1
|
Singh J, Sangwan N, Chauhan A, Avti PK. Integrative network and computational simulation of clinical and genomic data for the identification of mutated EGFR in breast cancer patients for therapeutic targeting using purine analogues. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pramod K. Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
2
|
Ahmad Bhat S, Islam Siddiqui Z, Ahmad Parray Z, Sultan A, Afroz M, Ali Azam S, Rahman Farooqui S, Naqui Kazim S. Naturally occurring HMGB1 inhibitor delineating the anti-hepatitis B virus mechanism of glycyrrhizin via in vitro and in silico studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Tabassum H, Ahmad IZ. Molecular Docking and Dynamics Simulation Analysis of Thymoquinone and Thymol Compounds from Nigella sativa L. that Inhibit Cag A and Vac A Oncoprotein of Helicobacter pylori: Probable Treatment of H. pylori Infections. Med Chem 2021; 17:146-157. [PMID: 32116195 DOI: 10.2174/1573406416666200302113729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/24/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Helicobacter pylori infection is accountable for most of the peptic ulcer and intestinal cancers. Due to the uprising resistance towards H. pylori infection through the present and common proton pump inhibitors regimens, the investigation of novel candidates is the inevitable issue. Medicinal plants have always been a source of lead compounds for drug discovery. The research of the related effective enzymes linked with this gram-negative bacterium is critical for the discovery of novel drug targets. OBJECTIVE The aim of the study is to identify the best candidate to evaluate the inhibitory effect of thymoquinone and thymol against H. pylori oncoproteins, Cag A and Vac A in comparison to the standard drug, metronidazole by using a computational approach. MATERIALS AND METHODS The targeted oncoproteins, Cag A and Vac A were retrieved from RCSB PDB. Lipinski's rule and ADMET toxicity profiling were carried out on the phytoconstituents of the N. sativa. The two compounds of N. sativa were further analyzed by molecular docking and MD simulation studies. The reported phytoconstituents, thymoquinone and thymol present in N. sativa were docked with H. pylori Cag A and Vac A oncoproteins. Structures of ligands were prepared using ChemDraw Ultra 10 software and then changed into their 3D PDB structures using Molinspiration followed by energy minimization by using software Discovery Studio client 2.5. RESULTS The docking results revealed the promising inhibitory potential of thymoquinone against Cag A and Vac A with docking energy of -5.81 kcal/mole and -3.61kcal/mole, respectively. On the contrary, the inhibitory potential of thymol against Cag A and Vac A in terms of docking energy was -5.37 kcal/mole and -3.94kcal/mole as compared to the standard drug, metronidazole having docking energy of -4.87 kcal/mole and -3.20 kcal/mole, respectively. Further, molecular dynamic simulations were conducted for 5ns for optimization, flexibility prediction, and determination of folded Cag A and Vac A oncoproteins stability. The Cag A and Vac A oncoproteins-TQ complexes were found to be quite stable with the root mean square deviation value of 0.2nm. CONCLUSION The computational approaches suggested that thymoquinone and thymol may play an effective pharmacological role to treat H. pylori infection. Hence, it could be summarized that the ligands thymoquinone and thymol bound and interacted well with the proteins Cag A and Vac A as compared to the ligand MTZ. Our study showed that all lead compounds had good interaction with Cag A and Vac A proteins and suggested them to be a useful target to inhibit H. pylori infection.
Collapse
Affiliation(s)
- Heena Tabassum
- Natural Products Laboratory, Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow- 226026, Uttar Pradesh, India
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow- 226026, Uttar Pradesh, India
| |
Collapse
|
4
|
Rahman CR, Amin R, Shatabda S, Toaha MSI. A convolution based computational approach towards DNA N6-methyladenine site identification and motif extraction in rice genome. Sci Rep 2021; 11:10357. [PMID: 33990665 PMCID: PMC8121938 DOI: 10.1038/s41598-021-89850-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
DNA N6-methylation (6mA) in Adenine nucleotide is a post replication modification responsible for many biological functions. Automated and accurate computational methods can help to identify 6mA sites in long genomes saving significant time and money. Our study develops a convolutional neural network (CNN) based tool i6mA-CNN capable of identifying 6mA sites in the rice genome. Our model coordinates among multiple types of features such as PseAAC (Pseudo Amino Acid Composition) inspired customized feature vector, multiple one hot representations and dinucleotide physicochemical properties. It achieves auROC (area under Receiver Operating Characteristic curve) score of 0.98 with an overall accuracy of 93.97% using fivefold cross validation on benchmark dataset. Finally, we evaluate our model on three other plant genome 6mA site identification test datasets. Results suggest that our proposed tool is able to generalize its ability of 6mA site identification on plant genomes irrespective of plant species. An algorithm for potential motif extraction and a feature importance analysis procedure are two by products of this research. Web tool for this research can be found at: https://cutt.ly/dgp3QTR.
Collapse
Affiliation(s)
| | - Ruhul Amin
- United International University, Dhaka, Bangladesh
| | | | | |
Collapse
|
5
|
Malik N, Dhiman P, Khatkar A. In Silico Design and Synthesis of Targeted Curcumin Derivatives as Xanthine Oxidase Inhibitors. Curr Drug Targets 2020; 20:593-603. [PMID: 30465499 DOI: 10.2174/1389450120666181122100511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/24/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Curcumin is a well-known pharmacophore and some of its derivatives are shown to target xanthine oxidase (XO) to alleviate disorders caused by the excess production of uric acid. OBJECTIVE Curcumin based derivatives were designed, synthesized and evaluated for their antioxidant and xanthine oxidase inhibitory potential. METHOD In this report, we designed and synthesized two series of curcumin derivatives modified by inserting pyrazole and pyrimidine ring to central keto group. The synthesized compounds were evaluated for their antioxidant and xanthine oxidase inhibitory potential. RESULTS Results showed that pyrazole analogues of curcumin produced excellent XO inhibitory potency with the IC50 values varying from 06.255 µM to 10.503 µM. Among pyrimidine derivatives compound CU3a1 having ortho nitro substitution exhibited more potent xanthine oxidase inhibitory activity than any other curcumin derivative of this series. CONCLUSION Curcumin derivatives CU5b1, CU5b2, CU5b3, and CU3a1 showed a potent inhibitory activity against xanthine oxidase along with good antioxidant potential.
Collapse
Affiliation(s)
- Neelam Malik
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D.University, Rohtak, Haryana, India
| | - Priyanka Dhiman
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D.University, Rohtak, Haryana, India
| | - Anurag Khatkar
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D.University, Rohtak, Haryana, India
| |
Collapse
|
6
|
Ganaie IA, Malik MZ, Naqvi SH, Jain SK, Wajid S. Differential levels of Alpha-1-inhibitor III, Immunoglobulin heavy chain variable region, and Hypertrophied skeletal muscle protein GTF3 in rat mammary tumorigenesis. Biochimie 2020; 174:57-68. [PMID: 32325114 DOI: 10.1016/j.biochi.2020.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 11/15/2022]
Abstract
Early detection of breast cancer can be best facilitated by the development of precancerous markers. Serum proteins being the sensitive signatures, can be the ideal choice. We previously demonstrated the reduced levels of two serum proteins at a very early stage of tumorigenesis in a breast cancer model, developed in Wistar rats by 7,12-dimethylbenz[a]anthracene (DMBA) administration. Here we report the dysregulation of three more proteins in the serum collected at another early stage (15 weeks) of tumorigenesis in the same model. The proteins were identified (as Alpha-1-inhibitor III (Mug1), Immunoglobulin heavy chain variable region (IGHV), and Hypertrophied skeletal muscle protein GTF3) by MALDI-TOF MS after the screening and fingerprinting of serum samples by one-dimensional (1D) and two-dimensional (2D) electrophoresis respectively. Relative expression analysis of corresponding genes was also carried out, and the results were found as supporting the proteomic findings. In addition, the candidate proteins of the study and their corresponding ribonucleic acids (RNAs) were subjected to homology modelling and docking (using softwares like MODELLER, 3dRNA, Autodock4.0, and GROMACS etc), which revealed the binding sites for carcinogen (DMBA) and its nature of interaction with proteins and RNAs. Moreover, the network analysis by GeneMANIA unraveled the protein/gene functional network in which Mug1, IGHV, and GTF3 are involved. Based on the significant protein and gene expression alterations in early tumorigenesis, these proteins may prove very effective in search for biomarkers for the early detection of mammary cancer. Further, these proteins can also be tried as targets for chemotherapy.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ganaie
- Department of Biotechnology, School of Chemical and Life Sciences, JamiaHamdard, New Delhi, 110062, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Swatantra Kumar Jain
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, JamiaHamdard, New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, JamiaHamdard, New Delhi, 110062, India.
