1
|
Almena Rodriguez L, Kallert E, Husmann JÅ, Schaubruch K, Meisel KIS, Schwickert M, Hoba SN, Heermann R, Kersten C. Electrostatic Anchoring in RNA-Ligand Design─Dissecting the Effects of Positive Charges on Affinity, Selectivity, Binding Kinetics, and Thermodynamics. J Med Chem 2025; 68:8659-8678. [PMID: 40191889 PMCID: PMC12035807 DOI: 10.1021/acs.jmedchem.5c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Targeting RNA with small molecules is an emerging field in medicinal chemistry. However, highly potent ligands are often challenging to achieve. One intuitive strategy to enhance ligand's potency is the implementation of positively charged moieties to interact with the negatively charged RNA phosphate backbone. We investigated the effect of such "electrostatic anchors" on binding affinity, kinetics, thermodynamics, and selectivity by MST, SPR, and ITC experiments, respectively, with the Ba SAM-VI riboswitch and the Tte preQ1 riboswitch aptamer model systems. RNA-ligand interactions were dominated by enthalpy, and electrostatic anchors had moderate effects on binding affinity driven by faster association rates for higher charged ligands. Despite the observations of loose binding interactions in SPR experiments with multibasic ligands, selectivity over structurally unrelated RNA off-targets was maintained. Therefore, the addition of positively charged moieties is no universal RNA-ligand design principle, but a purposefully implemented ionic RNA-ligand interaction can enhance potency without impairing selectivity.
Collapse
Affiliation(s)
- Laura Almena Rodriguez
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Elisabeth Kallert
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Jan-Åke Husmann
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Kirsten Schaubruch
- Institute
of Molecular Physiology, Microbiology and Biotechnology, Johannes
Gutenberg-University, Hanns-DieterHüsch-Weg 17, 55128 Mainz, Germany
| | - Katherina I. S. Meisel
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Marvin Schwickert
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Sabrina N. Hoba
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Ralf Heermann
- Institute
of Molecular Physiology, Microbiology and Biotechnology, Johannes
Gutenberg-University, Hanns-DieterHüsch-Weg 17, 55128 Mainz, Germany
| | - Christian Kersten
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
- Institute
for Quantitative and Computational Biosciences, Johannes Gutenberg-University, BioZentrum I, Hanns-Dieter-Hüsch
Weg 15, 55128 Mainz, Germany
| |
Collapse
|
2
|
Heel SV, Juen F, Bartosik K, Micura R, Kreutz C, Breuker K. Resolving the intricate binding of neomycin B to multiple binding motifs of a neomycin-sensing riboswitch aptamer by native top-down mass spectrometry and NMR spectroscopy. Nucleic Acids Res 2024; 52:4691-4701. [PMID: 38567725 PMCID: PMC11077050 DOI: 10.1093/nar/gkae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
Understanding small molecule binding to RNA can be complicated by an intricate interplay between binding stoichiometry, multiple binding motifs, different occupancies of different binding motifs, and changes in the structure of the RNA under study. Here, we use native top-down mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy to experimentally resolve these factors and gain a better understanding of the interactions between neomycin B and the 40 nt aptamer domain of a neomycin-sensing riboswitch engineered in yeast. Data from collisionally activated dissociation of the 1:1, 1:2 and 1:3 RNA-neomycin B complexes identified a third binding motif C of the riboswitch in addition to the two motifs A and B found in our previous study, and provided occupancies of the different binding motifs for each complex stoichiometry. Binding of a fourth neomycin B molecule was unspecific according to both MS and NMR data. Intriguingly, all major changes in the aptamer structure can be induced by the binding of the first neomycin B molecule regardless of whether it binds to motif A or B as evidenced by stoichiometry-resolved MS data together with titration data from 1H NMR spectroscopy in the imino proton region. Specific binding of the second and third neomycin B molecules further stabilizes the riboswitch aptamer, thereby allowing for a gradual response to increasing concentrations of neomycin B, which likely leads to a fine-tuning of the cellular regulatory mechanism.
Collapse
Affiliation(s)
- Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Fabian Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Macyszyn J, Burmistrz M, Mieczkowski A, Wojciechowska M, Trylska J. Conjugates of Aminoglycosides with Stapled Peptides as a Way to Target Antibiotic-Resistant Bacteria. ACS OMEGA 2023; 8:19047-19056. [PMID: 37273645 PMCID: PMC10233823 DOI: 10.1021/acsomega.3c02071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023]
Abstract
The misuse and overuse of antibiotics led to the development of bacterial resistance to existing aminoglycoside (AMG) antibiotics and limited their use. Consequently, there is a growing need to develop effective antimicrobials against multidrug-resistant bacteria. To target resistant strains, we propose to combine 2-deoxystreptamine AMGs, neomycin (NEO) and amikacin (AMK), with a membrane-active antimicrobial peptide anoplin and its hydrocarbon stapled derivative. The AMG-peptide hybrids were conjugated using the click chemistry reaction in solution to obtain a non-cleavable triazole linker and by disulfide bridge formation on the resin to obtain a linker cleavable in the bacterial cytoplasm. Homo-dimers connected via disulfide bridges between the N-terminus thiol analogues of anoplin and hydrocarbon stapled anoplin were also synthesized. These hybrid compounds show a notable increase in antibacterial and bactericidal activity, as compared to the unconjugated ones or their combinations, against Gram-positive and Gram-negative bacteria, especially for the strains resistant to AMK or NEO. The conjugates and disulfide peptide dimers exhibit low hemolytic activity on sheep red blood erythrocytes.
Collapse
Affiliation(s)
- Julia Macyszyn
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Michał Burmistrz
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Adam Mieczkowski
- Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Monika Wojciechowska
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
4
|
Conner AN, Fuller MT, Kellish PC, Arya DP. Thermodynamics of d(GGGGCCCC) Binding to Neomycin-Class Aminoglycosides. Biochemistry 2023. [PMID: 37172221 DOI: 10.1021/acs.biochem.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
DNA adopts a number of conformations that can affect its binding to other macromolecules. The conformations (A, B, Z) can be sequence- and/or solution-dependent. While AT-rich DNA sequences generally adopt a Canonical B-form structure, GC-rich sequences are more promiscuous. Recognition of GC-rich nucleic acids by small molecules has been much more challenging than the recognition of AT-rich duplexes. Spectrophotometric and calorimetric techniques were used to characterize the binding of neomycin-class aminoglycosides to a GC-rich DNA duplex, G4C4, in various ionic and pH conditions. Our results reveal that binding enhances the thermal stability of G4C4, with thermal enhancement decreasing with increasing pH and/or Na+ concentration. Although G4C4 bound to aminoglycosides demonstrated a mixed A- and B-form conformation, circular dichroism studies indicate that binding induces a conformational shift toward A-form DNA. Isothermal titration calorimetry studies reveal that aminoglycoside binding to G4C4 is linked to the uptake of protons at pH = 7.0 and that this uptake is pH-dependent. Increased pH and/or Na+ concentration results in a decrease in G4C4 affinity for the aminoglycosides. The binding affinities of the aminoglycosides follow the expected hierarchy: neomycin > paromomycin > ribostamycin. The salt dependence of DNA binding affinities of aminoglycosides is consistent with at least two drug NH3+ groups participating in electrostatic interactions with G4C4. These studies further embellish our understanding of the many factors facilitating recognition of GC-rich DNA structures as guided by their optimum charge and shape complementarity for small-molecule amino sugars.
