1
|
Hwang LA, Phang BH, Liew OW, Iqbal J, Koh XH, Koh XY, Othman R, Xue Y, Richards AM, Lane DP, Sabapathy K. Monoclonal Antibodies against Specific p53 Hotspot Mutants as Potential Tools for Precision Medicine. Cell Rep 2019; 22:299-312. [PMID: 29298430 DOI: 10.1016/j.celrep.2017.11.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
The large number of mutations identified across all cancers represents an untapped reservoir of targets that can be useful for therapeutic targeting if highly selective, mutation-specific reagents are available. We report here our attempt to generate such reagents: monoclonal antibodies against the most common R175H, R248Q, and R273H hotspot mutants of the tumor suppressor p53. These antibodies recognize their intended specific alterations without any cross-reactivity against wild-type (WT) p53 or other p53 mutants, including at the same position (as exemplified by anti-R248Q antibody, which does not recognize the R248W mutation), evaluated by direct immunoblotting, immunoprecipitation, and immunofluorescence methods on transfected and endogenous proteins. Moreover, their clinical utility to diagnose the presence of specific p53 mutants in human tumor microarrays by immunohistochemistry is also shown. Together, the data demonstrate that antibodies against specific single-amino-acid alterations can be generated reproducibly and highlight their utility, which could potentially be extended to therapeutic settings.
Collapse
Affiliation(s)
- Le-Ann Hwang
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Beng Hooi Phang
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Oi Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore 119228, Singapore
| | - Jabed Iqbal
- Department of Pathology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Xiao Hui Koh
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Xin Yu Koh
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Rashidah Othman
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Yuezhen Xue
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore 119228, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore.
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Institute of Molecular & Cellular Biology, Singapore 138673, Singapore.
| |
Collapse
|
2
|
Son HY, Apostolopoulos V, Kim CW. Mannosylated T/Tn with Freund's adjuvant induces cellular immunity. Int J Immunopathol Pharmacol 2017; 31:394632017742504. [PMID: 29251002 PMCID: PMC5849214 DOI: 10.1177/0394632017742504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inducing cancer-specific cellular immune responses has become an attractive
strategy in cancer treatment. In this study, we investigated the role of several
adjuvants in eliciting T/Tn-specific cellular immunity and protection against
T/Tn expressing tumor challenge. T/Tn (9:1) antigen was purified from blood type
“O” erythrocytes donated from healthy Korean volunteers. Immunization was
performed using: T/Tn only, T/Tn mixed with Freund’s adjuvant (T/Tn + FA),
keyhole limpet hemocyanin (KLH)-conjugated T/Tn mixed with FA (KLH-T/Tn + FA),
and oxidized mannan-conjugated T/Tn mixed with FA (ox-M-T/Tn + FA). Mice
immunized with ox-M-T/Tn + FA generated T/Tn-specific CD3, helper T (Th) cells,
major histocompatibility complex (MHC) II, and MHC I; T/Tn presentation was
significantly high and tolerogenic CD11b+ was the lowest among the
tumor models. To verify Th type, we stained intracellular cytokines (interferon
gamma (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF),
interleukin (IL)-4, and IL-10) using CD3 co-staining. Th1 (IFN-γ and GM-CSF)
cytokines were highly expressed and showed high FasL/Fas ratios, cytotoxic T
lymphocyte (CTL) activity, and cytotoxic T lymphocyte precursor (CTLp) activity
in mice immunized with ox-M-T/Tn + FA. Lymphocyte infiltration was highest in
mice immunized with ox-M-T/Tn + FA. Additionally, we monitored FasL, MHC I,
CD301, and T/Tn expression levels using immunohistochemistry (IHC) on macrophage
and tumor sites. The expression of all markers was highest in the ox-M-T/Tn + FA
group. Furthermore, tumor retardation and survival rate were highest in the
ox-M-T/Tn + FA group. These results demonstrate that a vaccine formulation of
T/Tn conjugated with ox-M and mixed with FA-induced cellular immunity and
sustained a humoral immune response without over-activating the immune system,
thus effectively inhibiting tumor growth.