| |
Collapse
|
7
|
Tran-Nguyen VK, Le MT, Tran TD, Truong VD, Thai KM. Peramivir binding affinity with influenza A neuraminidase and research on its mutations using an induced-fit docking approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:899-917. [PMID: 31645133 DOI: 10.1080/1062936x.2019.1679248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Influenza A virus (IAV) has caused epidemic infections worldwide, with many strains resistant to inhibitors of a surface protein, neuraminidase (NA), due to point mutations on its structure. A novel NA inhibitor named peramivir was recently approved, but no exhaustive computational research regarding its binding affinity with wild-type and mutant NA has been conducted. In this study, a thorough investigation of IAV-NA PDB entries of 9 subtypes is described, providing a list of residues constituting the protein-ligand binding sites. The results of induced-fit docking approach point out key residues of wild-type NA participating in hydrogen bonds and/or ionic interactions with peramivir, among which Arg 368 is responsible for a peramivir-NA ionic interaction. Mutations on this residue greatly reduced the binding affinity of peramivir with NA, with 3 mutations R378Q, R378K and R378L (NA6) capable of deteriorating the docking performance of peramivir by over 50%. 200 compounds from 6-scaffolds were docked into these 3 mutant versions, revealing 18 compounds giving the most promising results. Among them, CMC-2012-7-1527-56 (benzoic acid scaffold, IC50 = 32 nM in inhibitory assays with IAV) is deemed the most potential inhibitor of mutant NA resisting both peramivir and zanamivir, and should be further investigated.
Collapse
Affiliation(s)
- V K Tran-Nguyen
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - M T Le
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - T D Tran
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - V D Truong
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - K M Thai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Abstract
Brillouin spectroscopy and imaging are emerging techniques in analytical science, biophotonics, and biomedicine. They are based on Brillouin light scattering from acoustic waves or phonons in the GHz range, providing a nondestructive contactless probe of the mechanics on a microscale. Novel approaches and applications of these techniques to the field of biomedical sciences are discussed, highlighting the theoretical foundations and experimental methods that have been developed to date. Acknowledging that this is a fast moving field, a comprehensive account of the relevant literature is critically assessed here.
Collapse
Affiliation(s)
- Francesca Palombo
- School
of Physics and Astronomy, University of
Exeter, Stocker Road, EX4 4QL Exeter, U.K.
| | - Daniele Fioretto
- Department
of Physics and Geology, University of Perugia, via Alessandro Pascoli, I-06123 Perugia, Italy
| |
Collapse
|
9
|
Liao SM, Shen NK, Liang G, Lu B, Lu ZL, Peng LX, Zhou F, Du LQ, Wei YT, Zhou GP, Huang RB. Inhibition of α-amylase Activity by Zn2+: Insights from Spectroscopy and Molecular Dynamics Simulations. Med Chem 2019; 15:510-520. [DOI: 10.2174/1573406415666181217114101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 02/08/2023]
Abstract
Background:Inhibition of α-amylase activity is an important strategy in the treatment of diabetes mellitus. An important treatment for diabetes mellitus is to reduce the digestion of carbohydrates and blood glucose concentrations. Inhibiting the activity of carbohydrate-degrading enzymes such as α-amylase and glucosidase significantly decreases the blood glucose level. Most inhibitors of α-amylase have serious adverse effects, and the α-amylase inactivation mechanisms for the design of safer inhibitors are yet to be revealed.Objective:In this study, we focused on the inhibitory effect of Zn2+ on the structure and dynamic characteristics of α-amylase from Anoxybacillus sp. GXS-BL (AGXA), which shares the same catalytic residues and similar structures as human pancreatic and salivary α-amylase (HPA and HSA, respectively).Methods:Circular dichroism (CD) spectra of the protein (AGXA) in the absence and presence of Zn2+ were recorded on a Chirascan instrument. The content of different secondary structures of AGXA in the absence and presence of Zn2+ was analyzed using the online SELCON3 program. An AGXA amino acid sequence similarity search was performed on the BLAST online server to find the most similar protein sequence to use as a template for homology modeling. The pocket volume measurer (POVME) program 3.0 was applied to calculate the active site pocket shape and volume, and molecular dynamics simulations were performed with the Amber14 software package.Results:According to circular dichroism experiments, upon Zn2+ binding, the protein secondary structure changed obviously, with the α-helix content decreasing and β-sheet, β-turn and randomcoil content increasing. The structural model of AGXA showed that His217 was near the active site pocket and that Phe178 was at the outer rim of the pocket. Based on the molecular dynamics trajectories, in the free AGXA model, the dihedral angle of C-CA-CB-CG displayed both acute and planar orientations, which corresponded to the open and closed states of the active site pocket, respectively. In the AGXA-Zn model, the dihedral angle of C-CA-CB-CG only showed the planar orientation. As Zn2+ was introduced, the metal center formed a coordination interaction with H217, a cation-π interaction with W244, a coordination interaction with E242 and a cation-π interaction with F178, which prevented F178 from easily rotating to the open state and inhibited the activity of the enzyme.Conclusion:This research may have uncovered a subtle mechanism for inhibiting the activity of α-amylase with transition metal ions, and this finding will help to design more potent and specific inhibitors of α-amylases.
Collapse
Affiliation(s)
- Si-Ming Liao
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Nai-Kun Shen
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, 530008, China
| | - Ge Liang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Bo Lu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Zhi-Long Lu
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Li-Xin Peng
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Feng Zhou
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Li-Qin Du
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu-Tuo Wei
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Guo-Ping Zhou
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Ri-Bo Huang
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
10
|
Chen M, Jing Y, Wang L, Feng Z, Xie XQ. DAKB-GPCRs: An Integrated Computational Platform for Drug Abuse Related GPCRs. J Chem Inf Model 2019; 59:1283-1289. [PMID: 30835466 PMCID: PMC6758544 DOI: 10.1021/acs.jcim.8b00623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug abuse (DA) or drug addiction is a complicated brain disorder which is commonly considered as neurobiological impairments caused by both genetic factors and environmental effects. Among DA-related targets, G protein-coupled receptors (GPCRs) play an important role in DA therapy. However, only 52 GPCRs have been published with crystal structures in the recent two decades. In the effort to overcome the limitations of crystal structure and conformational diversity of GPCRs, we built homology models and performed conformational searches by molecular dynamics (MD) simulation. To accelerate and facilitate the drug abuse research, we construct a DA-related GPCR-specific chemogenomics knowledgebase (KB) (DAKB-GPCRs) for its research that can be implemented with our established and novel chemogenomics tools as well as algorithms for data analysis and visualization. Our established TargetHunter and HTDocking tools, as well as our novel tools that include target classification and Spider Plot, are compiled into the platform. Our DAKB-GPCRs provides the following results for a query compound: (1) blood-brain barrier (BBB) plot via our BBB predictor, (2) docking scores via HTDocking, (3) similarity score via TargetHunter, (4) target classification via machine learning methods that utilize both docking scores and similarity scores, and (5) a drug-target interaction network via Spider Plot.
Collapse
Affiliation(s)
- Maozi Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, Pittsburgh, Pennsylvania 15261, United States
- NIH National Center of Excellence for Computational Drug Abuse Research, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, Pittsburgh, Pennsylvania 15261, United States
| | - Yankang Jing
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, Pittsburgh, Pennsylvania 15261, United States
- NIH National Center of Excellence for Computational Drug Abuse Research, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, Pittsburgh, Pennsylvania 15261, United States
| | - Lirong Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, Pittsburgh, Pennsylvania 15261, United States
- NIH National Center of Excellence for Computational Drug Abuse Research, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, Pittsburgh, Pennsylvania 15261, United States
- NIH National Center of Excellence for Computational Drug Abuse Research, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, Pittsburgh, Pennsylvania 15261, United States
- NIH National Center of Excellence for Computational Drug Abuse Research, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, Pittsburgh, Pennsylvania 15261, United States
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
11
|
Rout S, Mahapatra RK. In silico analysis of plasmodium falciparum CDPK5 protein through molecular modeling, docking and dynamics. J Theor Biol 2019; 461:254-267. [DOI: 10.1016/j.jtbi.2018.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
|
12
|
Ghosh A, Yan H. Hydrogen bond analysis of the EGFR-ErbB3 heterodimer related to non-small cell lung cancer and drug resistance. J Theor Biol 2018; 464:63-71. [PMID: 30593826 DOI: 10.1016/j.jtbi.2018.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 01/25/2023]
Abstract
Lung cancer is the predominant cause of cancer deaths on a worldwide scale. A mutation in the epidermal growth factor receptor (EGFR) can cause non-small cell lung cancer (NSCLC). The L858R one-point mutation in exon 21 in EGFR is the most prevalent in NSCLC. For over 60% of EGFR-muted NSCLC, another mutation T790M can cause drug resistance. In this paper, we consider EGFR and ErbB3 heterodimers involving three structures of EGFR, wild-type, with L858R mutation, and with L858R and T790M mutations. We perform molecular dynamics (MD) simulations to analyze hydrogen bonds in all three instances. The hydrogen bonds contribute to the conformational stability of the protein and molecular recognition. Several other parameters are also investigated in the present study, which reveals significant changes in the dimer at different levels of mutation. The knowledge and results obtained from this study lead to useful insight into the mechanism of NSCLC drug resistance.
