture environmental parameters, feeding strategies, metabolic byproducts in fed-batch culture, chemostat cultivation, and the intensified fed-batch are reviewed. KEY POINTS: • Fed-batch culture in CHO cells is reviewed. • Fed-batch has become a common technology for recombinant protein production. • Fed batch culture promotes recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Wen-Jing Xu
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.412990.70000 0004 1808 322XSchool of Pharmacy, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Yan Lin
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.412990.70000 0004 1808 322XSchool of Nursing, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Chun-Liu Mi
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Jing-Ying Pang
- grid.412990.70000 0004 1808 322XSchool of the First Clinical College, Xinxiang Medical University, Xinxiang, 453000 Henan China
| | - Tian-Yun Wang
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.495434.b0000 0004 1797 4346School of medicine, Xinxiang University, Xinxiang, 453003 Henan China
| |
Collapse
|
12
|
Coulet M, Kepp O, Kroemer G, Basmaciogullari S. Metabolic Profiling of CHO Cells during the Production of Biotherapeutics. Cells 2022; 11:cells11121929. [PMID: 35741058 PMCID: PMC9221972 DOI: 10.3390/cells11121929] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
As indicated by an ever-increasing number of FDA approvals, biotherapeutics constitute powerful tools for the treatment of various diseases, with monoclonal antibodies (mAbs) accounting for more than 50% of newly approved drugs between 2014 and 2018 (Walsh, 2018). The pharmaceutical industry has made great progress in developing reliable and efficient bioproduction processes to meet the demand for recombinant mAbs. Mammalian cell lines are preferred for the production of functional, complex recombinant proteins including mAbs, with Chinese hamster ovary (CHO) cells being used in most instances. Despite significant advances in cell growth control for biologics manufacturing, cellular responses to environmental changes need to be understood in order to further improve productivity. Metabolomics offers a promising approach for developing suitable strategies to unlock the full potential of cellular production. This review summarizes key findings on catabolism and anabolism for each phase of cell growth (exponential growth, the stationary phase and decline) with a focus on the principal metabolic pathways (glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle) and the families of biomolecules that impact these circuities (nucleotides, amino acids, lipids and energy-rich metabolites).
Collapse
Affiliation(s)
- Mathilde Coulet
- Sanofi R&D, 94400 Vitry-sur-Seine, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
- Institut Universitaire de France, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, 75006 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
- Institut Universitaire de France, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, 75006 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Correspondence: (G.K.); (S.B.)
| | | |
Collapse
|
13
|
Yeo HC, Park SY, Tan T, Ng SK, Lakshmanan M, Lee DY. Combined multivariate statistical and flux balance analyses uncover media bottlenecks to the growth and productivity of CHO cell cultures. Biotechnol Bioeng 2022; 119:1740-1754. [PMID: 35435243 DOI: 10.1002/bit.28104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/06/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely used for producing recombinant proteins. To enhance their productivity and product quality, media reformulation has been a key strategy, albeit with several technical challenges, due to the myriad of complex molecular mechanisms underlying media effects on culture performance. Thus, it is imperative to characterize metabolic bottlenecks under various media conditions systematically. To do so, we combined partial least square regression (PLS-R) with the flux balance analysis of a genome-scale metabolic model to elucidate the physiological states and metabolic behaviors of human alpha-1 antitrypsin producing CHO-DG44 cells grown in one commercial and another two in-house media under development. At the onset, PLS-R was used to identify metabolite exchanges that were correlated to specific growth and productivity. Then, by comparing metabolic states described by resultant flux distributions under two of the media conditions, we found sub-optimal level of four nutrients and two metabolic wastes, which plausibly hindered cellular growth and productivity; mechanistically, lactate and ammonia recycling were modulated by glutamine and asparagine metabolisms in the media conditions, and also by hitherto unsuspected folate and choline supplements. Our work demonstrated how multivariate statistical analysis can be synergistically combined with metabolic modelling to uncover the mechanistic elements underlying differing media performance. It thus paved the way for the systematic identification of nutrient targets for medium reformulation to enhance recombinant protein production in CHO cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hock Chuan Yeo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668.,Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Singapore, 138671
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Tessa Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668
| | - Say Kong Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668.,School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
14
|
Savizi ISP, Maghsoudi N, Motamedian E, Lewis NE, Shojaosadati SA. Valine feeding reduces ammonia production through rearrangement of metabolic fluxes in central carbon metabolism of CHO cells. Appl Microbiol Biotechnol 2022; 106:1113-1126. [PMID: 35044498 DOI: 10.1007/s00253-021-11755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/02/2022]
Abstract
Ammonia is a toxic byproduct of CHO cell metabolism, which inhibits cell growth, reduces cell viability, alters glycosylation, and decreases recombinant protein productivity. In an attempt to minimize the ammonium accumulation in cell culture media, different amino acids were added individually to the culture medium before the production phase to alleviate the negative effects of ammonium on cell culture performance. Among all the amino acids examined in this study, valine showed the most positive impact on CHO cell culture performance. When the cultured CHO cells were fed with 5 mM valine, EPO titer was increased by 25% compared to the control medium, and ammonium and lactate production were decreased by 23 and 26%, respectively, relative to the control culture. Moreover, the sialic acid content of the EPO protein in valine-fed culture was higher than in the control culture, most likely because of the lower ammonium concentration. Flux balance analysis (FBA) results demonstrated that the citric acid cycle was enriched by valine feeding. The measurement of TCA cycle activity supported this finding. The analysis revealed that there might be a link between promoting tricarboxylic acid (TCA) cycle metabolism in valine-fed culture and reduction in lactate and ammonia accumulation. Furthermore, in valine-fed culture, FBA outcomes showed that alanine was excreted into the medium as the primary mechanism for reducing ammonium concentration. It was predicted that the elevated TCA cycle metabolism was concurrent with an increment in recombinant protein production. Taken together, our data demonstrate that valine addition could be an effective strategy for mitigating the negative impacts of ammonium and enhancing glycoprotein production in both quality and quantity. KEY POINTS: • Valine feeding can mitigate the negative impacts of ammonia on CHO cell growth. • Valine addition assists the ammonia removal mechanism by enriching the TCA cycle. • Ammonia is removed from the media through alanine excretion in valine-fed culture.
