1
|
McFarland KS, Hegadorn K, Betenbaugh MJ, Handlogten MW. Elevated endoplasmic reticulum pH is associated with high growth and bisAb aggregation in CHO cells. Biotechnol Bioeng 2025; 122:137-148. [PMID: 39435744 DOI: 10.1002/bit.28866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Chinese hamster ovary (CHO) bioprocesses, the dominant platform for therapeutic protein production, are increasingly used to produce complex multispecific proteins. Product quantity and quality are affected by intracellular conditions, but these are challenging to measure and often overlooked during process optimization studies. pH is known to impact quality attributes like protein aggregation across upstream and downstream processes, yet the effects of intracellular pH on cell culture performance are largely unknown. Recently, advances in protein biosensors have enabled investigations of intracellular environments with high spatiotemporal resolution. In this study, we integrated a fluorescent pH-sensitive biosensor into a bispecifc (bisAb)-producing cell line to investigate changes in endoplasmic reticulum pH (pHER). We then investigated how changes in lactate metabolism impacted pHER, cellular redox, and product quality in fed-batch and perfusion bioreactors. Our data show pHER rapidly increased during exponential growth to a maximum of pH 7.7, followed by a sharp drop in the stationary phase in all perfusion and fed-batch conditions. pHER decline in the stationary phase was driven by an apparent loss of cellular pH regulation that occurred despite differences in redox profiles. Finally, we found protein aggregate levels correlated most closely with pHER which provides new insights into product aggregate formation in CHO processes. An improved understanding of the intracellular changes impacting bioprocesses can ultimately help guide media optimizations, improve bioprocess control strategies, or provide new targets for cell engineering.
Collapse
Affiliation(s)
- Kevin S McFarland
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development R&D, AstraZeneca, Gaithersburg, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Kaitlin Hegadorn
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development R&D, AstraZeneca, Gaithersburg, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Michael W Handlogten
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development R&D, AstraZeneca, Gaithersburg, USA
| |
Collapse
|
2
|
Wagner EK, Carter KP, Lim YW, Chau GJ, Enstrom A, Wayham NP, Hanners JM, Yeh CLC, Fouet M, Leong J, Adler AS, Simons JF. High-throughput specificity profiling of antibody libraries using ribosome display and microfluidics. CELL REPORTS METHODS 2024; 4:100934. [PMID: 39689695 PMCID: PMC11704616 DOI: 10.1016/j.crmeth.2024.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
In this work, we developed PolyMap (polyclonal mapping), a high-throughput method for mapping protein-protein interactions. We demonstrated the mapping of thousands of antigen-antibody interactions between diverse antibody libraries isolated from convalescent and vaccinated COVID-19 donors and a set of clinically relevant SARS-CoV-2 spike variants. We identified over 150 antibodies with a variety of distinctive binding patterns toward the antigen variants and found a broader binding profile, including targeting of the Omicron variant, in the antibody repertoires of more recent donors. We then used these data to select mixtures of a small number of clones with complementary reactivity that together provide strong potency and broad neutralization. PolyMap is a generalizable platform that can be used for one-pot epitope mapping, immune repertoire profiling, and therapeutic design and, in the future, could be expanded to other families of interacting proteins.
Collapse
Affiliation(s)
| | - Kyle P Carter
- GigaGen, Inc. (a Grifols company), San Carlos, CA, USA
| | | | | | | | | | | | | | - Marc Fouet
- GigaGen, Inc. (a Grifols company), San Carlos, CA, USA
| | - Jackson Leong
- GigaGen, Inc. (a Grifols company), San Carlos, CA, USA
| | - Adam S Adler
- GigaGen, Inc. (a Grifols company), San Carlos, CA, USA
| | | |
Collapse
|
3
|
Alcorn MD, Sun C, Gilliland TC, Lukash T, Crasto CM, Raju S, Diamond MS, Weaver SC, Klimstra WB. Three positively charged binding sites on the eastern equine encephalitis virus E2 glycoprotein coordinate heparan sulfate- and protein receptor-dependent infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621500. [PMID: 39574633 PMCID: PMC11580934 DOI: 10.1101/2024.11.04.621500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Naturally circulating strains of eastern equine encephalitis virus (EEEV) bind heparan sulfate (HS) receptors and this interaction has been linked to its neurovirulence. Previous studies associated EEEV-HS interactions with three positively charged amino acid clusters on the E2 glycoprotein. One of these sites has recently been reported to be critical for binding EEEV to very-low-density lipoprotein receptor (VLDLR), an EEEV receptor protein. The proteins apolipoprotein E receptor 2 (ApoER2) isoforms 1 and 2, and LDLR have also been shown to function as EEEV receptors. Herein, we investigate the individual contribution of each HS interaction site to EEEV HS- and protein receptor-dependent infection in vitro and EEEV replication in animals. We show that each site contributes to both EEEV-HS and EEEV-protein receptor interactions, providing evidence that altering these interactions can affect disease in mice and eliminate mosquito infectivity. Thus, multiple HS-binding sites exist in EEEV E2, and these sites overlap functionally with protein receptor interaction sites, with each type of interaction contributing to tissue infectivity and disease phenotypes.
Collapse
Affiliation(s)
- Maria D.H. Alcorn
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Chengqun Sun
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Theron C. Gilliland
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tetyana Lukash
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Christine M. Crasto
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Saravanan Raju
- Department of Medicine and Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Michael S. Diamond
- Department of Medicine and Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Scott C. Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - William B. Klimstra
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
4
|
Bunde TT, Pedra ACK, de Oliveira NR, Dellagostin OA, Bohn TLO. A systematic review on the selection of reference genes for gene expression studies in rodents: are the classics the best choice? Mol Biol Rep 2024; 51:1017. [PMID: 39327364 DOI: 10.1007/s11033-024-09950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Rodents are commonly used as animal models in studies investigating various experimental conditions, often requiring gene expression analysis. Quantitative real-time reverse transcription PCR (RT-qPCR) is the most widely used tool to quantify target gene expression levels under different experimental conditions in various biological samples. Relative normalization with reference genes is a crucial step in RT-qPCR to obtain reliable quantification results. In this work, the main reference genes used in gene expression studies among the three rodents commonly employed in scientific research-hamster, rat, and mouse-are analyzed and described. An individual literature search for each rodent was conducted using specific search terms in three databases: PubMed, Scopus, and Web of Science. A total of 157 articles were selected (rats = 73, mice = 79, and hamsters = 5), identifying various reference genes. The most commonly used reference genes were analyzed according to each rodent, sample type, and experimental condition evaluated, revealing a great variability in the stability of each gene across different samples and conditions. Classic genes, which are expected to be stably expressed in both samples and conditions analyzed, demonstrated greater variability, corroborating existing concerns about the use of these genes. Therefore, this review provides important insights for researchers seeking to identify suitable reference genes for their validation studies in rodents.