Collapse
Affiliation(s)
- Avirup Ghosh
- Department of Electronics Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| | - Hong Yan
- Department of Electronics Engineering, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
13
|
The effect of conformational freedom of side chain on low-frequency motions of amino acids in solid-state. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Exploration of synthetic multifunctional amides as new therapeutic agents for Alzheimer's disease through enzyme inhibition, chemoinformatic properties, molecular docking and dynamic simulation insights. J Theor Biol 2018; 458:169-183. [PMID: 30243565 DOI: 10.1016/j.jtbi.2018.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
Abstract
A new series of multifunctional amides has been synthesized having moderate enzyme inhibitory potentials and mild cytotoxicity. 2-Furyl(1-piperazinyl)methanone (1) was coupled with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) to form {4-[(3,5-dichloro-2-hydroxyphenyl)sulfonyl]-1-piperazinyl}(2-furyl)methanone (3). Different elecrophiles were synthesized by the reaction of various un/substituted anilines (4a-o) with 2-bromoacetylbromide (5), 2‑bromo‑N-(un/substituted-phenyl)acetamides (6a-o). Further, equimolar ratios of 3 and 6a-o were allowed to react in the presence of K2CO3 in acetonitrile to form desired multifunctional amides (7a-o). The structural confirmation of all the synthesized compounds was carried out by their EI-MS, IR, 1H NMR and 13C NMR spectral data. Enzyme inhibition activity was performed against acetyl and butyrylcholinestrase enzymes, whereby 7e showed very good activity having IC50 value of 5.54 ± 0.03 and 9.15 ± 0.01 μM, respectively, relative to eserine, a reference standard. Hemolytic activity of the molecules was checked to asertain their cytotoxicity towards red blood cell membrance and it was observed that most of the compounds were not toxic up to certain range. Moreover, chemoinformatic protepties and docking simulation results also showed the significance of 7e as compared to other compounds. Based on in vitro and in silico analysis 7e could be used as a template for the development of new drugs against Alzheimer's disease.
Collapse
|
15
|
Wang MY, Liang JW, Olounfeh KM, Sun Q, Zhao N, Meng FH. A Comprehensive In Silico Method to Study the QSTR of the Aconitine Alkaloids for Designing Novel Drugs. Molecules 2018; 23:E2385. [PMID: 30231506 PMCID: PMC6225272 DOI: 10.3390/molecules23092385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
A combined in silico method was developed to predict potential protein targets that are involved in cardiotoxicity induced by aconitine alkaloids and to study the quantitative structure⁻toxicity relationship (QSTR) of these compounds. For the prediction research, a Protein-Protein Interaction (PPI) network was built from the extraction of useful information about protein interactions connected with aconitine cardiotoxicity, based on nearly a decade of literature and the STRING database. The software Cytoscape and the PharmMapper server were utilized to screen for essential proteins in the constructed network. The Calcium-Calmodulin-Dependent Protein Kinase II alpha (CAMK2A) and gamma (CAMK2G) were identified as potential targets. To obtain a deeper insight on the relationship between the toxicity and the structure of aconitine alkaloids, the present study utilized QSAR models built in Sybyl software that possess internal robustness and external high predictions. The molecular dynamics simulation carried out here have demonstrated that aconitine alkaloids possess binding stability for the receptor CAMK2G. In conclusion, this comprehensive method will serve as a tool for following a structural modification of the aconitine alkaloids and lead to a better insight into the cardiotoxicity induced by the compounds that have similar structures to its derivatives.
Collapse
Affiliation(s)
- Ming-Yang Wang
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | - Jing-Wei Liang
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | | | - Qi Sun
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | - Nan Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
16
|
Sakkiah S, Kusko R, Pan B, Guo W, Ge W, Tong W, Hong H. Structural Changes Due to Antagonist Binding in Ligand Binding Pocket of Androgen Receptor Elucidated Through Molecular Dynamics Simulations. Front Pharmacol 2018; 9:492. [PMID: 29867496 PMCID: PMC5962723 DOI: 10.3389/fphar.2018.00492] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/25/2018] [Indexed: 01/28/2023] Open
Abstract
When a small molecule binds to the androgen receptor (AR), a conformational change can occur which impacts subsequent binding of co-regulator proteins and DNA. In order to accurately study this mechanism, the scientific community needs a crystal structure of the Wild type AR (WT-AR) ligand binding domain, bound with antagonist. To address this open need, we leveraged molecular docking and molecular dynamics (MD) simulations to construct a structure of the WT-AR ligand binding domain bound with antagonist bicalutamide. The structure of mutant AR (Mut-AR) bound with this same antagonist informed this study. After molecular docking analysis pinpointed the suitable binding orientation of a ligand in AR, the model was further optimized through 1 μs of MD simulations. Using this approach, three molecular systems were studied: (1) WT-AR bound with agonist R1881, (2) WT-AR bound with antagonist bicalutamide, and (3) Mut-AR bound with bicalutamide. Our structures were very similar to the experimentally determined structures of both WT-AR with R1881 and Mut-AR with bicalutamide, demonstrating the trustworthiness of this approach. In our model, when WT-AR is bound with bicalutamide, Val716/Lys720/Gln733, or Met734/Gln738/Glu897 move and thus disturb the positive and negative charge clumps of the AF2 site. This disruption of the AF2 site is key for understanding the impact of antagonist binding on subsequent co-regulator binding. In conclusion, the antagonist induced structural changes in WT-AR detailed in this study will enable further AR research and will facilitate AR targeting drug discovery.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Rebecca Kusko
- Immuneering Corporation, Cambridge, MA, United States
| | - Bohu Pan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Wenjing Guo
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Weigong Ge
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
17
|
Patil RB, Barbosa EG, Sangshetti JN, Zambre VP, Sawant SD. Structural insights of dipeptidyl peptidase-IV inhibitors through molecular dynamics-guided receptor-dependent 4D-QSAR studies. Mol Divers 2018. [PMID: 29536226 DOI: 10.1007/s11030-018-9815-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dipeptidyl peptidase-IV (DPP-IV) inhibitors are promising antidiabetic agents. Currently, several DPP-IV inhibitors have been approved for therapeutic use in diabetes mellitus. Receptor-dependent 4D-QSAR is comparatively a new approach which uses molecular dynamics simulations to generate conformational ensemble profiles of compounds representing a dynamic state of compounds at a target's binding site. This work describes a receptor-dependent 4D-QSAR study on triazolopiperazine derivatives. QSARINS multiple linear regression method was adopted to generate 4D-QSAR models. A model with 9 variables was found to have better predictive accuracy with [Formula: see text], [Formula: see text] (leave-one-out) = 0.592 and [Formula: see text] predicted = 0.597. The location of these 9 variables at the binding site of DPP-IV revealed the importance of the residues Val711, Tyr662, Tyr666, Val202, Asp200 and Thr199 in making critical interactions with DPP-IV inhibitors. The study of these critical interactions revealed the structural features required in DPP-IV inhibitors. Thus, in this study the importance of a halogen substituent on a phenyl ring, the extent of substitution on the triazolopiperazine ring, the presence of an ionizable amino group and the presence of a hydrophobic substituent that can bind deeper in binding pocket of DPP-IV were revealed.
