1
|
Barreto JA, Lacôrte E Silva MVM, Marin DC, Brienzo M, Jacobus AP, Contiero J, Gross J. Engineering adaptive alleles for Escherichia coli growth on sucrose using the EasyGuide CRISPR system. J Biotechnol 2025; 403:126-139. [PMID: 40252733 DOI: 10.1016/j.jbiotec.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Adaptive Laboratory Evolution (ALE) is a powerful approach for mining genetic data to engineer industrial microorganisms. This evolution-informed design requires robust genetic tools to incorporate the discovered alleles into target strains. Here, we introduce the EasyGuide CRISPR, a five-plasmid platform that exploits E. coli's natural recombination system to assemble gRNA plasmids from overlapping PCR fragments. The production of gRNAs and donor DNA is further facilitated by using recombination cassettes generated through PCR with 40-60-mer oligos. With the new CRISPR toolkit, we constructed 22 gene edits in E. coli DH5α, most of which corresponded to alleles mapped in E. coli DH5α and E2348/69 ALE populations selected for sucrose propagation. For DH5α ALE, sucrose consumption was supported by the cscBKA operon expression from a high-copy plasmid. During ALE, plasmid integration into the chromosome, or its copy number reduction due to the pcnB deletion, conferred a 30-35 % fitness gain, as demonstrated by CRISPR-engineered strains. A ∼5 % advantage was also associated with a ∼40.4 kb deletion involving fli operons for flagella assembly. In E2348/69 ALE, inactivation of the hfl system suggested selection pressures for maintaining λ-prophage dormancy (lysogeny). We further enhanced our CRISPR toolkit using yeast for in vivo assembly of donors and expression cassettes, enabling the establishment of polyhydroxybutyrate synthesis from sucrose. Overall, our study highlights the importance of combining ALE with streamlined CRISPR-mediated allele editing to advance microbial production using cost-effective carbon sources.
Collapse
Affiliation(s)
- Joneclei Alves Barreto
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Matheus Victor Maso Lacôrte E Silva
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Danieli Canaver Marin
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Michel Brienzo
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Ana Paula Jacobus
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Jonas Contiero
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Jeferson Gross
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil.
| |
Collapse
|
2
|
Cheng T, Cao X, Wang Y, Zhao L. Development of CRISPR-Cas9-based genome editing tools for non-model microorganism Erwinia persicina. Synth Syst Biotechnol 2025; 10:555-563. [PMID: 40092160 PMCID: PMC11909718 DOI: 10.1016/j.synbio.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Erwinia persicina is a bacterium that has been known to produce secondary metabolites, such as andrimid, pink pigment, and exopolysaccharides, and to infect more than twenty plant species. However, traditional gene manipulation methods have been hindered by the inefficient of suicide plasmid-mediated genome editing. In this study, we describe the successful application of the CRISPR-Cas9 system in E. persicina. Efficient genome editing was achieved by substituting the native gRNA promoter with J23119 in a single-plasmid system (pRed_Cas9_ΔpoxB) and optimizing the gRNA design. The use of double gRNAs led to the deletion of a 42 kb genomic fragment, and the incorporation of a sacB screening marker facilitated iterative knockouts. Additionally, a 22 kb plasmid containing a self-resistance gene was conjugally transferred into E. persicina, resulting in the insertion of a 6.4 kb fragment with 100 % efficiency. Furthermore, we demonstrated the expression of shinorine, an anti-UV compound, within the E. persicina chassis. This study establishes E. persicina as a promising chassis for synthetic biology and provides a model for gene-editing systems in non-model microorganisms.
Collapse
Affiliation(s)
- Tingfeng Cheng
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xinyan Cao
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, PR China
| | - Yuchen Wang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- College of Biological Sciences, China Agricultural University, Beijing, 100091, PR China
| | - Lei Zhao
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, PR China
| |
Collapse
|
3
|
Wang Y, Cui X, Chen Z. Innovations in Cattle Breeding Technology: Prospects in the Era of Gene Editing. Animals (Basel) 2025; 15:1364. [PMID: 40427242 DOI: 10.3390/ani15101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
As a core species in the global livestock industry, cattle play an irreplaceable role in human food security and economic development. Beef cattle and dairy cattle meet the dietary needs of billions of people around the world by providing high-quality protein and dairy products, respectively. With the growth in population and the intensification of the pressure of climate change, traditional breeding techniques may be unsuitable to meet the increasingly growing demands for sustainable and highly adaptable processes. In recent years, the rapid development of genomics, bioinformatics, and gene-editing technologies has provided unprecedented tools and perspectives for the genetic improvement of cattle, driving the precise design and efficient development of new cattle breeds. However, the development of new cattle breeds still faces multiple bottlenecks pertaining to scientific, ethical, and industrialization aspects, which can be addressed through interdisciplinary collaboration. In this review, we will systematically assess the technological progress in the genetic breeding of beef cattle and dairy cattle, analyze the integration path of traditional breeding and modern biotechnology, and explore the future directions of cattle breeding research under the sustainable development goals, with the aim of providing theoretical support for cattle breeding.
Collapse
Affiliation(s)
- Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiangshun Cui
- Laboratory of Animal Developmental Biology, Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Ren LM, Qi YH, Cao FY, Zhou EP. Study on the framework of ATP energy cycle system in Escherichia coli. Appl Microbiol Biotechnol 2025; 109:42. [PMID: 39937288 PMCID: PMC11821744 DOI: 10.1007/s00253-024-13350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 02/13/2025]
Abstract
The high mortality rate associated with single-use CRISPR-Cas9 in Escherichia coli limits its application. Recently, new CRISPR-based techniques for E.coli gene editing have emerged. Research aims to develop a system for rapid, marker-free, multi-site, and multi-copy genome editing in E.coli to advance synthetic biology. ATP, essential for energy in living organisms, plays a crucial role in various metabolic processes. To reduce the cost of ATP-requiring reactions, it is crucial to identify and efficiently express genes in ATP synthesis pathway. This study identified a single ppk gene (No.8) capable of completing the cyclic reaction. Using MUCICAT technology, the ppk gene (No.8) was inserted into various positions and copy numbers in the E.coli genome, resulting in different activity levels. The findings suggest that the difficulty of inserting the ppk gene (No.8) into the genome follows this order: IS186 < 8array < IS186 + 8array < IS1. A single genome insertion can mimic plasmid expression level. This study explores promoter competition and offers solutions, inspiring researchers in constructing the AMP-ATP cycle system in E.coli. KEY POINTS: • The single ppk gene (No.8) can regenerate the AMP-ATP cycle, crucial for ATP-dependent reactions. • Inserting the ppk gene (No.8) into the cr5 site of the E.coli genome achieves expression levels comparable to the pET29a plasmid. • The expression level of the ppk gene (No.8) is not significantly affected by its copy number in the E.coli genome.
Collapse
Affiliation(s)
- Li Mei Ren
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
- Hebei International Joint Research Center for Biopharmaceutical, Shijiazhuang University, Shijiazhuang, China
- Hebei Provincial University Microbiology Pharmaceutical Application Technology Research and Development Center, Shijiazhuang University, Shijiazhuang, China
| | - Yong Hao Qi
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
- Hebei International Joint Research Center for Biopharmaceutical, Shijiazhuang University, Shijiazhuang, China
- Hebei Provincial University Microbiology Pharmaceutical Application Technology Research and Development Center, Shijiazhuang University, Shijiazhuang, China
| | - Feng Yi Cao
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Er Peng Zhou
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China.
- Hebei International Joint Research Center for Biopharmaceutical, Shijiazhuang University, Shijiazhuang, China.