Collapse
Affiliation(s)
- Iman Shahidi Pour Savizi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ehsan Motamedian
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, San Diego, CA, USA.,School of Medicine, Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, USA.,Department of Pediatrics, School of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran.
| |
Collapse
|
15
|
A Metabolomics Approach to Increasing Chinese Hamster Ovary (CHO) Cell Productivity. Metabolites 2021; 11:metabo11120823. [PMID: 34940581 PMCID: PMC8704136 DOI: 10.3390/metabo11120823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Much progress has been made in improving the viable cell density of bioreactor cultures in monoclonal antibody production from Chinese hamster ovary (CHO) cells; however, specific productivity (qP) has not been increased to the same degree. In this work, we analyzed a library of 24 antibody-expressing CHO cell clones to identify metabolites that positively associate with qP and could be used for clone selection or medium supplementation. An initial library of 12 clones, each producing one of two antibodies, was analyzed using untargeted LC-MS experiments. Metabolic model-based annotation followed by correlation analysis detected 73 metabolites that significantly correlated with growth, qP, or both. Of these, metabolites in the alanine, aspartate, and glutamate metabolism pathway, and the TCA cycle showed the strongest association with qP. To evaluate whether these metabolites could be used as indicators to identify clones with potential for high productivity, we performed targeted LC-MS experiments on a second library of 12 clones expressing a third antibody. These experiments found that aspartate and cystine were positively correlated with qP, confirming the results from untargeted analysis. To investigate whether qP correlated metabolites reflected endogenous metabolic activity beneficial for productivity, several of these metabolites were tested as medium additives during cell culture. Medium supplementation with citrate improved qP by up to 490% and more than doubled the titer. Together, these studies demonstrate the potential for using metabolomics to discover novel metabolite additives that yield higher volumetric productivity in biologics production processes.
Collapse
|
16
|
Torres M, Dickson AJ. Combined gene and environmental engineering offers a synergetic strategy to enhance r-protein production in Chinese hamster ovary cells. Biotechnol Bioeng 2021; 119:550-565. [PMID: 34821376 DOI: 10.1002/bit.28000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Environmental growth-inhibition conditions (GICs) have been used extensively for increasing cell-specific productivity (qP ) of Chinese hamster ovary (CHO) cells, with the most common being temperature downshift and sodium butyrate (NaBu) treatment. B lymphocyte-induced maturation protein-1 (BLIMP1) overexpression in CHO cells can also inhibit cell growth and increase product titers and qP . Given the similar responses, this study evaluated the individual and combined effects of BLIMP1 expression, low temperature, and NaBu treatment on culture performance, cell metabolism, and recombinant protein production of CHO cells. As expected, all three interventions decreased cell growth, arrested cells in G1/G0 cell cycle phase, and increased qP . However, CHO cells presented different responses when considering cell viability, recombinant gene expression, and cell metabolism that indicated differences in the molecular loci by which BLIMP1 and GICs generated higher productivities. Combinations of BLIMP1 expression and GICs acted synergistically to inhibit cell growth and maximize r-protein production, with the BLIMP1/NaBu condition leading to the most significant improvements in product titers and qP . This latter condition also proved to substantially increase product yields (up to 9.8 g immunoglobulin G1 [IgG1]/L and 2.2 g erythropoietin-Fc [EPO-Fc]/L) and qP (up to 179 pg/cell/day [pcd] for IgG1 and 30 pcd for EPO-Fc) in high-density perfusion cultures. These findings offered mechanistic insights about the productivity-enhancing effects of BLIMP1 and GICs, as well as their complementarity for generating highly productive processes.
Collapse
Affiliation(s)
- Mauro Torres
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Rish AJ, Drennen JK, Anderson CA. Metabolic trends of Chinese hamster ovary cells in biopharmaceutical production under batch and fed-batch conditions. Biotechnol Prog 2021; 38:e3220. [PMID: 34676699 DOI: 10.1002/btpr.3220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
Extensive knowledge of Chinese hamster ovary (CHO) cell metabolism is required to improve process productivity and culture performance in biopharmaceutical manufacturing. However, CHO cells show a dynamic metabolism during culturing in batch and fed-batch bioreactors. CHO cell metabolism is generally described as taking place in three stages: exponential growth phase, stationary phase, and death phase. This review aims to summarize the trends of central metabolism for CHO cells during each stage. Additional insights into how culture conditions are related to phase transitions and force metabolic rewiring are provided. Understanding of CHO cell metabolism lends itself to improving culture qualities by, for example, identifying sources of toxic byproducts and pathways for cellular engineering. In summary, this review describes the changes in CHO cell central metabolism over the course of the culture.
Collapse
Affiliation(s)
- Adam J Rish
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Overexpression of transcription factor BLIMP1/prdm1 leads to growth inhibition and enhanced secretory capacity in Chinese hamster ovary cells. Metab Eng 2021; 67:237-249. [PMID: 34265400 DOI: 10.1016/j.ymben.2021.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/06/2021] [Accepted: 07/07/2021] [Indexed: 01/11/2023]
Abstract
Chinese hamster ovary (CHO) cells present inherent limitations for processing and secretion of large amounts of recombinant proteins, especially for those requiring complex post-translational processing. To tackle these limitations, we engineered CHO host cells (CHOK1 and CHOS) to overexpress the transcription factor BLIMP1/prdm1 (a master regulator of the highly-secreting phenotype of antibody-producing plasma cells), generating novel CHO cell lines (referred to as CHOB). The CHOB cell lines exhibited decreased cell densities, prolonged stationary phase and arrested cell cycle in G1/G0 phase but simultaneously had significantly greater product titre for recombinant IgG1 (> 2-fold increase) coupled with a significantly greater cell-specific productivities (> 3-fold increase). We demonstrated that the improved productive phenotype of CHOB cells resulted from a series of changes to cell physiology and metabolism. CHOB cells showed a significantly greater ER size and increased protein synthesis and secretion capacity compared to control cells. In addition, CHOB cells presented a metabolic profile that favoured energy production to support increased recombinant protein production. This study indicated that a cell engineering approach based on BLIMP1 expression offers great potential for improving the secretory capacity of CHO cell hosts utilised for manufacture of recombinant biopharmaceuticals. Our findings also provides a greater understanding of the relationship between cell growth and productivity, valuable generic information for improving productive phenotypes for CHO cell lines during industrial cell line development.