Collapse
Affiliation(s)
- Rajesh B Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Pune-Saswad Road, Kondhwa (Bk.), Pune, Maharashtra, 411048, India.
| | - Euzebio G Barbosa
- Chemistry Institute, University of Campinas (UNICAMP), POB 6154, Campinas, SP, 13083-970, Brazil
| | - Jaiprakash N Sangshetti
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, 431001, India
| | - Vishal P Zambre
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Pune-Saswad Road, Kondhwa (Bk.), Pune, Maharashtra, 411048, India
| | - Sanjay D Sawant
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Pune-Saswad Road, Kondhwa (Bk.), Pune, Maharashtra, 411048, India
| |
Collapse
|
18
|
Chen W, Feng P, Yang H, Ding H, Lin H, Chou KC. iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget 2018; 8:4208-4217. [PMID: 27926534 PMCID: PMC5354824 DOI: 10.18632/oncotarget.13758] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/23/2016] [Indexed: 01/14/2023] Open
Abstract
Catalyzed by adenosine deaminase (ADAR), the adenosine to inosine (A-to-I) editing in RNA is not only involved in various important biological processes, but also closely associated with a series of major diseases. Therefore, knowledge about the A-to-I editing sites in RNA is crucially important for both basic research and drug development. Given an uncharacterized RNA sequence that contains many adenosine (A) residues, can we identify which one of them can be of A-to-I editing, and which one cannot? Unfortunately, so far no computational method whatsoever has been developed to address such an important problem based on the RNA sequence information alone. To fill this empty area, we have proposed a predictor called iRNA-AI by incorporating the chemical properties of nucleotides and their sliding occurrence density distribution along a RNA sequence into the general form of pseudo nucleotide composition (PseKNC). It has been shown by the rigorous jackknife test and independent dataset test that the performance of the proposed predictor is quite promising. For the convenience of most experimental scientists, a user-friendly web-server for iRNA-AI has been established at http://lin.uestc.edu.cn/server/iRNA-AI/, by which users can easily get their desired results without the need to go through the mathematical details.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Tangshan, China.,Gordon Life Science Institute, Belmont, Massachusetts, United States of America
| | - Pengmian Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Gordon Life Science Institute, Belmont, Massachusetts, United States of America
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Gordon Life Science Institute, Belmont, Massachusetts, United States of America
| |
Collapse
|
19
|
Feng P, Yang H, Ding H, Lin H, Chen W, Chou KC. iDNA6mA-PseKNC: Identifying DNA N 6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics 2018; 111:96-102. [PMID: 29360500 DOI: 10.1016/j.ygeno.2018.01.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/24/2017] [Accepted: 01/07/2018] [Indexed: 11/29/2022]
Abstract
N6-methyladenine (6mA) is one kind of post-replication modification (PTM or PTRM) occurring in a wide range of DNA sequences. Accurate identification of its sites will be very helpful for revealing the biological functions of 6mA, but it is time-consuming and expensive to determine them by experiments alone. Unfortunately, so far, no bioinformatics tool is available to do so. To fill in such an empty area, we have proposed a novel predictor called iDNA6mA-PseKNC that is established by incorporating nucleotide physicochemical properties into Pseudo K-tuple Nucleotide Composition (PseKNC). It has been observed via rigorous cross-validations that the predictor's sensitivity (Sn), specificity (Sp), accuracy (Acc), and stability (MCC) are 93%, 100%, 96%, and 0.93, respectively. For the convenience of most experimental scientists, a user-friendly web server for iDNA6mA-PseKNC has been established at http://lin-group.cn/server/iDNA6mA-PseKNC, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved.
Collapse
Affiliation(s)
- Pengmian Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Wei Chen
- Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Tangshan 063000, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| |
Collapse
|
20
|
Agrahari AK, Kumar A, R S, Zayed H, C GPD. Substitution impact of highly conserved arginine residue at position 75 in GJB1 gene in association with X-linked Charcot-Marie-tooth disease: A computational study. J Theor Biol 2018; 437:305-317. [PMID: 29111421 DOI: 10.1016/j.jtbi.2017.10.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
X-linked Charcot-Marie-Tooth type 1 X (CMTX1) disease is a subtype of Charcot-Marie-Tooth (CMT), which is mainly caused by mutations in the GJB1 gene. It is also known as connexin 32 (Cx32) that leads to Schwann cell abnormalities and peripheral neuropathy. CMTX1 is considered as the second most common form of CMT disease. The aim of this study is to computationally predict the potential impact of different single amino acid substitutions at position 75 of Cx32, from arginine (R) to proline (P), glutamine (Q) and tryptophan (W). This position is known to be highly conserved among the family of connexin. To understand the structural and functional changes due to these single amino acid substitutions, we employed a homology-modeling technique to build the three-dimensional structure models for the native and mutant proteins. The protein structures were further embedded into a POPC lipid bilayer, inserted into a water box, and subjected to molecular dynamics simulation for 50 ns. Our results show that the mutants R75P, R75Q and R75W display variable structural conformation and dynamic behavior compared to the native protein. Our data proves useful in predicting the potential pathogenicity of the mutant proteins and is expected to serve as a platform for drug discovery for patients with CMT.
Collapse
Affiliation(s)
| | - Amit Kumar
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; Biosciences Sector, Center for advanced study research and development in Sardinia (CRS4), Loc. Piscina Manna, 09010 Pula, Italy
| | - Siva R
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| | - George Priya Doss C
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
21
|
Niu B, Zhang M, Du P, Jiang L, Qin R, Su Q, Chen F, Du D, Shu Y, Chou KC. Small molecular floribundiquinone B derived from medicinal plants inhibits acetylcholinesterase activity. Oncotarget 2017; 8:57149-57162. [PMID: 28915661 PMCID: PMC5593632 DOI: 10.18632/oncotarget.19169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Being a neurodegenerative disorder, Alzheimer's disease (AD) is the one of the most terrible diseases. And acetylcholinesterase (AChE) is considered as an important target for treating AD. Acetylcholinesterase inhibitors (AChEI) are considered to be one of the effective drugs for the treatment of AD. The aim of this study is to find a novel potential AChEI as a drug for the treatment of AD. In this study, instead of using the synthetic compounds, we used those extracted from plants to investigate the interaction between floribundiquinone B (FB) and AChE by means of both the experimental approach such as fluorescence spectra, ultraviolet-visible (UV-vis) absorption spectrometry, circular dichroism (CD) and the theoretical approaches such as molecular docking. The findings reported here have provided many useful clues and hints for designing more effective and less toxic drugs against Alzheimer's disease.
Collapse
Affiliation(s)
- Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China.,Gordon Life Science Institute, Boston, MA 02478, USA
| | - Mengying Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Pu Du
- Department of Neurology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Li Jiang
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Rui Qin
- Department of Gynecology, Affiliated Minzu Hospital of Guangxi Medical University, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, China
| | - Qiang Su
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Fuxue Chen
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Dongshu Du
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China.,Department of Life Science, Heze University, Heze, Shandong, 274500, China
| | - Yilai Shu
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear, Nose, Throat, Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Kuo-Chen Chou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Gordon Life Science Institute, Boston, MA 02478, USA
| |
Collapse
|
22
|
Feng P, Ding H, Yang H, Chen W, Lin H, Chou KC. iRNA-PseColl: Identifying the Occurrence Sites of Different RNA Modifications by Incorporating Collective Effects of Nucleotides into PseKNC. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 7:155-163. [PMID: 28624191 PMCID: PMC5415964 DOI: 10.1016/j.omtn.2017.03.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 11/23/2022]
Abstract
There are many different types of RNA modifications, which are essential for numerous biological processes. Knowledge about the occurrence sites of RNA modifications in its sequence is a key for in-depth understanding of their biological functions and mechanism. Unfortunately, it is both time-consuming and laborious to determine these sites purely by experiments alone. Although some computational methods were developed in this regard, each one could only be used to deal with some type of modification individually. To our knowledge, no method has thus far been developed that can identify the occurrence sites for several different types of RNA modifications with one seamless package or platform. To address such a challenge, a novel platform called "iRNA-PseColl" has been developed. It was formed by incorporating both the individual and collective features of the sequence elements into the general pseudo K-tuple nucleotide composition (PseKNC) of RNA via the chemicophysical properties and density distribution of its constituent nucleotides. Rigorous cross-validations have indicated that the anticipated success rates achieved by the proposed platform are quite high. To maximize the convenience for most experimental biologists, the platform's web-server has been provided at http://lin.uestc.edu.cn/server/iRNA-PseColl along with a step-by-step user guide that will allow users to easily achieve their desired results without the need to go through the mathematical details involved in this paper.