- Hebei Provincial University Microbiology Pharmaceutical Application Technology Research and Development Center, Shijiazhuang University, Shijiazhuang, China.
| |
Collapse
|
5
|
Binan G, Yalun W, Xinyan W, Yongfu Y, Peng Z, Yunhaon C, Xuan Z, Chenguang L, Fengwu B, Ping X, Qiaoning H, Shihui Y. Efficient genome-editing tools to engineer the recalcitrant non-model industrial microorganism Zymomonas mobilis. Trends Biotechnol 2024; 42:1551-1575. [PMID: 39209602 DOI: 10.1016/j.tibtech.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 09/04/2024]
Abstract
Current biotechnology relies on a few well-studied model organisms, such as Escherichia coli and Saccharomyces cerevisiae, for which abundant information and efficient toolkits are available for genetic manipulation, but which lack industrially favorable characteristics. Non-model industrial microorganisms usually do not have effective and/or efficient genome-engineering toolkits, which hampers the development of microbial cell factories to meet the fast-growing bioeconomy. In this study, using the non-model ethanologenic bacterium Zymomonas mobilis as an example, we developed a workflow to mine and temper the elements of restriction-modification (R-M), CRISPR/Cas, toxin-antitoxin (T-A) systems, and native plasmids, which are hidden within industrial microorganisms themselves, as efficient genome-editing toolkits, and established a genome-wide iterative and continuous editing (GW-ICE) system for continuous genome editing with high efficiency. This research not only provides tools and pipelines for engineering the non-model polyploid industrial microorganism Z. mobilis efficiently, but also sets a paradigm to overcome biotechnological limitations in other genetically recalcitrant non-model industrial microorganisms.
Collapse
Affiliation(s)
- Geng Binan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wu Yalun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wu Xinyan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yang Yongfu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhou Peng
- Department of Computer Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Chen Yunhaon
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhou Xuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Liu Chenguang
- State Key Laboratory of Microbial Metabolism, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bai Fengwu
- State Key Laboratory of Microbial Metabolism, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Ping
- State Key Laboratory of Microbial Metabolism, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He Qiaoning
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Yang Shihui
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
6
|
Wu Z, Chen T, Sun W, Chen Y, Ying H. Optimizing Escherichia coli strains and fermentation processes for enhanced L-lysine production: a review. Front Microbiol 2024; 15:1485624. [PMID: 39430105 PMCID: PMC11486702 DOI: 10.3389/fmicb.2024.1485624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
lysine is an essential amino acid with significant importance, widely used in the food, feed, and pharmaceutical industries. To meet the increasing demand, microbial fermentation has emerged as an effective and sustainable method for L-lysine production. Escherichia coli has become one of the primary microorganisms for industrial L-lysine production due to its rapid growth, ease of genetic manipulation, and high production efficiency. This paper reviews the recent advances in E. coli strain engineering and fermentation process optimization for L-lysine production. Additionally, it discusses potential technological breakthroughs and challenges in E. coli-based L-lysine production, offering directions for future research to support industrial-scale production.
Collapse
Affiliation(s)
- Zijuan Wu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Soochow University, Suzhou, China
| |
Collapse
|
7
|
Ye L, Zhao D, Li J, Wang Y, Li B, Yang Y, Hou X, Wang H, Wei Z, Liu X, Li Y, Li S, Liu Y, Zhang X, Bi C. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells. Nat Biotechnol 2024; 42:1538-1547. [PMID: 38168994 DOI: 10.1038/s41587-023-02050-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/27/2023] [Indexed: 01/05/2024]
Abstract
Base editors show promise for treating human genetic diseases, but most current systems use deaminases, which cause off-target effects and are limited in editing type. In this study, we constructed deaminase-free base editors for cytosine (DAF-CBE) and thymine (DAF-TBE), which contain only a cytosine-DNA or a thymine-DNA glycosylase (CDG/TDG) variant, respectively, tethered to a Cas9 nickase. Multiple rounds of mutagenesis by directed evolution in Escherichia coli generated two variants with enhanced base-converting activity-CDG-nCas9 and TDG-nCas9-with efficiencies of up to 58.7% for C-to-A and 54.3% for T-to-A. DAF-BEs achieve C-to-G/T-to-G editing in mammalian cells with minimal Cas9-dependent and Cas9-independent off-target effects as well as minimal RNA off-target effects. Additional engineering resulted in DAF-CBE2/DAF-TBE2, which exhibit altered editing windows from the 5' end to the middle of the protospacer and increased C-to-G/T-to-G editing efficiency of 3.5-fold and 1.2-fold, respectively. Compared to prime editing or CGBEs, DAF-BEs expand conversion types of base editors with similar efficiencies, smaller sizes and lower off-target effects.
Collapse
Affiliation(s)
- Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Yiran Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Bo Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yuanzhao Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xueting Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huibin Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhandong Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoqi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yaqiu Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yajing Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
8
|
Sun X, Zhang H, Jia Y, Li J, Jia M. CRISPR-Cas9-based genome-editing technologies in engineering bacteria for the production of plant-derived terpenoids. ENGINEERING MICROBIOLOGY 2024; 4:100154. [PMID: 39629108 PMCID: PMC11611024 DOI: 10.1016/j.engmic.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 12/06/2024]
Abstract
Terpenoids are widely used as medicines, flavors, and biofuels. However, the use of these natural products is largely restricted by their low abundance in native plants. Fortunately, heterologous biosynthesis of terpenoids in microorganisms offers an alternative and sustainable approach for efficient production. Various genome-editing technologies have been developed for microbial strain construction. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) is the most commonly used system owing to its outstanding efficiency and convenience in genome editing. In this review, the basic principles of CRISPR-Cas9 systems are briefly introduced and their applications in engineering bacteria for the production of plant-derived terpenoids are summarized. The aim of this review is to provide an overview of the current developments of CRISPR-Cas9-based genome-editing technologies in bacterial engineering, concluding with perspectives on the challenges and opportunities of these technologies.
Collapse
Affiliation(s)
- Xin Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haobin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Jingyi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meirong Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Chai R, Guo J, Geng Y, Huang S, Wang H, Yao X, Li T, Qiu L. The Influence of Homologous Arm Length on Homologous Recombination Gene Editing Efficiency Mediated by SSB/CRISPR-Cas9 in Escherichia coli. Microorganisms 2024; 12:1102. [PMID: 38930484 PMCID: PMC11205466 DOI: 10.3390/microorganisms12061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The precise editing of genes mediated by CRISPR-Cas9 necessitates the application of donor DNA with appropriate lengths of homologous arms and fragment sizes. Our previous development, SSB/CRISPR-Cas9, has demonstrated high efficiency in homologous recombination and non-homologous end joining gene editing within bacteria. In this study, we optimized the lengths and sizes of homologous arms of the donor DNA within this system. Two sets of donor DNA constructs were generated: one set comprised donors with only 10-100 bp homologous arms, while the other set included donors with homologous arms ranging from 10-100 bp, between which was a tetracycline resistance expression cassette (1439 bp). These donor constructs were transformed into Escherichia coli MG1655 cells alongside pCas-SSB/pTargetF-lacZ. Notably, when the homologous arms ranged from 10 to 70 bp, the transformation efficiency of non-selectable donors was significantly higher than that of selectable donors. However, within the range of 10-100 bp homologous arm lengths, the homologous recombination rate of selectable donors was significantly higher than that of non-selectable donors, with the gap narrowing as the homologous arm length increased. For selectable donor DNA with homologous arm lengths of 10-60 bp, the homologous recombination rate increased linearly, reaching a plateau when the homologous arm length was between 60-100 bp. Conversely, for non-selectable donor DNA, the homologous recombination rate increased linearly with homologous arm lengths of 10-90 bp, plateauing at 90-100 bp. Editing two loci simultaneously with 100 bp homologous arms, whether selectable or non-selectable, showed no difference in transformation or homologous recombination rates. Editing three loci simultaneously with 100 bp non-selectable homologous arms resulted in a 45% homologous recombination rate. These results suggest that efficient homologous recombination gene editing mediated by SSB/CRISPR-Cas9 can be achieved using donor DNA with 90-100 bp non-selectable homologous arms or 60-100 bp selectable homologous arms.
Collapse
Affiliation(s)
- Ran Chai
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Jiaxiang Guo
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Yue Geng
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Shuai Huang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Haifeng Wang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Xinding Yao
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Tao Li
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, China
| | - Liyou Qiu
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| |
Collapse
|
10
|
Lim SR, Lee SJ. Multiplex CRISPR-Cas Genome Editing: Next-Generation Microbial Strain Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11871-11884. [PMID: 38744727 PMCID: PMC11141556 DOI: 10.1021/acs.jafc.4c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Genome editing is a crucial technology for obtaining desired phenotypes in a variety of species, ranging from microbes to plants, animals, and humans. With the advent of CRISPR-Cas technology, it has become possible to edit the intended sequence by modifying the target recognition sequence in guide RNA (gRNA). By expressing multiple gRNAs simultaneously, it is possible to edit multiple targets at the same time, allowing for the simultaneous introduction of various functions into the cell. This can significantly reduce the time and cost of obtaining engineered microbial strains for specific traits. In this review, we investigate the resolution of multiplex genome editing and its application in engineering microorganisms, including bacteria and yeast. Furthermore, we examine how recent advancements in artificial intelligence technology could assist in microbial genome editing and engineering. Based on these insights, we present our perspectives on the future evolution and potential impact of multiplex genome editing technologies in the agriculture and food industry.