Collapse
Affiliation(s)
- Andrea N Conner
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Makala T Fuller
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Patrick C Kellish
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dev P Arya
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
5
|
NISHIZAWA S, LEE ETT, YOSHINO Y, YAJIMA S, ROKUGAWA M, SATO Y. Molecular Design of Fluorogenic Probes for Targeting rRNA: Indicator in FID Assay and Dye for Imaging of Nucleolar RNA in Living Cells. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Seiichi NISHIZAWA
- Department of Chemistry, Graduate School of Sciences, Tohoku University
| | | | - Yukina YOSHINO
- Department of Chemistry, Graduate School of Sciences, Tohoku University
| | - Sayaka YAJIMA
- Department of Chemistry, Graduate School of Sciences, Tohoku University
| | - Masafumi ROKUGAWA
- Department of Chemistry, Graduate School of Sciences, Tohoku University
| | - Yusuke SATO
- Department of Chemistry, Graduate School of Sciences, Tohoku University
| |
Collapse
|
6
|
Thevendran R, Navien TN, Meng X, Wen K, Lin Q, Sarah S, Tang TH, Citartan M. Mathematical approaches in estimating aptamer-target binding affinity. Anal Biochem 2020; 600:113742. [PMID: 32315616 DOI: 10.1016/j.ab.2020.113742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
The performance of aptamers as versatile tools in numerous analytical applications is critically dependent on their high target binding specificity and selectivity. However, only the technical or methodological aspects of measuring aptamer-target binding affinities are focused, ignoring the equally important mathematical components that play pivotal roles in affinity measurements. In this study, we aim to provide a comprehensive review regarding the utilization of different mathematical models and equations, along with a detailed description of the computational steps involved in mathematically deriving the binding affinity of aptamers against their specific target molecules. Mathematical models ranging from one-site binding to multiple aptameric binding site-based models are explained in detail. Models applied in several different approaches of affinity measurements such as thermodynamics and kinetic analysis, including cooperativity and competitive-assay based mathematical models have been elaborately discussed. Mathematical models incorporating factors that could potentially affect affinity measurements are also further scrutinized.
Collapse
Affiliation(s)
- Ramesh Thevendran
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Tholasi Nadhan Navien
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Xin Meng
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States
| | - Kechun Wen
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States
| | - Shigdar Sarah
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria, 3216, Australia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia; Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
7
|
Bernacchi S, Ennifar E. Analysis of the HIV-1 Genomic RNA Dimerization Initiation Site Binding to Aminoglycoside Antibiotics Using Isothermal Titration Calorimetry. Methods Mol Biol 2020; 2113:237-250. [PMID: 32006318 DOI: 10.1007/978-1-0716-0278-2_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isothermal titration calorimetry (ITC) provides a sensitive, powerful, and accurate tool to suitably analyze the thermodynamic of RNA binding events. This approach does not require any modification or labeling of the system under analysis and is performed in solution. ITC is a very convenient technique that provides an accurate determination of binding parameters, as well as a complete thermodynamic profile of the molecular interactions. Here we show how this approach can be used to characterize the interactions between the dimerization initiation site (DIS) RNA localized within the HIV-1 viral genome and aminoglycoside antibiotics. Our ITC study showed that the 4,5-disubstituted 2-desoxystreptamine (2-DOS) aminoglycosides can bind the DIS with a nanomolar affinity and a high specificity.
Collapse
Affiliation(s)
- Serena Bernacchi
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France.
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
8
|
Ramesh T, Foo KL, R H, Sam AJ, Solayappan M. Gold-Hybridized Zinc Oxide Nanorods as Real-Time Low-Cost NanoBiosensors for Detection of virulent DNA signature of HPV-16 in Cervical Carcinoma. Sci Rep 2019; 9:17039. [PMID: 31745139 PMCID: PMC6864064 DOI: 10.1038/s41598-019-53476-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Detection of host integrated viral oncogenes are critical for early and point-of-care molecular diagnostics of virus-induced carcinoma. However, available diagnostic approaches are incapable of combining both cost-efficient medical diagnosis and high analytical performances. To circumvent this, we have developed an improved IDE-based nanobiosensor for biorecognition of HPV-16 infected cervical cancer cells through electrochemical impedance spectroscopy. The system is fabricated by coating gold (Au) doped zinc oxide (ZnO) nanorods interfaced with HPV-16 viral DNA bioreceptors on top of the Interdigitated Electrode (IDE) chips surface. Due to the concurrently improved sensitivity and biocompatibility of the designed nanohybrid film, Au decorated ZnO-Nanorod biosensors demonstrate exceptional detection of HPV-16 E6 oncogene, the cancer biomarker for HPV infected cervical cancers. This sensor displayed high levels of sensitivity by detecting as low as 1fM of viral E6 gene target. The sensor also exhibited a stable functional life span of more than 5 weeks, good reproducibility and high discriminatory properties against HPV-16. Sensor current responses are obtained from cultured cervical cancer cells which are close to clinical cancer samples. Hence, the developed sensor is an adaptable tool with high potential for clinical diagnosis especially useful for economically challenged countries/regions.
Collapse
Affiliation(s)
- Thevendran Ramesh
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Kai Loong Foo
- Nano Biochip Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Haarindraprasad R
- Faculty of Engineering and Computer Technology, AIMST University, 08100, Semeling, Kedah, Malaysia.
| | - Annie Jeyachristy Sam
- Department of Biochemistry, Faculty of Medicine, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Maheswaran Solayappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia.
| |
Collapse
|
9
|
Umuhire Juru A, Patwardhan NN, Hargrove AE. Understanding the Contributions of Conformational Changes, Thermodynamics, and Kinetics of RNA-Small Molecule Interactions. ACS Chem Biol 2019; 14:824-838. [PMID: 31042354 DOI: 10.1021/acschembio.8b00945] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The implication of RNA in multiple cellular processes beyond protein coding has revitalized interest in the development of small molecules for therapeutically targeting RNA and for further probing its cellular biology. However, the process of rationally designing such small molecule probes is hampered by the paucity of information about fundamental molecular recognition principles of RNA. In this Review, we summarize two important and often underappreciated aspects of RNA-small molecule recognition: RNA conformational dynamics and the biophysical properties of interactions of small molecules with RNA, specifically thermodynamics and kinetics. While conformational flexibility is often said to impede RNA ligand development, the ability of small molecules to influence the RNA conformational landscape can have a significant effect on the cellular functions of RNA. An analysis of the conformational landscape of RNA and the interactions of individual conformations with ligands can thus guide the development of new small molecule probes, which needs to be investigated further. Additionally, while it is common practice to quantify the binding affinities ( Ka or Kd) of small molecules for biomacromolecules as a measure of their activity, further biophysical characterization of their interaction can provide a deeper understanding. Studies that focus on the thermodynamic and kinetic parameters for interaction between RNA and ligands are next discussed. Finally, this Review provides the reader with a perspective on how such in-depth analysis of biophysical characteristics of the interaction of RNA and small molecules can impact our understanding of these interactions and how they will benefit the future design of small molecule probes.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Neeraj N. Patwardhan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Amanda E. Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Fluorescent Trimethylated Naphthyridine Derivative with an Aminoalkyl Side Chain as the Tightest Non-aminoglycoside Ligand for the Bacterial A-site RNA. Chemistry 2018; 24:13862-13870. [DOI: 10.1002/chem.201802320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Indexed: 12/31/2022]
|
11
|
Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1477. [PMID: 29726113 PMCID: PMC6002909 DOI: 10.1002/wrna.1477] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022]
Abstract
The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
12
|
Sbicca L, González AL, Gresika A, Di Giorgio A, Closa JT, Tejedor RE, Andréola ML, Azoulay S, Patino N. Exploring the impact of the side-chain length on peptide/RNA binding events. Phys Chem Chem Phys 2017; 19:18452-18460. [PMID: 28681892 DOI: 10.1039/c7cp03726k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (KD) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.