Collapse
Affiliation(s)
- Pengmian Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Chen
- Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063000, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| | - Kuo-Chen Chou
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Gordon Life Science Institute, Boston, MA 02478, USA.
| |
Collapse
|
23
|
Munzar JD, Ng A, Corrado M, Juncker D. Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers. Chem Sci 2017; 8:2251-2256. [PMID: 28507681 PMCID: PMC5408566 DOI: 10.1039/c6sc03993f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
Duplexed aptamers (DAs) are engineered by hybridizing an aptamer-complementary element (ACE, e.g. a DNA oligonucleotide) to an aptamer; to date, ACEs have been presumed to sequester the aptamer into a non-binding duplex state, in line with a conformational selection-based model of ligand binding. Here, we uncover that DAs can actively bind a ligand from the duplex state through an ACE-regulated induced fit mechanism. Using a widely-studied ATP DNA aptamer and a solution-based equilibrium assay, DAs were found to exhibit affinities up to 1 000 000-fold higher than predicted by conformational selection alone, with different ACEs regulating the level of induced fit binding, as well as the cooperative allostery of the DA (Hill slope of 1.8 to 0.7). To validate these unexpected findings, we developed a non-equilibrium surface-based assay that only signals induced fit binding, and corroborated the results from the solution-based assay. Our findings indicate that ACEs regulate ATP DA ligand binding dynamics, opening new avenues for the study and design of ligand-responsive nucleic acids.
Collapse
Affiliation(s)
- Jeffrey D Munzar
- McGill University and Genome Quebec Innovation Centre , 740 Dr. Penfield Avenue , Montreal , Quebec H3A 0G1 , Canada .
- Department of Biomedical Engineering , McGill University , 3775 Rue University , Montreal , Quebec H3A 2B4 , Canada
| | - Andy Ng
- McGill University and Genome Quebec Innovation Centre , 740 Dr. Penfield Avenue , Montreal , Quebec H3A 0G1 , Canada .
- Department of Biomedical Engineering , McGill University , 3775 Rue University , Montreal , Quebec H3A 2B4 , Canada
| | - Mario Corrado
- McGill University and Genome Quebec Innovation Centre , 740 Dr. Penfield Avenue , Montreal , Quebec H3A 0G1 , Canada .
- Department of Biomedical Engineering , McGill University , 3775 Rue University , Montreal , Quebec H3A 2B4 , Canada
| | - David Juncker
- McGill University and Genome Quebec Innovation Centre , 740 Dr. Penfield Avenue , Montreal , Quebec H3A 0G1 , Canada .
- Department of Biomedical Engineering , McGill University , 3775 Rue University , Montreal , Quebec H3A 2B4 , Canada
- Department of Neurology and Neurosurgery , McGill University , 3801 Rue University , Montreal , Quebec H3A 2B4 , Canada
| |
Collapse
|
24
|
Potential entry inhibitors of the envelope protein (E2) of Chikungunya virus: in silico structural modeling, docking and molecular dynamic studies. Virusdisease 2017; 28:39-49. [PMID: 28466054 DOI: 10.1007/s13337-016-0356-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/30/2016] [Indexed: 12/20/2022] Open
Abstract
Chikungunya fever is an arboviral infection caused by the Chikungunya virus (CHIKV) and is transmitted by Aedes mosquito. The envelope protein (E2) of Chikungunya virus is involved in attachment of virion with the host cell. The present study was conceptualized to determine the structure of E2 protein of CHIKV and to identify the potential viral entry inhibitors. The secondary and tertiary structure of E2 protein was determined using bioinformatics tools. The mutational analysis of the E2 protein suggested that mutations may stabilize or de-stabilize the structure which may affect the structure-function relationship. In silico screening of various compounds from different databases identified two lead molecules i.e. phenothiazine and bafilomycin. Molecular docking and MD simulation studies of the E2 protein and compound complexes was carried out. This analysis revealed that bafilomycin has high docking score and thus high binding affinity with E2 protein suggesting stable protein-ligand interaction. Further, MD simulations suggested that both the compounds were stabilizing E2 protein. Thus, bafilomycin and phenothiazine may be considered as the lead compounds in terms of potential entry inhibitor for CHIKV. Further, these results should be confirmed by comprehensive cell culture, cytotoxic assays and animal experiments. Certain derivatives of phenothiazines can also be explored in future studies for entry inhibitors against CHIKV. The present investigation thus provides insight into protein structural dynamics of the envelope protein of CHIKV. In addition the study also provides information on the dynamics of interaction of E2 protein with entry inhibitors that will contribute towards structure based drug design.
Collapse
|
25
|
Molecular dynamics and protein interaction studies of lipopeptide (Iturin A) on α- amylase of Spodoptera litura. J Theor Biol 2016; 415:41-47. [PMID: 27940096 DOI: 10.1016/j.jtbi.2016.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/24/2016] [Accepted: 12/07/2016] [Indexed: 11/23/2022]
Abstract
The small mottled willow moth (Spodoptera litura) is one of the best-known agricultural pest insects. To understand the insecticidal activity, we have selected iturin A compound produced by Bacillus amyloliquefaciens RHNK22 which showed the strongest and most common inhibitory effect on the Spodoptera litura protein. In this work we have identified the action of iturin A on α- amylase is a major digestive enzyme of Spodoptera litura using docking studies. A 3D model of α- amylase from Spodoptera litura was generated using 2HPH as a template with the help of Modeller7v7. With the aid of the molecular mechanics and molecular dynamics methods, the final model is obtained and is further checked by Procheck and Verify 3D graph programs, which showed that the final refined model is reliable. With this model, a adjustable docking study was performed with iturin A using GOLD software. The results indicated that ARG 18, THR15, LEU42 in α- amylase are important determinant residues in binding as they have strong hydrogen bonding interactions with iturin A. These hydrogen binding interactions play an important role for the stability of the complex.
Collapse
|
26
|
Behbahani M, Mohabatkar H, Nosrati M. Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou’s general pseudo amino acid composition. J Theor Biol 2016; 411:1-5. [DOI: 10.1016/j.jtbi.2016.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 09/01/2016] [Indexed: 02/02/2023]
|
27
|
Gogoi D, Baruah VJ, Chaliha AK, Kakoti BB, Sarma D, Buragohain AK. 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors. J Theor Biol 2016; 411:68-80. [PMID: 27693363 DOI: 10.1016/j.jtbi.2016.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 11/24/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is one of the four members of the epidermal growth factor receptor (EGFR) family and is expressed to facilitate cellular proliferation across various tissue types. Therapies targeting HER2, which is a transmembrane glycoprotein with tyrosine kinase activity, offer promising prospects especially in breast and gastric/gastroesophageal cancer patients. Persistence of both primary and acquired resistance to various routine drugs/antibodies is a disappointing outcome in the treatment of many HER2 positive cancer patients and is a challenge that requires formulation of new and improved strategies to overcome the same. Identification of novel HER2 inhibitors with improved therapeutics index was performed with a highly correlating (r=0.975) ligand-based pharmacophore model (Hypo1) in this study. Hypo1 was generated from a training set of 22 compounds with HER2 inhibitory activity and this well-validated hypothesis was subsequently used as a 3D query to screen compounds in a total of four databases of which two were natural product databases. Further, these compounds were analyzed for compliance with Veber's drug-likeness rule and optimum ADMET parameters. The selected compounds were then subjected to molecular docking and Density Functional Theory (DFT) analysis to discern their molecular interactions at the active site of HER2. The findings thus presented would be an important starting point towards the development of novel HER2 inhibitors using well-validated computational techniques.
Collapse
Affiliation(s)
- Dhrubajyoti Gogoi
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Vishwa Jyoti Baruah
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Amrita Kashyap Chaliha
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Bibhuti Bhushan Kakoti
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Diganta Sarma
- Department of Chemistry, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Alak Kumar Buragohain
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India.
| |
Collapse
|
28
|
Marcolino ACS, Porto WF, Pires ÁS, Franco OL, Alencar SA. Structural impact analysis of missense SNPs present in the uroguanylin gene by long-term molecular dynamics simulations. J Theor Biol 2016; 410:9-17. [PMID: 27620667 DOI: 10.1016/j.jtbi.2016.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
The guanylate cyclase activator 2B, also known as uroguanylin, is part of the guanylin peptide family, which includes peptides such as guanylin and lymphoguanylin. The guanylin peptides could be related to sodium absorption inhibition and water secretion induction and their dysfunction may be related to various pathologies such as chronic renal failure, congestive heart failure and nephrotic syndrome. Besides, uroguanylin point mutations have been associated with essential hypertension. However, currently there are no studies on the impact of missense SNPs on uroguanylin structure. This study applied in silico SNP impact prediction tools to evaluate the impact of uroguanylin missense SNPs and to filter those considered as convergent deleterious, which were then further analyzed through long-term molecular dynamics simulations of 1μs of duration. The simulations suggested that all missense SNPs considered as convergent deleterious caused some kind of structural change to the uroguanylin peptide. Additionally, four of these SNPs were also shown to cause modifications in peptide flexibility, possibly resulting in functional changes.