Collapse
Affiliation(s)
- Se Ra Lim
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| |
Collapse
|
11
|
Hwang J, Ye DY, Jung GY, Jang S. Mobile genetic element-based gene editing and genome engineering: Recent advances and applications. Biotechnol Adv 2024; 72:108343. [PMID: 38521283 DOI: 10.1016/j.biotechadv.2024.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Genome engineering has revolutionized several scientific fields, ranging from biochemistry and fundamental research to therapeutic uses and crop development. Diverse engineering toolkits have been developed and used to effectively modify the genome sequences of organisms. However, there is a lack of extensive reviews on genome engineering technologies based on mobile genetic elements (MGEs), which induce genetic diversity within host cells by changing their locations in the genome. This review provides a comprehensive update on the versatility of MGEs as powerful genome engineering tools that offers efficient solutions to challenges associated with genome engineering. MGEs, including DNA transposons, retrotransposons, retrons, and CRISPR-associated transposons, offer various advantages, such as a broad host range, genome-wide mutagenesis, efficient large-size DNA integration, multiplexing capabilities, and in situ single-stranded DNA generation. We focused on the components, mechanisms, and features of each MGE-based tool to highlight their cellular applications. Finally, we discussed the current challenges of MGE-based genome engineering and provided insights into the evolving landscape of this transformative technology. In conclusion, the combination of genome engineering with MGE demonstrates remarkable potential for addressing various challenges and advancing the field of genetic manipulation, and promises to revolutionize our ability to engineer and understand the genomes of diverse organisms.
Collapse
Affiliation(s)
- Jaeseong Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
12
|
Gao H, Qiu Z, Wang X, Zhang X, Zhang Y, Dai J, Liang Z. Recent advances in genome-scale engineering in Escherichia coli and their applications. ENGINEERING MICROBIOLOGY 2024; 4:100115. [PMID: 39628784 PMCID: PMC11611031 DOI: 10.1016/j.engmic.2023.100115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 12/06/2024]
Abstract
Owing to the rapid advancement of genome engineering technologies, the scale of genome engineering has expanded dramatically. Genome editing has progressed from one genomic alteration at a time that could only be employed in few species, to the simultaneous generation of multiple modifications across many genomic loci in numerous species. The development and recent advances in multiplex automated genome engineering (MAGE)-associated technologies and clustered regularly interspaced short palindromic repeats and their associated protein (CRISPR-Cas)-based approaches, together with genome-scale synthesis technologies offer unprecedented opportunities for advancing genome-scale engineering in a broader range. These approaches provide new tools to generate strains with desired phenotypes, understand the complexity of biological systems, and directly evolve a genome with novel features. Here, we review the recent major advances in genome-scale engineering tools developed for Escherichia coli, focusing on their applications in identifying essential genes, genome reduction, recoding, and beyond.
Collapse
Affiliation(s)
- Hui Gao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhichao Qiu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L’ Hospitalet de Llobregat, Barcelona 08908, Spain
- Faculty of Pharmacy and Food Science, Barcelona University, Barcelona 08028, Spain
| | - Xuan Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiyuan Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yujia Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Life Sciences, Northwest A&F University, Shaanxi 712100, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhuobin Liang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
13
|
Xu J, Sun Y, Wu J, Yang S, Yang L. Chromosome recombination and modification by LoxP-mediated evolution in Vibrio natriegens using CRISPR-associated transposases. Biotechnol Bioeng 2024; 121:1163-1172. [PMID: 38131162 DOI: 10.1002/bit.28639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Chromosome rearrangement by LoxP-mediated evolution has emerged as a powerful approach to studying how chromosome architecture impacts phenotypes. However, it relies on the in vitro synthesis of artificial chromosomes. The recently reported CRISPR-associated transposases (CASTs) held great promise for the efficient insertion of abundant LoxP sites directly onto the genome of wild-type strains. In this study, with the fastest-growing bacterium Vibrio natrigens (V. natriegens) as an object, a multiplex genome integration tool derived from CASTs was employed to achieve the insertion of cargo genes at eight specific genomic loci within 2 days. Next, we introduced 30 LoxP sites onto chromosome 2 (Chr2) of V. natriegens. Rigorously induced Cre recombinase was used to demonstrate Chromosome Rearrangement and Modification by LoxP-mediated Evolution (CRaMbLE). Growth characterization and genome sequencing showed that the ~358 kb fragment on Chr2 was accountable for the rapid growth of V. natriegens. The enabling tools we developed can help identify genomic regions that influence the rapid growth of V. natriegens without a prior understanding of genome mechanisms. This groundbreaking demonstration may also be extended to other organisms such as Escherichia coli, Pseudomonas putida, Bacillus subtilis, and so on.
Collapse
Affiliation(s)
- Jiaqi Xu
- Institute for Intelligent Bio/Chem Manufacturing, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yijie Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jianping Wu
- Institute for Intelligent Bio/Chem Manufacturing, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lirong Yang
- Institute for Intelligent Bio/Chem Manufacturing, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Fang H, Zhao J, Zhao X, Dong N, Zhao Y, Zhang D. Standardized Iterative Genome Editing Method for Escherichia coli Based on CRISPR-Cas9. ACS Synth Biol 2024; 13:613-623. [PMID: 38243901 DOI: 10.1021/acssynbio.3c00585] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The introduction of complex biosynthetic pathways into the hosts' chromosomes is gaining attention with the development of synthetic biology. While CRISPR-Cas9 has been widely employed for gene knock-in, the process of multigene insertion remains cumbersome due to laborious and empirical gene cloning procedures. To address this, we devised a standardized iterative genome editing system for Escherichia coli, harnessing the power of CRISPR-Cas9 and MetClo assembly. This comprehensive toolkit comprises two fundamental elements based on the Golden Gate standard for modular assembly of sgRNA or CRISPR arrays and donor DNAs. We achieved a gene insertion efficiency of up to 100%, targeting a single locus. Expression of tracrRNA using a strong promoter enhances multiplex genomic insertion efficiency to 7.3%, compared with 0.76% when a native promoter is used. To demonstrate the robust capabilities of this genome editing toolbox, we successfully integrated 5-10 genes from the coenzyme B12 biosynthetic pathway ranging from 5.3 to 8 Kb in length into the chromosome of E. coli chassis cells, resulting in 14 antibiotic-free, plasmid-free producers. Following an extensive screening process involving genes from diverse sources, cistronic design modifications, and chromosome repositioning, we obtained a recombinant strain yielding 1.49 mg L-1 coenzyme B12, the highest known titer achieved by using E. coli as the producer. Illuminating its user-friendliness, this genome editing system is an exceedingly versatile tool for expediently integrating complex biosynthetic pathway genes into hosts' genomes, thus facilitating pathway optimization for chemical production.
Collapse
Affiliation(s)
- Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Science, Beijing 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jianghua Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xinfang Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ning Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ying Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Science, Beijing 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
15
|
Wei Z, Zhao D, Wang J, Li J, Xu N, Ding C, Liu J, Li S, Zhang C, Bi C, Zhang X. Targeted C-to-T and A-to-G dual mutagenesis system for RhtA transporter in vivo evolution. Appl Environ Microbiol 2023; 89:e0075223. [PMID: 37728922 PMCID: PMC10617597 DOI: 10.1128/aem.00752-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 09/22/2023] Open
Abstract
T7 RNA polymerase (T7RNAP) has been fused with cytosine or adenine deaminase individually, enabling in vivo C-to-T or A-to-G transitions on DNA sequence downstream of T7 promoter, and greatly accelerated directed protein evolution. However, its base conversion type is limited. In this study, we created a dual-functional system for simultaneous C-to-T and A-to-G in vivo mutagenesis, called T7-DualMuta, by fusing T7RNAP with both cytidine deaminase (PmCDA1) and a highly active adenine deaminase (TadA-8e). The C-to-T and A-to-G mutagenesis frequencies of T7-DualMuta were 4.02 × 10-3 and 1.20 × 10-2, respectively, with 24 h culturing and distributed mutations evenly across the target gene. The T7-DualMuta system was used to in vivo directed evolution of L-homoserine transporter RhtA, resulting in efficient variants that carried the four types of base conversions by T7-DualMuta. The evolved variants greatly increased the host growth rates at L-homoserine concentrations of 8 g/L, which was not previously achieved, and demonstrated the great in vivo evolution capacity. The novel molecular device T7-DualMuta efficiently provides both C/G-to-T/A and A/T-to-G/C mutagenesis on target regions, making it useful for various applications and research in Enzymology and Synthetic Biology studies. It also represents an important expansion of the base editing toolbox.ImportanceA T7-DualMuta system for simultaneous C-to-T and A-to-G in vivo mutagenesis was created. The mutagenesis frequency was 4.02 × 107 fold higher than the spontaneous mutation, which was reported to be approximately 10-10 bases per nucleotide per generation. This mutant system can be utilized for various applications and research in Enzymology and Synthetic Biology studies.