Collapse
|
19
|
Ribeiro da Silva M, Zaborowska I, Carillo S, Bones J. A rapid, simple and sensitive microfluidic chip electrophoresis mass spectrometry method for monitoring amino acids in cell culture media. J Chromatogr A 2021; 1651:462336. [PMID: 34153732 DOI: 10.1016/j.chroma.2021.462336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
The development and optimization of cell culture media for biotech applications is a fundamental step of process development. The composition of cell culture media requires an ideal blend of amino acids, vitamins, nucleosides, lipids, carbohydrates, trace elements and other components. The ability to monitor these constituents is required to ensure that cells receive sufficient nutrients to facilitate growth, viability and productivity. Analysis of cell culture media is challenging due to the range and diversity of compounds contained in this matrix and normally requires time consuming methods. A rapid, simple and sensitive microfluidic chip CE-MS method is described to monitor amino acids in chemically defined cell culture media from a Chinese hamster ovary cell line cultured over a period of 10 days. The described platform enabled the separation of 16 amino acids in less than 2 minutes and without the requirement for extensive sample preparation. The analytical parameters evaluated were precision, linearity, limit of detection and limit of quantification. The majority of essential amino acids were present in cell culture growth in high concentrations compared to non-essential amino acids. Over the course of the 10 days cell culture the concentration of certain amino acids declined by up to 100%. Microfluidic chip based CE-MS methods can be used effectively to obtain the consumption rates of amino acids in cell culture media during cell growth and to perform at-line monitoring and screening of cell culture status.
Collapse
Affiliation(s)
| | - Izabela Zaborowska
- NIBRT - National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Sara Carillo
- NIBRT - National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Jonathan Bones
- NIBRT - National Institute for Bioprocessing Research and Training, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
20
|
Synoground BF, McGraw CE, Elliott KS, Leuze C, Roth JR, Harcum SW, Sandoval NR. Transient ammonia stress on Chinese hamster ovary (CHO) cells yield alterations to alanine metabolism and IgG glycosylation profiles. Biotechnol J 2021; 16:e2100098. [PMID: 34014036 DOI: 10.1002/biot.202100098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Ammonia concentrations typically increase during mammalian cell cultures, mainly due to glutamine and other amino acid consumption. An early ammonia stress indicator is a metabolic shift with respect to alanine. To determine the underlying mechanisms of this metabolic shift, a Chinese hamster ovary (CHO) cell line with two distinct ages (standard and young) was cultured in parallel fed-batch bioreactors with 0 mM or 10 mM ammonia added at 12 h. Reduced viable cell densities were observed for the stressed cells, while viability was not significantly affected. The stressed cultures had higher alanine, lactate, and glutamate accumulation. Interestingly, the ammonia concentrations were similar by Day 8.5 for all cultures. We hypothesized the ammonia was converted to alanine as a coping mechanism. Interestingly, no significant differences were observed for metabolite profiles due to cell age. Glycosylation analysis showed the ammonia stress reduced galactosylation, sialylation, and fucosylation. Transcriptome analysis of the standard-aged cultures indicated the ammonia stress had a limited impact on the transcriptome, where few of the significant changes were directly related metabolite or glycosylation reactions. These results indicate that mechanisms used to alleviate ammonia stress are most likely controlled post-transcriptionally, and this is where future research should focus.
Collapse
Affiliation(s)
| | - Claire E McGraw
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Kathryn S Elliott
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Christina Leuze
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Jada R Roth
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Nicholas R Sandoval
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
21
|
Combe M, Sokolenko S. Quantifying the impact of cell culture media on CHO cell growth and protein production. Biotechnol Adv 2021; 50:107761. [PMID: 33945850 DOI: 10.1016/j.biotechadv.2021.107761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
In recombinant protein production, cell culture media development and optimization is typically seen as a useful strategy to increase titer and cell density, reduce by-products, as well as improve product quality (with cell density and titer often serving as the primary reported outcome of media studies). However, despite the large number of media optimization studies, there have been few attempts to comprehensively assess the overall effectiveness of media additives. The aim of this review is therefore both to document published media optimization studies over the last twenty years (in the context of Chinese hamster ovary cell recombinant production) and quantitatively estimate the impact of this media optimization on cell culture performance. In considering 78 studies, we have identified 238 unique media components that have been supplemented over the last 20 years. Among these additives, trace elements stood out as having a positive impact on cell density while nucleotides show potential for increasing titer, with commercial supplements benefiting both. However, we also identified that the impact of specific additives is far more variable than often perceived. With relatively few media studies considering multiple cell lines or multiple basal media, teasing out consistent and general trends becomes a considerable challenge. By extracting cell density and titer values from all of the reviewed studies, we were able to build a mixed-effect model capable of estimating the relative impact of additives, cell line, product type, basal medium, cultivation method (flask or reactor), and feeding strategy (batch or fed-batch). Overall, additives only accounted for 3% of the variation in cell density and 1% of the variation in titer. Similarly, the impact of basal media was also relatively modest, at 10% for cell density and 0% for titer. Cell line, product type, and feeding strategy were all found to have more impact. These results emphasize the need for media studies to consider more factors to ensure that reported observations can be generalized and further developed.
Collapse
Affiliation(s)
- Michelle Combe
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., PO Box 15000, Halifax, NS B3H 4R2, Canada
| | - Stanislav Sokolenko
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., PO Box 15000, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
22
|
Masetti P, Sanitá PV, Jorge JH. Dynamics and metabolic profile of oral keratinocytes (NOK-si) and Candida albicans after interaction in co-culture. BIOFOULING 2021; 37:572-589. [PMID: 34210229 DOI: 10.1080/08927014.2021.1941908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Understanding the interaction between oral keratinocytes (NOK-si) and Candida albicans is fundamental for the development of prevention strategies and new therapies for oral candidiasis. This study evaluated the dynamics and metabolic profile of these cells growing in co-culture by means of cell metabolism, number of CFU ml-1, and production of enzymes, cytokines, and metabolites. The data were analyzed by ANOVAs and post hoc tests (α = 0.05). In co-cultures, there were significant decreases in the cell metabolism of NOK-si and C. albicans and increases in the CFU ml-1 values of C. albicans biofilm. There were also significant increases in the production of cytokines by NOK-si and proteinase by C. albicans biofilm after their interaction. The metabolic balance of the main metabolites, amino acids, and extracellular and intracellular metabolites was shifted in favor of the co-cultures, while aromatic alcohols were secreted in higher amounts by the biofilm of C. albicans. It was concluded that the interaction of cells in co-culture influenced their dynamics over time.