Collapse
Affiliation(s)
- Antonio C S Marcolino
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - William F Porto
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Állan S Pires
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Octavio L Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Sérgio A Alencar
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.
| |
Collapse
|
29
|
Thillainayagam M, Anbarasu A, Ramaiah S. Comparative molecular field analysis and molecular docking studies on novel aryl chalcone derivatives against an important drug target cysteine protease in Plasmodium falciparum. J Theor Biol 2016; 403:110-128. [DOI: 10.1016/j.jtbi.2016.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/03/2016] [Accepted: 05/10/2016] [Indexed: 01/08/2023]
|
30
|
Mohammadi M, Nejatollahi F, Sakhteman A, Zarei N. Insilico analysis of three different tag polypeptides with dual roles in scFv antibodies. J Theor Biol 2016; 402:100-6. [DOI: 10.1016/j.jtbi.2016.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 11/26/2022]
|
31
|
González-Jiménez M, Ramakrishnan G, Harwood T, Lapthorn AJ, Kelly SM, Ellis EM, Wynne K. Observation of coherent delocalized phonon-like modes in DNA under physiological conditions. Nat Commun 2016; 7:11799. [PMID: 27248361 PMCID: PMC4895446 DOI: 10.1038/ncomms11799] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/28/2016] [Indexed: 01/10/2023] Open
Abstract
Underdamped terahertz-frequency delocalized phonon-like modes have long been suggested to play a role in the biological function of DNA. Such phonon modes involve the collective motion of many atoms and are prerequisite to understanding the molecular nature of macroscopic conformational changes and related biochemical phenomena. Initial predictions were based on simple theoretical models of DNA. However, such models do not take into account strong interactions with the surrounding water, which is likely to cause phonon modes to be heavily damped and localized. Here we apply state-of-the-art femtosecond optical Kerr effect spectroscopy, which is currently the only technique capable of taking low-frequency (GHz to THz) vibrational spectra in solution. We are able to demonstrate that phonon modes involving the hydrogen bond network between the strands exist in DNA at physiologically relevant conditions. In addition, the dynamics of the solvating water molecules is slowed down by about a factor of 20 compared with the bulk.
Collapse
Affiliation(s)
| | | | - Thomas Harwood
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Adrian J. Lapthorn
- School of Chemistry, WestCHEM, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sharon M. Kelly
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elizabeth M. Ellis
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Klaas Wynne
- School of Chemistry, WestCHEM, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
32
|
An unusual chimeric amylosucrase generated by domain-swapping mutagenesis. Enzyme Microb Technol 2016; 86:7-16. [DOI: 10.1016/j.enzmictec.2016.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 11/19/2022]
|
33
|
Rathore PK, Arathy V, Attimarad VS, Kumar P, Roy S. In-silico analysis of gymnemagenin from Gymnema sylvestre (Retz.) R.Br. with targets related to diabetes. J Theor Biol 2016; 391:95-101. [PMID: 26711684 DOI: 10.1016/j.jtbi.2015.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 11/23/2022]
Abstract
Diabetes is a metabolic disorder characterized by higher than normal glucose in the blood. Most oral hypoglycemic drugs available in market produce adverse side effects which have resulted in continued search for new therapeutic agents with little or no side effects. Herbal drugs are considered relatively safer alternatives and Gymnema sylvestre is one of the most well established natural remedy for diabetes and is traded worldwide under several brands. In the present study an attempt has been made to use in silico techniques to understand and predict the drug likeliness of gymnemagenin, one of the key constituents of G. sylvestre against 15 proteins having key role in carbohydrate metabolism. Gymnemagenin was found to dock well with crystallographic structures of 7 of the 15 selected targets and was found even better than the two known clinically used antidiabetic compounds, repaglinide and sitagliptin taken in the study for comparison. Gymnemagenin therefore can be considered further for development into a potent anti-diabetic drug.
Collapse
Affiliation(s)
- Poonam K Rathore
- Regional Medical Research Centre (ICMR), Belagavi 590010, Karnataka, India; KLE University, Belagavi 590010, Karnataka, India
| | - V Arathy
- Regional Medical Research Centre (ICMR), Belagavi 590010, Karnataka, India
| | | | - Pramod Kumar
- Regional Medical Research Centre (ICMR), Belagavi 590010, Karnataka, India
| | - Subarna Roy
- Regional Medical Research Centre (ICMR), Belagavi 590010, Karnataka, India.
| |
Collapse
|
34
|
iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets. Molecules 2016; 21:E95. [PMID: 26797600 PMCID: PMC6274413 DOI: 10.3390/molecules21010095] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022] Open
Abstract
Knowledge of protein-protein interactions and their binding sites is indispensable for in-depth understanding of the networks in living cells. With the avalanche of protein sequences generated in the postgenomic age, it is critical to develop computational methods for identifying in a timely fashion the protein-protein binding sites (PPBSs) based on the sequence information alone because the information obtained by this way can be used for both biomedical research and drug development. To address such a challenge, we have proposed a new predictor, called iPPBS-Opt, in which we have used: (1) the K-Nearest Neighbors Cleaning (KNNC) and Inserting Hypothetical Training Samples (IHTS) treatments to optimize the training dataset; (2) the ensemble voting approach to select the most relevant features; and (3) the stationary wavelet transform to formulate the statistical samples. Cross-validation tests by targeting the experiment-confirmed results have demonstrated that the new predictor is very promising, implying that the aforementioned practices are indeed very effective. Particularly, the approach of using the wavelets to express protein/peptide sequences might be the key in grasping the problem's essence, fully consistent with the findings that many important biological functions of proteins can be elucidated with their low-frequency internal motions. To maximize the convenience of most experimental scientists, we have provided a step-by-step guide on how to use the predictor's web server (http://www.jci-bioinfo.cn/iPPBS-Opt) to get the desired results without the need to go through the complicated mathematical equations involved.
Collapse
|
35
|
Shafique S, Bibi N, Rashid S. In silico identification of putative bifunctional Plk1 inhibitors by integrative virtual screening and structural dynamics approach. J Theor Biol 2016; 388:72-84. [PMID: 26493360 DOI: 10.1016/j.jtbi.2015.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 10/10/2015] [Indexed: 12/31/2022]
Abstract
Polo like kinase (Plk1) is a master regulator of cell cycle and considered as next generation antimitotic target in human. As Plk1 predominantly expresses in the dividing cells with a much higher expression in cancerous cells, it serves as a discriminative target for cancer therapeutics. Here we implied a novel and promising integrative strategy to identify "bifunctional" Plk1 inhibitors that compete simultaneously with ATP and substrate for their binding sites. We integrated structure-based virtual screening (SBVS) and molecular dynamics simulations with emphasis on unique structural properties of Plk1. Through screening of 20,000 compounds, nearly ~2000 hits were enriched and subjected to SBVS against ATP and substrate binding sites of Plk1. Subsequently, on the basis of their binding abilities to Plk1 kinase and polo box domains, filtration of candidate hits resulted in the isolation of 26 compounds. By exclusion of close analogs or isomers, 10 unique compounds were selected for detailed study. A representative compound was subjected to molecular dynamics simulation assay to have deep structural insights and to gauge critical structural crunch for inhibitor binding against kinase and polo box domains. Our integrative approach may complement high-throughput screening and identify bifunctional Plk1 inhibitors that may contribute in selective targeting of Plk1 to elicit desired biological process.