Collapse
Affiliation(s)
- Tiffany T Bunde
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana C K Pedra
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natasha R de Oliveira
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir A Dellagostin
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thaís L O Bohn
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
5
|
Peltret M, Vetsch P, Farvaque E, Mette R, Tsachaki M, Duarte L, Duret A, Vaxelaire E, Frank J, Moritz B, Aillerie C, Giovannini R, Bertschinger M. Development of a 10 g/L process for a difficult-to-express multispecific antibody format using a holistic process development approach. J Biotechnol 2024; 389:30-42. [PMID: 38685416 DOI: 10.1016/j.jbiotec.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Ichnos has developed a multi-specific antibody platform based on the BEAT® (Bispecific engagement by antibodies based on the T-cell receptor) interface. The increased complexity of the bi- and multi-specific formats generated with this platform makes these molecules difficult-to-express proteins compared to standard monoclonal antibodies (mAbs). This report describes how expression limitations of a bi-specific bi-paratopic BEAT antibody were improved in a holistic approach. An initial investigation allowed identification of a misbalance in the subunits composing the BEAT antibody as the potential root cause. This misbalance was then addressed by a signal peptide optimization, and the overall expression level was increased by the combination of two vector design elements on a single gene vector. Further improvements were made in the selection of cell populations and an upstream (USP) platform process was applied in combination with a cell culture temperature shift. This allowed titer levels of up to 6 g/L to be reached with these difficult-to-express proteins. Furthermore, a high-density seeding process was developed that allowed titers of around 11 g/L for the BEAT antibody, increasing the initial titer by a factor of 10. The approach was successfully applied to a tri-specific antibody with titer levels reaching 10 g/L. In summary, a platform process for difficult-to-express proteins was developed using molecular biology tools, cell line development, upstream process optimization and process intensification.
Collapse
Affiliation(s)
- Mégane Peltret
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Patrick Vetsch
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | - Romain Mette
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Maria Tsachaki
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Lionel Duarte
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Anaïs Duret
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | - Jana Frank
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Rives D, Peak C, Blenner MA. RNASeq highlights ATF6 pathway regulators for CHO cell engineering with different impacts of ATF6β and WFS1 knockdown on fed-batch production of IgG 1. Sci Rep 2024; 14:14141. [PMID: 38898154 PMCID: PMC11187196 DOI: 10.1038/s41598-024-64767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Secretion levels required of industrial Chinese hamster ovary (CHO) cell lines can challenge endoplasmic reticulum (ER) homeostasis, and ER stress caused by accumulation of misfolded proteins can be a bottleneck in biomanufacturing. The unfolded protein response (UPR) is initiated to restore homeostasis in response to ER stress, and optimization of the UPR can improve CHO cell production of therapeutic proteins. We compared the fed-batch growth, production characteristics, and transcriptomic response of an immunoglobulin G1 (IgG1) producer to its parental, non-producing host cell line. We conducted differential gene expression analysis using high throughput RNA sequencing (RNASeq) and quantitative polymerase chain reaction (qPCR) to study the ER stress response of each cell line during fed-batch culture. The UPR was activated in the IgG1 producer compared to the host cell line and our analysis of differential expression profiles indicated transient upregulation of ATF6α target mRNAs in the IgG1 producer, suggesting two upstream regulators of the ATF6 arm of the UPR, ATF6β and WFS1, are rational engineering targets. Although both ATF6β and WFS1 have been reported to negatively regulate ATF6α, this study shows knockdown of either target elicits different effects in an IgG1-producing CHO cell line. Stable knockdown of ATF6β decreased cell growth without decreasing titer; however, knockdown of WFS1 decreased titer without affecting growth. Relative expression measured by qPCR indicated no direct relationship between ATF6β and WFS1 expression, but upregulation of WFS1 in one pool was correlated with decreased growth and upregulation of ER chaperone mRNAs. While knockdown of WFS1 had negative impacts on UPR activation and product mRNA expression, knockdown of ATF6β improved the UPR specifically later in fed-batch leading to increased overall productivity.
Collapse
Affiliation(s)
- Dyllan Rives
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA
| | - Caroline Peak
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA
| | - Mark A Blenner
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA.
- Department of Chemical & Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
7
|
Zhou Y, Li X, Zhang X, Li M, Luo N, Zhao Y. Screening of Candidate Housekeeping Genes in Uterus Caruncle by RNA-Sequence and qPCR Analyses in Different Stages of Goat ( Capra hircus). Animals (Basel) 2023; 13:1897. [PMID: 37370406 DOI: 10.3390/ani13121897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The uterus is a critical pregnancy organ for mammals. The normal growth and development of ruminant uterus caruncles are crucial to maintain gestation and fetal health in goats. Quantitative real-time polymerase chain reaction (qRT-PCR) is a reliable tool to study gene expression profiling for exploring the intrinsic mechanism underlying the conversion process of uterus caruncle tissue. However, the candidate housekeeping genes (HKGs) are required for normalizing the expression of function genes. In our study, 22 HKGs were selected from analyzing transcriptome data at non-pregnancy and pregnancy processes and previous reports about HKGs in goat tissues. We assessed them for expression suitability in 24 samples from uterus tissues at 15 non-pregnant days (Stage 1), early (Stage 2), and medium-later pregnant days (Stage 3). The expression stability of these genes was evaluated by using geNorm, Normfinder, Bestkeeper, and Delta Ct algorithms and, comprehensively, by ReFinder. In addition, the most and least stable HKGs were used to normalize the target genes expression of SPP1, VEGFA, and PAG8. It was found that traditional reference genes, such as ACTB and GAPDH, were not suitable for target gene normalization. In contrast, PPIB selected from RNA sequencing data and EIF3K selected from previous references showed the least variation and were recommended as the best HKGs during the nonpregnant stage and the whole stages of goat uterus caruncle tissue, respectively. It is the first time the HKGs genes in uterus during the non-pregnant day and throughout the total pregnancy have been explored. These findings found suitable HKGs in uterus caruncle tissues at various stages of non-pregnancy and pregnancy; these can be useful for gene expression studies to reveal the molecular mechanisms of uterus development in goats.