Collapse
Affiliation(s)
- Paula Masetti
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Paula Volpato Sanitá
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| | - Janaina Habib Jorge
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
23
|
Torres M, Elvin M, Betts Z, Place S, Gaffney C, Dickson AJ. Metabolic profiling of Chinese hamster ovary cell cultures at different working volumes and agitation speeds using spin tube reactors. Biotechnol Prog 2020; 37:e3099. [PMID: 33169492 DOI: 10.1002/btpr.3099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Culture systems based on spin tube reactors have been consolidated in the development of manufacturing processes based on Chinese hamster ovary (CHO) cells. Despite their widespread use, there is little information about the consequences of varying operational setting parameters on the culture performance of recombinant CHO cell lines. Here, we investigated the effect of varying working volumes and agitation speeds on cell growth, protein production, and cell metabolism of two clonally derived CHO cell lines (expressing an IgG1 and a "difficult-to-express" fusion protein). Interestingly, low culture volumes increased recombinant protein production and decreased cell growth, while high culture volumes had the opposite effect. Altering agitation speeds exacerbated or moderated the differences observed due to culture volume changes. Combining low agitation rates with high culture volumes suppressed growth and recombinant protein production in CHO cells. Meanwhile, high agitation rates narrowed the differences in culture performance between low and high working volumes. These differences were also reflected in cell metabolism, where low culture volumes enhanced oxidative metabolism (linked to a productive phenotype) and high culture volume generated a metabolic profile that was predominately glycolytic (linked to a proliferative phenotype). Our findings indicate that the culture volume influence on metabolism modulates the balance between cell growth and protein production, a key feature that may be useful to adjust CHO cells toward a more productive phenotype.
Collapse
Affiliation(s)
- Mauro Torres
- Department of Chemical Engineering and Analytical Sciences, Faculty of Science & Engineering, Manchester Institute of Biotechnology, John Garside Building, The University of Manchester, Manchester, UK
| | - Mark Elvin
- Department of Chemical Engineering and Analytical Sciences, Faculty of Science & Engineering, Manchester Institute of Biotechnology, John Garside Building, The University of Manchester, Manchester, UK
| | - Zeynep Betts
- Department of Biology, Kocaeli University, Umuttepe Yerleskesi, Fen Edebiyat Fakultesi B Blok, Izmit, Turkey
| | - Svetlana Place
- Department of Chemical Engineering and Analytical Sciences, Faculty of Science & Engineering, Manchester Institute of Biotechnology, John Garside Building, The University of Manchester, Manchester, UK
| | - Claire Gaffney
- Department of Chemical Engineering and Analytical Sciences, Faculty of Science & Engineering, Manchester Institute of Biotechnology, John Garside Building, The University of Manchester, Manchester, UK
| | - Alan J Dickson
- Department of Chemical Engineering and Analytical Sciences, Faculty of Science & Engineering, Manchester Institute of Biotechnology, John Garside Building, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Mellergaard M, Høgh RI, Lund A, Aldana BI, Guérillot R, Møller SH, Hayes AS, Panagiotopoulou N, Frimand Z, Jepsen SD, Hansen CHF, Andresen L, Larsen AR, Peleg AY, Stinear TP, Howden BP, Waagepetersen HS, Frees D, Skov S. Staphylococcus aureus induces cell-surface expression of immune stimulatory NKG2D ligands on human monocytes. J Biol Chem 2020; 295:11803-11821. [PMID: 32605922 PMCID: PMC7450114 DOI: 10.1074/jbc.ra120.012673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is among the leading causes of bacterial infections worldwide. The pathogenicity and establishment of S. aureus infections are tightly linked to its ability to modulate host immunity. Persistent infections are often associated with mutant staphylococcal strains that have decreased susceptibility to antibiotics; however, little is known about how these mutations influence bacterial interaction with the host immune system. Here, we discovered that clinical S. aureus isolates activate human monocytes, leading to cell-surface expression of immune stimulatory natural killer group 2D (NKG2D) ligands on the monocytes. We found that expression of the NKG2D ligand ULBP2 (UL16-binding protein 2) is associated with bacterial degradability and phagolysosomal activity. Moreover, S. aureus-induced ULBP2 expression was linked to altered host cell metabolism, including increased cytoplasmic (iso)citrate levels, reduced glycolytic flux, and functional mitochondrial activity. Interestingly, we found that the ability of S. aureus to induce ULBP2 and proinflammatory cytokines in human monocytes depends on a functional ClpP protease in S. aureus These findings indicate that S. aureus activates ULBP2 in human monocytes through immunometabolic mechanisms and reveal that clpP inactivation may function as a potential immune evasion mechanism. Our results provide critical insight into the interplay between the host immune system and S. aureus that has evolved under the dual selective pressure of host immune responses and antibiotic treatment. Our discovery of an immune stimulatory pathway consisting of human monocyte-based defense against S. aureus suggests that targeting the NKG2D pathway holds potential for managing persistent staphylococcal infections.