Collapse
Affiliation(s)
- Shagufta Shafique
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Nousheen Bibi
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan.
| |
Collapse
|
36
|
Ranganarayanan P, Thanigesan N, Ananth V, Jayaraman VK, Ramakrishnan V. Identification of Glucose-Binding Pockets in Human Serum Albumin Using Support Vector Machine and Molecular Dynamics Simulations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:148-157. [PMID: 26886739 DOI: 10.1109/tcbb.2015.2415806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Human Serum Albumin (HSA) has been suggested to be an alternate biomarker to the existing Hemoglobin-A1c (HbA1c) marker for glycemic monitoring. Development and usage of HSA as an alternate biomarker requires the identification of glycation sites, or equivalently, glucose-binding pockets. In this work, we combine molecular dynamics simulations of HSA and the state-of-art machine learning method Support Vector Machine (SVM) to predict glucose-binding pockets in HSA. SVM uses the three dimensional arrangement of atoms and their chemical properties to predict glucose-binding ability of a pocket. Feature selection reveals that the arrangement of atoms and their chemical properties within the first 4Å from the centroid of the pocket play an important role in the binding of glucose. With a 10-fold cross validation accuracy of 84 percent, our SVM model reveals seven new potential glucose-binding sites in HSA of which two are exposed only during the dynamics of HSA. The predictions are further corroborated using docking studies. These findings can complement studies directed towards the development of HSA as an alternate biomarker for glycemic monitoring.
Collapse
|
37
|
Wang J, Shu M, Wang Y, Hu Y, Wang Y, Luo Y, Lin Z. Identification of potential CCR5 inhibitors through pharmacophore-based virtual screening, molecular dynamics simulation and binding free energy analysis. MOLECULAR BIOSYSTEMS 2016; 12:3396-3406. [DOI: 10.1039/c6mb00577b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Employing the combined strategy to identify novel CCR5 inhibitors and provide a basis for rational drug design.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education)
- Research Center of Bioinspired Material Science and Engineering
- Bioengineering College
- Chongqing University
- Chongqing 400044
| | - Mao Shu
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Yong Hu
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education)
- Research Center of Bioinspired Material Science and Engineering
- Bioengineering College
- Chongqing University
- Chongqing 400044
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology (Ministry of Education)
- Research Center of Bioinspired Material Science and Engineering
- Bioengineering College
- Chongqing University
- Chongqing 400044
| | - Zhihua Lin
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
- College of Chemistry and Chemical Engineering
| |
Collapse
|
38
|
3D model for Cancerous Inhibitor of Protein Phosphatase 2A armadillo domain unveils highly conserved protein–protein interaction characteristics. J Theor Biol 2015; 386:78-88. [DOI: 10.1016/j.jtbi.2015.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 11/24/2022]
|
39
|
Fayaz SM, Rajanikant GK. Modelling the molecular mechanism of protein-protein interactions and their inhibition: CypD-p53 case study. Mol Divers 2015; 19:931-43. [PMID: 26170095 DOI: 10.1007/s11030-015-9612-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/01/2015] [Indexed: 02/06/2023]
Abstract
Cyclophilin D (CypD) is an important regulatory protein involved in mitochondrial membrane permeability transition and cell death. Further, the mitochondrial CypD-p53 axis is an important contributor to necroptosis, a form of programmed necrosis, involved in various cardiovascular and neurological disorders. The CypD ligand, Cyclosporin A (CsA), was identified as an inhibitor of this interaction. In this study, using computational methods, we have attempted to model the CypD-p53 interaction in order to delineate their mode of binding and also to disclose the molecular mechanism, by means of which CsA interferes with this interaction. It was observed that p53 binds at the CsA-binding site of CypD. The knowledge obtained from this modelling was employed to identify novel CypD inhibitors through structure-based methods. Further, the identified compounds were tested by a similar strategy, adopted during the modelling process. This strategy could be applied to study the mechanism of protein-protein interaction (PPI) inhibition and to identify novel PPI inhibitors.
Collapse
Affiliation(s)
- S M Fayaz
- School of Biotechnology, National Institute of Technology Calicut, Calicut, 673601, India
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, 673601, India.
| |
Collapse
|
40
|
Jia J, Liu Z, Xiao X, Liu B, Chou KC. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. J Biomol Struct Dyn 2015; 34:1946-61. [PMID: 26375780 DOI: 10.1080/07391102.2015.1095116] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With the explosive growth of protein sequences entering into protein data banks in the post-genomic era, it is highly demanded to develop automated methods for rapidly and effectively identifying the protein-protein binding sites (PPBSs) based on the sequence information alone. To address this problem, we proposed a predictor called iPPBS-PseAAC, in which each amino acid residue site of the proteins concerned was treated as a 15-tuple peptide segment generated by sliding a window along the protein chains with its center aligned with the target residue. The working peptide segment is further formulated by a general form of pseudo amino acid composition via the following procedures: (1) it is converted into a numerical series via the physicochemical properties of amino acids; (2) the numerical series is subsequently converted into a 20-D feature vector by means of the stationary wavelet transform technique. Formed by many individual "Random Forest" classifiers, the operation engine to run prediction is a two-layer ensemble classifier, with the 1st-layer voting out the best training data-set from many bootstrap systems and the 2nd-layer voting out the most relevant one from seven physicochemical properties. Cross-validation tests indicate that the new predictor is very promising, meaning that many important key features, which are deeply hidden in complicated protein sequences, can be extracted via the wavelets transform approach, quite consistent with the facts that many important biological functions of proteins can be elucidated with their low-frequency internal motions. The web server of iPPBS-PseAAC is accessible at http://www.jci-bioinfo.cn/iPPBS-PseAAC , by which users can easily acquire their desired results without the need to follow the complicated mathematical equations involved.
Collapse
Affiliation(s)
- Jianhua Jia
- a Computer Department , Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333403 , China
| | - Zi Liu
- a Computer Department , Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333403 , China
| | - Xuan Xiao
- a Computer Department , Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333403 , China.,c Gordon Life Science Institute , Boston , MA 02478 , USA
| | - Bingxiang Liu
- a Computer Department , Jing-De-Zhen Ceramic Institute , Jing-De-Zhen 333403 , China
| | - Kuo-Chen Chou
- b Center of Excellence in Genomic Medicine Research (CEGMR) , King Abdulaziz University , Jeddah 21589 , Saudi Arabia.,c Gordon Life Science Institute , Boston , MA 02478 , USA
| |
Collapse
|
41
|
Ganguly B, Tewari K, Singh R. Homology modeling, functional annotation and comparative genomics of outer membrane protein H of Pasteurella multocida. J Theor Biol 2015; 386:18-24. [PMID: 26362105 DOI: 10.1016/j.jtbi.2015.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022]
Abstract
Pasteurella multocida is an important pathogen of animals and humans. Outer Membrane Protein (Omp) H is a major conserved protein in the envelope of P. multocida and has been commonly targeted as a protective antigen. However, not much is known about its structure and function due to the difficulties that are typically associated with obtaining sufficient amounts of purified prokaryotic transmembrane proteins. The present work is aimed at studying the OmpH using an in silico approach and consolidate the findings in light of existing experimental evidences. Our study describes the first 3D model of the P. multocida OmpH obtained through a combination of several in silico modeling approaches. From our results, OmpH of P. multocida could be classified as a homotrimeric, 16 stranded, β-barrel porin involved in the non-specific transport of small, hydrophilic molecules, serving essential osmoregulatory function. Moreover, very small homologous sequences could be identified in the host proteome, strengthening the probability of a successful OmpH-based vaccine against the pathogen with remote chances of cross-reaction to host proteins.
Collapse
Affiliation(s)
- Bhaskar Ganguly
- Animal Biotechnology Center, Department of Veterinary Physiology and Biochemistry, College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India; Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India.
| | - Kamal Tewari
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India
| | - Rashmi Singh
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, India
| |
Collapse
|
42
|
Chimal-Vega B, Paniagua-Castro N, Carrillo Vazquez J, Rosas-Trigueros JL, Zamorano-Carrillo A, Benítez-Cardoza CG. Exploring the structure and conformational landscape of human leptin. A molecular dynamics approach. J Theor Biol 2015; 385:90-101. [PMID: 26342543 DOI: 10.1016/j.jtbi.2015.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/21/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022]
Abstract
Leptin is a hormone that regulates energy homeostasis, inflammation, hematopoiesis and immune response, among other functions (Houseknecht et al., 1998; Zhang et al., 1995; Paz-Filho et al., 2010). To obtain its crystallographic structure, it was necessary to substitute a tryptophan for a glutamic acid at position 100, thus creating a mutant leptin that has been reported to have biological activity comparable to the activity of the wild type but that crystallizes more readily. Here, we report a comparative study of the conformational space of WT and W100E leptin using molecular dynamics simulations performed at 300, 400, and 500 K. We detected differences between the interactions of the two proteins with local and distal effects, resulting in changes in the conformation, accessible surface area, compactness, electrostatic potential and dynamic behavior. Additionally, the series of unfolding events that occur when leptin is subjected to high temperature differs for the two constructs. We observed that both proteins are mostly unstructured after 20 ns of MD simulation at 500 K. However, WT leptin maintains a significant amount of secondary structure in helix α2, while the most stable region of W100E leptin is helix α3. Furthermore, we found that the region between residues 25 and 42 might adopt interconverting secondary structures ranging from α-helices and random coils to β-strand structures. Thus, this region can be considered an intrinsically disordered region. This atomistic description supports our understanding of leptin signaling and consequently might facilitate the use of leptin in treatments for the pathophysiologies in which it is implicated.