Collapse
Affiliation(s)
- Yumei Zhou
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
| | - Xingchun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
| | - Xinyue Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
| | - Minghui Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
| | - Nanjian Luo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
| |
Collapse
|
8
|
Bajraktari-Sylejmani G, von Linde T, Burhenne J, Haefeli WE, Sauter M, Weiss J. Evaluation of PepT1 (SLC15A1) Substrate Characteristics of Therapeutic Cyclic Peptides. Pharmaceutics 2022; 14:pharmaceutics14081610. [PMID: 36015235 PMCID: PMC9415731 DOI: 10.3390/pharmaceutics14081610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022] Open
Abstract
The human peptide transporter hPepT1 (SLC15A1), physiologically transporting dipeptides and tripeptides generated during food digestion, also plays a role in the uptake of small bioactive peptides and peptide-like drugs. Moreover, it might be addressed in prodrug strategies of poorly absorbed drugs. We hypothesised that the cyclic drug peptides octreotide and pasireotide could be substrates of this transporter because their diameter can resemble the size of dipeptides or tripeptides due to their strong structural curvature and because they reach the systemic circulation in Beagle dogs. For investigating possible hPepT1 substrate characteristics, we generated and characterised a CHO-K1 cell line overexpressing SLC15A1 by transfection and selection via magnetic beads. Possible inhibition of the uptake of the prototypical substrate Gly-Sar by octreotide and pasireotide was screened, followed by quantifying the uptake of the cyclic peptides in cells overexpressing SLC15A1 compared with the parental cell line. Although inhibition of Gly-Sar uptake was observed, uptake of octreotide and pasireotide was not increased in SLC15A1 overexpressing cells, indicating a lack of transport by hPepT1. Our data clearly indicate that octreotide and pasireotide are nonsubstrate inhibitors of hPepT1 and that their oral bioavailability cannot be explained by absorption via hPepT1.
Collapse
|
9
|
Schloßhauer JL, Cavak N, Zemella A, Thoring L, Kubick S. Cell Engineering and Cultivation of Chinese Hamster Ovary Cells for the Development of Orthogonal Eukaryotic Cell-free Translation Systems. Front Mol Biosci 2022; 9:832379. [PMID: 35586195 PMCID: PMC9109823 DOI: 10.3389/fmolb.2022.832379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
The investigation of protein structures, functions and interactions often requires modifications to adapt protein properties to the specific application. Among many possible methods to equip proteins with new chemical groups, the utilization of orthogonal aminoacyl-tRNA synthetase/tRNA pairs enables the site-specific incorporation of non-canonical amino acids at defined positions in the protein. The open nature of cell-free protein synthesis reactions provides an optimal environment, as the orthogonal components do not need to be transported across the cell membrane and the impact on cell viability is negligible. In the present work, it was shown that the expression of orthogonal aminoacyl-tRNA synthetases in CHO cells prior to cell disruption enhanced the modification of the pharmaceutically relevant adenosine A2a receptor. For this purpose, in complement to transient transfection of CHO cells, an approach based on CRISPR/Cas9 technology was selected to generate a translationally active cell lysate harboring endogenous orthogonal aminoacyl-tRNA synthetase.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Niño Cavak
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Anne Zemella
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Lena Thoring
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Stefan Kubick
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus –Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
- *Correspondence: Stefan Kubick,
| |
Collapse
|
10
|
Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:25-34. [PMID: 34895638 DOI: 10.1016/j.ddtec.2021.02.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Recombinant proteins used in biomedical research, diagnostics and different therapies are mostly produced in Chinese hamster ovary cells in the pharmaceutical industry. These biotherapeutics, monoclonal antibodies in particular, have shown remarkable market growth in the past few decades. The increasing demand for high amounts of biologics requires continuous optimization and improvement of production technologies. Research aims at discovering better means and methods for reaching higher volumetric capacity, while maintaining stable product quality. An increasing number of complex novel protein therapeutics, such as viral antigens, vaccines, bi- and tri-specific monoclonal antibodies, are currently entering industrial production pipelines. These biomolecules are, in many cases, difficult to express and require tailored product-specific solutions to improve their transient or stable production. All these requirements boost the development of more efficient expression optimization systems and high-throughput screening platforms to facilitate the design of product-specific cell line engineering and production strategies. In this minireview, we provide an overview on recent advances in CHO cell line development, targeted genome manipulation techniques, selection systems and screening methods currently used in recombinant protein production.
Collapse
Affiliation(s)
- Borbála Tihanyi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
11
|
Song Q, Dou L, Zhang W, Peng Y, Huang M, Wang M. Public transcriptome database-based selection and validation of reliable reference genes for breast cancer research. Biomed Eng Online 2021; 20:124. [PMID: 34895237 PMCID: PMC8665499 DOI: 10.1186/s12938-021-00963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the most sensitive technique for evaluating gene expression levels. Choosing appropriate reference genes (RGs) is critical for normalizing and evaluating changes in the expression of target genes. However, uniform and reliable RGs for breast cancer research have not been identified, limiting the value of target gene expression studies. Here, we aimed to identify reliable and accurate RGs for breast cancer tissues and cell lines using the RNA-seq dataset. METHODS First, we compiled the transcriptome profiling data from the TCGA database involving 1217 samples to identify novel RGs. Next, ten genes with relatively stable expression levels were chosen as novel candidate RGs, together with six conventional RGs. To determine and validate the optimal RGs we performed qRT-PCR experiments on 87 samples from 11 types of surgically excised breast tumor specimens (n = 66) and seven breast cancer cell lines (n = 21). Five publicly available algorithms (geNorm, NormFinder, ΔCt method, BestKeeper, and ComprFinder) were used to assess the expression stability of each RG across all breast cancer tissues and cell lines. RESULTS Our results show that RG combinations SF1 + TRA2B + THRAP3 and THRAP3 + RHOA + QRICH1 showed stable expression in breast cancer tissues and cell lines, respectively, and that they displayed good interchangeability. We propose that these combinations are optimal triplet RGs for breast cancer research. CONCLUSIONS In summary, we identified novel and reliable RG combinations for breast cancer research based on a public RNA-seq dataset. Our results lay a solid foundation for the accurate normalization of qRT-PCR results across different breast cancer tissues and cells.