Collapse
Affiliation(s)
- Lola Sbicca
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Aminoglycoside antibiotics are protein synthesis inhibitors applied to treat infections caused mainly by aerobic Gram-negative bacteria. Due to their adverse side effects they are last resort antibiotics typically used to combat pathogens resistant to other drugs. Aminoglycosides target ribosomes. We describe the interactions of aminoglycoside antibiotics containing a 2-deoxystreptamine (2-DOS) ring with 16S rRNA. We review the computational studies, with a focus on molecular dynamics (MD) simulations performed on RNA models mimicking the 2-DOS aminoglycoside binding site in the small ribosomal subunit. We also briefly discuss thermodynamics of interactions of these aminoglycosides with their 16S RNA target.
Collapse
|
14
|
Isothermal Titration Calorimetry: Assisted Crystallization of RNA-Ligand Complexes. Methods Mol Biol 2016; 1320:127-43. [PMID: 26227041 DOI: 10.1007/978-1-4939-2763-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The success rate of nucleic acids/ligands co-crystallization can be significantly improved by performing preliminary biophysical analyses. Among suitable biophysical approaches, isothermal titration calorimetry (ITC) is certainly a method of choice. ITC can be used in a wide range of experimental conditions to monitor in real time the formation of the RNA- or DNA-ligand complex, with the advantage of providing in addition the complete binding profile of the interaction. Following the ITC experiment, the complex is ready to be concentrated for crystallization trials. This chapter describes a detailed experimental protocol for using ITC as a tool for monitoring RNA/small molecule binding, followed by co-crystallization.
Collapse
|
15
|
Tan SY, Acquah C, Sidhu A, Ongkudon CM, Yon LS, Danquah MK. SELEX Modifications and Bioanalytical Techniques for Aptamer-Target Binding Characterization. Crit Rev Anal Chem 2016; 46:521-37. [PMID: 26980177 DOI: 10.1080/10408347.2016.1157014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The quest to improve the detection of biomolecules and cells in health and life sciences has led to the discovery and characterization of various affinity bioprobes. Libraries of synthetic oligonucleotides (ssDNA/ssRNA) with randomized sequences are employed during Systematic Evolution of Ligands by Exponential Enrichment (SELEX) to select highly specific affinity probes called aptamers. With much focus on the generation of aptamers for a variety of target molecules, conventional SELEX protocols have been modified to develop new and improved SELEX protocols yielding highly specific and stable aptamers. Various techniques have been used to analyze the binding interactions between aptamers and their cognate molecules with associated merits and limitations. This article comprehensively reviews research advancements in the generation of aptamers, analyses physicochemical conditions affecting their binding characteristics to cellular and biomolecular targets, and discusses various field applications of aptameric binding. Biophysical techniques employed in the characterization of the molecular and binding features of aptamers to their cognate targets are also discussed.
Collapse
Affiliation(s)
- Sze Y Tan
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia.,b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia
| | - Caleb Acquah
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia.,b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia
| | - Amandeep Sidhu
- b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia.,c Faculty of Health Sciences , Curtin University , Perth , Australia
| | - Clarence M Ongkudon
- d Biotechnology Research Institute , University Malaysia Sabah , Kota Kinabalu , Sabah , Malaysia
| | - L S Yon
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia
| | - Michael K Danquah
- a Department of Chemical Engineering , Curtin University , Sarawak , Malaysia.,b Curtin Sarawak Research Institute , Curtin University , Sarawak , Malaysia
| |
Collapse
|
16
|
Bacot-Davis VR, Bassenden AV, Berghuis AM. Drug-target networks in aminoglycoside resistance: hierarchy of priority in structural drug design. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00384a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug-target network analysis for advancing next-generation aminoglycoside therapies that combat antibiotic resistant infections.
Collapse
Affiliation(s)
- Valjean R. Bacot-Davis
- Department of Biochemistry
- McGill University
- Montréal
- Canada
- Groupes de recherche GRASP et PROTEO
| | - Angelia V. Bassenden
- Department of Biochemistry
- McGill University
- Montréal
- Canada
- Groupes de recherche GRASP et PROTEO
| | - Albert M. Berghuis
- Department of Biochemistry
- McGill University
- Montréal
- Canada
- Department of Microbiology & Immunology
| |
Collapse
|
17
|
Alguacil J, Robles J, Ràfols C, Bosch E. Binding thermodynamics of paromomycin, neomycin, neomycin-dinucleotide and -diPNA conjugates to bacterial and human rRNA. J Mol Recognit 2015; 29:142-50. [DOI: 10.1002/jmr.2513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Javier Alguacil
- Departament de Química Orgànica; Facultat de Química and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona; Martí i Franquès, 1-11 08028 Barcelona Spain
| | - Jordi Robles
- Departament de Química Orgànica; Facultat de Química and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona; Martí i Franquès, 1-11 08028 Barcelona Spain
| | - Clara Ràfols
- Departament de Química Analítica; Facultat de Química and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona; Martí i Franquès, 1-11 08028 Barcelona Spain
| | - Elisabeth Bosch
- Departament de Química Analítica; Facultat de Química and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona; Martí i Franquès, 1-11 08028 Barcelona Spain
| |
Collapse
|
18
|
Qi L, Huo Y, Wang H, Zhang J, Dang FQ, Zhang ZQ. Fluorescent DNA-Protected Silver Nanoclusters for Ligand-HIV RNA Interaction Assay. Anal Chem 2015; 87:11078-83. [PMID: 26447651 DOI: 10.1021/acs.analchem.5b03166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Studying ligand-biomacromolecule interactions provides opportunities for creating new compounds that can efficiently regulate specific biological processes. Ribonucleic acid (RNA) molecules have become attractive drug targets since the discovery of their roles in modulating gene expression, while only a limited number of studies have investigated interactions between ligands and functional RNA molecules, especially those based on nanotechnology. DNA-protected silver nanoclusters (AgNCs) were used to investigate ligand-RNA interactions for the first time in this study. The anthracycline anticancer drug mitoxantrone (MTX) was found to quench the fluorescence of AgNCs. After adding human immunodeficiency virus trans-activation responsive region (TAR) RNA or Rev-response element (RRE) RNA to AgNCs-MTX mixtures, the fluorescence of the AgNCs recovered due to interactions between MTX with RNAs. The binding constants and number of binding sites of MTX to TAR and RRE RNA were determined through theoretical calculations. MTX-RNA interactions were further confirmed in fluorescence polarization and mass spectrometry experiments. The mechanism of MTX-based fluorescence quenching of the AgNCs was also explored. This study provides a new strategy for ligand-RNA binding interaction assay.
Collapse
Affiliation(s)
- Liang Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| | - Yuan Huo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| | - Huan Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| | - Fu-Quan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, and ‡Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry and Ministry of Education, Shaanxi Normal University , Xi'an 710062, China
| |
Collapse
|
19
|
Electrostatic interactions in aminoglycoside-RNA complexes. Biophys J 2015; 108:655-65. [PMID: 25650932 DOI: 10.1016/j.bpj.2014.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022] Open
Abstract
Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity.