Collapse
Affiliation(s)
- Zhandong Wei
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jie Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chao Ding
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chunzhi Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
16
|
Lim SR, Lee HJ, Kim HJ, Lee SJ. Multiplex Single-Nucleotide Microbial Genome Editing Achieved by CRISPR-Cas9 Using 5'-End-Truncated sgRNAs. ACS Synth Biol 2023; 12:2203-2207. [PMID: 37368988 PMCID: PMC10368013 DOI: 10.1021/acssynbio.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Multiplex genome editing with CRISPR-Cas9 offers a cost-effective solution for time and labor savings. However, achieving high accuracy remains a challenge. In an Escherichia coli model system, we achieved highly efficient single-nucleotide level simultaneous editing of the galK and xylB genes using the 5'-end-truncated single-molecular guide RNA (sgRNA) method. Furthermore, we successfully demonstrated the simultaneous editing of three genes (galK, xylB, and srlD) at single-nucleotide resolution. To showcase practical application, we targeted the cI857 and ilvG genes in the genome of E. coli. While untruncated sgRNAs failed to produce any edited cells, the use of truncated sgRNAs allowed us to achieve simultaneous and accurate editing of these two genes with an efficiency of 30%. This enabled the edited cells to retain their lysogenic state at 42 °C and effectively alleviated l-valine toxicity. These results suggest that our truncated sgRNA method holds significant potential for widespread and practical use in synthetic biology.
Collapse
Affiliation(s)
| | | | - Hyun Ju Kim
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| |
Collapse
|
17
|
Liu L, Li W, Li J, Zhao D, Li S, Jiang G, Wang J, Chen X, Bi C, Zhang X. Circular Guide RNA for Improved Stability and CRISPR-Cas9 Editing Efficiency in Vitro and in Bacteria. ACS Synth Biol 2023; 12:350-359. [PMID: 36538017 DOI: 10.1021/acssynbio.2c00381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to its intrinsic RNA properties, guide RNA (gRNA) is the least stable component of the CRISPR-Cas9 complex and is a major target for modification and engineering to increase the stability of the system. While most strategies involve chemical modification and special processes, we created a more stable gRNA with an easy-to-use biological technique. Since circular RNAs are theoretically immune to all RNA exonucleases, we attempted to construct a circular gRNA (cgRNA) employing the autocatalytic splicing mechanism of the RNA cyclase ribozyme. First, the formation of the cgRNA, which has a length requirement, was optimized in vivo in E. coli cells. It was found that a cgRNA with an insert length of 251 bp, designated 251cgRNA, was functional. More importantly, cgRNA increased the editing efficiency of the tested base editors relative to normal linear gRNA. The cgRNAs were more stable in vitro under all tested temperature conditions and maintained their function for 24 h at 37 °C, while linear gRNAs completely lost their activity within 8 h. Enzymatically purified 251cgRNA demonstrated even higher stability, which was obviously presented on gels after 48 h at 37 °C, and maintained partial function. By inserting a homologous arm into the 251cgRNA to 251HAcgRNA cassette, the circularization efficiency reached 88.2%, and the half-life of 251HAcgRNA was 30 h, very similar to that of purified 251cgRNA. This work provides a simple innovative strategy to greatly increase the stability of gRNA both in vivo in E. coli and in vitro, with no additional cost or labor. We think this work is very interesting and might revolutionize the form of gRNAs people are using in research and therapeutic applications.
Collapse
Affiliation(s)
- Li Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300453, China.,China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,Department of Biomedical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Wenbo Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300453, China.,China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Dongdong Zhao
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Siwei Li
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guo Jiang
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jie Wang
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xuxu Chen
- Guangxi Normal University, Guilin 541001, China
| | - Changhao Bi
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xueli Zhang
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
18
|
Kolasinliler G, Aagre MM, Akkale C, Kaya HB. The use of CRISPR-Cas-based systems in bacterial cell factories. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
19
|
Takekana M, Yoshida T, Yoshida E, Ono S, Horie S, Vavricka CJ, Hiratani M, Tsuge K, Ishii J, Hayakawa Y, Kondo A, Hasunuma T. Online SFE-SFC-MS/MS colony screening: A high-throughput approach for optimizing (-)-limonene production. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123588. [PMID: 36587464 DOI: 10.1016/j.jchromb.2022.123588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Conventional analysis of microbial bioproducers requires the extraction of metabolites from liquid cultures, where the culturing steps are time consuming and greatly limit throughput. To break through this barrier, the current study aims to directly evaluate microbial bioproduction colonies by way of supercritical fluid extraction-supercritical fluid chromatography-triple quadrupole mass spectrometry (SFE-SFC-MS/MS). The online SFE-SFC-MS/MS system offers great potential for high-throughput analysis due to automated metabolite extraction without any need for pretreatment. This is the first report of SFE-SFC-MS/MS as a method for direct colony screening, as demonstrated in the high-throughput screening of (-)-limonene bioproducers. Compared with conventional analysis, the SFE-SFC-MS/MS system enables faster and more convenient screening of highly productive strains.
Collapse
Affiliation(s)
- Musashi Takekana
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takanobu Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Erika Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Research Institute for Bioscience Products & Fine Chemicals. Ajinomoto Co., Inc. Kanagawa, Japan
| | - Sumika Ono
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | | | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Moe Hiratani
- Research Institute for Bioscience Products & Fine Chemicals. Ajinomoto Co., Inc. Kanagawa, Japan
| | - Kenji Tsuge
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Engineering Biology Research Center, Kobe University, Kobe, Japan
| | | | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Engineering Biology Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
20
|
Gawlitt S, Liao C, Achmedov T, Beisel CL. Shortened CRISPR-Cas9 arrays enable multiplexed gene targeting in bacteria from a smaller DNA footprint. RNA Biol 2023; 20:666-680. [PMID: 37654098 PMCID: PMC10478742 DOI: 10.1080/15476286.2023.2247247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
CRISPR technologies comprising a Cas nuclease and a guide RNA (gRNA) can utilize multiple gRNAs to enact multi-site editing or regulation in the same cell. Nature devised a highly compact means of encoding gRNAs in the form of CRISPR arrays composed of conserved repeats separated by targeting spacers. However, the capacity to acquire new spacers keeps the arrays longer than necessary for CRISPR technologies. Here, we show that CRISPR arrays utilized by the Cas9 nuclease can be shortened without compromising and sometimes even enhancing targeting activity. Using multiplexed gene repression in E. coli, we found that each region could be systematically shortened to varying degrees before severely compromising targeting activity. Surprisingly, shortening some spacers yielded enhanced targeting activity, which was linked to folding of the transcribed array prior to processing. Overall, shortened CRISPR-Cas9 arrays can facilitate multiplexed editing and gene regulation from a smaller DNA footprint across many bacterial applications of CRISPR technologies.