Collapse
Affiliation(s)
- Qiang Song
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 404000, China
| | - Lu Dou
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 404000, China
| | - Wenjin Zhang
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 404000, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Man Huang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, No.165, Xin Cheng Lu, Wanzhou, Chongqing, 404000, China.
| | - Mengyuan Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, No.165, Xin Cheng Lu, Wanzhou, Chongqing, 404000, China.
| |
Collapse
|
12
|
Identification of new reference genes with stable expression patterns for gene expression studies using human cancer and normal cell lines. Sci Rep 2021; 11:19459. [PMID: 34593877 PMCID: PMC8484624 DOI: 10.1038/s41598-021-98869-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/11/2021] [Indexed: 11/08/2022] Open
Abstract
Reverse transcription—quantitative real-time PCR (RT-qPCR) is a ubiquitously used method in biological research, however, finding appropriate reference genes for normalization is challenging. We aimed to identify genes characterized with low expression variability among human cancer and normal cell lines. For this purpose, we investigated the expression of 12 candidate reference genes in 13 widely used human cancer cell lines (HeLa, MCF-7, A-549, K-562, HL-60(TB), HT-29, MDA-MB-231, HCT 116, U-937, SH-SY5Y, U-251MG, MOLT-4 and RPMI-8226) and, in addition, 7 normal cell lines (HEK293, MRC-5, HUVEC/TERT2, HMEC, HFF-1, HUES 9, XCL-1). In our set of genes, we included SNW1 and CNOT4 as novel candidate reference genes based on the RNA HPA cell line gene data from The Human Protein Atlas. HNRNPL and PCBP1 were also included along with the „classical” reference genes ACTB, GAPDH, IPO8, PPIA, PUM1, RPL30, TBP and UBC. Results were evaluated using GeNorm, NormFiner, BestKeeper and the Comparative ΔCt methods. In conclusion, we propose IPO8, PUM1, HNRNPL, SNW1 and CNOT4 as stable reference genes for comparing gene expression between different cell lines. CNOT4 was also the most stable gene upon serum starvation.
Collapse
|
13
|
Zhao N, Xu J, Jiao L, Qiu M, Zhang J, Wei X, Fan M. Transcriptome-Based Selection and Validation of Reference Genes for Gene Expression Analysis of Alicyclobacillus acidoterrestris Under Acid Stress. Front Microbiol 2021; 12:731205. [PMID: 34512609 PMCID: PMC8430261 DOI: 10.3389/fmicb.2021.731205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Alicyclobacillus acidoterrestris is a major concern in fruit juice industry due to its spoilage potential of acidic fruit juice. Quantifying the expression levels of functional genes by real-time quantitative polymerase chain reaction (RT-qPCR) is necessary to elucidate the response mechanisms of A. acidoterrestris to acid stress. However, appropriate reference genes (RGs) for data normalization are required to obtain reliable RT-qPCR results. In this study, eight novel candidate RGs were screened based on transcriptome datasets of A. acidoterrestris under acid stress. The expression stability of eight new RGs and commonly used RG 16s rRNA was assessed using geNorm, NormFinder, and BestKeeper algorithms. Moreover, the comprehensive analysis using the RefFinder program and the validation using target gene ctsR showed that dnaG and dnaN were the optimal multiple RGs for normalization at pH 4.0; ytvI, dnaG, and 16s rRNA at pH 3.5; icd and dnaG at pH 3.0; and ytvI, dnaG, and spoVE at pH 2.5. This study revealed for the first time that A. acidoterrestris had different suitable RGs under different acid conditions, with implications for further deciphering the acid response mechanisms of this spoilage-causing bacterium.
Collapse
Affiliation(s)
- Ning Zhao
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengzhen Qiu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
14
|
High Throughput miRNA Screening Identifies miR-574-3p Hyperproductive Effect in CHO Cells. Biomolecules 2021; 11:biom11081125. [PMID: 34439791 PMCID: PMC8392531 DOI: 10.3390/biom11081125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
CHO is the cell line of choice for the manufacturing of many complex biotherapeutics. The constant upgrading of cell productivity is needed to meet the growing demand for these life-saving drugs. Manipulation of small non-coding RNAs—miRNAs—is a good alternative to a single gene knockdown approach due to their post-transcriptional regulation of entire cellular pathways without posing translational burden to the production cell. In this study, we performed a high-throughput screening of 2042-human miRNAs and identified several candidates able to increase cell-specific and overall production of Erythropoietin and Etanercept in CHO cells. Some of these human miRNAs have not been found in Chinese hamster cells and yet were still effective in them. We identified miR-574-3p as being able, when overexpressed in CHO cells, to improve overall productivity of Erythropoietin and Etanercept titers from 1.3 to up to 2-fold. In addition, we validated several targets of miR-574-3p and identified p300 as a main target of miR-574-3p in CHO cells. Furthermore, we demonstrated that stable CHO cell overexpressing miRNAs from endogenous CHO pri-miRNA sequences outperform the cells with human pri-miRNA sequences. Our findings highlight the importance of flanking genomic sequences, and their secondary structure features, on pri-miRNA processing offering a novel, cost-effective and fast strategy as a valuable tool for efficient miRNAs engineering in CHO cells.
Collapse
|
15
|
Dovgan T, Golghalyani V, Zurlo F, Hatton D, Lindo V, Turner R, Harris C, Cui T. Targeted CHO cell engineering approaches can reduce HCP-related enzymatic degradation and improve mAb product quality. Biotechnol Bioeng 2021; 118:3821-3831. [PMID: 34125434 DOI: 10.1002/bit.27857] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/16/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
Host cell proteins (HCP) that co-purify with biologics produced in Chinese hamster ovary cells have been shown to impact product quality through proteolytic degradation of recombinant proteins, leading to potential product losses. Several problematic HCPs can remain in the final product even after extensive purification. Each recombinant cell line has a unique HCP profile that can be determined by numerous upstream and downstream factors, including clonal variation and the protein sequence of the expressed therapeutic molecule. Here, we worked with recombinant cell lines with high levels of copurifying HCPs, and showed that in those cell lines even modest downregulation (≤50%) of the difficult to remove HCP Cathepsin D, through stable short hairpin RNA interference or monoallelic deletion of the target gene using CRISPR-Cas9, is sufficient to greatly reduce levels of co-purifying HCP as measured by high throughput targeted LC-MS. This reduction led to improved product quality by reducing fragmentation of the drug product in forced degradation studies to negligible levels. We also show the potential of cell engineering to target other undesired HCPs and relieve the burden on downstream purification.