Collapse
|
20
|
Dudek M, Romanowska J, Wituła T, Trylska J. Interactions of amikacin with the RNA model of the ribosomal A-site: computational, spectroscopic and calorimetric studies. Biochimie 2014; 102:188-202. [PMID: 24769038 DOI: 10.1016/j.biochi.2014.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Amikacin is a 2-deoxystreptamine aminoglycoside antibiotic possessing a unique l-HABA (l-(-)-γ-amino-α-hydroxybutyric acid) group and applied in the treatment of hospital-acquired infections. Amikacin influences bacterial translation by binding to the decoding region of the small ribosomal subunit that overlaps with the binding site of aminoacylated-tRNA (A-site). Here, we have characterized thermodynamics of interactions of amikacin with a 27-mer RNA oligonucleotide mimicking the aminoglycoside binding site in the bacterial ribosome. We applied isothermal titration and differential scanning calorimetries, circular dichroism and thermal denaturation experiments, as well as computer simulations. Thermal denaturation studies have shown that amikacin affects only slightly the melting temperatures of the A-site mimicking RNA model suggesting a moderate stabilization of RNA by amikacin. Isothermal titration calorimetry gives the equilibrium dissociation constants for the binding reaction between amikacin and the A-site oligonucleotide in the micromolar range with a favorable enthalpic contribution. However, for amikacin we observe a positive entropic contribution to binding, contrary to other aminoglycosides, paromomycin and ribostamycin. Circular dichroism spectra suggest that the observed increase in entropy is not caused by structural changes of RNA because amikacin binding does not destabilize the helicity of the RNA model. To investigate the origins of this positive entropy change we performed all-atom molecular dynamics simulations in explicit solvent for the 27-mer RNA oligonucleotide mimicking one A-site and the crystal structure of an RNA duplex containing two A-sites. We observed that the diversity of the conformational states of the l-HABA group sampled in the simulations of the complex was larger than for the free amikacin in explicit water. Therefore, the larger flexibility of the l-HABA group in the bound form may contribute to an increase of entropy upon binding.
Collapse
Affiliation(s)
- Marta Dudek
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; First Faculty of Medicine, Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, Al. Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Julia Romanowska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Tomasz Wituła
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland.
| |
Collapse
|
21
|
Ennifar E, Aslam MW, Strasser P, Hoffmann G, Dumas P, van Delft FL. Structure-guided discovery of a novel aminoglycoside conjugate targeting HIV-1 RNA viral genome. ACS Chem Biol 2013; 8:2509-17. [PMID: 24015986 DOI: 10.1021/cb400498n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The dimerization initiation site (DIS) of the HIV-1 genomic RNA is a conserved stem-loop that promotes viral genome dimerization by forming a loop-loop complex. The DIS constitutes a potentially interesting target because it is crucial for several key steps of the viral replication. In this work we describe the synthesis of a rationally designed aminoglycoside conjugate that binds the HIV-1 DIS viral RNA with high specificity, as shown by an extensive in vitro binding characterization. We propose a three-dimensional model of the drug-RNA interaction that perfectly fits with binding data. Our results show the feasibility of targeting the HIV DIS viral RNA dimer and open the way to the rationale design of a new class of antiviral drugs. In addition, due to similarities between the HIV-1 DIS RNA and the bacterial aminoacyl decoding site (A site) RNA, we show that this novel aminoglycoside conjugate also binds the bacterial A site with a similar affinity as natural aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Eric Ennifar
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Muhammad Waqar Aslam
- Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Perrine Strasser
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Guillaume Hoffmann
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Philippe Dumas
- Architecture et Réactivité
de l’ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | - Floris L. van Delft
- Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Pascale L, Azoulay S, Di Giorgio A, Zenacker L, Gaysinski M, Clayette P, Patino N. Thermodynamic studies of a series of homologous HIV-1 TAR RNA ligands reveal that loose binders are stronger Tat competitors than tight ones. Nucleic Acids Res 2013; 41:5851-63. [PMID: 23605042 PMCID: PMC3675469 DOI: 10.1093/nar/gkt237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA is a major drug target, but the design of small molecules that modulate RNA function remains a great challenge. In this context, a series of structurally homologous 'polyamide amino acids' (PAA) was studied as HIV-1 trans-activating response (TAR) RNA ligands. An extensive thermodynamic study revealed the occurence of an enthalpy-entropy compensation phenomenon resulting in very close TAR affinities for all PAA. However, their binding modes and their ability to compete with the Tat fragment strongly differ according to their structure. Surprisingly, PAA that form loose complexes with TAR were shown to be stronger Tat competitors than those forming tight ones, and thermal denaturation studies demonstrated that loose complexes are more stable than tight ones. This could be correlated to the fact that loose and tight ligands induce distinct RNA conformational changes as revealed by circular dichroism experiments, although nuclear magnetic resonance (NMR) experiments showed that the TAR binding site is the same in all cases. Finally, some loose PAA also display promising inhibitory activities on HIV-infected cells. Altogether, these results lead to a better understanding of RNA interaction modes that could be very useful for devising new ligands of relevant RNA targets.
Collapse
Affiliation(s)
- Lise Pascale
- Institut de Chimie de Nice UMR7272, Université de Nice Sophia Antipolis, 06108 Nice Cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Serpersu EH, Norris AL. Effect of protein dynamics and solvent in ligand recognition by promiscuous aminoglycoside-modifying enzymes. Adv Carbohydr Chem Biochem 2012; 67:221-48. [PMID: 22794185 DOI: 10.1016/b978-0-12-396527-1.00005-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Engin H Serpersu
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
24
|
Goel T, Kumar S, Maiti S. Thermodynamics and solvation dynamics of BIV TAR RNA-Tat peptide interaction. MOLECULAR BIOSYSTEMS 2012; 9:88-98. [PMID: 23114563 DOI: 10.1039/c2mb25357g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interaction of the trans-activation responsive (TAR) region of bovine immunodeficiency virus (BIV) RNA with the Tat peptide is known to play important role in viral replication. Despite being thoroughly studied through a structural point of view, the nature of binding between BIV TAR RNA and the BIV Tat peptide requires information related to its thermodynamics and the nature of hydration around the TAR-Tat complex. In this context, we carried out the thermodynamic study of binding of the Tat peptide to the BIV TAR RNA hairpin through different calorimetric and spectroscopic measurements. Fluorescence titration of 2-aminopurine tagged BIV TAR RNA with the Tat peptide gives their binding affinity. The isothermal titration calorimetric experiment reveals the enthalpy of binding between BIV TAR RNA and the Tat peptide to be largely exothermic with the value of -11.7 (SEM 0.2) kcal mol(-1). Solvation dynamics measurements of BIV TAR RNA having 2-AP located at the bulge region have been carried out in the absence and presence of the BIV Tat peptide using the time correlated single photon counting technique. The solvent cage around the Tat binding site of RNA appears to be more rigid in the presence of the Tat peptide as compared to the free RNA. The displacement of solvent and ions on RNA due to peptide binding influences the entropic contributions to the total binding energy.
Collapse
Affiliation(s)
- Teena Goel
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, New Delhi 110 007, India
| | | | | |
Collapse
|
25
|
Qi C, Bing T, Mei H, Yang X, Liu X, Shangguan D. G-quadruplex DNA aptamers for zeatin recognizing. Biosens Bioelectron 2012; 41:157-62. [PMID: 22947515 DOI: 10.1016/j.bios.2012.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 11/17/2022]
Abstract
Zeatins, a major type of cytokinin, are ubiquitous in higher plants, and involve in regulating a wide range of developmental processes. The development of highly specific ligands to zeatins would be very useful in plant biological research. Here we describe a group of oligonucleotide ligands (aptamers) generated against trans-zeatin. The optimized aptamers possess strong affinity to trans-zeatin and trans-zeatin riboside (Kd=3-5 μM), and relatively weak affinity (Kd=27-30 μM) to cis-zeatin and dihydrozeatin. These aptamers adopt a hairpin-G-quadruplex structure for binding to zeatin. A fluorescence turn-on aptasensor based on graphene oxide (GO) was developed for the recognition of zeatins. The specificity assay of this aptasensor shows good response to zeatins, and no response to the adenine derivatives (analog of zeatins) abundantly existing in biological samples. These results show the great potential of these aptamers in chemical analysis and biological investigation of zeatins.