Collapse
Affiliation(s)
- Maiken Mellergaard
- Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Illum Høgh
- Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Lund
- Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Guérillot
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sofie Hedlund Møller
- Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ashleigh S Hayes
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nafsika Panagiotopoulou
- Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zofija Frimand
- Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Dam Jepsen
- Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Hartmann Friis Hansen
- Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Andresen
- Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Rhod Larsen
- Statens Serum Institut, Microbiology and Infection Control, Copenhagen, Denmark
| | - Anton Y Peleg
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Frees
- Food Safety and Zoonosis, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Skov
- Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Ali AS, Chen R, Raju R, Kshirsagar R, Gilbert A, Zang L, Karger BL, Ivanov AR. Multi-Omics Reveals Impact of Cysteine Feed Concentration and Resulting Redox Imbalance on Cellular Energy Metabolism and Specific Productivity in CHO Cell Bioprocessing. Biotechnol J 2020; 15:e1900565. [PMID: 32170810 PMCID: PMC7880547 DOI: 10.1002/biot.201900565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/18/2020] [Indexed: 12/16/2022]
Abstract
Chinese hamster ovary (CHO) cells are currently the primary host cell lines used in biotherapeutic manufacturing of monoclonal antibodies (mAbs) and other biopharmaceuticals. Cellular energy metabolism and endoplasmic reticulum (ER) stress are known to greatly impact cell growth, viability, and specific productivity of a biotherapeutic; but the molecular mechanisms are not fully understood. The authors previously employed multi-omics profiling to investigate the impact of a reduction in cysteine (Cys) feed concentration in a fed-batch process and found that disruption of the redox balance led to a substantial decline in cell viability and titer. Here, the multi-omics findings are expanded, and the impact redox imbalance has on ER stress, mitochondrial homeostasis, and lipid metabolism is explored. The reduced Cys feed activates the amino acid response (AAR), increases mitochondrial stress, and initiates gluconeogenesis. Multi-omics analysis reveals that together, ER stress and AAR signaling shift the cellular energy metabolism to rely primarily on anaplerotic reactions, consuming amino acids and producing lactate, to maintain energy generation. Furthermore, the pathways are demonstrated in which this shift in metabolism leads to a substantial decline in specific productivity and altered mAb glycosylation. Through this work, meaningful bioprocess markers and targets for genetic engineering are identified.
Collapse
Affiliation(s)
- Amr S Ali
- Cell Culture Development, Biogen Inc., Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Analytical Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Rachel Chen
- Analytical Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Ravali Raju
- Cell Culture Development, Biogen Inc., Cambridge, MA, 02142, USA
| | | | - Alan Gilbert
- Cell Culture Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Li Zang
- Analytical Development, Biogen Inc., Cambridge, MA, 02142, USA
| | - Barry L Karger
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
26
|
Tian J, He Q, Oliveira C, Qian Y, Egan S, Xu J, Qian N, Langsdorf E, Warrack B, Aranibar N, Reily M, Borys M, Li ZJ. Increased MSX level improves biological productivity and production stability in multiple recombinant GS CHO cell lines. Eng Life Sci 2020; 20:112-125. [PMID: 32874175 PMCID: PMC7447880 DOI: 10.1002/elsc.201900124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 01/17/2023] Open
Abstract
Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS-/- CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10-19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500-L and 1000-L bioreactors replicated laboratory results using 5-L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.
Collapse
Affiliation(s)
- Jun Tian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Qin He
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Christopher Oliveira
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Yueming Qian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Susan Egan
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Jianlin Xu
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Nan‐Xin Qian
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Erik Langsdorf
- Molecular & Cellular ScienceBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Bethanne Warrack
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Nelly Aranibar
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Michael Reily
- Drug Development and Preclinical StudiesBristol‐Myers Squibb CompanyPrincetonNJUSA
| | - Michael Borys
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| | - Zheng Jian Li
- Biologics Process DevelopmentGlobal Product Development and Supply, Bristol‐Myers Squibb CompanyDevensMAUSA
| |
Collapse
|
27
|
Systems biology approach in the formulation of chemically defined media for recombinant protein overproduction. Appl Microbiol Biotechnol 2019; 103:8315-8326. [PMID: 31418052 DOI: 10.1007/s00253-019-10048-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
The cell culture medium is an intricate mixture of components which has a tremendous effect on cell growth and recombinant protein production. Regular cell culture medium includes various components, and the decision about which component should be included in the formulation and its optimum amount is an underlying issue in biotechnology industries. Applying conventional techniques to design an optimal medium for the production of a recombinant protein requires meticulous and immense research. Moreover, since the medium formulation for the production of one protein could not be the best choice for another protein, hence, the most suitable media should be determined for each recombinant cell line. Accordingly, medium formulation becomes a laborious, time-consuming, and costly process in biomanufacturing of recombinant protein, and finding alternative strategies for medium development seems to be crucial. In silico modeling is an attractive concept to be adapted for medium formulation due to its high potential to supersede laboratory examinations. By emerging the high-throughput datasets, scientists can disclose the knowledge about the effect of medium components on cell growth and metabolism, and via applying this information through systems biology approach, medium formulation optimization could be accomplished in silico with no need of significant amount of experimentation. This review demonstrates some of the applications of systems biology as a powerful tool for medium development and illustrates the effect of medium optimization with system-level analysis on the production of recombinant proteins in different host cells.
Collapse
|
28
|
Calmels C, McCann A, Malphettes L, Andersen MR. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process. Metab Eng 2019; 51:9-19. [DOI: 10.1016/j.ymben.2018.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023]
|
29
|
Zamani L, Lundqvist M, Zhang Y, Aberg M, Edfors F, Bidkhori G, Lindahl A, Mie A, Mardinoglu A, Field R, Turner R, Rockberg J, Chotteau V. High Cell Density Perfusion Culture has a Maintained Exoproteome and Metabolome. Biotechnol J 2018; 13:e1800036. [DOI: 10.1002/biot.201800036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/03/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Leila Zamani
- Department Industrial Biotechnology; School of Engineering Sciences in Chemistry, Biotechnology, and Health; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
| | - Magnus Lundqvist
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Wallenberg Centre for Protein Research; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; AdBIOPRO, Centre for Advanced Bioproduction by Continuous Processing; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
| | - Ye Zhang
- Department Industrial Biotechnology; School of Engineering Sciences in Chemistry, Biotechnology, and Health; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Wallenberg Centre for Protein Research; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
| | - Magnus Aberg
- Department of Analytical Chemistry; Stockholm University; 106 91 Stockholm Sweden
| | - Fredrik Edfors
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Science for Life Laboratory; KTH-Royal Institute of Technology; 171 65 Stockholm Sweden
| | - Gholamreza Bidkhori
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Science for Life Laboratory; KTH-Royal Institute of Technology; 171 65 Stockholm Sweden
| | - Anna Lindahl
- Department of Oncology-Pathology; Science for Life Laboratory; Karolinska Institutet; 171 65 Solna Sweden
| | - Axel Mie
- Department of Clinical Science and Education; Karolinska Institute; 118 83 Solna Sweden
| | - Adil Mardinoglu
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Science for Life Laboratory; KTH-Royal Institute of Technology; 171 65 Stockholm Sweden
| | - Raymond Field
- Department of Oncology-Pathology; Science for Life Laboratory; Karolinska Institutet; 171 65 Solna Sweden
| | - Richard Turner
- Department of Oncology-Pathology; Science for Life Laboratory; Karolinska Institutet; 171 65 Solna Sweden
| | - Johan Rockberg
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Wallenberg Centre for Protein Research; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; AdBIOPRO, Centre for Advanced Bioproduction by Continuous Processing; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
| | - Veronique Chotteau
- Department Industrial Biotechnology; School of Engineering Sciences in Chemistry, Biotechnology, and Health; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Wallenberg Centre for Protein Research; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; AdBIOPRO, Centre for Advanced Bioproduction by Continuous Processing; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- Biopharmaceutical Development; MedImmune; CB21 6GH Cambridge United Kingdom
| |
Collapse
|
30
|
McKenzie EA, Abbott WM. Expression of recombinant proteins in insect and mammalian cells. Methods 2018; 147:40-49. [PMID: 29778647 DOI: 10.1016/j.ymeth.2018.05.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Purified recombinant proteins are key reagents in academic and industrial research. The ability to make these proteins quickly often relies on the availability of higher eukaryotic cell hosts such as insect and mammalian cells where there is a very wide range of post-translational modifications, protein folding and trafficking pathways. This enables the generation of many proteins that cannot be made in microbial hosts. In this article we outline some of the most commonly used methods to express recombinant proteins in insect and mammalian cells.