Collapse
Affiliation(s)
- Sandra Gawlitt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Chunyu Liao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Tatjana Achmedov
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Chase L. Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Tahir H, Basit A, Tariq H, Haider Z, Ullah A, Hayat Z, Rehman SU. Coupling CRISPR/Cas9 and Lambda Red Recombineering System for Genome Editing of Salmonella Gallinarum and the Effect of ssaU Knock-Out Mutant on the Virulence of Bacteria. Biomedicines 2022; 10:biomedicines10123028. [PMID: 36551784 PMCID: PMC9776377 DOI: 10.3390/biomedicines10123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
The poultry industry in developing countries still faces a significant threat from fowl typhoid, a disease caused by Salmonella Gallinarum that has been well contained in more economically developed countries. In addition to the virulence exhibited by large virulence plasmid (85 kb), Salmonella Pathogenicity Island 2 in S. Gallinarum plays a key role in mediating disease through its type III secretion systems (TTSS). The TTSS secrete effector protein across the Salmonella containing vacuoles and mediate the internalization of bacteria by modulating vesicular passage. In this study, candidate virulent ssaU gene (~1 kb) encoding type III secretion system was successfully deleted from indigenously isolated S. Gallinarum genome through homology-directed repair using CRISPR/Cas9 and lambda recombination systems. CRISPR/Cas9-based genome editing of poultry-derived Salmonella Gallinarum has not been previously reported, which might be linked to a lack of efficiency in its genetic tools. This is the first study which demonstrates a complete CRISPR/Cas9-based gene deletion from this bacterial genome. More importantly, a poultry experimental model was employed to assess the virulence potential of this mutant strain (ΔssaU_SG18) which was unable to produce any mortality in the experimentally challenged birds as compared to the wild type strain. No effect on weight gain was observed whereas bacteria were unable to colonize the intestine and liver in our challenge model. This in vivo loss of virulence in mutant strain provides an excellent functionality of this system to be useful in live vaccine development against this resistant and patho genic bacteria.
Collapse
Affiliation(s)
- Hamza Tahir
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Abdul Basit
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
- School of Biology, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Hafsa Tariq
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Zulquernain Haider
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Asim Ullah
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
- Division of Infection and Immunity, The Roslin Institute, University of Edinbrugh, Edinburgh EH8 9YL, UK
| | - Zafar Hayat
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Department of Animal Sciences, University of Sargodha, Sargodha 40100, Pakistan
| | - Shafiq Ur Rehman
- Division of Infection and Immunity, The Roslin Institute, University of Edinbrugh, Edinburgh EH8 9YL, UK
- Correspondence: ; Tel.: +92-3214905423
| |
Collapse
|
22
|
Huang S, Xue Y, Zhou C, Ma Y. An efficient CRISPR/Cas9-based genome editing system for alkaliphilic Bacillus sp. N16-5 and application in engineering xylose utilization for D-lactic acid production. Microb Biotechnol 2022; 15:2730-2743. [PMID: 36309986 PMCID: PMC9618316 DOI: 10.1111/1751-7915.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Alkaliphiles are considered more suitable chassis than traditional neutrophiles due to their excellent resistance to microbial contamination. Alkaliphilic Bacillus sp. N16-5, an industrially interesting strain with great potential for the production of lactic acid and alkaline polysaccharide hydrolases, can only be engineered genetically by the laborious and time-consuming homologous recombination. In this study, we reported the successful development of a CRISPR/Cas9-based genome editing system with high efficiency for single-gene deletion, large gene fragment deletion and exogenous DNA chromosomal insertion. Moreover, based on a catalytically dead variant of Cas9 (dCas9), we also developed a CRISPRi system to efficiently regulate gene expression. Finally, this efficient genome editing system was successfully applied to engineer the xylose metabolic pathway for the efficient bioproduction of D-lactic acid. Compared with the wild-type Bacillus sp. N16-5, the final engineered strain with XylR deletion and AraE overexpression achieved 34.3% and 27.7% increases in xylose consumption and D-lactic acid production respectively. To our knowledge, this is the first report on the development and application of CRISPR/Cas9-based genome editing system in alkaliphilic Bacillus, and this study will significantly facilitate functional genomic studies and genome manipulation in alkaliphilic Bacillus, laying a foundation for the development of more robust microbial chassis.
Collapse
Affiliation(s)
- Shiyong Huang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
23
|
Wang Y, Zhao D, Sun L, Wang J, Fan L, Cheng G, Zhang Z, Ni X, Feng J, Wang M, Zheng P, Bi C, Zhang X, Sun J. Engineering of the Translesion DNA Synthesis Pathway Enables Controllable C-to-G and C-to-A Base Editing in Corynebacterium glutamicum. ACS Synth Biol 2022; 11:3368-3378. [PMID: 36099191 DOI: 10.1021/acssynbio.2c00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Expanding the base conversion type is expected to largely broaden the application of base editing, whereas it requires decipherment of the machinery controlling the editing outcome. Here, we discovered that the DNA polymerase V-mediated translesion DNA synthesis (TLS) pathway controlled the C-to-A editing by a glycosylase base editor (GBE) in Escherichia coli. However, C-to-G conversion was surprisingly found to be the main product of the GBE in Corynebacterium glutamicum and subsequent gene inactivation identified the decisive TLS enzymes. Introduction of the E. coli TLS pathway into a TLS-deficient C. glutamicum mutant completely changed the GBE outcome from C-to-G to C-to-A. Combining the canonical C-to-T editor, a pioneering C-to-N base editing toolbox was established in C. glutamicum. The expanded base conversion capability produces greater genetic diversity and promotes the application of base editing in gene inactivation and protein evolution. This study demonstrates the possibility of engineering TLS systems to develop advanced genome editing tools.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Dongdong Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Letian Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Guimin Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhihui Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
24
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
25
|
Tao S, Chen H, Li N, Liang W. The Application of the CRISPR-Cas System in Antibiotic Resistance. Infect Drug Resist 2022; 15:4155-4168. [PMID: 35942309 PMCID: PMC9356603 DOI: 10.2147/idr.s370869] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
The emergence and global epidemic of antimicrobial resistance (AMR) poses a serious threat to global public health in recent years. AMR genes are shared between bacterial pathogens mainly via horizontal gene transfer (HGT) on mobile genetic elements (MGEs), thereby accelerating the spread of antimicrobial resistance (AMR) and increasing the burden of drug resistance. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance. The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are an RNA-guided adaptive immune system in prokaryotes that recognizes and defends against invasive genetic elements such as phages and plasmids. Because of its specifically target and cleave DNA sequences encoding antibiotic resistance genes, CRISPR/Cas system has been developed into a new gene-editing tool for the prevention and control of bacterial drug resistance. CRISPR-Cas plays a potentially important role in controlling horizontal gene transfer and limiting the spread of antibiotic resistance. In this review, we will introduce the structure and working mechanism of CRISPR-Cas systems, followed by delivery strategies, and then focus on the relationship between antimicrobial resistance and CRISPR-Cas. Moreover, the challenges and prospects of this research field are discussed, thereby providing a reference for the prevention and control of the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People’s Republic of China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, 222023, People’s Republic of China
| | - Huimin Chen
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People’s Republic of China
| | - Na Li
- Bengbu Medical College, Bengbu, Anhui Province, 233030, People’s Republic of China
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, 222023, People’s Republic of China
| |
Collapse
|
26
|
Dhanjal JK, Vora D, Radhakrishnan N, Sundar D. Computational Approaches for Designing Highly Specific and Efficient sgRNAs. Methods Mol Biol 2022; 2349:147-166. [PMID: 34718995 DOI: 10.1007/978-1-0716-1585-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The easily programmable CRISPR/Cas9 system has found applications in biomedical research as well as microbial and crop applications, due to its ability to create site-specific edits. This powerful and flexible system has also been modified to enable inducible gene regulation, epigenome modifications and high-throughput screens. Designing efficient and specific guides for the nuclease is a key step and also a major challenge in effective application. This chapter describes rules for sgRNA design and important features to consider while touching upon bioinformatics advances in predicting efficient guides. Computational tools that suggest improved guides, depending on application, or predict off-targets have also been mentioned and compared.