Collapse
Affiliation(s)
- Hye-Youn Son
- 1 Tumor Immunity Medical Research Center, Cancer Research Institute and Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Vasso Apostolopoulos
- 2 Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Footscray, VIC, Australia
| | - Chul-Woo Kim
- 1 Tumor Immunity Medical Research Center, Cancer Research Institute and Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Bolchi A, Canali E, Santoni A, Spagnoli G, Viarisio D, Accardi R, Tommasino M, Müller M, Ottonello S. Thioredoxin-Displayed Multipeptide Immunogens. Methods Mol Biol 2015; 1348:137-51. [PMID: 26424270 DOI: 10.1007/978-1-4939-2999-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fusion to carrier proteins is an effective strategy for stabilizing and providing immunogenicity to peptide epitopes. This is commonly achieved by cross-linking of chemically synthesized peptides to carrier proteins. An alternative approach is internal grafting of selected peptide epitopes to a scaffold protein via double stranded-oligonucleotide insertion or gene synthesis, followed by recombinant expression of the resulting chimeric polypeptide. The scaffold protein should confer immunogenicity to the stabilized and structurally constrained peptide, but also afford easy production of the antigen in recombinant form. A macromolecular scaffold that meets the above criteria is the redox protein thioredoxin, especially bacterial thioredoxin. Here we describe our current methodology for internal grafting of selected peptide epitopes to thioredoxin as tandemly arranged multipeptide repeats ("Thioredoxin Displayed Multipeptide Immunogens"), bacterial expression and purification of the recombinant thioredoxin-multipeptide fusion proteins and their use as antigens for the production of anti-peptide antibodies for prophylactic vaccine as well as diagnostic purposes.
Collapse
Affiliation(s)
- Angelo Bolchi
- Biochemistry and Molecular Biology Unit, Department of Life Sciences, University of Parma, Parma, Italy
| | - Elena Canali
- Biochemistry and Molecular Biology Unit, Department of Life Sciences, University of Parma, Parma, Italy
| | - Andrea Santoni
- Biochemistry and Molecular Biology Unit, Department of Life Sciences, University of Parma, Parma, Italy
| | - Gloria Spagnoli
- Biochemistry and Molecular Biology Unit, Department of Life Sciences, University of Parma, Parma, Italy
| | | | - Rosita Accardi
- Infections and Cancer Biology Group, International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer-World Health Organization, Lyon, France
| | | | - Simone Ottonello
- Biochemistry and Molecular Biology Unit, Department of Life Sciences, University of Parma, Parma, Italy. .,Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 23/A, Parma, 43124, Italy.
| |
Collapse
|
4
|
Tanemura M, Miyoshi E, Nagano H, Eguchi H, Taniyama K, Kamiike W, Mori M, Doki Y. Role of α-gal epitope/anti-Gal antibody reaction in immunotherapy and its clinical application in pancreatic cancer. Cancer Sci 2013; 104:282-290. [PMID: 23240661 PMCID: PMC7657191 DOI: 10.1111/cas.12084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/04/2012] [Accepted: 12/10/2012] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer is one of the most common causes of death from cancer. Despite the availability of various treatment modalities, such as surgery, chemotherapy and radiotherapy, the 5-year survival remains poor. Although gemcitabine-based chemotherapy is typically offered as the standard care, most patients do not survive longer than 6 months. Therefore, new therapeutic approaches are needed. The α-gal epitope (Galα1-3Galβ1-4GlcNAc-R) is abundantly synthesized from glycoproteins and glycolipids in non-primate mammals and New World monkeys, but is absent in humans, apes and Old World monkeys. Instead, they produce anti-Gal antibody (Ab) (forming approximately 1% of circulating immunoglobulins), which specifically interacts with α-gal epitopes. Anti-Gal Ab can be exploited in cancer immunotherapy as vaccines that target antigen-presenting cells (APC) to increase their immunogenicity. Tumor cells or tumor cell membranes from pancreatic cancer are processed to express α-gal epitopes. Subsequent vaccination with such processed cell membranes results in in vivo opsonization by anti-Gal IgG in cancer patients. The interaction of the Fc portion of the vaccine-bound anti-Gal with Fcγ receptors of APC induces effective uptake of the vaccinating tumor cell membranes by the APC, followed by effective transport of the vaccinating tumor membranes to the regional lymph nodes, and processing and presentation of the tumor-associated antigens. Activation of tumor-specific B and T cells could elicit an immune response that in some patients is potent enough to eradicate the residual cancer cells that remain after completion of standard therapy. This review addresses these topics and new avenues of clinical importance related to this unique antigen/antibody system (α-gal epitope/anti-Gal Ab) and advances in immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Masahiro Tanemura
- Department of Surgery and Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Induction of antitumor immunity by dendritic cells loaded with membrane-translocating mucin 1 Peptide antigen. Transl Oncol 2011; 4:1-8. [PMID: 21286372 DOI: 10.1593/tlo.10166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 01/20/2023] Open
Abstract
To investigate the role of enhanced antigen presentation in dendritic cell (DC)-based immunotherapy. Here, we describe the development of a cell-penetrating mucin 1 (MUC1) antigen and its immunotherapeutic potential against tumors. After animal groups received two immunizations of MUC1-MPA(11)P-pulsed DCs, we observed a marked tumor regression compared with the mice treated with DCs alone or DCs pulsed with MUC1 peptide. We confirmed the migration and homing of DCs in the popliteal lymph node using magnetic resonance imaging during the study. In summary, enhanced antigen uptake using an MPA(11)P delivery molecule improves cell therapy.