Collapse
Affiliation(s)
- Edward A McKenzie
- Protein Expression Facility, Manchester Institute of Biotechnology, Faculty of Life Sciences, 131 Princess Street, Manchester M1 7DN, UK
| | - W Mark Abbott
- Peak Proteins Ltd, Alderley Park, Cheshire SK10 4TG, UK.
| |
Collapse
|
31
|
Hartley F, Walker T, Chung V, Morten K. Mechanisms driving the lactate switch in Chinese hamster ovary cells. Biotechnol Bioeng 2018; 115:1890-1903. [PMID: 29603726 DOI: 10.1002/bit.26603] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 01/14/2023]
Abstract
The metabolism of Chinese Hamster Ovary (CHO) cells in a production environment has been extensively investigated. However, a key metabolic transition, the switch from lactate production to lactate consumption, remains enigmatic. Though commonly observed in CHO cultures, the mechanism(s) by which this metabolic shift is triggered is unknown. Despite this, efforts to control the switch have emerged due to the association of lactate consumption with improved cell growth and productivity. This review aims to consolidate current theories surrounding the lactate switch. The influence of pH, NAD+ /NADH, pyruvate availability and mitochondrial function on lactate consumption are explored. A hypothesis based on the cellular redox state is put forward to explain the onset of lactate consumption. Various techniques implemented to control the lactate switch, including manipulation of the culture environment, genetic engineering, and cell line selection are also discussed.
Collapse
Affiliation(s)
| | | | - Vicky Chung
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Karl Morten
- University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
32
|
Torres M, Zúñiga R, Gutierrez M, Vergara M, Collazo N, Reyes J, Berrios J, Aguillon JC, Molina MC, Altamirano C. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells. PLoS One 2018; 13:e0194510. [PMID: 29566086 PMCID: PMC5864046 DOI: 10.1371/journal.pone.0194510] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/21/2018] [Indexed: 12/31/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the most frequently used host for commercial production of therapeutic proteins. However, their low protein productivity in culture is the main hurdle to overcome. Mild hypothermia has been established as an effective strategy to enhance protein specific productivity, although the causes of such improvement still remain unclear. The self-regulation of global transcriptional regulatory factors, such as Myc and XBP1s, seems to be involved in increased the recombinant protein production at low temperature. This study evaluated the impact of low temperature in CHO cell cultures on myc and xbp1s expression and their effects on culture performance and cell metabolism. Two anti-TNFα producing CHO cell lines were selected considering two distinct phenotypes: i.e. maximum cell growth, (CN1) and maximum specific anti-TNFα production (CN2), and cultured at 37, 33 and 31°C in a batch system. Low temperature led to an increase in the cell viability, the expression of the recombinant anti-TNFα and the production of anti-TNFα both in CN1 and CN2. The higher production of anti-TNFα in CN2 was mainly associated with the large expression of anti-TNFα. Under mild hypothermia myc and xbp1s expression levels were directly correlated to the maximal viable cell density and the specific anti-TNFα productivity, respectively. Moreover, cells showed a simultaneous metabolic shift from production to consumption of lactate and from consumption to production of glutamine, which were exacerbated by reducing culture temperature and coincided with the increased anti-TNFα production. Our current results provide new insights of the regulation of myc and xbp1s in CHO cells at low temperature, and suggest that the presence and magnitude of the metabolic shift might be a relevant metabolic marker of productive cell line.
Collapse
Affiliation(s)
- Mauro Torres
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Roberto Zúñiga
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Doctorado en Química, Universidad República Oriental del Uruguay, Montevideo, Uruguay
| | - Matias Gutierrez
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Doctorado en Química, Universidad República Oriental del Uruguay, Montevideo, Uruguay
| | - Norberto Collazo
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Reyes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Julio Berrios
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Carlos Aguillon
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Carmen Molina
- Centro de InmunoBiotecnología, Programa D. de Inmunología, Instituto de Ciencias Biomédica (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS CONICYT Regional GORE, Valparaiso, Chile
- * E-mail:
| |
Collapse
|
33
|
Pereira S, Kildegaard HF, Andersen MR. Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients. Biotechnol J 2018; 13:e1700499. [DOI: 10.1002/biot.201700499] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/21/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Sara Pereira
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
- Department of Biotechnology and Biomedicine Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| |
Collapse
|
34
|
Brunner M, Doppler P, Klein T, Herwig C, Fricke J. Elevated pCO 2 affects the lactate metabolic shift in CHO cell culture processes. Eng Life Sci 2017; 18:204-214. [PMID: 32624899 DOI: 10.1002/elsc.201700131] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/05/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022] Open
Abstract
The shift from lactate production to consumption in CHO cell metabolism is a key event during cell culture cultivations and is connected to increased culture longevity and final product titers. However, the mechanisms controlling this metabolic shift are not yet fully understood. Variations in lactate metabolism have been mainly reported to be induced by process pH and availability of substrates like glucose and glutamine. The aim of this study was to investigate the effects of elevated pCO2 concentrations on the lactate metabolic shift phenomena in CHO cell culture processes. In this publication, we show that at elevated pCO2 in batch and fed-batch cultures, the lactate metabolic shift was absent in comparison to control cultures at lower pCO2 values. Furthermore, through metabolic flux analysis we found a link between the lactate metabolic shift and the ratio of NADH producing and regenerating intracellular pathways. This ratio was mainly affected by a reduced oxidative capacity of cultures at elevated pCO2. The presented results are especially interesting for large-scale and perfusion processes where increased pCO2 concentrations are likely to occur. Our results suggest, that so far unexplained metabolic changes may be connected to increased pCO2 accumulation in larger scale fermentations. Finally, we propose several mechanisms through which increased pCO2 might affect the cell metabolism and briefly discuss methods to enable the lactate metabolic shift during cell cultivations.