Collapse
Affiliation(s)
- Jaspreet Kaur Dhanjal
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Dhvani Vora
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Navaneethan Radhakrishnan
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
27
|
Pan H, Wang J, Wu H, Li Z, Lian J. Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO 2 valorization. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:212. [PMID: 34736496 PMCID: PMC8570001 DOI: 10.1186/s13068-021-02063-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/25/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND CO2 valorization is one of the effective methods to solve current environmental and energy problems, in which microbial electrosynthesis (MES) system has proved feasible and efficient. Cupriviadus necator (Ralstonia eutropha) H16, a model chemolithoautotroph, is a microbe of choice for CO2 conversion, especially with the ability to be employed in MES due to the presence of genes encoding [NiFe]-hydrogenases and all the Calvin-Benson-Basham cycle enzymes. The CO2 valorization strategy will make sense because the required hydrogen can be produced from renewable electricity independently of fossil fuels. MAIN BODY In this review, synthetic biology toolkit for C. necator H16, including genetic engineering vectors, heterologous gene expression elements, platform strain and genome engineering, and transformation strategies, is firstly summarized. Then, the review discusses how to apply these tools to make C. necator H16 an efficient cell factory for converting CO2 to value-added products, with the examples of alcohols, fatty acids, and terpenoids. The review is concluded with the limitation of current genetic tools and perspectives on the development of more efficient and convenient methods as well as the extensive applications of C. necator H16. CONCLUSIONS Great progress has been made on genetic engineering toolkit and synthetic biology applications of C. necator H16. Nevertheless, more efforts are expected in the near future to engineer C. necator H16 as efficient cell factories for the conversion of CO2 to value-added products.
Collapse
Affiliation(s)
- Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoliang Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
28
|
Yang S, Zhang Y, Xu J, Zhang J, Zhang J, Yang J, Jiang Y, Yang S. Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration. Nucleic Acids Res 2021; 49:10192-10202. [PMID: 34478496 PMCID: PMC8464060 DOI: 10.1093/nar/gkab752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Cell engineering is commonly limited to the serial manipulation of a single gene or locus. The recently discovered CRISPR-associated transposases (CASTs) could manipulate multiple sets of genes to achieve predetermined cell diversity, with orthogonal CASTs being able to manipulate them in parallel. Here, a novel CAST from Pseudoalteromonas translucida KMM520 (PtrCAST) was characterized without a protospacer adjacent motif (PAM) preference which can achieve a high insertion efficiency for larger cargo and multiplexed transposition and tolerate mismatches out of 4-nucleotide seed sequence. More importantly, PtrCAST operates orthogonally with CAST from Vibrio cholerae Tn6677 (VchCAST), though both belonging to type I-F3. The two CASTs were exclusively active on their respective mini-Tn substrate with their respective crRNAs that target the corresponding 5 and 2 loci in one Escherichia coli cell. The multiplexed orthogonal MUCICAT (MUlticopy Chromosomal Integration using CRISPR-Associated Transposases) is a powerful tool for cell programming and appears promising with applications in synthetic biology.
Collapse
Affiliation(s)
| | | | - Jiaqi Xu
- Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
| | - Jiao Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Jiang
- Shanghai Taoyusheng Biotechnology Co., Ltd, Shanghai 200032, China
| | - Sheng Yang
- To whom correspondence should be addressed. Tel: +86 21 54924173;
| |
Collapse
|
29
|
Lee HJ, Lee SJ. Advances in Accurate Microbial Genome-Editing CRISPR Technologies. J Microbiol Biotechnol 2021; 31:903-911. [PMID: 34261850 PMCID: PMC9723281 DOI: 10.4014/jmb.2106.06056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Previous studies have modified microbial genomes by introducing gene cassettes containing selectable markers and homologous DNA fragments. However, this requires several steps including homologous recombination and excision of unnecessary DNA regions, such as selectable markers from the modified genome. Further, genomic manipulation often leaves scars and traces that interfere with downstream iterative genome engineering. A decade ago, the CRISPR/Cas system (also known as the bacterial adaptive immune system) revolutionized genome editing technology. Among the various CRISPR nucleases of numerous bacteria and archaea, the Cas9 and Cas12a (Cpf1) systems have been largely adopted for genome editing in all living organisms due to their simplicity, as they consist of a single polypeptide nuclease with a target-recognizing RNA. However, accurate and fine-tuned genome editing remains challenging due to mismatch tolerance and protospacer adjacent motif (PAM)-dependent target recognition. Therefore, this review describes how to overcome the aforementioned hurdles, which especially affect genome editing in higher organisms. Additionally, the biological significance of CRISPR-mediated microbial genome editing is discussed, and future research and development directions are also proposed.
Collapse
Affiliation(s)
- Ho Joung Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
30
|
Wang L, Xiao Y, Wei X, Pan J, Duanmu D. Highly Efficient CRISPR-Mediated Base Editing in Sinorhizobium meliloti. Front Microbiol 2021; 12:686008. [PMID: 34220774 PMCID: PMC8253261 DOI: 10.3389/fmicb.2021.686008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Rhizobia are widespread gram-negative soil bacteria and indispensable symbiotic partners of leguminous plants that facilitate the most highly efficient biological nitrogen fixation in nature. Although genetic studies in Sinorhizobium meliloti have advanced our understanding of symbiotic nitrogen fixation (SNF), the current methods used for genetic manipulations in Sinorhizobium meliloti are time-consuming and labor-intensive. In this study, we report the development of a few precise gene modification tools that utilize the CRISPR/Cas9 system and various deaminases. By fusing the Cas9 nickase to an adenine deaminase, we developed an adenine base editor (ABE) system that facilitated adenine-to-guanine transitions at one-nucleotide resolution without forming double-strand breaks (DSB). We also engineered a cytidine base editor (CBE) and a guanine base editor (GBE) that catalyze cytidine-to-thymine substitutions and cytidine-to-guanine transversions, respectively, by replacing adenine deaminase with cytidine deaminase and other auxiliary enzymes. All of these base editors are amenable to the assembly of multiple synthetic guide RNA (sgRNA) cassettes using Golden Gate Assembly to simultaneously achieve multigene mutations or disruptions. These CRISPR-mediated base editing tools will accelerate the functional genomics study and genome manipulation of rhizobia.
Collapse
Affiliation(s)
- Longxiang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yuan Xiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaowei Wei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jimin Pan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Engineering of the Small Noncoding RNA (sRNA) DsrA Together with the sRNA Chaperone Hfq Enhances the Acid Tolerance of Escherichia coli. Appl Environ Microbiol 2021; 87:AEM.02923-20. [PMID: 33674434 DOI: 10.1128/aem.02923-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/21/2021] [Indexed: 11/20/2022] Open
Abstract
Acid tolerance of microorganisms is a desirable phenotype for many industrial fermentation applications. In Escherichia coli, the stress response sigma factor RpoS is a promising target for engineering acid-tolerant phenotypes. However, the simple overexpression of RpoS alone is insufficient to confer these phenotypes. In this study, we show that the simultaneous overexpression of the noncoding small RNA (sRNA) DsrA and the sRNA chaperone Hfq, which act as RpoS activators, significantly increased acid tolerance in terms of cell growth under modest acidic pH, as well as cell survival upon extreme acid shock. Directed evolution of the DsrA-Hfq module further improved the acid tolerance, with the best mutants showing a 51 to 72% increase in growth performance at pH 4.5 compared with the starting strain, MG1655. Further analyses found that the improved acid tolerance of these DsrA-Hfq strains coincided with activation of genes associated with proton-consuming acid resistance system 2 (AR2), protein chaperone HdeB, and reactive oxygen species (ROS) removal in the exponential phase. This study illustrated that the fine-tuning of sRNAs and their chaperones can be a novel strategy for improving the acid tolerance of E. coli IMPORTANCE Many of the traditional studies on bacterial acid tolerance generally focused on improving cell survival under extreme-pH conditions, but cell growth under less harsh acidic conditions is more relevant to industrial applications. Under normal conditions, the general stress response sigma factor RpoS is maintained at low levels in the growth phase through a number of mechanisms. This study showed that RpoS can be activated prior to the stationary phase via engineering its activators, the sRNA DsrA and the sRNA chaperone Hfq, resulting in significantly improved cell growth at modest acidic pH. This work suggests that the sigma factors and likely other transcription factors can be retuned or retimed by manipulating the respective regulatory sRNAs along with the sufficient supply of the respective sRNA chaperones (i.e., Hfq). This provides a novel avenue for strain engineering of microbes.