Collapse
|
6
|
Deguchi T, Tanemura M, Miyoshi E, Nagano H, Machida T, Ohmura Y, Kobayashi S, Marubashi S, Eguchi H, Takeda Y, Ito T, Mori M, Doki Y, Sawa Y. Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express alpha-gal epitopes: a novel approach to immunotherapy in pancreatic cancer. Cancer Res 2010; 70:5259-5269. [PMID: 20530670 DOI: 10.1158/0008-5472.can-09-4313] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mucin 1 (MUC1), a bound mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic carcinoma. Evidence suggests that MUC1 can be used as a tumor marker and is a potential target for immunotherapy of pancreatic cancer. However, vaccination with MUC1 peptides fails to stimulate the immune response against cancer cells because immunity toward tumor-associated antigens (TAA), including MUC1, in cancer patients is relatively weak, and the presentation of these TAAs to the immune system is poor due to their low immunogenicity. We investigated whether vaccination with immunogenetically enhanced MUC1 (by expressing alpha-gal epitopes; Galalpha1-3Galbeta1-4GlcNAc-R) can elicit effective antibody production for MUC1 itself as well as certain TAAs derived from pancreatic cancer cells and induced tumor-specific T-cell responses. We also used alpha1,3galactosyltransferase (alpha1,3GT) knockout mice that were preimmunized with pig kidney and transplanted with B16F10 melanoma cells transfected with MUC1 expression vector. Vaccination of these mice with alpha-gal MUC1 resulted in marked inhibition of tumor growth and significant improvement of overall survival time compared with mice vaccinated with MUC1 alone (P = 0.003). Furthermore, vaccination with pancreatic cancer cells expressing alpha-gal epitopes induced immune responses against not only differentiated cancer cells but also cancer stem cells. The results suggested that vaccination using cells engineered to express alpha-gal epitopes is a novel strategy for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Takashi Deguchi
- Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hardy CM, Beaton S, Hinds LA. Immunocontraception in mice using repeated, multi-antigen peptides: immunization with purified recombinant antigens. Mol Reprod Dev 2007; 75:126-35. [PMID: 17474093 DOI: 10.1002/mrd.20745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two immunocontraceptive antigens (AgE and AgF) were constructed that included different combinations of highly species-specific peptides from the mouse reproductive antigens SP56, ZP3, ZP2, and ZP1 in the form of multi-antigen peptides (MAPs). Both AgE and AgF contained three tandem repeats each of ZP2 and ZP3 peptide epitopes and a single copy of a ZP1 peptide sequence all of which had previously been demonstrated to individually have immunodominant or contraceptive effects. In addition, AgF contained a single contraceptive peptide derived from SP56, the putative ZP3 receptor protein on sperm. The antigens were expressed and affinity purified as recombinant repeated multi-antigen (polyepitope) peptides using an Escherichia coli maltose binding protein (MBP) expression system. Female BALB/c mice actively immunized with these antigens in Freund's adjuvants produced variable serum antibody responses to the component peptides. Fertility rates for animals immunized with AgE (40%) and AgF (20%) were significantly reduced compared to MBP immunized mice (90%), but the reduction in fertility did not correlate with peptide-specific serum antibody levels. Ovaries from all immunized mice appeared histologically normal with no evidence of oophoritis. These results demonstrate that high levels of immunocontraception can be achieved in mice, without apparent side-effects, using species-specific immunogens that include repeated peptides from proteins involved in fertilization.
Collapse
|
8
|
Kovacs-Nolan J, Mine Y. Tandem copies of a human rotavirus VP8 epitope can induce specific neutralizing antibodies in BALB/c mice. Biochim Biophys Acta Gen Subj 2006; 1760:1884-93. [PMID: 16978788 DOI: 10.1016/j.bbagen.2006.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/04/2006] [Accepted: 07/27/2006] [Indexed: 11/30/2022]
Abstract
The VP8 subunit protein of human rotavirus (HRV) plays an important role in viral infectivity and neutralization. Recombinant peptide antigens displaying the amino acid sequence M(1)ASLIYRQLL(10), a linear neutralization epitope on the VP8 protein, were constructed and examined for their ability to generate anti-peptide antibodies and HRV-neutralizing antibodies in BALB/c mice. Peptide antigen constructs were expressed in E. coli as fusion proteins with thioredoxin and a universal tetanus toxin T-cell epitope (P2), in order to enhance the anti-peptide immune response. The peptide antigen containing three tandem copies of the VP8 epitope induced significantly higher levels of anti-peptide antibody than only a single copy of the epitope, or the peptide co-administered with the carrier protein and T-cell epitope. Furthermore, the peptide antigen containing three copies of the peptide produced significantly higher virus-neutralization titres, higher than VP8, indicating that a peptide antigen displaying repeating copies of the amino acid region 1-10 of VP8 is a more potent inducer of HRV-neutralizing antibodies than VP8 alone, and may be useful for the production of specific neutralizing antibodies for passive immunotherapy of HRV infection.
Collapse
|