Collapse
Affiliation(s)
- Cui Qi
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
26
|
Lucas R, Gómez-Pinto I, Aviñó A, Reina JJ, Eritja R, González C, Morales JC. Highly polar carbohydrates stack onto DNA duplexes via CH/π interactions. J Am Chem Soc 2011; 133:1909-16. [PMID: 21244028 DOI: 10.1021/ja108962j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbohydrate-nucleic acid contacts are known to be a fundamental part of some drug-DNA recognition processes. Most of these interactions occur through the minor groove of DNA, such as in the calicheamicin or anthracycline families, or through both minor and major groove binders such as in the pluramycins. Here, we demonstrate that carbohydrate-DNA interactions are also possible through sugar capping of a DNA double helix. Highly polar mono- and disaccharides are capable of CH/π stacking onto the terminal DNA base pair of a duplex as shown by NMR spectroscopy. The energetics of the carbohydrate-DNA interactions vary depending on the stereochemistry, polarity, and contact surface of the sugar involved and also on the terminal base pair. These results reveal carbohydrate-DNA base stacking as a potential recognition motif to be used in drug design, supramolecular chemistry, or biobased nanomaterials.
Collapse
Affiliation(s)
- Ricardo Lucas
- Department of Bioorganic Chemistry, Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Weigand JE, Schmidtke SR, Will TJ, Duchardt-Ferner E, Hammann C, Wöhnert J, Suess B. Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity. Nucleic Acids Res 2010; 39:3363-72. [PMID: 21149263 PMCID: PMC3082870 DOI: 10.1093/nar/gkq946] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
While many different RNA aptamers have been identified that bind to a plethora of small molecules only very few are capable of acting as engineered riboswitches. Even for aptamers binding the same ligand large differences in their regulatory potential were observed. We address here the molecular basis for these differences by using a set of unrelated neomycin-binding aptamers. UV melting analyses showed that regulating aptamers are thermally stabilized to a significantly higher degree upon ligand binding than inactive ones. Regulating aptamers show high ligand-binding affinity in the low nanomolar range which is necessary but not sufficient for regulation. NMR data showed that a destabilized, open ground state accompanied by extensive structural changes upon ligand binding is important for regulation. In contrast, inactive aptamers are already pre-formed in the absence of the ligand. By a combination of genetic, biochemical and structural analyses, we identified a switching element responsible for destabilizing the ligand free state without compromising the bound form. Our results explain for the first time the molecular mechanism of an engineered riboswitch.
Collapse
Affiliation(s)
- Julia E Weigand
- RNA Biochemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Neves MAD, Reinstein O, Johnson PE. Defining a stem length-dependent binding mechanism for the cocaine-binding aptamer. A combined NMR and calorimetry study. Biochemistry 2010; 49:8478-87. [PMID: 20735071 DOI: 10.1021/bi100952k] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used a combined approach of NMR spectroscopy and isothermal titration calorimetry (ITC) to determine the ligand-binding mechanism employed by a cocaine-binding aptamer. We found that the length of the stem containing the 3' and 5' termini determines the nature of the binding mechanism. When this stem is six base pairs long, the secondary structure of the aptamer is fully folded in the free form and only putative tertiary interactions form with ligand binding. If this stem is shortened by three base pairs, the free form of the aptamer contains little secondary structure, and ligand binding triggers secondary structure formation and folding. This binding mechanism is supported by both NMR spectral changes and the ITC measured heat capacity of binding (ΔC(p)°). For the aptamer with the long stem the ΔC(p)° value is -557 ± 29 cal mol(-1) K(-1) and for the aptamer with the short stem the ΔC(p)° value is -922 ± 51 cal mol(-1) K(-1). Chemical shift perturbation data and the observation of intermolecular NOEs indicate that the three-way junction is the site of ligand binding.
Collapse
Affiliation(s)
- Miguel A D Neves
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | |
Collapse
|
29
|
Chen SY, Lin TH. A molecular dynamics study on binding recognition between several 4,5 and 4,6-linked aminoglycosides with A-site RNA. J Mol Recognit 2009; 23:423-34. [DOI: 10.1002/jmr.1008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Llano-Sotelo B, Hickerson RP, Lancaster L, Noller HF, Mankin AS. Fluorescently labeled ribosomes as a tool for analyzing antibiotic binding. RNA (NEW YORK, N.Y.) 2009; 15:1597-1604. [PMID: 19553343 PMCID: PMC2714759 DOI: 10.1261/rna.1681609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/14/2009] [Indexed: 05/28/2023]
Abstract
Measuring the binding of antibiotics and other small-molecular-weight ligands to the 2.5 MDa ribosome often presents formidable challenges. Here, we describe a general method for studying binding of ligands to ribosomes that carry a site-specific fluorescent label covalently attached to one of the ribosomal proteins. As a proof of principle, an environment-sensitive fluorescent group was placed at several specific sites within the ribosomal protein S12. Small ribosomal subunits were reconstituted from native 16S rRNA, individually purified small subunit proteins, and fluorescently labeled S12. The fluorescence characteristics of the reconstituted subunits were affected by several antibiotics, including streptomycin and neomycin, which bind in the vicinity of protein S12. The equilibrium dissociation constants of the drugs obtained using a conventional fluorometer were in good agreement with those observed using previously published methods and with measurements based on the use of radiolabeled streptomycin. The newly developed method is rapid and sensitive, and can be used for determining thermodynamic and kinetic binding characteristics of antibiotics and other small ribosomal ligands. The method can readily be adapted for use in high-throughput screening assays.
Collapse
Affiliation(s)
- Beatriz Llano-Sotelo
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Setny P, Trylska J. Search for novel aminoglycosides by combining fragment-based virtual screening and 3D-QSAR scoring. J Chem Inf Model 2009; 49:390-400. [PMID: 19434840 DOI: 10.1021/ci800361a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoglycosides are antibiotics targeting the 16S RNA A site of the bacterial ribosome. There have been many efforts directed toward design of their synthetic derivatives, however with only few successes. As RNA binders, aminoglycosides are also a difficult target for computational drug design, since most of the existing methods were developed for protein ligands. Here, we present an approach that allows for evading the problems related to still poorly developed RNA docking and scoring algorithms. It is aimed at identification of new molecular scaffolds potentially binding to the A site. The considered molecules are based on the neamine core, which is common for all aminoglycosides and provides specificity toward the binding site, linked with diverse molecular fragments via its O5 or O6 oxygen atom. Suitable fragments are selected with the use of 3D searches of molecular fragments library against two distinct pharmacophores designed on the basis of available structural data for aminoglycoside-RNA complexes. The compounds resulting from fragments assembly with neamine are then scored with a 3D-QSAR model developed using the biological data for known aminoglycoside derivatives. Twenty-one new potential ligands are obtained, four of which have predicted activities comparable to less potent aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Piotr Setny
- Interdisciplinary Centre for Mathematical and Computational Modelling and Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland.
| | | |
Collapse
|
33
|
Salim NN, Feig AL. Isothermal titration calorimetry of RNA. Methods 2009; 47:198-205. [PMID: 18835447 PMCID: PMC2673467 DOI: 10.1016/j.ymeth.2008.09.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 11/16/2022] Open
Abstract
Isothermal titration calorimetry (ITC) is a fast and robust method to study the physical basis of molecular interactions. A single well-designed experiment can provide complete thermodynamic characterization of a binding reaction, including K(a), DeltaG, DeltaH, DeltaS and reaction stoichiometry (n). Repeating the experiment at different temperatures allows determination of the heat capacity change (DeltaC(P)) of the interaction. Modern calorimeters are sensitive enough to probe even weak biological interactions making ITC a very popular method among biochemists. Although ITC has been applied to protein studies for many years, it is becoming widely applicable in RNA biochemistry as well, especially in studies which involve RNA folding and RNA interactions with small molecules, proteins and with other RNAs. This review focuses on best practices for planning, designing and executing effective ITC experiments when one or more of the reactants is an RNA.