Collapse
Affiliation(s)
- Tatiana Dovgan
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK.,Purification Process Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK
| | - Vahid Golghalyani
- Analytical Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK
| | - Fabio Zurlo
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK
| | - Diane Hatton
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK
| | - Viv Lindo
- Analytical Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK
| | - Richard Turner
- Purification Process Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK
| | - Claire Harris
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK
| | - Tingting Cui
- Purification Process Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, Cambridge, AstraZeneca, UK
| |
Collapse
|
16
|
Patel YD, Brown AJ, Zhu J, Rosignoli G, Gibson SJ, Hatton D, James DC. Control of Multigene Expression Stoichiometry in Mammalian Cells Using Synthetic Promoters. ACS Synth Biol 2021; 10:1155-1165. [PMID: 33939428 PMCID: PMC8296667 DOI: 10.1021/acssynbio.0c00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/22/2023]
Abstract
To successfully engineer mammalian cells for a desired purpose, multiple recombinant genes are required to be coexpressed at a specific and optimal ratio. In this study, we hypothesized that synthetic promoters varying in transcriptional activity could be used to create single multigene expression vectors coexpressing recombinant genes at a predictable relative stoichiometry. A library of 27 multigene constructs was created comprising three discrete fluorescent reporter gene transcriptional units in fixed series, each under the control of either a relatively low, medium, or high transcriptional strength synthetic promoter in every possible combination. Expression of each reporter gene was determined by absolute quantitation qRT-PCR in CHO cells. The synthetic promoters did generally function as designed within a multigene vector context; however, significant divergences from predicted promoter-mediated transcriptional activity were observed. First, expression of all three genes within a multigene vector was repressed at varying levels relative to coexpression of identical reporter genes on separate single gene vectors at equivalent gene copies. Second, gene positional effects were evident across all constructs where expression of the reporter genes in positions 2 and 3 was generally reduced relative to position 1. Finally, after accounting for general repression, synthetic promoter transcriptional activity within a local multigene vector format deviated from that expected. Taken together, our data reveal that mammalian synthetic promoters can be employed in vectors to mediate expression of multiple genes at predictable relative stoichiometries. However, empirical validation of functional performance is a necessary prerequisite, as vector and promoter design features can significantly impact performance.
Collapse
Affiliation(s)
- Yash D. Patel
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| | - Adam J. Brown
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| | - Jie Zhu
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Guglielmo Rosignoli
- Dynamic
Omics, Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - Suzanne J. Gibson
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - Diane Hatton
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - David C. James
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| |
Collapse
|
17
|
Mistry RK, Kelsall E, Sou SN, Barker H, Jenns M, Willis K, Zurlo F, Hatton D, Gibson SJ. A novel hydrogen peroxide evolved CHO host can improve the expression of difficult to express bispecific antibodies. Biotechnol Bioeng 2021; 118:2326-2337. [PMID: 33675232 PMCID: PMC8252053 DOI: 10.1002/bit.27744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The manufacture of bispecific antibodies by Chinese hamster ovary (CHO) cells is often hindered by lower product yields compared to monoclonal antibodies. Recently, reactive oxygen species have been shown to negatively impact antibody production. By contrast, strategies to boost cellular antioxidant capacity appear to be beneficial for recombinant protein expression. With this in mind, we generated a novel hydrogen peroxide evolved host using directed host cell evolution. Here we demonstrate that this host has heritable resistance to hydrogen peroxide over many generations, displays enhanced antioxidant capacity through the upregulation of several, diverse antioxidant defense genes such as those involved in glutathione synthesis and turnover, and has improved glutathione content. Additionally, we show that this host has significantly improved transfection recovery times, improved growth and viability properties in a fed‐batch production process, and elevated expression of two industrially relevant difficult to express bispecific antibodies compared to unevolved CHO control host cells. These findings demonstrate that host cell evolution represents a powerful methodology for improving specific host cell characteristics that can positively impact the expression of difficult to express biotherapeutics.
Collapse
Affiliation(s)
- Rajesh K Mistry
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Emma Kelsall
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Si Nga Sou
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Harriet Barker
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Mike Jenns
- Kymab Ltd, Cell Line Development, Biopharmaceutical Development, Kymab, Babraham Research Campus, Cambridge, UK
| | - Katie Willis
- Department of Life Sciences, Imperial College London, Berkshire, UK
| | - Fabio Zurlo
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Diane Hatton
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Suzanne J Gibson
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
18
|
Chang Y, He J, Xiang X, Li H. LUM is the hub gene of advanced fibrosis in nonalcoholic fatty liver disease patients. Clin Res Hepatol Gastroenterol 2021; 45:101435. [PMID: 32386798 DOI: 10.1016/j.clinre.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) is associated with a poor prognosis. The genetic factors contributing to fibrosis in NAFLD have been described. However, the genetic mechanism and hub genes of advanced fibrosis have not been elucidated to date. In this study, we performed a weighted gene coexpression network analysis (WGCNA) to identify the hub genes related to advanced fibrosis in NAFLD. MATERIALS AND METHODS The datasets GSE89632 and GSE31803 of NAFLD patients were selected from the Gene Expression Omnibus (GEO) database of NCBI and analyzed by WGCNA. The hub genes were selected in the GSE31803 dataset and verified in the GSE31803 dataset. Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the dataset were also performed. RESULTS The gene LUM was identified as the hub gene in the datasets GSE89632 and GSE31803 according to three different algorithms (gene significance and module membership, the pathways of the genes, and protein expressed by the genes). The functional enrichment analysis shows that the identified module is related to the extracellular matrix, regulation of cell proliferation, and the inflammatory response. The metabolic pathway analysis identified metabolic pathways and focal adhesion as the most important pathways. CONCLUSION By a variety of methods, LUM was identified as the hub gene of advanced fibrosis in patients with NAFLD. Therefore, further research on the LUM gene is warranted.
Collapse
Affiliation(s)
- Yue Chang
- Graduate School, Logistics University of People's Armed Ploce Force, 300162 Tianjin, China; Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, No. 403 Xiqing Road, Xiqing District, 300380 Tianjin, China
| | - Jiange He
- Graduate School, Logistics University of People's Armed Ploce Force, 300162 Tianjin, China
| | - Xiaohui Xiang
- Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, No. 403 Xiqing Road, Xiqing District, 300380 Tianjin, China
| | - Hai Li
- Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, No. 403 Xiqing Road, Xiqing District, 300380 Tianjin, China.
| |
Collapse
|
19
|
Qin D, Zhao Y, Guo Q, Zhu S, Zhang S, Min L. Detection of Pancreatic Ductal Adenocarcinoma by A qPCR-based Normalizer-free Circulating Extracellular Vesicles RNA Signature. J Cancer 2021; 12:1445-1454. [PMID: 33531989 PMCID: PMC7847660 DOI: 10.7150/jca.50716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is difficult to diagnose and many efforts have been made to evaluate EVs-derived RNAs as biomarkers to predict PDAC. However, lack of robust internal references largely limited their clinical application. Here we proposed an RNA ratio-based, normalizer-free algorithm to quantitate EVs-derived RNAs in PDAC. Methods: Differentially expressed RNAs in the training group were identified using "limma" package. The ratio of any two candidate RNAs in the same sample was calculated and used as a new biomarker. LASSO regression was performed to build prediction models based on those RNA ratios. RNA-seq data of 116 plasma samples and RT-qPCR data of 111 plasma samples were used for internal and external validation, separately. Three algorithms (lasso regression, logistic regression, and SVM) were compared to improve the performance of this RNA signature. Results: We developed an RNA-ratio based prediction model which comprised eight EVs-derived RNAs, including FBXO7, MORF4L1, DDX17, TALDO1, AHNAK, TUBA1B, CD44, and SETD3. This model could well differentiate PDAC patients with a minimal AUC of 0.86 in internal verification using testing group. External validation using RT-qPCR data also exhibited a good classifier ability with an AUC of 0.89 when distinguishing PDAC from healthy controls. Conclusion: We've developed a qPCR-based, normalizer-free circulating EVs RNA classifier, which could well distinguish PDAC patients from noncancerous controls.