Collapse
Affiliation(s)
- Matthias Brunner
- Research Division Biochemical Engineering Vienna University of Technology Vienna Austria.,CD Laboratory on Mechanistic and Physiological Methods for Improved Bioprocesses Vienna University of Technology Vienna Austria
| | - Philipp Doppler
- Research Division Biochemical Engineering Vienna University of Technology Vienna Austria.,CD Laboratory on Mechanistic and Physiological Methods for Improved Bioprocesses Vienna University of Technology Vienna Austria
| | - Tobias Klein
- Research Division Biochemical Engineering Vienna University of Technology Vienna Austria.,CD Laboratory on Mechanistic and Physiological Methods for Improved Bioprocesses Vienna University of Technology Vienna Austria
| | - Christoph Herwig
- Research Division Biochemical Engineering Vienna University of Technology Vienna Austria.,CD Laboratory on Mechanistic and Physiological Methods for Improved Bioprocesses Vienna University of Technology Vienna Austria
| | - Jens Fricke
- Research Division Biochemical Engineering Vienna University of Technology Vienna Austria.,CD Laboratory on Mechanistic and Physiological Methods for Improved Bioprocesses Vienna University of Technology Vienna Austria
| |
Collapse
|
35
|
Kuo CC, Chiang AW, Shamie I, Samoudi M, Gutierrez JM, Lewis NE. The emerging role of systems biology for engineering protein production in CHO cells. Curr Opin Biotechnol 2017; 51:64-69. [PMID: 29223005 DOI: 10.1016/j.copbio.2017.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
To meet the ever-growing demand for effective, safe, and affordable protein therapeutics, decades of intense efforts have aimed to maximize the quantity and quality of recombinant proteins produced in CHO cells. Bioprocessing innovations and cell engineering efforts have improved product titer; however, uncharacterized cellular processes and gene regulatory mechanisms still hinder cell growth, specific productivity, and protein quality. Herein, we summarize recent advances in systems biology and data-driven approaches aiming to unravel how molecular pathways, cellular processes, and extrinsic factors (e.g. media supplementation) influence recombinant protein production. In particular, as the available omics data for CHO cells continue to grow, predictive models and screens will be increasingly used to unravel the biological drivers of protein production, which can be used with emerging genome editing technologies to rationally engineer cells to further control the quantity, quality and affordability of many biologic drugs.
Collapse
Affiliation(s)
- Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States
| | - Austin Wt Chiang
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States
| | - Isaac Shamie
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Bioinformatics and Systems Biology Program, University of California, San Diego, United States
| | - Mojtaba Samoudi
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States
| | - Jahir M Gutierrez
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States.
| |
Collapse
|
36
|
Khakimov B, Christiansen LD, Heins A, Sørensen KM, Schöller C, Clausen A, Skov T, Gernaey KV, Engelsen SB. Untargeted GC‐MS Metabolomics Reveals Changes in the Metabolite Dynamics of Industrial Scale Batch Fermentations of
Streptoccoccus thermophilus
Broth. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/14/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Bekzod Khakimov
- Faculty of ScienceDepartment of Food ScienceUniversity of Copenhagen1958 Frederiksberg CDenmark
| | | | - Anna‐Lena Heins
- Department of Chemical and Biochemical EngineeringTechnical University of DenmarkBuilding 2292800 Kongens LyngbyDenmark
| | - Klavs M. Sørensen
- Faculty of ScienceDepartment of Food ScienceUniversity of Copenhagen1958 Frederiksberg CDenmark
| | | | | | - Thomas Skov
- Faculty of ScienceDepartment of Food ScienceUniversity of Copenhagen1958 Frederiksberg CDenmark
| | - Krist V. Gernaey
- Department of Chemical and Biochemical EngineeringTechnical University of DenmarkBuilding 2292800 Kongens LyngbyDenmark
| | - Søren B. Engelsen
- Faculty of ScienceDepartment of Food ScienceUniversity of Copenhagen1958 Frederiksberg CDenmark
| |
Collapse
|
37
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
38
|
Leoni V, Nury T, Vejux A, Zarrouk A, Caccia C, Debbabi M, Fromont A, Sghaier R, Moreau T, Lizard G. Mitochondrial dysfunctions in 7-ketocholesterol-treated 158N oligodendrocytes without or with α-tocopherol: Impacts on the cellular profil of tricarboxylic cycle-associated organic acids, long chain saturated and unsaturated fatty acids, oxysterols, cholesterol and cholesterol precursors. J Steroid Biochem Mol Biol 2017; 169:96-110. [PMID: 27020660 DOI: 10.1016/j.jsbmb.2016.03.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/28/2022]
Abstract
In multiple sclerosis (MS) a process of white matter degradation leading to demyelination is observed. Oxidative stress, inflammation, apoptosis, necrosis and/or autophagy result together into a progressive loss of oligodendrocytes. 7-ketocholesterol (7KC), found increased in the cerebrospinal fluid of MS patients, triggers a rupture of RedOx homeostasis associated with mitochondrial dysfunctions, aptoptosis and autophagy (oxiapoptophagy) in cultured murine oligodendrocytes (158N). α-tocopherol is able to mild the alterations induced by 7KC partially restoring the cellular homeostasis. In presence of 7KC, the amount of adherent 158N cells was decreased and oxidative stress was enhanced. An increase of caspase-3 and PARP degradation (evidences of apoptosis), and an increased LC3-II/LC3-I ratio (criterion of autophagy), were detected. These events were associated with a decrease of the mitochondrial membrane potential (ΔΨm) and by a decrease of oxidative phosphorylation revealed by reduced NAD+ and ATP. The cellular lactate was higher while pyruvate, citrate, fumarate, succinate (tricarboxylic acid (TCA) cycle intermediates) were significantly reduced in exposed cells, suggesting that an impairment of mitochondrial respiratory functions could lead to an increase of lactate production and to a reduced amount of ATP and acetyl-CoA available for the anabolic pathways. The concentration of sterol precursors lathosterol, lanosterol and desmosterol were significantly reduced together with satured and unsatured long chain fatty acids (C16:0 - C18:0, structural elements of membrane phospholipids). Such reductions were milder with α-tocopherol. It is likely that the cell death induced by 7KC is associated with mitochondrial dysfunctions, including alterations of oxidative phosphorylation, which could result from lipid anabolism dysfunctions, especially on TCA cycle intermediates. A better knowledge of mitochondrial associated dysfunctions triggered by 7KC will contribute to bring new information on the demyelination processes which are linked with oxidative stress and lipid peroxidation, especially in MS.