Collapse
Affiliation(s)
- Nilshad N. Salim
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| | - Andrew L. Feig
- Department of Chemistry, Wayne State University, Detroit, MI 48202
| |
Collapse
|
34
|
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique that measures the heat evolved or absorbed during a reaction to report the enthalpy, entropy, stoichiometry of binding, and equilibrium association constant. A significant advantage of ITC over other methods is that it can be readily applied to almost any RNA-ligand complex without having to label either molecule and can be performed under a broad range of pH, temperature, and ionic concentrations. During our application of ITC to investigate the thermodynamic details of the interaction of a variety of compounds with the purine riboswitch, we have explored and optimized experimental parameters that yield the most useful and reproducible results for RNAs. In this chapter, we detail this method using the titration of an adenine-binding RNA with 2,6-diaminopurine (DAP) as a practical example. Our insights should be generally applicable to observing the interactions of a broad range of molecules with structured RNAs.
Collapse
Affiliation(s)
- Sunny D Gilbert
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
35
|
Lin PH, Yen SL, Lin MS, Chang Y, Louis SR, Higuchi A, Chen WY. Microcalorimetrics studies of the thermodynamics and binding mechanism between L-tyrosinamide and aptamer. J Phys Chem B 2008; 112:6665-73. [PMID: 18457441 DOI: 10.1021/jp8000866] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, several high-resolution structures of aptamer complexes have shed light on the binding mode and recognition principles of aptamer complex interactions. In some cases, however, the aptamer complex binding behavior and mechanism are not clearly understood, especially with the absence of structural information. In this study, it was demonstrated that isothermal titration calorimetry (ITC) and circular dichroism (CD) were useful tools for studying the fundamental binding mechanism between a DNA aptamer and L-tyrosinamide (L-TyrNH2). To gain further insight into this behavior, thermodynamic and conformational measurements under different parameters such as salt concentration, temperature, pH value, analogue of L-TyrNH2, and metal ion were carried out. The thermodynamic signature along with the coupled CD spectral change suggest that this binding behavior is an enthalpy-driven process, and the aptamer has a conformational change from B-form to A-form. The results showed that the interaction is an induced fit binding, and the driving forces in this binding behavior may include electrostatic interactions, hydrophobic effects, hydrogen bonding, and the binding-linked protonation process. The amide group and phenolic hydroxyl group of the L-TyrNH2 play a vital role in this binding mechanism. In addition, it should be noted that Mg(2+) not only improves binding affinity but also helps change the structure of the DNA aptamer.
Collapse
Affiliation(s)
- Po-Hsun Lin
- Institute of Systems Biology and Bioinformatics, National Central University, Jhong-Li, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61822, USA
| | | |
Collapse
|
37
|
Długosz M, Antosiewicz JM, Trylska J. Association of aminoglycosidic antibiotics with the ribosomal A-site studied with Brownian dynamics. J Chem Theory Comput 2008; 4:549-559. [PMID: 19343095 DOI: 10.1021/ct700210n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brownian dynamics methodology was applied to simulate the encounter of aminoglycosidic antibiotics with the ribosomal A-site RNA. Studied antibiotics included neamine, neomycin, ribostamycin and paromomycin which differ in chemical structure, the number of pseudo-sugar rings and the net charge. The influence of structural, electrostatic and hydrodynamic properties of antibiotics on the kinetics of their association with the ribosomal A-site was analyzed. The computed diffusion limited rates of association are of the order of 10(10)[Formula: see text] and they weakly depend on ionic strength. Prior to binding antibiotics often slide along the RNA groove with the time scale of approximately 10 ns per base pair in case of neamine. We observed that upon forming the encounter complex aminoglycosides displace from the binding pocket up to two Mg(2+) ions.
Collapse
Affiliation(s)
- Maciej Długosz
- Interdisciplinary Centre for Mathematical and Computational Modelling, Warsaw University, Żwirki i Wigury 93, Warsaw 02-089, Poland
| | | | | |
Collapse
|
38
|
Sharma D, Cukras AR, Rogers EJ, Southworth DR, Green R. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. J Mol Biol 2007; 374:1065-76. [PMID: 17967466 PMCID: PMC2200631 DOI: 10.1016/j.jmb.2007.10.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/26/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
Abstract
The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl-tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S ribosomal RNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit, referred to as "closure." Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a "restrictive" phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity-modulating binding site for paromomycin in the 16S ribosomal RNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations.
Collapse
Affiliation(s)
- Divya Sharma
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Elizabeth J. Rogers
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
39
|
Abstract
Isothermal titration calorimetry (ITC) has been applied to the study of proteins for many years. Its use in the biophysical analysis of RNAs has lagged significantly behind its use in protein biochemistry, however, in part because of the relatively large samples required. As the instrumentation has become more sensitive, the ability to obtain high quality data on RNA folding and RNA ligand interactions has improved dramatically. This review provides an overview of the ITC experiment and describes recent work on RNA systems that have taken advantage of its versatility for the study of small molecule binding, protein binding, and the analysis of RNA folding.
Collapse
Affiliation(s)
- Andrew L Feig
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
40
|
Bernacchi S, Freisz S, Maechling C, Spiess B, Marquet R, Dumas P, Ennifar E. Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion. Nucleic Acids Res 2007; 35:7128-39. [PMID: 17942426 PMCID: PMC2175338 DOI: 10.1093/nar/gkm856] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Owing to a striking, and most likely fortuitous, structural and sequence similarity with the bacterial 16 S ribosomal A site, the RNA kissing-loop complex formed by the HIV-1 genomic RNA dimerization initiation site (DIS) specifically binds 4,5-disubstituted 2-deoxystreptamine (2-DOS) aminoglycoside antibiotics. We used chemical probing, molecular modeling, isothermal titration calorimetry (ITC) and UV melting to investigate aminoglycoside binding to the DIS loop–loop complex. We showed that apramycin, an aminoglycoside containing a bicyclic moiety, also binds the DIS, but in a different way than 4,5-disubstituted 2-DOS aminoglycosides. The determination of thermodynamic parameters for various aminoglycosides revealed the role of the different rings in the drug–RNA interaction. Surprisingly, we found that the affinity of lividomycin and neomycin for the DIS (Kd ∼ 30 nM) is significantly higher than that obtained in the same experimental conditions for their natural target, the bacterial A site (Kd ∼ 1.6 µM). In good agreement with their respective affinity, aminoglycoside increase the melting temperature of the loop–loop interaction and also block the conversion from kissing-loop complex to extended duplex. Taken together, our data might be useful for selecting new molecules with improved specificity and affinity toward the HIV-1 DIS RNA.
Collapse
Affiliation(s)
- Serena Bernacchi
- Architecture et Réactivité des ARN, UPR 9002 CNRS, Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Barbieri CM, Kaul M, Bozza-Hingos M, Zhao F, Tor Y, Hermann T, Pilch DS. Defining the molecular forces that determine the impact of neomycin on bacterial protein synthesis: importance of the 2'-amino functionality. Antimicrob Agents Chemother 2007; 51:1760-9. [PMID: 17353247 PMCID: PMC1855527 DOI: 10.1128/aac.01267-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2-Deoxystreptamine (2-DOS) aminoglycosides exert their antibiotic actions by binding to the A site of the 16S rRNA and interfering with bacterial protein synthesis. However, the molecular forces that govern the antitranslational activities of aminoglycosides are poorly understood. Here, we describe studies aimed at elucidating these molecular forces. In this connection, we compare the bactericidal, antitranslational, and rRNA binding properties of the 4,5-disubstituted 2-DOS aminoglycoside neomycin (Neo) and a conformationally restricted analog of Neo (CR-Neo) in which the 2'-nitrogen atom is covalently conjugated to the 5''-carbon atom. The bactericidal potency of Neo exceeds that of CR-Neo, with this enhanced antibacterial activity reflecting a correspondingly enhanced antitranslational potency. Time-resolved fluorescence anisotropy studies suggest that the enhanced antitranslational potency of Neo relative to that of CR-Neo is due to a greater extent of drug-induced reduction in the mobilities of the nucleotides at positions 1492 and 1493 of the rRNA A site. Buffer- and salt-dependent binding studies, coupled with high-resolution structural information, point to electrostatic contacts between the 2'-amino functionality of Neo and the host rRNA as being an important modulator of 1492 and 1493 base mobilities and therefore antitranslational activities.