Collapse
Affiliation(s)
- Da Qin
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| |
Collapse
|
20
|
Hamouda NN, Van den Haute C, Vanhoutte R, Sannerud R, Azfar M, Mayer R, Cortés Calabuig Á, Swinnen JV, Agostinis P, Baekelandt V, Annaert W, Impens F, Verhelst SHL, Eggermont J, Martin S, Vangheluwe P. ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. J Biol Chem 2020; 296:100182. [PMID: 33310703 PMCID: PMC7948421 DOI: 10.1074/jbc.ra120.013908] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Polyamines, such as putrescine, spermidine, and spermine, are physiologically important polycations, but the transporters responsible for their uptake in mammalian cells remain poorly characterized. Here, we reveal a new component of the mammalian polyamine transport system using CHO-MG cells, a widely used model to study alternative polyamine uptake routes and characterize polyamine transport inhibitors for therapy. CHO-MG cells present polyamine uptake deficiency and resistance to a toxic polyamine biosynthesis inhibitor methylglyoxal bis-(guanylhydrazone) (MGBG), but the molecular defects responsible for these cellular characteristics remain unknown. By genome sequencing of CHO-MG cells, we identified mutations in an unexplored gene, ATP13A3, and found disturbed mRNA and protein expression. ATP13A3 encodes for an orphan P5B-ATPase (ATP13A3), a P-type transport ATPase that represents a candidate polyamine transporter. Interestingly, ATP13A3 complemented the putrescine transport deficiency and MGBG resistance of CHO-MG cells, whereas its knockdown in WT cells induced a CHO-MG phenotype demonstrated as a decrease in putrescine uptake and MGBG sensitivity. Taken together, our findings identify ATP13A3, which has been previously genetically linked with pulmonary arterial hypertension, as a major component of the mammalian polyamine transport system that confers sensitivity to MGBG.
Collapse
Affiliation(s)
- Norin Nabil Hamouda
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- VIB-KU Leuven Laboratory of Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rupert Mayer
- Department for Biomolecular Medicine, VIB Center for Medical Biotechnology, VIB Proteomics Core, Ghent University, Ghent, Belgium
| | | | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Oncology, VIB-KU Leuven Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- VIB-KU Leuven Laboratory of Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Francis Impens
- Department for Biomolecular Medicine, VIB Center for Medical Biotechnology, VIB Proteomics Core, Ghent University, Ghent, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Dortmund, Germany
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Weinguny M, Eisenhut P, Klanert G, Virgolini N, Marx N, Jonsson A, Ivansson D, Lövgren A, Borth N. Random epigenetic modulation of CHO cells by repeated knockdown of DNA methyltransferases increases population diversity and enables sorting of cells with higher production capacities. Biotechnol Bioeng 2020; 117:3435-3447. [PMID: 32662873 PMCID: PMC7818401 DOI: 10.1002/bit.27493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
Abstract
Chinese hamster ovary (CHO) cells produce a large share of today's biopharmaceuticals. Still, the generation of satisfactory producer cell lines is a tedious undertaking. Recently, it was found that CHO cells, when exposed to new environmental conditions, modify their epigenome, suggesting that cells adapt their gene expression pattern to handle new challenges. The major aim of the present study was to employ artificially induced, random changes in the DNA-methylation pattern of CHO cells to diversify cell populations and consequently increase the finding of cell lines with improved cellular characteristics. To achieve this, DNA methyltransferases and/or the ten-eleven translocation enzymes were downregulated by RNA interference over a time span of ∼16 days. Methylation analysis of the resulting cell pools revealed that the knockdown of DNA methyltransferases was highly effective in randomly demethylating the genome. The same approach, when applied to stable CHO producer cells resulted in (a) an increased productivity diversity in the cell population, and (b) a higher number of outliers within the population, which resulted in higher specific productivity and titer in the sorted cells. These findings suggest that epigenetics play a previously underestimated, but actually important role in defining the overall cellular behavior of production clones.
Collapse
Affiliation(s)
- Marcus Weinguny
- ACIB—Austrian Centre of Industrial BiotechnologyGrazAustria,Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Peter Eisenhut
- ACIB—Austrian Centre of Industrial BiotechnologyGrazAustria,Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Gerald Klanert
- ACIB—Austrian Centre of Industrial BiotechnologyGrazAustria
| | | | - Nicolas Marx
- ACIB—Austrian Centre of Industrial BiotechnologyGrazAustria,Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | | | | | - Nicole Borth
- ACIB—Austrian Centre of Industrial BiotechnologyGrazAustria,Department of BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
22
|
Perfusion reduces bispecific antibody aggregation via mitigating mitochondrial dysfunction-induced glutathione oxidation and ER stress in CHO cells. Sci Rep 2020; 10:16620. [PMID: 33024175 PMCID: PMC7538420 DOI: 10.1038/s41598-020-73573-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
One major challenge observed for the expression of therapeutic bispecific antibodies (BisAbs) is high product aggregates. Aggregates increase the risk of immune responses in patients and therefore must be removed at the expense of purification yields. BisAbs contain engineered disulfide bonds, which have been demonstrated to form product aggregates, if mispaired. However, the underlying intracellular mechanisms leading to product aggregate formation remain unknown. We demonstrate that impaired glutathione regulation underlies BisAb aggregation formation in a CHO cell process. Aggregate formation was evaluated for the same clonal CHO cell line producing a BisAb using fed-batch and perfusion processes. The perfusion process produced significantly lower BisAb aggregates compared to the fed-batch process. Perfusion bioreactors attenuated mitochondrial dysfunction and ER stress resulting in a favorable intracellular redox environment as indicated by improved reduced to oxidized glutathione ratio. Conversely, mitochondrial dysfunction-induced glutathione oxidation and ER stress disrupted the intracellular redox homeostasis, leading to product aggregation in the fed-batch process. Combined, our results demonstrate that mitochondrial dysfunction and ER stress impaired glutathione regulation leading to higher product aggregates in the fed-batch process. This is the first study to utilize perfusion bioreactors as a tool to demonstrate the intracellular mechanisms underlying product aggregation formation.