Collapse
Affiliation(s)
- Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy; Laboratory of Clinical Pathology, Foundation IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Thomas Nury
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France
| | - Anne Vejux
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France
| | - Amira Zarrouk
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, & Univ. Sousse, Faculty of Medicine, Sousse, Tunisia
| | - Claudio Caccia
- Laboratory of Clinical Pathology, Foundation IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Meryam Debbabi
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, & Univ. Sousse, Faculty of Medicine, Sousse, Tunisia
| | - Agnès Fromont
- Department of Neurology, Univ. Hospital/Univ. Bourgogne Franche Comté, Dijon, France
| | - Randa Sghaier
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, & Univ. Sousse, Faculty of Medicine, Sousse, Tunisia
| | - Thibault Moreau
- Department of Neurology, Univ. Hospital/Univ. Bourgogne Franche Comté, Dijon, France
| | - Gérard Lizard
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France.
| |
Collapse
|
39
|
Karst DJ, Steinhoff RF, Kopp MRG, Serra E, Soos M, Zenobi R, Morbidelli M. Intracellular CHO Cell Metabolite Profiling Reveals Steady-State Dependent Metabolic Fingerprints in Perfusion Culture. Biotechnol Prog 2017; 33:879-890. [PMID: 27997765 DOI: 10.1002/btpr.2421] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/01/2016] [Indexed: 11/08/2022]
Abstract
Perfusion cell culture processes allow the steady-state culture of mammalian cells at high viable cell density, which is beneficial for overall product yields and homogeneity of product quality in the manufacturing of therapeutic proteins. In this study, the extent of metabolic steady state and the change of the metabolite profile between different steady states of an industrial Chinese hamster ovary (CHO) cell line producing a monoclonal antibody (mAb) was investigated in stirred tank perfusion bioreactors. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) of daily cell extracts revealed more than a hundred peaks, among which 76 metabolites were identified by tandem MS (MS/MS) and high resolution Fourier transform ion cyclotron resonance (FT-ICR) MS. Nucleotide ratios (Uridine (U)-ratio, nucleotide triphosphate (NTP)-ratio and energy charge (EC)) and multivariate analysis of all features indicated a consistent metabolite profile for a stable culture performed at 40 × 106 cells/mL over 26 days of culture. Conversely, the reactor was operated continuously so as to reach three distinct steady states one after the other at 20, 60, and 40 × 106 cells/mL. In each case, a stable metabolite profile was achieved after an initial transient phase of approximately three days at constant cell density when varying between these set points. Clear clustering according to cell density was observed by principal component analysis, indicating steady-state dependent metabolite profiles. In particular, varying levels of nucleotides, nucleotide sugar, and lipid precursors explained most of the variance between the different cell density set points. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:879-890, 2017.
Collapse
Affiliation(s)
- Daniel J Karst
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Robert F Steinhoff
- Dept. of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Marie R G Kopp
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Elisa Serra
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Miroslav Soos
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.,Dept. of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28, Czech Republic
| | - Renato Zenobi
- Dept. of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Massimo Morbidelli
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Gao Y, Ray S, Dai S, Ivanov AR, Abu-Absi NR, Lewis AM, Huang Z, Xing Z, Borys MC, Li ZJ, Karger BL. Combined metabolomics and proteomics reveals hypoxia as a cause of lower productivity on scale-up to a 5000-liter CHO bioprocess. Biotechnol J 2016; 11:1190-200. [DOI: 10.1002/biot.201600030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Yuanwei Gao
- Barnett Institute and Department of Chemistry and Chemical Biology; Northeastern University; Boston MA USA
| | - Somak Ray
- Barnett Institute and Department of Chemistry and Chemical Biology; Northeastern University; Boston MA USA
| | - Shujia Dai
- Barnett Institute and Department of Chemistry and Chemical Biology; Northeastern University; Boston MA USA
| | - Alexander R. Ivanov
- Barnett Institute and Department of Chemistry and Chemical Biology; Northeastern University; Boston MA USA
| | - Nicholas R. Abu-Absi
- Biologics Development, Global Manufacturing and Supply; Bristol-Myers Squibb; 38 Jackson Road Devens MA USA
| | - Amanda M. Lewis
- Biologics Development, Global Manufacturing and Supply; Bristol-Myers Squibb; 38 Jackson Road Devens MA USA
| | - Zhuangrong Huang
- Biologics Development, Global Manufacturing and Supply; Bristol-Myers Squibb; 38 Jackson Road Devens MA USA
| | - Zizhuo Xing
- Biologics Development, Global Manufacturing and Supply; Bristol-Myers Squibb; 38 Jackson Road Devens MA USA
| | - Michael C. Borys
- Biologics Development, Global Manufacturing and Supply; Bristol-Myers Squibb; 38 Jackson Road Devens MA USA
| | - Zheng Jian Li
- Biologics Development, Global Manufacturing and Supply; Bristol-Myers Squibb; 38 Jackson Road Devens MA USA
| | - Barry L. Karger
- Barnett Institute and Department of Chemistry and Chemical Biology; Northeastern University; Boston MA USA
| |
Collapse
|