Collapse
Affiliation(s)
- Brenda Chimal-Vega
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Norma Paniagua-Castro
- Departamento de Fisiología, Doctorado en Ciencias en Biotecnología, ENCB, Instituto Politécnico Nacional. Avenida Wilfrido Massieu s/n, Esq. Manuel L. Stampa, Col. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, 07738 México, D.F., México
| | - Jonathan Carrillo Vazquez
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Jorge L Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, SEPI de la ESCOM del Instituto Politécnico Nacional, Juan de Dios Bátiz y Miguel Othón de Mendizábal s/n, México, D.F. 07738, México
| | - Absalom Zamorano-Carrillo
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México.
| |
Collapse
|
43
|
Thai KM, Le DP, Tran NVK, Nguyen TTH, Tran TD, Le MT. Computational assay of Zanamivir binding affinity with original and mutant influenza neuraminidase 9 using molecular docking. J Theor Biol 2015; 385:31-9. [PMID: 26341387 DOI: 10.1016/j.jtbi.2015.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 01/26/2023]
Abstract
Based upon molecular docking, this study aimed to find notable in silico neuraminidase 9 (NA9) point mutations of the avian influenza A H7N9 virus that possess a Zanamivir resistant property and to determine the lead compound capable of inhibiting these NA9 mutations. Seven amino acids (key residues) at the binding site of neuraminidase 9 responsible for Zanamivir-NA9 direct interactions were identified and 72 commonly occurring mutant NA9 versions were created using the Sybyl-X 2.0 software. The docking scores obtained after Zanamivir was bound to all mutant molecules of NA9 revealed 3 notable mutations R292W, R118P, and R292K that could greatly reduce the binding affinity of the medicine. These 3 mutant NA9 versions were then bound to each of 154 different molecules chosen from 5 groups of compounds to determine which molecule(s) might be capable of inhibiting mutant neuraminidase 9, leading to the discovery of the lead compound of potent mutant NA9 inhibitors. This compound, together with other mutations occurring to NA9 identified in the study, would be used as data for further research regarding neuraminidase inhibitors and synthesizing new viable medications used in the fight against the virus.
Collapse
Affiliation(s)
- Khac-Minh Thai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, 41 Dinh Tien Hoang St, Dist 1, Ho Chi Minh City, Viet Nam.
| | - Duy-Phong Le
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, 41 Dinh Tien Hoang St, Dist 1, Ho Chi Minh City, Viet Nam
| | - Nguyen-Viet-Khoa Tran
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, 41 Dinh Tien Hoang St, Dist 1, Ho Chi Minh City, Viet Nam
| | - Thi-Thu-Ha Nguyen
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, 41 Dinh Tien Hoang St, Dist 1, Ho Chi Minh City, Viet Nam
| | - Thanh-Dao Tran
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, 41 Dinh Tien Hoang St, Dist 1, Ho Chi Minh City, Viet Nam
| | - Minh-Tri Le
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, 41 Dinh Tien Hoang St, Dist 1, Ho Chi Minh City, Viet Nam
| |
Collapse
|
44
|
Almudallal AM, Saika-Voivod I, Stewart JM. Folding and binding energy of a calmodulin-binding cell antiproliferative peptide. J Mol Graph Model 2015; 61:281-9. [PMID: 26310499 DOI: 10.1016/j.jmgm.2015.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 11/15/2022]
Abstract
We carry out a computational study of a calmodulin-binding peptide shown to be effective in reducing cell proliferation. We find several folded states for two short variants of different length of the peptide and determine the location of the binding site on calmodulin, the binding free energy for the different conformers and structural details that play a role in optimal binding. Binding to a hydrophobic pocket in calmodulin occurs via an anchoring phenylalanine residue of the natively disordered peptide, and is enhanced when a neighbouring hydrophobic residue acts as a co-anchor. The shorter sequence possesses better binding to calmodulin, which is encouraging in terms of the development of non-peptide analogues as therapeutic agents.
Collapse
Affiliation(s)
- Ahmad M Almudallal
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada.
| | | |
Collapse
|
45
|
iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J Theor Biol 2015; 377:47-56. [DOI: 10.1016/j.jtbi.2015.04.011] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/24/2022]
|
46
|
In silico analysis of binding of neurotoxic venom ligands with acetylcholinesterase for therapeutic use in treatment of Alzheimer’s disease. J Theor Biol 2015; 372:107-17. [DOI: 10.1016/j.jtbi.2015.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/22/2015] [Accepted: 02/25/2015] [Indexed: 01/08/2023]
|
47
|
Khan FI, Govender A, Permaul K, Singh S, Bisetty K. Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, structure prediction and molecular dynamics simulations. J Theor Biol 2015; 374:107-14. [PMID: 25861869 DOI: 10.1016/j.jtbi.2015.03.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/02/2015] [Accepted: 03/27/2015] [Indexed: 01/02/2023]
Abstract
Thermomyces lanuginosus is a thermophilic fungus that produces large number of industrially-significant enzymes owing to their inherent stability at high temperatures and wide range of pH optima, including thermostable chitinases that have not been fully characterized. Here, we report cloning, characterization and structure prediction of a gene encoding thermostable chitinase II. Sequence analysis revealed that chitinase II gene encodes a 343 amino acid protein of molecular weight 36.65kDa. Our study reports that chitinase II exhibits a well-defined TIM-barrel topology with an eight-stranded α/β domain. Structural analysis and molecular docking studies suggested that Glu176 is essential for enzyme activity. Folding studies of chitinase II using molecular dynamics simulations clearly demonstrated that the stability of the protein was evenly distributed at 350K.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- Department of Chemistry, Durban, Steve Biko Campus, Durban University of Technology, Durban, South Africa; Department of Biotechnology and Food Technology, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Algasan Govender
- Department of Biotechnology and Food Technology, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Technology, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Durban, Steve Biko Campus, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
48
|
Samal HB, Prava J, Suar M, Mahapatra RK. Comparative genomics study of Salmonella Typhimurium LT2 for the identification of putative therapeutic candidates. J Theor Biol 2015; 369:67-79. [DOI: 10.1016/j.jtbi.2015.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/12/2015] [Accepted: 01/18/2015] [Indexed: 12/13/2022]
|
49
|
Singh SP, Gupta DK. A comparative study of structural and conformational properties of casein kinase-1 isoforms: insights from molecular dynamics and principal component analysis. J Theor Biol 2015; 371:59-68. [PMID: 25665722 DOI: 10.1016/j.jtbi.2015.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/02/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
Wnt signaling pathway regulates several developmental processes in human; however recently this pathway has been associated with development of different types of cancers. Casein kinase-1 (CK1) constitutes a family of serine-threonine protein kinase; various members of this family participate in Wnt signal transduction pathway and serve as molecular switch to this pathway. Among the known six isoforms of CK1, in human, at least three isoforms (viz. alpha, delta and epsilon) have been reported as oncogenic. The development of common therapeutics against these kinases is an arduous task; unless we have the detailed information of their tertiary structures and conformational properties. In the present work, the dynamical and conformational properties for each of three isoforms of CK1 are explored through molecular dynamics (MD) simulations. The conformational space distribution of backbone atoms is evaluated using principal component analysis of MD data, which are further validated on the basis of potential energy surface. Based on these analytics, it is suggested that conformational subspace shifts upon binding to ligands and guides the kinase action of CK1 isoforms. Further, this paper as a first effort to concurrently study all the three isoforms of CK1 provides structural basis for development of common anticancer therapeutics against three isoforms of CK1.
Collapse
Affiliation(s)
- Surya Pratap Singh
- Center of Bioinformatics, University of Allahabad, Allahabad 211002, India.
| | - Dwijendra K Gupta
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
50
|
Kumari S, Mohana Priya A, Lulu S, Tauqueer M. Molecular modeling, simulation and virtual screening of ribosomal phosphoprotein P1 from Plasmodium falciparum. J Theor Biol 2014; 343:113-9. [DOI: 10.1016/j.jtbi.2013.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/26/2013] [Accepted: 10/23/2013] [Indexed: 11/16/2022]
|