Collapse
|
23
|
Sergeeva D, Lee GM, Nielsen LK, Grav LM. Multicopy Targeted Integration for Accelerated Development of High-Producing Chinese Hamster Ovary Cells. ACS Synth Biol 2020; 9:2546-2561. [PMID: 32835482 DOI: 10.1021/acssynbio.0c00322] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ever-growing biopharmaceutical industry relies on the production of recombinant therapeutic proteins in Chinese hamster ovary (CHO) cells. The traditional timelines of CHO cell line development can be significantly shortened by the use of targeted gene integration (TI). However, broad use of TI has been limited due to the low specific productivity (qP) of TI-generated clones. Here, we show a 10-fold increase in the qP of therapeutic glycoproteins in CHO cells through the development and optimization of a multicopy TI method. We used a recombinase-mediated cassette exchange (RMCE) platform to investigate the effect of gene copy number, 5' and 3' gene regulatory elements, and landing pad features on qP. We evaluated the limitations of multicopy expression from a single genomic site as well as multiple genomic sites and found that a transcriptional bottleneck can appear with an increase in gene dosage. We created a dual-RMCE system for simultaneous multicopy TI in two genomic sites and generated isogenic high-producing clones with qP of 12-14 pg/cell/day and product titer close to 1 g/L in fed-batch. Our study provides an extensive characterization of the multicopy TI method and elucidates the relationship between gene copy number and protein expression in mammalian cells. Moreover, it demonstrates that TI-generated CHO cells are capable of producing therapeutic proteins at levels that can support their industrial manufacture.
Collapse
Affiliation(s)
- Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane 4072, Australia
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
24
|
Zhang J, Deng C, Li J, Zhao Y. Transcriptome-based selection and validation of optimal house-keeping genes for skin research in goats (Capra hircus). BMC Genomics 2020; 21:493. [PMID: 32682387 PMCID: PMC7368715 DOI: 10.1186/s12864-020-06912-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In quantitative real-time polymerase chain reaction (qRT-PCR) experiments, accurate and reliable target gene expression results are dependent on optimal amplification of house-keeping genes (HKGs). RNA-seq technology offers a novel approach to detect new HKGs with improved stability. Goat (Capra hircus) is an economically important livestock species and plays an indispensable role in the world animal fiber and meat industry. Unfortunately, uniform and reliable HKGs for skin research have not been identified in goat. Therefore, this study seeks to identify a set of stable HKGs for the skin tissue of C. hircus using high-throughput sequencing technology. RESULTS Based on the transcriptome dataset of 39 goat skin tissue samples, 8 genes (SRP68, NCBP3, RRAGA, EIF4H, CTBP2, PTPRA, CNBP, and EEF2) with relatively stable expression levels were identified and selected as new candidate HKGs. Commonly used HKGs including SDHA and YWHAZ from a previous study, and 2 conventional genes (ACTB and GAPDH) were also examined. Four different experimental variables: (1) different development stages, (2) hair follicle cycle stages, (3) breeds, and (4) sampling sites were used for determination and validation. Four algorithms (geNorm, NormFinder, BestKeeper, and ΔCt method) and a comprehensive algorithm (ComprFinder, developed in-house) were used to assess the stability of each HKG. It was shown that NCBP3 + SDHA + PTPRA were more stably expressed than previously used genes in all conditions analysis, and that this combination was effective at normalizing target gene expression. Moreover, a new algorithm for comprehensive analysis, ComprFinder, was developed and released. CONCLUSION This study presents the first list of candidate HKGs for C. hircus skin tissues based on an RNA-seq dataset. We propose that the NCBP3 + SDHA + PTPRA combination could be regarded as a triplet set of HKGs in skin molecular biology experiments in C. hircus and other closely related species. In addition, we also encourage researchers who perform candidate HKG evaluations and who require comprehensive analysis to adopt our new algorithm, ComprFinder.
Collapse
Affiliation(s)
- Jipan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, 400715, P. R. China
| | - Chengchen Deng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, 400715, P. R. China
| | - Jialu Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, 400715, P. R. China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, 400715, P. R. China.
| |
Collapse
|
25
|
Ma X, Zhang L, Zhang L, Wang C, Guo X, Yang Y, Wang L, Li X, Ma N. Validation and identification of reference genes in Chinese hamster ovary cells for Fc-fusion protein production. Exp Biol Med (Maywood) 2020; 245:690-702. [PMID: 32216463 DOI: 10.1177/1535370220914058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT In order to reveal potential genotype-phenotype relationship, RT-qPCR reactions are frequently applied which require validated and reliable reference genes. With the investigation on long-term passage and fed-batch cultivation of CHO cells producing an Fc-fusion protein, four new reference genes-Akr1a1, Gpx1, Aprt, and Rps16, were identified from 20 candidates with the aid of geNorm, NormFinder, BestKeeper, and ΔCt programs and methods. This article provided more verified options in reference gene selection in related research on CHO cells.
Collapse
Affiliation(s)
- Xiaonan Ma
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ling Zhang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Luming Zhang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chenglong Wang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaorui Guo
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Yang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Wang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangru Li
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ningning Ma
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
26
|
Pristovšek N, Nallapareddy S, Grav LM, Hefzi H, Lewis NE, Rugbjerg P, Hansen HG, Lee GM, Andersen MR, Kildegaard HF. Systematic Evaluation of Site-Specific Recombinant Gene Expression for Programmable Mammalian Cell Engineering. ACS Synth Biol 2019; 8:758-774. [PMID: 30807689 DOI: 10.1021/acssynbio.8b00453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many branches of biology depend on stable and predictable recombinant gene expression, which has been achieved in recent years through targeted integration of the recombinant gene into defined integration sites. However, transcriptional levels of recombinant genes in characterized integration sites are controlled by multiple components of the integrated expression cassette. Lack of readily available tools has inhibited meaningful experimental investigation of the interplay between the integration site and the expression cassette components. Here we show in a systematic manner how multiple components contribute to final net expression of recombinant genes in a characterized integration site. We develop a CRISPR/Cas9-based toolbox for construction of mammalian cell lines with targeted integration of a landing pad, containing a recombinant gene under defined 5' proximal regulatory elements. Generated site-specific recombinant cell lines can be used in a streamlined recombinase-mediated cassette exchange for fast screening of different expression cassettes. Using the developed toolbox, we show that different 5' proximal regulatory elements generate distinct and robust recombinant gene expression patterns in defined integration sites of CHO cells with a wide range of transcriptional outputs. This approach facilitates the generation of user-defined and product-specific gene expression patterns for programmable mammalian cell engineering.