Collapse
|
32
|
Li Q, Sun B, Chen J, Zhang Y, Jiang Y, Yang S. A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli. Acta Biochim Biophys Sin (Shanghai) 2021; 53:620-627. [PMID: 33764372 DOI: 10.1093/abbs/gmab036] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (Cas9)-based genome editing tool pCas/pTargetF system that we established previously has been widely used in Escherichia coli MG1655. However, this system failed to manipulate the genome of E. coli BL21(DE3), owing to the potential higher leaky transcription of the gRNA-pMB1 specific to pTargetF in this strain. In this study, we modified the pCas/pTargetF system by replacing the promoter of gRNA-pMB1 with a tightly regulated promoter PrhaB, changing the replicon of pCas to a nontemperature-sensitive replicon, adding the sacB gene into pCas, and replacing the original N20-specific sequence of pTargetF with ccdB gene. We call this updated system as pEcCas/pEcgRNA. We found that gRNA-pMB1 indeed showed a slightly higher leaky expression in the pCas/pTargetF system compared with pEcCas/pEcgRNA. We also confirmed that genome editing can successfully be performed in BL21(DE3) by pEcCas/pEcgRNA with high efficiency. The application of pEcCas/pEcgRNA was then expanded to the E. coli B strain BL21 StarTM (DE3), K-12 strains MG1655, DH5α, CGMCC3705, Nissle1917, W strain ATCC9637, and also another species of Enterobacteriaceae, Tatumella citrea DSM13699, without any specific modifications. Finally, the plasmid curing process was optimized to shorten the time from $\sim$60 h to $\sim$32 h. The entire protocol (including plasmid construction, editing, electroporation and mutant verification, and plasmid elimination) took only $\sim$5.5 days per round in the pEcCas/pEcgRNA system, whereas it took $\sim$7.5 days in the pCas/pTargetF system. This study established a faster-acting genome editing tool that can be used in a wider range of E. coli strains and will also be useful for other Enterobacteriaceae species.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bingbing Sun
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiwen Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| |
Collapse
|
33
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
34
|
Zhao J, Fang H, Zhang D. Expanding application of CRISPR-Cas9 system in microorganisms. Synth Syst Biotechnol 2020; 5:269-276. [PMID: 32913902 PMCID: PMC7451738 DOI: 10.1016/j.synbio.2020.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 11/08/2022] Open
Abstract
The development of CRISPR-Cas9 based genetic manipulation tools represents a huge breakthrough in life sciences and has been stimulating research on metabolic engineering, synthetic biology, and systems biology. The CRISPR-Cas9 and its derivative tools are one of the best choices for precise genome editing, multiplexed genome editing, and reversible gene expression control in microorganisms. However, challenges remain for applying CRISPR-Cas9 in novel microorganisms, especially those industrial microorganism hosts that are intractable using traditional genetic manipulation tools. How to further extend CRISPR-Cas9 to these microorganisms is being an urgent matter. In this review, we first introduce the mechanism and application of CRISPR-Cas9, then discuss how to optimize CRISPR-Cas9 as genome editing tools, including but not limited to how to reduce off-target effects and Cas9 related toxicity, and how to increase on-target efficiency by optimizing crRNA and sgRNA design.
Collapse
Affiliation(s)
- Jing Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
35
|
Borsenberger V, Croux C, Daboussi F, Neuvéglise C, Bordes F. Developing Methods to Circumvent the Conundrum of Chromosomal Rearrangements Occurring in Multiplex Gene Edition. ACS Synth Biol 2020; 9:2562-2575. [PMID: 32786349 DOI: 10.1021/acssynbio.0c00325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 is a powerful tool to edit the genome of the yeast Yarrowia lipolytica. Here, we design a simple and robust method to knockout multiple gene families based on the construction of plasmids enabling the simultaneous expression of several sgRNAs. We exemplify the potency of this approach by targeting the well-characterized acyl-CoA oxidase family (POX) and the uncharacterized SPS19 family. We establish a correlation between the high lethality observed upon editing multiple loci and chromosomal translocations resulting from the simultaneous generation of several double-strand breaks (DSBs) and develop multiplex gene editing strategies. Using homologous directed recombination to reduce chromosomal translocations, we demonstrated that simultaneous editing of four genes can be achieved and constructed a strain carrying a sextuple deletion of POX genes. We explore an "excision approach" by simultaneously performing two DSBs in genes and reached 73 to 100% editing efficiency in double disruptions and 41.7% in a triple disruption. This work led to identifying SPS193 as a gene encoding a 2-4 dienoyl-CoA reductase, demonstrating the potential of this method to accelerate knowledge on gene function in expanded gene families.
Collapse
Affiliation(s)
- Vinciane Borsenberger
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
| | - Christian Croux
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
- Toulouse White Biotechnology, Ramonville-Saint-Agne, 31520, France
| | - Cécile Neuvéglise
- AgroParisTech, Micalis Institute, Université Paris-Saclay, INRAE, Paris, 78350, France
| | - Florence Bordes
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
| |
Collapse
|
36
|
Huang C, Guo L, Wang J, Wang N, Huo YX. Efficient long fragment editing technique enables large-scale and scarless bacterial genome engineering. Appl Microbiol Biotechnol 2020; 104:7943-7956. [PMID: 32794018 DOI: 10.1007/s00253-020-10819-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022]
Abstract
Bacteria are versatile living systems that enhance our understanding of nature and enable biosynthesis of valuable chemicals. Long fragment editing techniques are of great importance for accelerating bacterial genome engineering to obtain desirable and genetically stable strains. However, the existing genome editing methods cannot meet the needs of engineers. We herein report an efficient long fragment editing method for large-scale and scarless genome engineering in Escherichia coli. The method enabled us to insert DNA fragments up to 12 kb into the genome and to delete DNA fragments up to 186.7 kb from the genome, with positive rates over 95%. We applied this method for E. coli genome simplification, resulting in 12 individual deletion mutants and four cumulative deletion mutants. The simplest genome lost a total of 370.6 kb of DNA sequence containing 364 open reading frames. Additionally, we applied this technique to metabolic engineering and obtained a genetically stable plasmid-independent isobutanol production strain that produced 1.3 g/L isobutanol via shake-flask fermentation. These results suggest that the method is a powerful genome engineering tool, highlighting its potential to be applied in synthetic biology and metabolic engineering. KEY POINTS: • This article reports an efficient genome engineering tool for E. coli. • The tool is advantageous for the manipulations of long DNA fragments. • The tool has been successfully applied for genome simplification. • The tool has been successfully applied for metabolic engineering.
Collapse
Affiliation(s)
- Chaoyong Huang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.,SIP-UCLA Institute for Technology Advancement, Suzhou, 215123, China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingge Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. .,SIP-UCLA Institute for Technology Advancement, Suzhou, 215123, China.
| |
Collapse
|
37
|
Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 2020; 39:35-40. [PMID: 32690970 DOI: 10.1038/s41587-020-0592-2] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/08/2020] [Indexed: 01/01/2023]
Abstract
Current base editors (BEs) catalyze only base transitions (C to T and A to G) and cannot produce base transversions. Here we present BEs that cause C-to-A transversions in Escherichia coli and C-to-G transversions in mammalian cells. These glycosylase base editors (GBEs) consist of a Cas9 nickase, a cytidine deaminase and a uracil-DNA glycosylase (Ung). Ung excises the U base created by the deaminase, forming an apurinic/apyrimidinic (AP) site that initiates the DNA repair process. In E. coli, we used activation-induced cytidine deaminase (AID) to construct AID-nCas9-Ung and found that it converts C to A with an average editing specificity of 93.8% ± 4.8% and editing efficiency of 87.2% ± 6.9%. For use in mammalian cells, we replaced AID with rat APOBEC1 (APOBEC-nCas9-Ung). We tested APOBEC-nCas9-Ung at 30 endogenous sites, and we observed C-to-G conversions with a high editing specificity at the sixth position of the protospacer between 29.7% and 92.2% and an editing efficiency between 5.3% and 53.0%. APOBEC-nCas9-Ung supplements the current adenine and cytidine BEs (ABE and CBE, respectively) and could be used to target G/C disease-causing mutations.
Collapse
|
38
|
Adiego-Pérez B, Randazzo P, Daran JM, Verwaal R, Roubos JA, Daran-Lapujade P, van der Oost J. Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiol Lett 2020; 366:5489186. [PMID: 31087001 PMCID: PMC6522427 DOI: 10.1093/femsle/fnz086] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial production of chemical compounds often requires highly engineered microbial cell factories. During the last years, CRISPR-Cas nucleases have been repurposed as powerful tools for genome editing. Here, we briefly review the most frequently used CRISPR-Cas tools and describe some of their applications. We describe the progress made with respect to CRISPR-based multiplex genome editing of industrial bacteria and eukaryotic microorganisms. We also review the state of the art in terms of gene expression regulation using CRISPRi and CRISPRa. Finally, we summarize the pillars for efficient multiplexed genome editing and present our view on future developments and applications of CRISPR-Cas tools for multiplex genome editing.