Collapse
Affiliation(s)
- Christopher M Barbieri
- UMDNJ-Robert Wood Johnson Medical School, Department of Pharmacology, Piscataway, NJ 08854-5635, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Srivatsan SG, Tor Y. Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation, and utilization. J Am Chem Soc 2007; 129:2044-53. [PMID: 17256858 PMCID: PMC2517582 DOI: 10.1021/ja066455r] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fluorescent nucleobase analogues that respond to changes in their microenvironment are valuable for studying RNA structure, dynamics, and recognition. The most commonly used fluorescent ribonucleoside is 2-aminopurine, a highly responsive purine analogue. Responsive isosteric fluorescent pyrimidine analogues are, however, rare. Appending five-membered aromatic heterocycles at the 5-position on a pyrimidine core has recently been found to provide a family of responsive fluorescent nucleoside analogues with emission in the visible range. To explore the potential utility of this chromophore for studying RNA-ligand interactions, an efficient incorporation method is necessary. Here we describe the synthesis of the furan-containing ribonucleoside and its triphosphate, as well as their basic photophysical characteristics. We demonstrate that T7 RNA polymerase accepts this fluorescent ribonucleoside triphosphate as a substrate in in vitro transcription reactions and very efficiently incorporates it into RNA oligonucleotides, generating fluorescent constructs. Furthermore, we utilize this triphosphate for the enzymatic preparation of a fluorescent bacterial A-site, an RNA construct of potential therapeutic utility. We show that the binding of this RNA target to aminoglycoside antibiotics, its cognate ligands, can be effectively monitored by fluorescence spectroscopy. These observations are significant since isosteric emissive U derivatives are scarce and the trivial synthesis and effective enzymatic incorporation of the furan-containing U triphosphate make it accessible to the biophysical community.
Collapse
Affiliation(s)
- Seergazhi G. Srivatsan
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093-0358, E-mail:
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093-0358, E-mail:
| |
Collapse
|
43
|
Islam MM, Sinha R, Kumar GS. RNA binding small molecules: Studies on t-RNA binding by cytotoxic plant alkaloids berberine, palmatine and the comparison to ethidium. Biophys Chem 2007; 125:508-20. [PMID: 17156912 DOI: 10.1016/j.bpc.2006.11.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/30/2022]
Abstract
The interaction of two natural protoberberine plant alkaloids berberine and palmatine with t-RNA(phe) was studied using various biophysical techniques and the data was compared with the binding of the classical DNA intercalator, ethidium. The results of optical thermal melting, differential scanning calorimetry and circular dichroism characterized the native cloverleaf structure of t-RNA under the conditions of the study. The strong binding of the alkaloids and ethidium to t-RNA was revealed from the absorption and fluorescence studies. The salt dependence of the binding constants enabled the dissection of the binding free energy to electrostatic and non-electrostatic contributions. This analysis revealed a surprisingly large favourable component of the non-electrostatic contribution to the binding of these charged alkaloids and ethidium to t-RNA. Isothermal titration calorimetric studies revealed that the binding of both the alkaloids is driven by a moderately favourable enthalpy decrease and a moderately favourable entropy increase while that of ethidium is driven by a large favourable enthalpy decrease. Taken together, the results suggest that the binding of these alkaloid molecules on the t-RNA structure appears to be mostly by partial intercalation while ethidium intercalates to the t-RNA. These results reveal the molecular aspects on the interaction of these alkaloids to t-RNA.
Collapse
Affiliation(s)
- Md Maidul Islam
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | |
Collapse
|
44
|
Yang G, Trylska J, Tor Y, McCammon JA. Binding of aminoglycosidic antibiotics to the oligonucleotide A-site model and 30S ribosomal subunit: Poisson-Boltzmann model, thermal denaturation, and fluorescence studies. J Med Chem 2006; 49:5478-90. [PMID: 16942021 DOI: 10.1021/jm060288o] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of paromomycin and similar antibiotics to the oligonucleotide A-site model and the small (30S) ribosomal subunit has been studied using continuum electrostatics methods. Crystallographic information from complexes of paromomycin, tobramycin, and Geneticin bound to an A-site oligonucleotide, and paromomycin and streptomycin complexed to the 30S subunit was used as a foundation to develop structures of similar antibiotics in the same ribosomal binding site. Relative binding free energies were calculated by combining the electrostatic contribution, which was obtained by solving the Poisson-Boltzmann equation, with a surface-area-dependent apolar term and contributions from conformational changes. These computed results showed good correlation with the experimental data resulting from fluorescence binding assays and thermal denaturation studies, demonstrating the ability of the Poisson-Boltzmann model to provide insight into the electrostatic mechanisms for aminoglycoside binding and direction for designing more effective antibiotics.
Collapse
Affiliation(s)
- Grace Yang
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
45
|
Thomas JR, Liu X, Hergenrother PJ. Biochemical and Thermodynamic Characterization of Compounds That Bind to RNA Hairpin Loops: Toward an Understanding of Selectivity. Biochemistry 2006; 45:10928-38. [PMID: 16953578 DOI: 10.1021/bi0607296] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidation of the molecular forces governing small molecule-RNA binding is paramount to the progress of rational design strategies. The extensive characterization of the aminoglycoside-16S rRNA A-site interaction has deepened our understanding of how aminoglycosides bind to their target and exert their antimicrobial effects. However, to date no other RNA binding compounds have undergone such rigorous evaluation, and in general the origins of small molecule-RNA binding remain a mystery. We recently reported the identification of small molecules, dimers of 2-deoxystreptamine, which are able to bind selectively to RNA tetraloops and octaloops, respectively [Thomas, Liu, and Hergenrother (2005) J. Am. Chem. Soc. 127, 12434-12435]. Described herein is the biochemical and biophysical characterization of the RNA binding properties of the most selective compound, B-12, as well as closely related analogues. These studies further substantiate that B-12 is indeed selective for RNA octaloop sequences and indicate that the origin of this selectivity may lie in B-12's unusual binding mode, in which entropic factors are major contributors to the overall binding energy. In fact, isothermal titration calorimetry (ITC) experiments indicate that the binding of B-12 and most of its analogues is associated with a strong entropic contribution to the total binding energy. This is in stark contrast to the aminoglycosides, for which favorable enthalpy typically provides the driving force for binding. These studies are the first to examine small molecule-RNA hairpin loop binding in detail and are a necessary step toward the design of compounds that are specific binders for a given RNA sequence.
Collapse
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
46
|
Zhou Y, Gregor VE, Sun Z, Ayida BK, Winters GC, Murphy D, Simonsen KB, Vourloumis D, Fish S, Froelich JM, Wall D, Hermann T. Structure-guided discovery of novel aminoglycoside mimetics as antibacterial translation inhibitors. Antimicrob Agents Chemother 2006; 49:4942-9. [PMID: 16304156 PMCID: PMC1315978 DOI: 10.1128/aac.49.12.4942-4949.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the structure-guided discovery, synthesis, and initial characterization of 3,5-diamino-piperidinyl triazines (DAPT), a novel translation inhibitor class that targets bacterial rRNA and exhibits broad-spectrum antibacterial activity. DAPT compounds were designed as structural mimetics of aminoglycoside antibiotics which bind to the bacterial ribosomal decoding site and thereby interfere with translational fidelity. We found that DAPT compounds bind to oligonucleotide models of decoding-site RNA, inhibit translation in vitro, and induce translation misincorporation in vivo, in agreement with a mechanism of action at the ribosomal decoding site. The novel DAPT antibacterials inhibit growth of gram-positive and gram-negative bacteria, including the respiratory pathogen Pseudomonas aeruginosa, and display low toxicity to human cell lines. In a mouse protection model, an advanced DAPT compound demonstrated efficacy against an Escherichia coli infection at a 50% protective dose of 2.4 mg/kg of body weight by single-dose intravenous administration.