Collapse
Affiliation(s)
- Nuša Pristovšek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Saranya Nallapareddy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Hooman Hefzi
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Peter Rugbjerg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Henning Gram Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Hadadi E, Souza LEBD, Bennaceur-Griscelli A, Acloque H. Identification of valid reference genes for circadian gene-expression studies in human mammary epithelial cells. Chronobiol Int 2018; 35:1689-1701. [PMID: 30296179 DOI: 10.1080/07420528.2018.1508151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The circadian clock controls most of the physiological processes in the body throughout days and nights' alternation. Its dysregulation has a negative impact on many aspects of human health, such as obesity, lipid disorders, diabetes, skin regeneration, hematopoiesis and cancer. To date, poor is known on the molecular mechanisms that links mammary gland homeostasis to the circadian clock but recent reports highlight the importance of loss of circadian genes for mammary gland development and during tumour progression in breast cancer. Gene expression studies are then required to clarify how the circadian clock can modulates the human mammary gland development during ontology and its behaviour in physiological and oncogenic context. For this, in addition to genome-wide studies, real-time quantitative RT-PCR (qPCR) is a powerful and pertinent technique to quantify the expression of a reduced set of genes of interest in many different samples. Relative quantification of qPCR data requires the use of reference genes for normalisation. For circadian studies, reference genes expression must not oscillate in mirror of the circadian clock and must not be affected by the synchronisation protocols required in vitro to reset the circadian clock. Inappropriate selection of reference genes can consequently affect the amplitude of gene expression oscillation and bias data interpretation. Currently, no standard reference genes have been validated regarding these criteria for human mammary epithelial cells and the purpose of this study was to fill this gap. For this, we used the RefFinder tool, which combines four different algorithms, on 9 candidate reference genes. We compared reference genes stability using three different synchronisation protocols applied on four different mammary epithelial cell lines. This allowed us to define a set of reference genes in human mammary epithelial cells whose expression remains stable despite synchronisation protocols. We observed that the synchronisation of cells by serum shock was the most suitable procedure for maintaining the amplitude of oscillation of clock genes over time and we identified RPL4, RPLP0, HSPCB and TBP as an optimal combination of reference genes for the normalisation of the oscillatory expression of clock genes in human mammary epithelial cells.
Collapse
Affiliation(s)
- Eva Hadadi
- a Inserm, UMRS935 ESTeam Paris Sud, Malignant and Therapeutic Stem Cell Models , Villejuif , France
| | | | - Annelise Bennaceur-Griscelli
- a Inserm, UMRS935 ESTeam Paris Sud, Malignant and Therapeutic Stem Cell Models , Villejuif , France.,b Service d'hématologie , APHP, GHU Paris Sud , Villejuif , France.,c UFR de Médecine Kremlin Bicêtre , Univ. P.Sud, Univ. Paris Saclay , Le Kremlin Bicêtre , France
| | - Hervé Acloque
- a Inserm, UMRS935 ESTeam Paris Sud, Malignant and Therapeutic Stem Cell Models , Villejuif , France.,d UMR1388 GenPhySE , INRA, Université de Toulouse, INRA, INPT, ENVT , Castanet Tolosan , France
| |
Collapse
|
28
|
Grav LM, Sergeeva D, Lee JS, Marin de Mas I, Lewis NE, Andersen MR, Nielsen LK, Lee GM, Kildegaard HF. Minimizing Clonal Variation during Mammalian Cell Line Engineering for Improved Systems Biology Data Generation. ACS Synth Biol 2018; 7:2148-2159. [PMID: 30060646 DOI: 10.1021/acssynbio.8b00140] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mammalian cells are widely used to express genes for basic biology studies and biopharmaceuticals. Current methods for generation of engineered cell lines introduce high genomic and phenotypic diversity, which hamper studies of gene functions and discovery of novel cellular mechanisms. Here, we minimized clonal variation by integrating a landing pad for recombinase-mediated cassette exchange site-specifically into the genome of CHO cells using CRISPR and generated subclones expressing four different recombinant proteins. The subclones showed low clonal variation with high consistency in growth, transgene transcript levels and global transcriptional response to recombinant protein expression, enabling improved studies of the impact of transgenes on the host transcriptome. Little variation over time in subclone phenotypes and transcriptomes was observed when controlling environmental culture conditions. The platform enables robust comparative studies of genome engineered CHO cell lines and can be applied to other mammalian cells for diverse biological, biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jae Seong Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Igor Marin de Mas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustatainability, University of California, San Diego, La Jolla, California 92093, United States
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
29
|
Pan X, Alsayyari AA, Dalm C, Hageman JA, Wijffels RH, Martens DE. Transcriptome Analysis of CHO Cell Size Increase During a Fed-Batch Process. Biotechnol J 2018; 14:e1800156. [PMID: 30024106 DOI: 10.1002/biot.201800156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/11/2018] [Indexed: 12/14/2022]
Abstract
In a Chinese Hamster Ovary (CHO) cell fed-batch process, arrest of cell proliferation and an almost threefold increase in cell size occurred, which is associated with an increase in cell-specific productivity. In this study, transcriptome analysis is performed to identify the molecular mechanisms associated with this. Cell cycle analysis reveals that the cells are arrested mainly in the G0 /G1 phase. The cell cycle arrest is associated with significant up-regulation of cyclin-dependent kinases inhibitors (CDKNs) and down-regulation of cyclin-dependent kinases (CDKs) and cyclins. During the cell size increase phase, the gene expression of the upstream pathways of mechanistic target of rapamycin (mTOR), which is related to the extracellular growth factor, cytokine, and amino acid conditions, shows a strongly synchronized pattern to promote the mTOR activity. The downstream genes of mTOR also show a synchronized pattern to stimulate protein translation and lipid synthesis. The results demonstrate that cell cycle inhibition and stimulated mTOR activity at the transcriptome level are related to CHO cell size increase. The cell size increase is related to the extracellular nutrient conditions through a number of cascade pathways, indicating that by rational design of media and feeds, CHO cell size can be manipulated during culture processes, which may further improve cell growth and specific productivity.
Collapse
Affiliation(s)
- Xiao Pan
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Abdulaziz A Alsayyari
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ciska Dalm
- Upstream Process Development, Synthon Biopharmaceuticals BV, PO Box 7071, 6503 GN, Nijmegen, The Netherlands
| | - Jos A Hageman
- Biometris, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - René H Wijffels
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|