Collapse
Affiliation(s)
- Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Paola Randazzo
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - René Verwaal
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Johannes A Roubos
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
39
|
Keiper F, Atanassova A. Regulation of Synthetic Biology: Developments Under the Convention on Biological Diversity and Its Protocols. Front Bioeng Biotechnol 2020; 8:310. [PMID: 32328486 PMCID: PMC7160928 DOI: 10.3389/fbioe.2020.00310] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/23/2022] Open
Abstract
The primary international forum deliberating the regulation of "synthetic biology" is the Convention on Biological Diversity (CBD), along with its subsidiary agreements concerned with the biosafety of living modified organisms (LMOs; Cartagena Protocol on Biosafety to the CBD), and access and benefit sharing in relation to genetic resources (Nagoya Protocol to the CBD). This discussion has been underway for almost 10 years under the CBD agenda items of "synthetic biology" and "new and emerging issues relating to the conservation and sustainable use of biological diversity," and more recently within the scope of Cartagena Protocol topics including risk assessment and risk management, and "digital sequence information" jointly with the Nagoya Protocol. There is no internationally accepted definition of "synthetic biology," with it used as an umbrella term in this forum to capture "new" biotechnologies and "new" applications of established biotechnologies, whether actual or conceptual. The CBD debates are characterized by polarized views on the adequacy of existing regulatory mechanisms for "new" types of LMOs, including the scope of the current regulatory frameworks, and procedures and tools for risk assessment and risk mitigation and/or management. This paper provides an overview of international developments in biotechnology regulation, including the application of the Cartagena Protocol and relevant policy developments, and reviews the development of the synthetic biology debate under the CBD and its Protocols, including the major issues expected in the lead up to and during the 2020 Biodiversity Conference.
Collapse
Affiliation(s)
| | - Ana Atanassova
- BASF Belgium Coordination Center, Technologiepark-Zwijnaarde, Ghent, Belgium
| |
Collapse
|
40
|
McCarty NS, Graham AE, Studená L, Ledesma-Amaro R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun 2020; 11:1281. [PMID: 32152313 PMCID: PMC7062760 DOI: 10.1038/s41467-020-15053-x] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Multiplexed CRISPR technologies, in which numerous gRNAs or Cas enzymes are expressed at once, have facilitated powerful biological engineering applications, vastly enhancing the scope and efficiencies of genetic editing and transcriptional regulation. In this review, we discuss multiplexed CRISPR technologies and describe methods for the assembly, expression and processing of synthetic guide RNA arrays in vivo. Applications that benefit from multiplexed CRISPR technologies, including cellular recorders, genetic circuits, biosensors, combinatorial genetic perturbations, large-scale genome engineering and the rewiring of metabolic pathways, are highlighted. We also offer a glimpse of emerging challenges and emphasize experimental considerations for future studies.
Collapse
Affiliation(s)
- Nicholas S McCarty
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Alicia E Graham
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Lucie Studená
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
41
|
Zhang S, Guo F, Yan W, Dai Z, Dong W, Zhou J, Zhang W, Xin F, Jiang M. Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology. Front Bioeng Biotechnol 2020; 7:459. [PMID: 32047743 PMCID: PMC6997136 DOI: 10.3389/fbioe.2019.00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Industrial biology plays a crucial role in the fields of medicine, health, food, energy, and so on. However, the lack of efficient genetic engineering tools has restricted the rapid development of industrial biology. Recently, the emergence of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system brought a breakthrough in genome editing technologies due to its high orthogonality, versatility, and efficiency. In this review, we summarized the barriers of CRISPR/Cas9 and corresponding solutions for efficient genetic engineering in industrial microorganisms. In addition, the advances of industrial biology employing the CRISPR/Cas9 system were compared in terms of its application in bacteria, yeast, and filamentous fungi. Furthermore, the cooperation between CRISPR/Cas9 and synthetic biology was discussed to help build complex and programmable gene circuits, which can be used in industrial biotechnology.
Collapse
Affiliation(s)
- Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
42
|
Xin X, Li J, Zhao D, Li S, Xie Q, Li Z, Fan F, Bi C, Zhang X. Double-Check Base Editing for Efficient A to G Conversions. ACS Synth Biol 2019; 8:2629-2634. [PMID: 31765564 DOI: 10.1021/acssynbio.9b00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the development of CRISPR/Cas9 technology, a new generation of editing methods that convert specific bases has enabled precise single-base mutations. To date, conversion of cytosine to thymidine and adenine to guanine has been achieved using the cytidine deaminase APOBEC1 and adenosine deaminase (TadA), respectively. However, the base editing efficiency can be unacceptably low in some cell types or at certain target loci. One reason might be the lack of a selective pressure against the survival of nonedited cells. Few studies on ABE in prokaryotes have been reported, probably due to the relatively low editing efficiency of TadA. Improving the editing efficiency is the key for establishing base editing techniques and especially the ABE technologies. In this work, a selective pressure against nonedited cells was implemented to increase the base editing efficiency. First, we fused nCas9 or dCas9 with TadA to compare the editing efficiency of nCas9-TadA and dCas9-TadA fusion complexes in the model prokaryote Escherichia coli. While nCas9-TadA was able to achieve A to G base editing (ABE) with a moderate efficiency, dCas9-TadA had a very low efficiency. To enrich for edited cells and increase the base-editing efficiency, we utilized the induction of double-strand breaks by active Cas9, which leads to the death of prokaryotic cells. By introducing an inducible active Cas9 with the same editing gRNA as the nCas9-TadA in the base editing process, the cells with nonedited target bases remained vulnerable to Cas9 and were eliminated. Thus, a double-check base editing (DBE) method was established, which significantly improved the editing efficiency of ABE in E. coli, reaching 99.0% for some sites. By placing a selective pressure against nonedited cells, the DBE strategy might also be applied to various scenarios to increase the efficiency of many different base editing targets or even for epigenetic DNA modification techniques.
Collapse
Affiliation(s)
- Xiuqing Xin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Qianwen Xie
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Zhongkang Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| |
Collapse
|
43
|
Garcia-Robledo JE, Barrera MC, Tobón GJ. CRISPR/Cas: from adaptive immune system in prokaryotes to therapeutic weapon against immune-related diseases. Int Rev Immunol 2019; 39:11-20. [PMID: 31625429 DOI: 10.1080/08830185.2019.1677645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CRISPR/Cas evolved as an adaptive immune system in bacteria and archaea to inactivate foreign viral and plasmid DNA. However, the capacities of various CRISPR/Cas systems for precise genome editing based on sequence homology also allow their use as tools for genomic and epigenomic modification in eukaryotes. Indeed, these genetic characteristics have proven useful for disease modeling and testing the specific functions of target genes under pathological conditions. Moreover, recent studies provide compelling evidence that CRISPR/Cas systems could be useful therapeutic tools against human diseases, including cancer, monogenic disorders, and autoimmune disorders.HighlightsCRISPR/Cas evolved as an adaptive immune system in bacteria and archaea.CRISPR/Cas systems are nowadays used as tools for genomic modification.CRISPR/Cas systems could be useful therapeutic tools against human disease, including autoimmune conditions.
Collapse
Affiliation(s)
| | - María Claudia Barrera
- Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional; Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - Gabriel J Tobón
- Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional; Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| |
Collapse
|
44
|
Dong L, Guan X, Li N, Zhang F, Zhu Y, Ren K, Yu L, Zhou F, Han Z, Gao N, Huang Z. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat Struct Mol Biol 2019; 26:308-314. [DOI: 10.1038/s41594-019-0206-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/21/2019] [Indexed: 01/07/2023]
|
45
|
Alper HS, Beisel CL. Advances in CRISPR Technologies for Microbial Strain Engineering. Biotechnol J 2018; 13:e1800460. [PMID: 30175907 DOI: 10.1002/biot.201800460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 07/26/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Hal S Alper
- H. Alper, The University of Texas at Austin, USA
| | - Chase L Beisel
- Chase Beisel , Helmholtz Institute for RNA-based Infection Research, Germany
| |
Collapse
|