Collapse
Affiliation(s)
- Yuefen Zhou
- Anadys Pharmaceuticals, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nguyen B, Stanek J, Wilson WD. Binding-linked protonation of a DNA minor-groove agent. Biophys J 2006; 90:1319-28. [PMID: 16299076 PMCID: PMC1367283 DOI: 10.1529/biophysj.105.071381] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 11/01/2005] [Indexed: 11/18/2022] Open
Abstract
The energetics for binding of a diphenyl diamidine antitrypanosomal agent CGP 40215A to DNA have been studied by spectroscopy, isothermal titration calorimetry, and surface plasmon resonance biosensor methods. Both amidines are positively charged under experimental conditions, but the linking group for the two phenyl amidines has a pK(a) of 6.3 that is susceptible to a protonation process. Spectroscopic studies indicate an increase of 2.7 pK(a) units in the linking group when the compound binds to an A/T minor-groove site. Calorimetric titrations in different buffers and pH conditions support the proton-linkage process and are in a good agreement with spectroscopic titrations. The two methods established a proton-uptake profile as a function of pH. The exothermic enthalpy of complex formation varies with different pH conditions. The observed binding enthalpy increases as a function of temperature indicating a negative heat capacity change that is typical for DNA minor-groove binders. Solvent accessible surface area calculations suggest that surface burial accounts for about one-half of the observed intrinsic negative heat capacity change. Biosensor and calorimetric experiments indicate that the binding affinities vary with pH values and salt concentrations due to protonation and electrostatic interactions. The surface plasmon resonance binding studies indicate that the charge density per phosphate in DNA hairpins is smaller than that in polymers. Energetic contributions from different factors were also estimated for the ligand/DNA complex.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
48
|
Barbieri CM, Pilch DS. Complete thermodynamic characterization of the multiple protonation equilibria of the aminoglycoside antibiotic paromomycin: a calorimetric and natural abundance 15N NMR study. Biophys J 2005; 90:1338-49. [PMID: 16326918 PMCID: PMC1367285 DOI: 10.1529/biophysj.105.075028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The binding of aminoglycoside antibiotics to a broad range of macromolecular targets is coupled to protonation of one or more of the amino groups that typify this class of drugs. Determining how and to what extent this linkage influences the energetics of the aminoglycoside-macromolecule binding reaction requires a detailed understanding of the thermodynamics associated with the protonation equilibria of the aminoglycoside amino groups. In recognition of this need, a calorimetric- and NMR-based approach for obtaining the requisite thermodynamic information is presented using paromomycin as the model aminoglycoside. Temperature- and pH-dependent 15N NMR studies provide pK(a) values for the five paromomycin amino groups, as well as the temperature dependence of these pK(a) values. These studies also indicate that the observed pK(a) values associated with the free base form of paromomycin are lower in magnitude than the corresponding values associated with the sulfate salt form of the drug. This difference in pK(a) is due to drug interactions with the sulfate counterions at the high drug concentrations (> or = 812 mM) used in the 15N NMR studies. Isothermal titration calorimetry studies conducted at drug concentrations < or = 45 microM reveal that the extent of paromomycin protonation linked to the binding of the drug to its pharmacologically relevant target, the 16 S rRNA A-site, is consistent with the pK(a) values of the free base and not the sulfate salt form of the drug. Temperature- and pH-dependent isothermal titration calorimetry studies yield exothermic enthalpy changes (deltaH) for protonation of the five paromomycin amino groups, as well as positive heat capacity changes (deltaC(p)) for three of the five amino groups. Regarded as a whole, the results presented here represent an important first step toward establishing a thermodynamic database that can be used to predict how aminoglycoside-macromolecule binding energetics will be influenced by conditions such as temperature, pH, and ionic strength. Such a predictive capability is a critical component of any drug design strategy.
Collapse
Affiliation(s)
- Christopher M Barbieri
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | |
Collapse
|
49
|
Barbieri CM, Srinivasan AR, Pilch DS. Deciphering the Origins of Observed Heat Capacity Changes for Aminoglycoside Binding to Prokaryotic and Eukaryotic Ribosomal RNA A-Sites: A Calorimetric, Computational, and Osmotic Stress Study. J Am Chem Soc 2004; 126:14380-8. [PMID: 15521757 DOI: 10.1021/ja0457516] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isothermal titration calorimetry (ITC), computational, and osmotic stress techniques have been used to characterize the changes in heat capacity, solvent-accessible surface, and hydration that accompany the binding of the aminoglycoside paromomycin to both prokaryotic and eukaryotic rRNA A-site model oligonucleotides. Regarded as a whole, the results of these studies suggest that the intrinsic heat capacity change (DeltaC(p)) for the binding of paromomycin to each rRNA A-site is near zero, with the negative DeltaC(p) observed for the binding of the drug to the prokaryotic rRNA A-site being dictated by the coupled destacking of the adenine residues at positions 1492 and 1493. In this connection, DeltaC(p) provides a useful calorimetric signature for assessing the relative impacts of novel and existing A-site targeting ligands on rRNA conformation, which, in turn, should provide a useful analytical tool for facilitating the drug design process, since aminoglycoside-induced destacking of A1492 and A1493 is thought to be a determining factor in the mistranslational and antimicrobial activities of the drugs.
Collapse
Affiliation(s)
- Christopher M Barbieri
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854-5635, USA
| | | | | |
Collapse
|
50
|
Ballin JD, Shkel IA, Record MT. Interactions of the KWK6 cationic peptide with short nucleic acid oligomers: demonstration of large Coulombic end effects on binding at 0.1-0.2 M salt. Nucleic Acids Res 2004; 32:3271-81. [PMID: 15205469 PMCID: PMC443526 DOI: 10.1093/nar/gkh646] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We quantify Coulombic end effects (CEE) on oligocation-nucleic acid interactions at salt concentrations ([salt]) in the physiological range. Binding constants (K(obs); per site, at zero binding density) for the +8-charged C-amidated oligopeptide KWK6 and short single-stranded DNA oligonucleotides [dTpdT(|Z(D)|), where 6 < or = |Z(D)| < or = 22 is the number of DNA phosphates] were determined as a function of [salt] by fluorescence quenching. For the different DNA oligomers, K(obs) values are similar at high [salt], but diverge as [salt] decreases because -S(a)K(obs) identical with--partial partial differential ln K(obs)/ partial differential ln a+/- increases strongly with |Z(D)|. For binding of KWK6 near 0.1 M salt, -S(a)K(obs) is 5.5 +/- 0.2 for dT(pdT)22, 4.0 +/- 0.2 for dT(pdT)10 and 2.9 +/- 0.2 for dT(pdT)6, as compared with 6.5 +/- 0.3 for poly(dT). Similarly, at 0.1 M salt, K(obs) per site for poly(dT) exceeds K(obs) for dT(pdT)22 by 7-fold, for dT(pdT)10 by 50-fold and for dT(pdT)6 by 700-fold. We interpret the reductions in K(obs) and |S(a)K(obs)| with decreasing |Z(D)| as a significant CEE that causes binding to the terminal regions of a nucleic acid to be weaker and less salt dependent than interior binding. We analyze long oligonucleotide-KWK6 binding data in terms of a trapezoidal model for the local (axial) salt cation concentration on single-stranded DNA to estimate the size of the CEE to be at least seven phosphates on each end at 0.1 M salt.
Collapse
Affiliation(s)
- Jeff D Ballin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|